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Creep Deflections in Concrete and Reinforced Concrete Columns

Deformations dues au fluage de colonnes en beton et beton arme

Kriechdeformationen in Beton und Stahlbetonstützen

JOSE NESTOR DISTEFANO
Professor, Argentine

I. Introduction

Previous literature [1], [2], [3], [4] on creep deflections in columns was
based on different modeis of linear viscoelastic material and all the papers
seem to prove that indefinitely large deflections can be reached after an inde-
finitely long time, and failure occurs when the ultimate bending moment is
reached.

Other papers [5], [6] show that for every P (axial force) between zero and
the Euler's critic load, deflections converge towards a finite value when time
tends to infinity.

This differences in conclusions can be explained because of the different
modeis used for representing linear viscoelastic materials. In the present paper,
the integral expression of Volterra's theory of hereditary phenomena [7] is
used, which permits a great generality, because the differential expressions
used to represent the viscoelastic bodies e. g., Maxwell, Standard, etc. are but
particular cases of the Volterra's integral expression. Moreover, by means of
this representation it is possible to take into account, as closely as we want,
reduetion of creep due to the age of concrete.

In the present paper, deflections due to creep in symetrically reinforced
concrete columns are studied. It is shown that creep deflections tend to a
finite limit as t -> oo, if, and only if, the axial load is not equal to or less than
a certain value P* <Pk, where Pk is the Euler's critic load. When P*<>P<,Pk,
deflections will reach infinitely large values for t -> oo. The upper limit P*
of loads (below which only finite deflections are possible) depend, on the
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asymptotic value of the specific creep strain — measured in the aged
concrete —, on the inertia moment of the steel reinforcement and on the elastic
modulus of both materials.

II. Creep in Concrete

It is generally accepted that creep in concrete is proportional at every time
to the applied stress, and that it verifies the superposition principle injthe
Boltzmann's sense, provided 30% to 50% of the rupture stress is not exceeded

[8], [9], [10], [11], [12].
In this form, it is possible to represent the creep strain of a concrete element

by means of the general integral expression of Volterra's theory of linear
hereditary phenomena. Let o(t) be the applied stress, variable with time t.
Then it is possible to write the creep strain

e(t)=io(r)f(t,T)dr, (1)

where r0 is the instant in which the stress is applied, and f(t,r) is the creep
coefficient defined by

f(t,r) -^i0(t,r), (2)

where e0 (t, r) is the specific creep produced when a stress of 1 kg/cm2 is applied
at the instant t. The specific creep for different ages r of concrete can be found
experimentally and the creep strain is well defined by mean of Eq. (1).

It is assumed that the instantaneous strain, produced when stress is

applied, will obey Hooke's law, so that

where Eb is the elastic modulus of concrete.

III. Integro-Differential Equations of Bending

If we consider that bending takes place only in a prineipal inertia plane
and that sections, piain before bending, remain piain, the total strain can be

expressed by
e(t) + e(t) =\(t)+fjL(t)z. (4)

Efiminating e(t) between (3) and (4), and taking into account that in the
zone oecupied by the steel must be e (t) 0, stresses ab and ae in concrete and
steel can be calculated by
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ab(t) Eb[X(t)+fz(t)z-i(t)], (5)

ae(t)=Ee[X{t)+fi(t)z\. (6)

The conditions of static equilibrium when an axial load P and a bending
moment M act in the cross section, are expressed by

P =$abdAb+$oedAe, (7)
Ab Ae

M =$abzdAb+$cjezdAe, (8)
Ab Ae

where Ab and Ae are the concrete and steel areas, respectively. Substituting
(5) and (6) in (7) and (8), these last take the form

P XEbÄ+^(EbSb + Ee8e)-EbU(t,r)drjab(r)dAb, (9)
T0 Ab

M ^EbI + X(EbSb + EeSe)-Ejf(t,T)drSab(r)zdAb, (10)
To Ab

where € (t) was replaced by its equivalent (1), and where

Ä =Ab + nAe; I =Ib + nIe,
Sb=$zdAb; Se $zdAe.

Ab Ae

From equilibrium Eqs. (7) and (8) and taking into account (6), it is then
possible to calculate the following integrals

j<rbdAb P-XEeAe-^EeSe,
Ab

jabzdAb M-XEeSe~fjiEeIe.
Ab

These integrals, substituted in (9) and (10), give the following equations
t t

\ + liR + Ee^ (xfdr + Ee^ LfdT -±T[P + EjpfdTl,
A J A J EbA t„

dl)
XR +^ + Ee^ txfdT + Ee!f LfdT -±-[M + EjMfdr],

1 J 1 J M/b 1 T0
To T0

where B =-^(Sb + n Se).
A

These equations are simplified if we choose the axis so that

Sb + nSe AB 0.

