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Creep Deflections in Concrete and Reinforced Concrete Columns
Déformations dues aw fluage de colonnes en béton et béton armé

Kriechdeformationen tn Beton und Stahlbetonstiitzen

JOSE NESTOR DISTEFANO
Professor, Argentine

I. Introduction

Previous literature [1], [2], [3], [4] on creep deflections in columns was
based on different models of linear viscoelastic material and all the papers
seem to prove that indefinitely large deflections can be reached after an inde-
finitely long time, and failure occurs when the ultimate bending moment is
reached.

Other papers [5], [6] show that for every P (axial force) between zero and
the Euler’s critic load, deflections converge towards a finite value when time
tends to infinity.

This differences in conclusions can be explained because of the different
models used for representing linear viscoelastic materials. In the present paper,
the integral expression of Volterra’s theory of hereditary phenomena [7] is
used, which permits a great generality, because the differential expressions
used to represent the viscoelastic bodies e.g., Maxwell, standard, etc. are but
particular cases of the Volterra’s integral expression. Moreover, by means of
this representation it is possible to take into account, as closely as we want,
reduction of creep due to the age of concrete.

In the present paper, deflections due to creep in symetrically reinforced
concrete columns are studied. It is shown that creep deflections tend to a
finite limit as ¢ — oo, if, and only if, the axial load is not equal to or less than
a certain value P* < P, , where P, is the Euler’s critic load. When P*< P< P,
deflections will reach infinitely large values for ¢ — co. The upper limit P*
of loads (below which only finite deflections are possible) depend, on the
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asymptotic value of the specific creep strain — measured in the aged con-
crete —, on the inertia moment of the steel reinforcement and on the elastic

modulus of both materials.

IL. Creep in Concrete

It is generally accepted that creep in concrete is proportional at every time
to the applied stress, and that it verifies the superposition principle inxthe
Boltzmann’s sense, provided 309, to 509, of the rupture stress is not exceeded
(8], [9], [10], [11], [12].

In this form, it is possible to represent the creep strain of a concrete element
by means of the general integral expression of Volterra’s theory of linear
hereditary phenomena. Let o (t) be the applied stress, variable with time ¢.
Then it is possible to write the creep strain

¢

é(t)=ja(7)f(t77)d75 (1)

where 7, is the instant in which the stress is applied, and f(¢,7) is the creep
coefficient defined by

[67) = = (6,7), 2)

where &, (¢, 7) is the specific creep produced when a stress of 1kg/cm? is applied
at the instant . The specific creep for different ages = of concrete can be found
experimentally and the creep strain is well defined by mean of Eq. (1).

It is assumed that the instantaneous strain, produced when stress is
applied, will obey Hooke’s law, so that

em=%g 3)

where E, is the elastic modulus of concrete.

II1. Integro-Differential Equations of Bending

If we consider that bending takes place only in a principal inertia plane
and that sections, plain before bending, remain plain, the total strain can be

expressed by
e()+e@) =A()+u(t)=. (4)

Eliminating e (f) between (3) and (4), and taking into account that in the
zone occupied by the steel must be & (f) =0, stresses o, and o, in concrete and
steel can be calculated by
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oy (8) = By [A () +p (8)z—E ()], (5)
o, (1) = B [A(t)+p (1) 2]. (6)

The conditions of static equilibrium when an axial load P and a Bendjng
moment M act in the cross section, are expressed by

P =fo,dA4A,+[0o,dA4,, (7)
Ap A,

M =[o,zdAy+[o,2d 4,, (8)
Ap Ade

where 4, and A4, are the concrete and steel areas, respectively. Subs{;ituting
(5) and (6) in (7) and (8), these last take the form

- t
P =AE,A+u(EySy+E,S,)—E,[f(t,7)d7[aoy,(r)d Ay, (9)
To Ay
_ 14
M =upE,I+A(E, Sb—i-EeSe)—Ebff(t,T)deob (r)zd A4y, (10)
To Asp

where ¢ () was replaced by its equivalent (1), and where
A = A,4+nA,; I =I+nl,,
Sb=.‘-ZdAb; Sezfsze.
Ap Ae

From equilibrium Eqs. (7) and (8) and taking into account (6), it is then
possible to calculate the following integrals ’

AjobdAb =P-AE,A,—uE,S,,
Ajborbszb =M-\E,S,—pE,I,.
b
These integrals, substituted in (9) and (10), give the following equations
t t
At p R+Eei4;—“f)\fdr+lf}'e§ﬁfpfd~r - pim, P,
AT,, A'r., E, A To

b

(11)
L

¢
[ M+E,(Mfdr],
EbI[ b-r{ f 7]

t ¢
)\R+M+Eg% fAde+E6% f,u,fd'r =

where R = % (Sp+nS,).

