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Beams on Deformable Foundation
Poutres sur fondation déformable

Balken auf verformbarer Unterlage

TELEMACO VAN LANGENDONCK
Prof. Dr. Eng., Escola Politécnica, Universidade de S&o Paulo, Brasil

1. Introduction

The beams on continuous and deformable support are usually calculated
taking in consideration the proportionality between the deformation at each
point and the pressure directly exerted on it. The corresponding theory is
found in all treatises on the subject, there existing books exclusively dedicated
to it [1] [2]. Its large use comes from the fact that, with it, we can obtain
solutions represented by elementary functions (trigonometric, exponential and
hyperbolic), listed in any engineering handbook?!). There is, however, a great
inconvenience in this theory (which we may call “‘classic’’) when referring to
foundation beams, because in the soil the condition of independence between
the settlement at a point and the pressures at the adjoining ones does not
occur; although the law relating them is not yet well known (it does not
refer to a perfectly elastic body, where Boussineq’s theory would be applicable)
it is possible to imagine some simple one (fig. 1b) closer to reality than the
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Fig. 1.

1) It is supposed, as in all this work, that the beam has constant section and that the
foundation is homogeneously deformable.
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classic theory (fig. 1a). In fact, there is a possibility of choosing a law
under these conditions capable of leading to equations whose solutions may be
expressed by means of the same elementary functions of the classic theory
results.

2. Deformation

The law that characterizes the deformation y of a support in relation to
the load transmitted to it is the following:

y=1(=))CP,

where P is the load applied on the support and distributed to a distance equal
to the beam’s width, C is a constant whose dimension is equal to a length
divided by a force and equal to the deformation of the load application line
when this one is unitary, and f is an adimensional function of the distance ||
from that line to the considered point, under the beam’s axis, so that f(0)=1.

In order that the desired results may be obtained, that means, a solution
represented by the mentioned elementary functions, the following choice must
be made 2):

f(Ja]) = e,

where a is a constant whose dimension is equal do the inverse of a length,
characterizing the concentration of the influence of P along the axis (on the
other hand C is a constant that characterizes the deformability of the soil,
under the load). Experimentally the constants €' and a are determined measur-
ing the deformation caused by a certain load P3), in the position where it is
applied (y,) and at the distance d that has been chosen (y;). We have then:

_ Yo _ 1l Y
C = 21 a= dln "
Under these conditions we finally obtain:
y=PCe e, (1)

3. Reaction

When a prismatic beam whose length is / and the flexural rigidity £ .J is
under the action of the distributed load p (z), the support will react with the

2) As per HaBEL [3], this law has been already used by WIEGHARDT.

3) The load P should be extended to a width equal to that of the beam and for a
small length, but not too short in order to avoid a cut in the support material. The
influence of this length lp is negligible, as it can be seen in the formulas included in a
note at the foot of paragraph 9 (the value of C, for instance, obtained with the measure
of yo would be influenced at a ratio of 1+ 0,5 aly).
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force also distributed ¢ (x) plus the concentrated forces in the ends 4 and B
(fig. 2a)*%). These concentrated forces are due to the fact that the shearing
forces at the beam’s ends cannot be zero, because they are equal to the deri-
vative of the bending moments, and those ones show a diagram with an angular
point in those positions. The same happens, as it is known, in the ends of a
beam’s portions that are not deformable for being leaning against a fixed
obstacle (fig. 2b).
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Fig. 2.

To this reaction, equal to the beam’s action on the support, corresponds
a support’s deformation given by (1) for each load element qdx and for the
forces A and B. If the abscissas’ origin is at the distance ¢, from the left end
and ¢, from the right one (practically we should make ¢,=0 or ¢,=1/2, at the
best convenience), the support’s deformation is:

y = A Ceatrta) 4 B(e-aer 4 ([ (z) o223 d 2. (2)

Ze
We have, also, the equation of straight beam’s deflection curve:

d'y  p—q
dz* ~ EJ (3)

4. General Equation

Calling ¢ the inclination of the beam’s axis, M the bending moment and
@ the shear force, we obtain, by successive derivation of (2):

% =@ =—aAdCe i {q B(Ce 210

@ o (4)

—alfq(z)e**Adz+aCfq(z)e?Ddz,
x

—Co

4) The conclusions concerning the distributed load p are also applicable to the load P
concentrated in the point of abscissa ¢, since the impulse function J. () is used, putting
p(x)=P3c(x), as shown in paragraph 6.
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dry M,

Taz = " FJ - ¥Y—2aCq(@), (5)
Ay Q dq

i = " FJ el (6)
d'y _ p—q_ , R #

The double Eq. (7) is the one that characterizes the two unknown quanti-
ties ¢ and y. In order to eliminate one of them, the last two members are
derived four times and d*y/dx* is substituted by its value given by the two
first members — thus giving:

d“q I . . d*p

T 2¢ +2¢:a _2¢(a =) (8)
her - 9)
where V= 1a0ET (

is a constant (inverse of an area) characterized by the coefficients that define
the deformation of the beam and supports.

