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Indeterminate Analysis
Calcul des systémes hyperstatiques

Allgemeine Methode zur Berechnung statisch unbestimmter Tragsysteme

S. 0. ASPLUND
Gothenburg

This paper proposes a general indeterminate analysis of structures that is
applicable to first order theory structures with linearly elastic members.
Special cases of this analysis are the force and the deformation methods
but the analysis also admits of solving a structure by all possible combi-
nations of force and deformation method expedients.

Members and jornts. The analysis begins by completely subdividing the
structure into definite “members’’ with known elastic behavior (flexibility).
The members connect at ‘““joints’’ to other members, and to supports. Points
of application of loads and displacements are also treated as joints.

Structure action. Mode. Loads and displacements are applied to joints upon
the structure. Their components are arrayed in a column matrix ¢ called the
“action’’ upon the structure.

The specific choice of forces and displacements in ¢ will be called the
“mode’’ of the action. When @ contains only forces or only displacements we
speak of a “‘pure flexibility mode’’ or a ‘“‘pure rigidity mode’’, otherwise of a
“mixed mode’’.

Member action. The structure action @ produces individual member actions
N, consisting of forces and displacements, in a definite mode. The associated
member ‘‘response’’ n™ is a column matrix, consisting of the displacements and
negative force components that correspond to the components of N7, that
is, to its forces and displacements.

Action and response are terms that are only helpful in describing this
analysis. Indeed, in the theory of elastic structures no proper relations of cause
and effect should be inferred in any verbal statement.
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Structure response. Clebsch’s theorem. Consider for a moment a structure under
an action ¢ producing the member action N. In another state of stress an en-
forced member deformation »’ is accompanied by the compatible structure
displacement ¢’. At unloaded joints the forces of N balance so their virtual work
cancel. At loaded joints the forces of N are equivalent to the loads . There-
fore the same virtual work will be produced by all @ displaced along ¢’, as by
all N displaced along n': |

Q*q = 3 Nm¥pm' = N*p’ (1)

asterisk denoting transposition. This holds also when applied displacements
are generalized into forces at the same time as the negative associated forces
are generalized into associated displacements.

In a first order theory structure a rectangular matrix B with constant
elements transforms the structure action ¢ into the member action N: N =B Q.
To find this “transaction’’ B, elastic properties must in general be employed.
If found (1) gives Q*¢'= @* B*n’ which must hold for any @*, consequently,

if N= B¢, then ¢ = B*n'. (2)

This was stated by A. CLEBSCH (in his book Elasticitat fester Korper, Leip-
zig 1862, p. 414, 415), and, for scalar B, by R. Kroux (in Zeitschr. Arch. u.
Ing. Ver. Hannover 1884, p. 269). G. Krox, (in Journ. Franklin Inst. 238, 1944),
expressed the non-generalized matrix version of (2). The fundamental relation
(2) will be here referred to as CLEBSCH’s theorem.

Flexibility. For each member a “flexibility’” matrix f transforms the action
N™ into the member response n™. We assume ™ to be known. Thus we can
calculate each member response n™ = fm N™. All individual member actions and
responses N™ and n™ are now arrayed into two block columns that will be called
simply the member action NV and the member response n. Simultaneously all the
individual flexibility matrices ™ are arrayed in a block diagonal flexibility
matrix f so as to validate the formula n=fN. Since all f® are known, the
“‘unconnected flexibility matrix’’ f is also known.

For linearly elastic members all elements of f are constants. Then by (2):
¢ =B*n'=B*fN'=B*f{ BQ'=e¢ @’ where e is the strukture flexibility. Such
members and member action can always be found that f becomes diagonal
(=f*). Then e*=(B*fB)*=B*f{* B=B*f{ B=e¢. We conclude that all flexibi-
lities are symmetric (which is a result of our conventions for measuring action
and response).

Part-inversion. We interpose here a discussion of the part-solution of a
system of linear equations:

p=cP+d R,

(3)
r =dP+kR.