These equations are simplified if we choose the axis so that
S,+nS,=AR=0.

Moreover, in the present paper we will consider only the case in which the
steel is symetrically placed with respect to the bending axis. With this dis-
position, it will be §,=0, and the system (11) will be reduced to the following
independent integral equations:
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t
— [P+ E,[Pf(tr)dr], (12)

t
A+Ee:4;efkf(t,7)d7 =
A E A
t

wt B, fpf(t e =L (M4 B, Mf(t 7). (13)
‘1 ’ B, 1 e ’

To

We will suppose now that the column have a little initial eccentricity y, (x),
so that the bending moment M can be expressed by

M = Ply(,1)+y, @)]. (14)
Substituting (14) in (12) and (13), and the curvature u by its approximate
value p = —:272 and considering that the axial P is constant with time, Eqs.

(12) and (13) are modified in

{
A P
A E, —Tef)\f(t,'r)d‘r=EbA[l+Ebé0(t,70)], (15)
P ( Y P .
S ~—~—+ Py+ E, 1, f,7)VdT = ———yo(x)[1+ Eyey (F, 7). (16)
B, I 9a? f 8) E,I"°° protm e

First, we will solve the integral-differential equation for deflections (16),
and then we will solve Eq. (15).

IV. Solution of Equation (16)

To solve Eq. (16) we will suppose that it is possible to develop the func-
tions y (z,t) and y, (¥) in series of functions ¢; (x)

=leai¢i(x)> (17)
=§bi(t)%(x)a (18)

where ¢, (z) are the eigen-functions of the differential equation
[pi +k; 91" =0, (19)

whose first derivates ¢, are orthogonal functions, when conditions of free, or
hinged, or built-in end are satisfied [13]. By means of this property of ortho-
gonality coefficients a; are immediately calculated by

/4
Of Yo (%) p; () d

ﬁwwmdx
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With respect to coefficient b, (f), eliminating functions y(x,?) and ¢, (x)
between Eqgs. (16), (18) and (19), the following condition equations are obtained

¢
b, (t)"'BiT.[bi (T f@t,r)dr = m%[l + By &, (t, 7)1, (20)
where B; = Ebk“ Belo= D

To solve the above integral equation, it is convenient to reduce a little the
generality of function f(#,7) or what is the same, of the function ¢, (¢, 7). It is
noted that in materials like synthetic plastics or aged concrete, creep depends
only on the difference of parameters {—+ [14]; in this case, Eq. (20) can be
rapidly solved by means of the Laplace’s transformation, and the asymptotic
properties of solutions can be easily investigated [15]. But in young concrete,
creep depends not only on the difference ¢ —7, but also on the age . Aroutiou-
nian [16] proposes to represent the specific creep with the function

€ (t,7) =3 (7) F(t—m) (21)

where i (7) is always positive and decreases monotonely towards the finite
limit 4 (c0) =y,, and it represents the damping of creep due to age. The func-
tion F (t—7) is also positive and monotonely grows towards an upper limit
equal to unity, for great values of parameters ¢ —r. Taking

b () = yo+
F(t—q-) =1 _@—S(t—'r) (22)

and choosing convenient values of the constants y,,C,§, it is possible to follow
as closely as we want, the creep of the concrete, with its dependence on age.
The creep coefficient f (£, 7) can be calculated by means of Eq. (2) and its value
is in this case

0
(7)== [ (1) (1 —e-3m)]. (23)
T
Substituting (23) in Eq. (20), and rewriting, we have

b (0) = Buf bo ()W () dr+ B, b, () 48 9) s = Ryt (24

where h; (t,7,) is the second member of Eq. (20).
Differentiations above equation with respect to ¢

b, (8) +B: 8 (£) by (1) — 8 By by () (' +5) e3¢0 dr = Bl (t,7).  (25)
Eliminating the integral
o, (o) (4 +34) 20
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between Eqs. (24) and (25), and differentiating again with respect to ¢, the
following differential equation is obtained

bi () +8[1 4B, (1)]b; (£) = 0 (26)

with the following boundary conditions

Pa/i
bi(TO)zki(To)To)zﬁ—j__—ﬁ7
Pa MBI _p (27)
bilro) = By )8 (1= T2 ).
kB, - P kB, I— P

The general solution of Eq. (26) is obtained by means of two successive
integrations

be(t) = by (ro) + b (rg) [ IO d €, (28)

To

where J; (2) =8ft[1+ﬁi¢l(7)]d7.