Eq. (8) gives ¢, so solving completely the problem. It should be noted,
however, that, among the six constants of integration, only four are acceptable,
in accordance with the physical conditions of the problem; the two ones to be
eliminated are those which multiply the particular solutions of (8) which
does not satisfy the equality (7). From this equality still results the values of
A and B, as it can be seen ahead.

5. Solution of the Differential Equation

As it is known [4], the general solution of the constant coefficients linear

equation, of order m, is
q= Z e fx (10)

where X (x) is the second member of the equation and where the «, are, for
(8), the roots (here supposed to be different) of the equation

S+ (@ -2¢)ut+24at =0 (11)

and the k, have the values:
k, = 6ud+4(a®—2)ud. (12)

The m constants of the m integrals of (10) are the constants of integration.
In the present case, we have:
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u1=—u3=1/¢—;/¢2—2¢a2, u2=_u4=1/‘/‘+‘/¢2—2¢“2=_;—]/ﬁ’

1

wy = —tg = ay—T (13)

and X (x) = 2¢(a4p—d4—p). (14)
dat

With the four derivations made in order to come from (2) to (7), four
integration constants arise and have to be put aside, among the six of the
solution of (8). Two of them are substituted by the constants A and B of (2)
to which convenient values will be attributed, and the other two are those
corresponding to uy; and wu4, leading to solutions of (8) which do not satisfy
the Eq. (2).

When a particular solution ¢, (x) of the Eq. (8) is obtained, the general
solution may be written under the form

q = Cen®+0yen2® 4 (ye¥s®+ (0 e4% +q,, (15)

where the C,, are the constants of integration to be determined in accordance
with the beam’s end conditions.
The last term of (2) when ¢ is changed for ¢, has the value (4, and B,
are constants) %):
x 51
Ce[q,(2)e*dz+Ce*®[qy(2)e%®dz = A,Ce 2ot B Ce2C1=2) gy,  (16)

—Co x

allowing to write — putting (15) successively in (2) and (7):

< —UnCo = Un Co
Yy = (A .|.A0_ Z O’n—e_) C e~ (cotx) 4 (B+Bo+ Z C, etne ) (' e—a(c1—2)
1 1

w, +a U, —a
R (17)
_zaOZu%_naze“"w+%’
d2q 4
2y BT aty = 2ph+(a2—24) o+ 0+ 3 (a2 — 24 +03) O, en”, (18)
1
From the comparison between (17) and (18) it follows:
PRI Sl ¢
—_ — _n- = — n Un C1
0+‘; e B=—B Zun—ae , (19)
d*q,1 20
Yo = [22090‘1‘(“2—2*/’)%4'5;2(!]? (20)

2aC a*—2¢+ul
d - = n
an wt—a? 24 EBJat’

5) Putting [ qo (2) e¥* dz = F (2,b) e¥* + const., we have:
Ao:—-F(—Co,a)’ Bo.__‘F(Cl’—a)’ y0=0[F(x,a)—F(x,—a)].
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which is the 4th degree equation in relation to u, , whose roots have the values
(13) already found.
For an easier use it is suggested the substitution of the constants of inte-
gration, making:
(C,er®+ Cye %) = (U, sinhu, x + Uy cosh u, x) (u —a?),
(Cyev2®+(ye~2%) = (C,sinh uy x + C,;cosh u, ) (ul —a?)