Moreover, in the present paper we will consider only the case in which the
steel is symetrically placed with respect to the bending axis. With this
disposition, it will be Se 0, and the system (11) will be reduced to the following
independent integral equations:
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t

\+Ee^(\f(t,T)dT ~^[P + EbSPf(t,T)dr], (12)
A J EhA t0

To

t

H+Ee^ \ltf{t,T)dT -±1[M + EjMf(t,T)dT]. (13)
1 J Eh 1 T0J"

We will suppose now that the column have a little initial eccentricity y0 (x),
so that the bending moment M can be expressed by

M P[y(x,t) + y0(x)]. (14)

Substituting (14) in (12) and (13), and the curvature /jl by its approximate
value \i — — ö—f and considering that the axial P is constant with time, Eqs.

(12) and (13) are modified in
t

\ + Ee^\\f(t,T)dr=^7[l+Ebi0(t,T0)], (15)
A J EbA

To
t

V+3+T/(P2/+jE;e/cS)/(*'T)rfT="/jyo(a;)[1+jE/6e"o(i'To)"(16)
Eb

First, we will solve the integral-differential equation for deflections (16),
and then we will solve Eq. (15).

IV. Solution of Equation (16)

To solve Eq. (16) we will suppose that it is possible to develop the functions

y (x, t) and y0 (x) in series of functions cpt (x)
00

y0(x) =Y,aicPi(x), (17)
i

y(x,t) %bi(t)cPi(x), (18)
i

where cpi (x) are the eigen-functions of the differential equation

[<p"i+h<PiY' o, (19)

whose first derivates cp/ are orthogonal functions, when conditions of free, or
hinged, or built-in end are satisfied [13]. By means of this property of
orthogonality coefficients ai are immediately calculated by

i
ho(x)<Pi(x)dx
o

ai=— •

![<pl(z)]*dx
0
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With respect to coefficient bi (t), eliminating functions y(x,t) and ^pi (x)
between Eqs. (16), (18) and (19), the following condition equations are obtained

MO+AJMT)/(*,T)dT —pt-a, [l+tf6eo C>To)L (20)
ktEbI-P

where ßi E, '"i"e'ek-EJ,-P
b~'ktEhI-P

To solve the above integral equation, it is convenient to reduce a little the
generality of function f(t,r) or what is the same, of the function e0(t,r). It is
noted that in materials like synthetic plastics or aged concrete, creep depends
only on the difference of parameters t — r [14]; in this case, Eq. (20) can be

rapidly solved by means of the Laplace's transformation, and the asymptotic
properties of Solutions can be easily investigated [15]. But in young concrete,
creep depends not only on the difference t — r, but also on the age t. Aroutiou-
nian [16] proposes to represent the specific creep with the function

e0(t,T) xfi(T)F(t-T) (21)

where i/j (r) is always positive and decreases monotonely towards the finite
limit ifj(co)=y0, and it represents the damping of creep due to age. The function

F(t — r) is also positive and monotonely grows towards an upper limit
equal to unity, for great values of parameters t — r. Taking

I / \ c
9\T) ro+->

T

F(t-r) 1-e"8^) (22)

and choosing convenient values of the constants y0, C, 8, it is possible to follow
as closely as we want, the creep of the concrete, with its dependence on age.
The creep coefficient / (t,r) can be calculated by means of Eq. (2) and its value
is in this case

/(<,T) -A^(T)(i_e-8<Hr>)]. (23)

Substituting (23) in Eq. (20), and rewriting, we have

biM-ßJbiM (T)dT+ßJbt(T)W +80)e-8«-^T Ä4(*,TO). (24)
T0 T0

where hi (t,r0) is the second member of Eq. (20).
Differentiations above equation with respect to t

b'At)+ßt84,(t)bt{t)-8ßJbt{T)W + W)e^«-*>dT W,To). (25)
To

Eliminating the integral
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between Eqs. (24) and (25), and differentiating again with respect to t, the
following differential equation is obtained

b'i(t) + 8[l+ßi4,(t)]b'i(t) 0 (26)

with the following boundary conditions

Mto) Mro>ro) =*—>0

k,EbI-P
bl(r0) Eb ^-0(ro)8(l-^^7g~PV

bkiEbI-PYK0/ \ kiEbI-P!
The general Solution of Eq. (26) is obtained by means of two successive