Substituting for i (v) from (22), the integral becomes transformed into

B:Céd
JAt)=8<1+Biyo>(t—fo>+ln(i) ,

To
which substituted in (28) gives

¢ .
b; (t) = b; (79) +0; () edTo(1+Biv0) Toﬁi Csf e—SU+BiyOT —BiCd 1 (29)

Introducing the incomplete gamma function @ («, t) defined by

t
D (a,t) =[e " 1d T,
0

Eq. (29) becomes
b; () = b; (70) +b; () €70 5% vy [D (e, v; £) =D (ot, v; 7o), (30)
where o; =1-8,08,
v =0 (1+B;70).

V. Convergence of Deflections

The integral that figures in Eq. (29) is convergent for ¢ — o0, if, and only if,
a) 1+pB;9,>0,
b) 1-8,08>0,

remembering the value of 8; given by Eq. (20), the first condition is verified if

By L ko, (L+ By yp)

0sP<—2_-"
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where k,, is the smaller eigenvalue of differential Eq. (19) and where p= a2

But it is easy to show that £, I k,, is just Euler’s critic load of the reinforced
concrete column calculated in perfectly elastic range. Consequently, the above
unequality can be written

0<P< iy

= m(l"'Eb)’oP)- (31)

With respect to condition (b) it can be expressed as follows:

EbOS——————Pk_P <1. (32)
Because p can be varied between zero and one, when p is placed in the

interval

P
<p<——

the condition (32) is always verified, for every value of £,C & coefficient. But,
when p is in the interval (columns very much reinforced)

P
Z_<p<
P, <p=l
condition (32) is verified if, and only if,
E,Cé<1. (33)
We are justified in assuming that this inequality is satisfied because a large
number of experiments [8] show that generally the factor E,(Cé does not
exceed 0.5.
Once the conditions of convergence of functions b, (f) are established, we

will examine the deflections. These are given by (18).
From conditions of convergence of b, (¢) functions, we can conclude that

a) When the axial load P is placed in the interval (31), deflections will tend to the
following finite limit, for ¢ — oo

y (@, oo>—>;§b,~ (7o) i (x>+;'°b; (o) €70 Th—iu 74 [ (a, 00) — B (o, v 7o)] . (34)

b) When the axial Load P ts placed tn the range

B

m(1+Eb70p)§P<PIg (35)

the functions b; (t), and consequently the deflections, will tend to infinity for t — co.

Naturally, when P > P,, large deflections will be produced instantaeously.
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VI. Stresses in Concrete and Steel

Having calculated functions b; () by means of (30), curvature p is immedi-
ately calculated by means of

o)

p(x,t) = —;bz‘ ) p; (x). (36)

It is possible to calculate the function A (£) by means of the integral Eq. (15).

With a similar treatment given to integral Eq. (20), Eq. (15) reduces to the
following differential equation

AN+S[1+04 ()X =0; 0=E6—i}9 (37)
associated with the following boundary conditions
P
A =,
(7o) B, A

X' (7o) =n§—¢(70)3(1 +%@).

General solution of (37) is then obtained

t
3 . [1 + B, (1) 8 (1 +—%) 6870(1+970)7305f6‘8(”070)"7'“908d'r] . (38)

At) =
() EbA To

The conditions of convergence for ¢ — oo of the integral are

14+60y,>0,
1+40C8>0,

which are always verified because 0=Ee~j§ = 0. Knowing A and p by means
of (36) and (38), the elastic stresses in the steel can be immediately calculated
from

o, =E,(A+pnz). (39)

The stresses o, in concrete will be calculated in the following manner: we
will calculate the bending moment M, and the axial force P, absorbed by the

concrete only
Mb = P(y+y0)_jaesze?
Ag

P, =P—[o,dA,
Ae

and then we can apply the well know formula of Strength of Materials.
P, M

O’b=Z‘Z—+'—I?bZ.
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VII. Generalization of the Problem in the Case of the Beam-Column

Supposing a system of lateral loads are applied to the column, which
produce a bending moment IR (x) in the absence of the axial load P, then the
total bending moment will be

M =Py (x,t)+ Pyy(x)+M(x). (40)
Taking Kk (x) = Yy, () +—]13§m (x).

The previous developments remain unchanged if instead of coefficients a;
we take coefficients a} given by the formula

jx' (@) gl (@) d

af =

9l @z

Then the condition of convergence of deflections will not change.

VIII. Discussion

In section V we have shown that deflections will tend to a finite limit with
t — o0, if, and only if, the axial load belongs to the interval (31). While, when
P is in the interval (35), the deflections will tend towards infinity for ¢t — oo.
These conclusions are based on the linear creep theory, which is valid only
when the stresses in the concrete are not greater than 309, to 509, of the
rupture stress. Experiments show that when the stresses are greater than this
limit, creep is not linear, increasing more rapidly with increasing stresses [17].
For this reason, axial loads P placed in the interval (35), are always creep
failure loads.