and so the (15) and the (19) will be written:

g = ¢o+(u}—a?) (C,sinhu, x+ Cycoshwu, x) ‘ 51
+ (u2—a?) (C,sinhu,x + Cycoshu, x), (21)
= —Ay+ (u;—a) (=0, sinh u, ¢y + Oy cosh u, )
+ (uy—a) (— C,sinh u, ¢y + C 4 coshu, ¢y, 59
B = — By—(u,+a) (C,sinh u, ¢; + C, cosh u, ¢;) (22)
—(uy+a) (C,sinh u,c, + C4coshu,ycy)
maintaining the (20) and obtaining from (17) and its derivatives:
y = yo—2aC(C,sinhu,x+Cycoshu,x+ C sinhuy,x+C4coshu,x), (23)
p = %:ZaC'(ulOacoshu1x+ulObsinhu1x |
+u, C,cosh uy x +u, Cysinhu, ), (24)
d? yo 1 .
M = EJ + ——:b(uf C,sinhu, x +u2C, coshu, x
+u3C, s1nhu2x+u§Odcoshu2x), (25)
a3 yo 1 3 .
Q ~—EJ +-21 8C,coshu,x+ufCysinhu,
(26)

u3 OC cosh Uy +ud Cysinhu, ).

The Eqgs. (20) to (26) solve the whole problem. For its practical application
some considerations must be made about the particular solution ¢, (para-
graph 6), about the boundary conditions (with which the constants of inte-
gration are determined, paragraph 7) and about the real and imaginary u,
(paragraph 8). Paragraph 9 refers to a beam extremely rigid (practically
undeformable). In paragraphs 10 and 11 some examples of the applicability
to particular cases are presented.

6. Particular Solution

The particular solution ¢, of (8) can be obtained by means of (10) and (14).
In common cases, however, in which p is expressed under the form of poly-
nominal of integer power of z (including the case of p constant) or Fourier
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series or represented by an impulse function®) (concentrated force) or binary
function (external moment), g, can be found as shown ahead. It must be noted
that the solution of these last two cases allows the working out of influence
lines for external forces and moments.

m
For p =2 a,x" (27)
n=0
m
we have 9o = Zob" xm (28)
n=
with
b, =a,, ifn>m—4,
4)! 2 .
bn=an+%2—[(l—é%)bn+4—an+4}, if m—4=n=m—5,
(n+4)![(, a (n+5) (n+6) . (29)
bn_ n W —El,_ll b'n+4"" 9 bn+6_a’n+4 , if n<m—5.
For P =ay+ Zancosm+ Za;sinnwx (30)
n=1 l n=1 l
we have Qo = A+ 2 b, cos nTE 4 b, sin 2% (31)
n=1 l n=1 !
with (for b,,, put a,, instead of a,,):
474 _ a4
b, = 24 2a @t —nim (32)

"24atlt+(a?—2)ntat 2 —nb b
For (abscissas origin in the point of application of the concentrated load P):
p =PI, (x), (33)

we have (we may attribute to w any of the four first values of u, of (13)):

2P ui—a? . ug—a? .
q0=u%——_——?‘f%§)‘io(x)( lul sinhu, x — 2u2 smhuzx) (34)

6) The following designations and notations will be used here [5]:

Step function of argument ¢ of the variable z, R.(x), is the function that is zero for x <c¢
and equal to the unit for z>c¢ (and finite for x =c¢);
Impulse function of argument ¢ of the variable x, & (x), is the function that is zero for
x#+c¢ and such that, for any b and d real and positive
c+d
[ Be@)yde=1;
c—b
Binary function of argument c¢ of the variable z, I (x), is the function that is zero for
= c and such that, for any b and d real and positive
ct+d ct+d
| S(@)yde=0, | —zJ(@)de=1.
c—b c—b
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with
2P . .
A,=0, B,= —2——¢E (—q'— sinhu, ¢, — 2 sinh Uy Cq + cosh u, ¢; — cosh u, cl) . (35)

With this solution the influence lines corresponding to vertical loads can
be constructed. Those corresponding to external moments are obtained in
accordance with the known rule, by deriving the expressions of those referring
to vertical loads. The same results should be obtained starting from

p= MOS(I) (), (36)
to which corresponds
do = u22 P;fz Ro () [(u3 —a?) cosh u, x — (uf —a?) coshu, x]. (37)
2~ Uy

7. Boundary Conditions

Each end of the beams can be free, simply supported or built-in. For each
one of these cases there are two conditions to be fulfilled, existing, therefore,
for the two extremities, four conditions, with which the four constants of
integration are determined.

For the free ends we have:

By _ M _ . By _Q
dz2 = EJ

dx3  EJ

(38)

with @ =A4 or @ = — B, according to whether the free end is at the left or at
the right (corresponding to the abolishing of the reaction B,=@—A4 or E,=
— @ — B, that should exist if there existed a support).