integrations

M0 MTo) + 6i(To)Je-J'tf><*£, (28)
T0

where Jt(t) §/[l +ßi4>(r)]dr.
To

Substituting for i/j(t) from (22), the integral becomes transformed into

J,(0 S(l+fty0)(<-T0) + ln^AC?8,

which substituted in (28) gives

b.(t) 6Jr0) + ö;(T0)eSTo(i+Ayo)T()Ac'Sje-S(i+Ayo)TT-AeSrfTi (29)
To

Introducing the incomplete gamma function 0 (oc, t) defined by
t

<P(oc,t) =$e-TT0C-1dr.
o

Eq. (29) becomes

bi (t) K (r0) + b\ (r0) e™ rj"«. vf* [0 (oc, ,v,t)-<P (oc,, v, r0)] (30)

where oc, l—ß,C8,
v<=8(l+ftyo).

V. Convergence of Deflections

The integral that figures in Eq. (29) is convergent for t -> oo, if, and only if,

a) 1+Ä7o>0,
b) 1-&CS>0,

remembering the value of ß, given by Eq. (20), the first condition is verified if
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n Iwhere km is the smaller eigenvalue of differential Eq. (19) and where p=-=A

But it is easy to show that EbIkm is just Euler's critic load of the reinforced
concrete column calculated in perfectly elastic ränge. Consequently, the above
unequality can be written

°^p<i/f (i + ^ro/»)- (31)

With respect to condition (b) it can be expressed as follows:

EhCl^ß£-<\. (32)

Because p can be varied between zero and one, when p is placed in the
interval

os's£
the condition (32) is always verified, for every value of EbCS coefficient. But,
when p is in the interval (columns very much reinforced)

P

condition (32) is verified if, and only if,

EbC S<1. (33)

We are justified in assuming that this inequality is satisfied because a large
number of experiments [8] show that generally the factor EbCS does not
exceed 0.5.

Once the conditions of convergence of functions b, (t) are established, we
will examine the deflections. These are given by (18).

From conditions of convergence of b, (t) functions, we can conclude that

a) When the axial load P is placed in the interval (31), deflections will tend to the

following finite limit, for t -> oo

y(x,K)->tbi (r0) n (x) +f bi (r0) e™ rj"^ „<<* [0 (oc„ co) -0 (oc,, v, r0)] (34)
l l

b) When the axial Load P is placed in the ränge

P*
(l + EbyoP)^P<Pk (35)

1 + Mb ro

the functions b, (t), and consequently the deflections, will tend to infinity for t -> oo.

Naturally, when P^>Pk, large deflections will be produced instantaeously.
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VI. Stresses in Concrete and Steel

Having calculated functions b, (t) by means of (30), curvature /x is immediately

calculated by means of
00

Ii(x,t) -Zbi(t)9't(z). (36)
1

It is possible to calculate the function A (t) by means of the integral Eq. (15).
With a similar treatment given to integral Eq. (20), Eq. (15) reduces to the
following differential equation

A" + S[1+W)]A' 0; 0= Ee^ (37)
A

associated with the following boundary conditions

P
A(r0)

EbÄ'

General Solution of (37) is then obtained

X(t) =—^[l + Äe0(To)8(l+4Ae8^^ (38)
EbA L V Al t0 J

The conditions of convergence for t -> oo of the integral are

l + öy0>0,
1+0CS>O,

Awhich are always verified because 9 Ee —4 ^ 0. Knowing A and p, by means

of (36) and (38), the elastic stresses in the steel can be immediately calculated
from

oe Ee(\ + piz). (39)

The stresses ab in concrete will be calculated in the following manner: we
will calculate the bending moment Mb and the axial force Pb absorbed by the
concrete only

Mb P(y + y0)-jaezdAe,
Ae

Pb =P-$*edAe
Ae

and then we can apply the well know formula of Strength of Materials.

_P,Mbab -. — + —2.
^b Ib
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VII. Generalization of the Problem in the Case of the Beam-Column

Supposing a system of lateral loads are applied to the column, which
produce a bending moment 9# (x) in the absence of the axial load P, then the
total bending moment will be

M Py(x,t)+ Py0(x) + W(x). (40)

Taking k (x) y0 (x) + -=- 9K (x).

The previous developments remain unchanged if instead of coefficients a,
we take coefficients af given by the formula

i
JKf(x)(p',(x)dx

*a? ±
l
$[cp',(x)Ydx
o

Then the condition of convergence of deflections will not change.

VIII. Discussion

In section V we have shown that deflections will tend to a finite limit with
t -> oo, if, and only if, the axial load belongs to the interval (31). While, when
P is in the interval (35), the deflections will tend towards infinity for t -> oo.
These conclusions are based on the linear creep theory, which is valid only
when the stresses in the concrete are not greater than 30% to 50% of the
rupture stress. Experiments show that when the stresses are greater than this
limit, creep is not linear, increasing more rapidly with increasing stresses [17].
For this reason, axial loads P placed in the interval (35), are always creep
failure loads.