It is important to note that the amplitude of the interval of the safe loads
(31), can be modified by varying the proportion of steel in the column. When
the columns have no steel, that is p=0, the interval (31) is reduced to
By

0s<P<—FK
B 1+ By y,

while, when the column is reduced (by increasing the proportion of steel) to
a purely steel one, then p=1, and the interval (31) is enlarged to

0<P<P,

this naturally corresponds to a purely elastic column.

We can see now in a particular case the influence of a steel reinforcement
of 3.339, in a rectangular concrete column. Suppose that the reinforcement is
formed by 4 steel bars placed in the corner of the rectangle, with this dis-
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position, and considering »=10, p has the value !/,. We suppose now that
factor B, y,=2. The range of the safe load (31) of a column without steel will be

1
0 < P< 'g Pk 5
While for the same column reinforced with 3.339%, of steel, the range will be
2

That is to say, the amplitude of the range was duplicated.

Finally, we wish to mentionxthe creep-buckling experiments carried out
by RENE PErzo [18], which seem to confirm the previous criterion. Plain
concrete plates of 250/4/50 cm, built-in at the ends, were axially loaded at the
age of 7 days. These tests showed that the time of rupture by creep, increases
quickly when load is decreased, and that loads below 0.30 P, are not capable
of producing rupture.

On the other hand, creep tests made at the same time, on concrete aged

1
21 days, showed that factor 5 Esye has the value 0.33.

Notation

= Axial load

Euler’s critical load
Bending moment

Elastic strain

Creep strain

Specific creep produced by o= 1%k cm—2
Stress

Time

Age of concrete

Elastic modulus of steel
Elastic modulus of concrete

O"’\If‘hlﬂ'\ Eahuhc
T | I I

@@ﬂ = qQ
[

>

E
= Slll)ortening of the axis of the column
= Increment of curvature of the axis of the column, referred to the
unloaded incurved position
Ordinate of a generic point of the cross section with respect to the
neutral axis
= Steel area
Concrete area

T >
|

N
Il

0

M
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1, = [22d A4,
A,
— 'Ab
Yo (®) = Initial deflection of the column axis
y (z,t) = Deflections of the column axes with respect to the unloaded incurved
positions
_nl,
P 7

¢
D (a,t) = [eTr*1dr = Incomplete Gamma function
0

w

10.

11.
12.

13.
14.

15.
16.

17.
18.
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Summary

In the present paper, deflections due to creep in reinforced concrete columns
with symetrical steel reinforcement are studied. It is shown that creep deflec-
tions tend to a finite limit for ¢ — oo, if, and only if, axial load is not equal or
smaller than a certain value P* < P, where P, is the Euler’s critic load. When
P* < P <P, deflections will reach infinitely large values for ¢ — co. The upper
limit P* of loads (below which only finite deflections are possible) depends on
the asymptotic value of the specific creep, measured in the aged concrete, on
the inertia moment of the steel reinforcement and on the elastic modulus of
both materials.

Résumé

L’auteur étudie les déformations dues au fluage de colonnes en béton armé
a armature symétrique. Pour ¢ — oo, les déformations dues au fluage ne
tendent vers une valeur finie que si la charge axiale n’atteint pas une certaine
valeur P*< P,, B, désignant la charge critique d’Eurer. Lorsque l'on a
P*< P<P,, les déformations atteindront des valeurs infinies pour ¢{— 0.
La limite supérieure P* (au-dessous de laquelle seules des déformations finies
sont possibles) dépend de la valeur limite du fluage spécifique, mesurée sur le
béton vieilli, du moment d’inertie de I’armature et du module d’élasticité des
deux matériaux.

Zusammenfassung

Im vorliegenden Beitrag werden die Kriechverformungen von symmetrisch
bewehrten Stahlbetonstiitzen untersucht. Fir ¢ — oo zeigt sich, daB die
Kriechdeformation einem endlichen Grenzwert zustrebt, solange und nur
solange als die zentrische Belastung kleiner als ein bestimmter Wert P* < P,
ist, wo P, die Eulersche Knicklast bedeutet. Liegt P zwischen P* und B,
(P*<P<P,), so wichst fir ¢t - oo die Kriechdeformation ins Unendliche.
Die obere Lastgrenze P* (unterhalb welcher nur endliche Deformationen ein-
treten konnen) wird bestimmt durch den Endwert des spez. Kriechmafles (an
gealtertem Beton gemessen), durch das Tragheitsmoment der Bewehrung und
den Elastizitdtsmodul beider Baustoffe.
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