For the simply supported end:

dzy M
y=0 G- "ms-" (39)
For the perfectly built end:
dy _

If the beam is symmetrical, with a symmetrical load, it is convenient to
take the origin of the abscissa at the middle of the span (¢, =c¢; =1/2), from where
we have in the Eqgs. (21) to (26):

C,=0,=0, ‘ (41)
reducing to two the unknown constants. If the load would be anti-symmetrical
(in the symmetrical beam), we should have:

Cb = Cd = O. . (4:2)
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8. Real and Imaginary Values of u,

Whenever the beams flexural rigidity £ J is less than 1/8a® C (very flexible
beams) we have i >2qa? and the w, are all real, and so the Egs. (20) to (26)
can be used directly.

If the beam has small flexibility (a case of more common application),
that is, if ?):

1

EJ>—————8a30

(43)

we will have ) <2a2 and the roots u; to u, of (11), given by (13), will be
imaginary:

Uy = —ty = Vh—iY20 a2 — 42 = v, —iv,,

Uy = — g = Vi +iY2ha% g2 = v, +iv, (44)

with

Uy = V%(“Vﬂ"“l’): Uy = }/%(al/ﬁ_‘/’): Vg = 20,0y = )/2¢,a2_¢,2’

2 - (45)
v, = 02303 =24 —ay24, vy = 303—v% =24 +ay2.

The introduction of these values in formulas (21) to (26) permits the elimina-
tion of the imaginary ones and to write all of them under the form

X = Ky+ K5 (K, sinhv, sinv, x + K, coshv; x cos v,
: : (46)
+ K;sinh v, x cos vy + K, cosh v, xsinv, x),

where K, depends on the particular solution ¢, (or y, of (20)), K of the known
C,a or ¢, and the other K, of the new constants of integration K, K;, K,, K,
in accordance with the following tabulation (including also the reaction
R,=Q—A and R,= — @ — B of the non settling supports of the extremities).

For symmetrical loads in symmetrical beams, we have, with ¢y=c¢,=1/2:

K,=K;=0 (47)
and for anti-symmetrical loads:

K,=K,=0. (48)

7) The limit case EJ =1/8a3C is not considered. It would lead to equal roots (u1=
ue = uz=u4), with which, instead of (15), we would obtain the solution:

q = (c1+cax)evr1Z 4 (c3+cax)e 1% 4qo

from which come the expressions of the other unknown quantities (y, ¢, ete.). Also for
infinite K .J, that is, =0, the Eq. (11) should have equal roots, since u; =us=uz=us=0.
This case is dealt with in paragraph 9.
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When the u are imaginary, the particular solution (34) and the corre-
sponding constants 4, and B, may be written:

P

qo = —?TERO (%) (vy vg8inh v, x cos v, + v, v, cosh v, xsin v, x), (49)
3
Py2y . .
A4,=0, B,= / ¢(v2 sinh v, ¢; cos v,¢; — v, cosh v, ¢, sinwv, ¢,
“3 (50)
—sinh v, ¢, 8inv, ¢,),
from where, introducting (33) and (49) in (20):
2 24 : .
Yo = ——0—1;—}/——%3“{0 (%) (vgsinh v, x cos v, & — v, cosh v; x sin v, x) (51)
3
and from (5):
P 1 . 1 .
M, = —?SRO(x) v—lsmhlecosvzx-i-;z—coshlesm%x . (52)

9. Non Deformable Beam

When the beam is non deformable, EJ =00 or y=0, the deflection curve
is a straight line:
y=rkytkx. (53)

There will be no reaction of the deformed support if one of the beam
extremities is built-in or if both of them are supported. Two further cases may
be considered: the case of free extremities, with k, and k; to be determined,
and the case of the beam with an end simply supported (supposing to be
the corresponding to x=0) and the other one free, being k,=0, and remain-
ing to determine k; and the reaction R, of the support.