It is important to note that the amplitude of the interval of the safe loads
(31), can be modified by varying the proportion of steel in the column. When
the columns have no steel, that is p 0, the interval (31) is reduced to

0^P< k

i + ^ro
while, when the column is reduced (by increasing the proportion of steel) to
a purely steel one, then />= 1, and the interval (31) is enlarged to

0^P<P^
this naturally corresponds to a purely elastic column.

We can see now in a particular case the influence of a steel reinforcement
of 3.33% in a rectangular concrete column. Suppose that the reinforcement is
formed by 4 steel bars placed in the corner of the rectangle, with this dis-
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position, and considering n=10, p has the value 1/2. We suppose now that
factor Eby0 2. The ränge of the safe load (31) of a column without steel will be

0^P<ipfc.

While for the same column reinforced with 3.33% of steel, the ränge will be

o^P<\pk.

That is to say, the amplitude of the ränge was duplicated.
Finally, we wish to mention|the creep-buckling experiments carried out

by Rene Perzo [18], which seem to confirm the previous criterion. Piain
concrete plates of 250/4/50 cm, built-in at the ends, were axially loaded at the

age of 7 days. These tests showed that the time of rupture by creep, increases

quickly when load is decreased, and that loads below 0.30 Pk are not capable
of producing rupture.

On the other hand, creep tests made at the same time, on concrete aged

21 days, showed that factor _ _,— has the value 0.33.

Notation

P Axial load
Pk Euler's critical load
M Bending moment

Elastic strain
e Creep strain
e0 Specific creep produced by ct 1 k cm-2
ct Stress
t Time

r Age of concrete
Ee Elastic modulus of steel

Eb Elastic modulus of concrete

n =*b
A Shortening of the axis of the column
pu Increment of curvature of the axis of the column, referred to the

unloaded incurved position
z Ordinate of a generic point of the cross section with respect to the

neutral axis
Ae Steel area
Ab Concrete area
Ä Ah + nAp

€
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h h2dAe

Ib %*dAb
Ab

I Ib + nle
y0 (x) Initial deflection of the column axis

y (x, t) Deflections of the column axes with respect to the unloaded incurved
positions
nlp

p =T
t

0(oc,t) J* e_T t*-1 <i t Incomplete Gamma function
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Summary

In the present paper, deflections due to creep in reinforced concrete columns
with symetrical steel reinforcement are studied. It is shown that creep deflections

tend to a finite limit for t -> oo, if, and only if, axial load is not equal or
smaller than a certain value P* <Pk, where Pk is the Euler's critic load. When
P* <^P<^Pk, deflections will reach infinitely large values for t -> oo. The upper
limit P* of loads (below which only finite deflections are possible) depends on
the asymptotic value of the specific creep, measured in the aged concrete, on
the inertia moment of the steel reinforcement and on the elastic modulus of
both materials.

Resume

L'auteur etudie les deformations dues au fluage de colonnes en beton arme
ä armature symetrique. Pour t -> oo, les deformations dues au fluage ne
tendent vers une valeur finie que si la charge axiale n'atteint pas une certaine
valeur P*<Pk, Pk designant la charge critique d'EuLER. Lorsque l'on a

P*^P^Pk, les deformations atteindront des valeurs infinies pour t -> oo.
La limite superieure P* (au-dessous de laquelle seules des deformations finies
sont possibles) depend de la valeur limite du fluage specifique, mesuree sur le
beton vieilli, du moment d'inertie de l'armature et du module d'elasticite des
deux materiaux.

Zusammenfassung

Im vorliegenden Beitrag werden die KriechVerformungen von symmetrisch
bewehrten Stahlbetonstützen untersucht. Für t -> oo zeigt sich, daß die
Kriechdeformation einem endlichen Grenzwert zustrebt, solange und nur
solange als die zentrische Belastung kleiner als ein bestimmter Wert P* < Pk

ist, wo Pk die Eulersche Knicklast bedeutet. Liegt P zwischen P* und Pk

(P* ^ P ^ Pk), so wächst für t -> oo die Kriechdeformation ins Unendliche.
Die obere Lastgrenze P* (unterhalb welcher nur endliche Deformationen
eintreten können) wird bestimmt durch den Endwert des spez. Kriechmaßes (an
gealtertem Beton gemessen), durch das Trägheitsmoment der Bewehrung und
den Elastizitätsmodul beider Baustoffe.
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