In this case, the Eq. (2) is enough to solve the problem. Its solution is:

a

q= ﬁ(k0+klx) (564)

1

| 2 1 k
with 4 :Eﬁ(ko—klco—gl), B=2—5(k0+klcl+;1). (55)

The constants k,, k; and R, are determined with the equilibrium condi-
tions: If the resultant P of the p is at the distance e from the left end of the
beam, for which is made =0 (that is, ¢,=0 and ¢; =1), we have:

1 ’
R,+A+B+fqdx =P, Bl+[qxdx = Pe (56)
0 0
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from where, if the ends are free8):

B —0 b = 2CP Kkl _12aCP(2e-1)
L " 240l 2° 17 (@2l2+6al+12)°
L _ak—k o akytk(1+al) (57)
2aC ’ 2aC
and, if a support exists:
6aC Pe k1
ko =0, kl_l(a2l2+3al+3)’ By = P—gglal+2),
(58)
A = ky B=1+alk
2aC’ 2aC

10. Example of a Beam with Free Ends

It is taken into consideration a prismatic beam with free ends and an
uniformly distributed load p. For p constant,

9o =P (59)
is a particular solution of (8) as it can be understood from (27) to (29) with
n=0 and a,=b,=p. From this we have (20):

2C
Yo=—,P (60)
and, from (16) (see corresponding footnote where F =p/b):

4,=-L - B, (61)

The determination of the deflection curve is requested, as well as the
reactions of the support and the bending moments of the beam of length
l=2m, with EJ=1012/72kg-cm? in support (soil) of C'=0,01 cm-kg—! and
a=0,09 cm™1, from where (9) y=2X10"8cm—2. As we have £J>1/8a3C, the
formulas of paragraph 8 are applicable, where, with Cy=c,=1/2=c:

vy vy = 0,003 cm™1, vy = 18-1078,
v, =v,¢ =03, tanhv, ¢ = 0,29131, tanv,c = 0,30934.

In view of the symmetry we have (47) K,=K;=0 and, from M =0 and
R, =0 for x=c, using (46) and the corresponding table:

8) If the load is symmetrical:

_20P _ aP P
=3xal’ T3xar’ S+al’

k1=0, Yo=ko
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K, (ftanh v, tanv,c+v;) — K, (v3tanh v, tanv,c —3b) = 0, (62)
K, (tanh vyctanv, ¢+ v tanwv,c -j?tanh vy c)
2 (63)
i K 1+vltanhvlc+vztanvzc _ P
’ V24 a?cosh v, ¢ cos v, ¢

or, with the numerical data (p in kg/em and K in kg-cm):
18,00 K,—1,602K, = 0
0,3606 K,,+10,010 K, = 123,6 p
from where:

K,=1,09p, K,=1231p.

From (46) the equations sought of ¥ (in c¢m), ¢ (in kg/em, as p) and M
(in kg-cm), are obtainable as shown on fig. 3 (note that, by the classic theory,

Q04997 !

A

B

Fig. 3.

we should have y= constant, g=p, A=B=0 and M =0), with « in meters:
y =189 (123,46 —1,0958inh 0,3 xsin 0,32 —12,31 cosh0,3xcos0,3x)-10-*%

q = p(10*—90,91sinh 0,3 xsin 0,3z —996,9 cosh 0,3 x cos 0,3 x)- 104

A = B =0,09994pc

M = 25p(—221,6sinh 0,3 xsin 0,3 2+ 19,96 cosh 0,3 x cos 0,3 x).

11. Example of a Beam with a Built-in End and Concentrated Load

Let us consider the same beam of the preceding example, but with a built-in
end (the left one) and with concentrated load at the distance ¢, =160 cm from
this extremity (¢c; = —cy,=40 cm).

Besides the constants already calculated in the preceding item, we have
still, from (45):

vy =—17,96 X 108 cm—2, vy = 18,04 X 10~ cm—2,
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From (49) to (52), with the unities kg and cm, except for  whose unity
is the meter, as in the preceding example, it comes:

% = 0,003 PR, (x)(cosh0,3zsin0,3x—sinh0,3xcos0,3z), Ay =0,
B, = 15§OO (3s8inh 0,12 ¢cos 0,12 — 3 cosh 0,12sin 0,12 — 1000 sinh 0,12sin 0,12)
= —0,00096 P,
Yo = —1—5—%—69%0(90)(cosh0,3xsin0,3x—sinhO,3xcosO,3x),
500 s .

M, = _TP Ry (%) (cosh 0,3 xsin 0,3 x + sinh 0,3 x cos 0,3 ),
Qo = — PR, (x)cosh0,3xcos0,3x.

P=it

/60 ecm 40

I
NSNS SN

AARANARRNNNNN

RN}
3
N X
' )
QQ\.T kltl)\
4 Q
kg/m
2
g 77m7
) Q ) Q <
3 S S S >
Q kg c§ o
ﬁ) ’\
¢ 3 N
) A} oy ™
3 3 S
1] \ 89 QJ
M kg-rm

Fig. 4.



BEAMS ON DEFORMABLE FOUNDATION 127

The constants K,, K;, K, and K; are determined from the conditions of
being zero y and ¢, for x= —cy= —1,6 m and R, and M, for x=c,=0,4 m:
0,2303 K, 40,9911 K, — 0,4423 K,—0,5159 K ;= 0,
~0,9582 K, +0,0736 K, +0,7608 K, +1,2214 K ;=0,
1,0000 K, —0,0133 K, —0,1205 K ,+0,1195 K ;= 0,08889 P,
0,0065 K, +0,9200 K, + 3,0671 K,—2,9327 K ;= — 2,2244 P

from where:
K, = 0,0014, K, = —0,0521,
Kc = —0,4422, Kd = 0,2797,

values that, when applied to the formulas of y, ¢, @ and M, lead to the results
of fig. 4.
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Summary

The beams on continuous and deformable support are usually calculated
taking in consideration the proportionality between the deformation in each
point and the pressure directly exerted in it. The corresponding theory is
found in all treatises on the subject. Its large use comes from the fact that, with
it, we can obtain solutions represented by elementary functions (trigonometric,
exponential and hyperbolic), listed in any engineering handbook. There is,
however, a great inconvenience in this theory when referring to foundation
beams, because in the soil the condition of independence between the settle-
ment in a point and the pressures in the adjoining ones does not occur. Although
the law relationing them is not yet well known, it is possible to imagine some
simple one less far from the reality than the conventional theory. This paper
shows that there is a possibility of choosing a law under these conditions
capable of leading to equations whose solutions may be expressed by means -
of the same elementary functions of the conventional theory results.
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Résumé

Les poutres reposant sur une fondation déformable continue sont calculées
habituellement en admettant que la déformation en chaque point est propor-
tionnelle & la pression qui 8’y exerce directement. La théorie fondée sur cette
hypothése se trouve dans tous les traités se rapportant & ce sujet. Son emploi,
trés répandu, est dii au fait qu’elle permet d’obtenir des solutions représentées
par des fonctions élémentaires (trigonométriques, exponentielles et hyper-
boliques) que ’on trouve dans tous les formulaires. Cette théorie présente
cependant de grands inconvénients pour les poutres de fondation parce que,
dans le sol, la condition d’indépendance entre la déformation en un point et
les pressions s’exercant sur les points voisins n’est pas réalisée. Bien que la loi
qui les lie soit actuellement mal connue, il est possible d’imaginer une loi
simple moins éloignée de la réalité que la théorie classique. La présente com-
munication montre qu’il est possible de choisir une loi qui, dans ces conditions,
puisse conduire & des équations dont les solutions soient exprimées par les
mémes fonctions élémentaires que celles de la théorie classique.

Zusammenfassung

Balken auf durchgehender und verformbarer Unterlage werden in der
Regel unter Beriicksichtigung der Proportionalitat zwischen der Verformung
an jedem Punkt und der direkt darauf ausgeiibten Pressung berechnet. Die
entsprechende Theorie findet man in allen Abhandlungen zu diesem Thema.
Ihre weitverbreitete Anwendung beruht auf der Tatsache, daB} sich damit
Losungen mit (trigonometrischen, exponentiellen und hyperbolischen) Ele-
mentarfunktionen erreichen lassen, die in jedem technischen Handbuch zu
finden sind. Dieser Theorie eignen jedoch dann betrichtliche Unzulénglich-
keiten, wenn es sich um Fundationsbalken handelt, weil im Boden eine Unab-
hangigkeit zwischen der Einsenkung an einem Punkt und den Pressungen an
benachbarten Punkten nicht besteht. Obwohl die GesetzméBigkeiten ihrer
Beziehungen bisher noch nicht eindeutig bekannt sind, ist ein einfaches Gesetz
denkbar, das sich weniger von der Wirklichkeit entfernt als die herk6mmliche
Theorie. Der Verfasser zeigt in seiner Arbeit die Moglichkeit der Wahl eines
Gesetzes, das unter den vorliegenden Umstdnden zu Gleichungen fiihren kann,
deren Loésung mittels der gleichen Elementarfunktionen ausgedriickt werden
konnen, wie diejenigen der klassischen Theorie.
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