In (7) the letters may also signify conform matrices with non-singular k. The
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system can be partly solved for R only. We premultiply the second equation
by —k~1=K and substitute R in the first equation:

R=KdP-Kr, p=cP+d'KdP—-d Kr,
p=eP—d Kr, with e=c+d Kd.

1= 1a 5] [ oz ®

in the case that g is symmetric, thus ¢ and k symmetric and d’ =d*. This makes
K,d*Kd, and e=c+d* Kd symmetric. There are only two possible ways of
obtaining in (4) a symmetric matrix h. One of these is to reverse the sign of
R in (4):

[‘pR] B [*;fd *(?K] [ﬂ =h[ﬂ’ Ie{i;fdl*](d' (6)

When g and % denote flexibility matrices it is most convenient always to
ingist upon maintaining their symmetry. In such instances we shall employ
instead of (4) the form (6) of the part-inversion. The action in (5) is P, R,
and the response p,r. In (6) the action is P,r and the response p, — E. Note
that r in (5) is moved directly into the action of (6) while R in (5) is moved
into the response of (6) with a reversed sign. This agrees wholly with our
previous definition of action and response in the mixed modes.

Change of flexibility mode. Part-inversion will be first applied in transforming
member flexibilities ¢ given in one mode into flexibilities » of another mode.
In the action and response columns of the first mode arrange all L™, I™, that
shall remain unchanged before those M™, m™ that shall be interchanged. This
requires interchange of the rows and columns of the flexibility matrix f™
into g™ validating the formulas

(4)

Consider (3) or

e d* b — e —d*K K=-Fk1 .
9=la x| “|_Kd K |© e=ct+d*Kd (7)
and, for the required part-inversion,
[m [ L™ _fec a*
[mm] =g [Mm] where g™ = [d 1 ] (8)
with K and e as before.
Im m Lm m e —d*K :
I R e e ®

In general f™ is first established in the pure flexibility mode. 1t can be trans-
formed by the described part-inversion into any desired mode. However, as a
result of a previous analysis of a smaller structure it may often be that f” is
known in a mixed mode. By the described part inversion this mode can still be
transformed into the flexibility A™=f™ in any desired mode.
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Determinacy and indeterminacy. When B can be found by only static
and kinematic considerations, the structure (with the preassumed subdivision
in members m of known flexibilities /) will be termed determinate.

A given structure can be changed by cutting and locking joints in the
following sense. Each cut consists in a physical release that nullifies a pair
of force components that is transmitted by the joint. The cut is in general
accompanied by a displacement between the two faces of the joint made by
the cut. Each lock consists in the installation of a rigid lock arm between
the joint and the foundation. When the structure is loaded all movement of
the locked joint in the direction of the joint force component is prevented;
the lock arm transmits a lock force to the foundation.

When a given non-determinate structure is changed into a determinate
structure by cutting ¢ joints and locking ! other joints, the given structure
will here be called c times statically indeterminate and 1 times kinematically
indeterminate. Obviously this definition is meaningful only with reference to a
preassumed subdivision of the structure into members with preassigned modes of
action.

The cut and locked determinate structure will be called the auxiliary
(structure). It is going to be employed in the analysis of the given indeter-
minate structure.

Indeterminate structure equations. So far undetermined gap forces (pairs of)
and lock movements are applied to the cuts and locks in the auxiliary. Their
magnitudes are arrayed in a ‘“redundant action’’ column matrix R. Together
with the given applied action P they make up the total action ¢ upon the
auxiliary:

action @) = [z] , with response ¢ = [f] ; (10)

The state of stress and deformation in the given ‘“loaded’ structure is
simulated in the auxiliary by adjusting the redundant action components R
so as to close all gaps and to reduce all lock forces to zero. This is simply expressed
by r=0 where r is the “redundant response’’, that is the column of gap dis-
placements and negative lock forces that is associated to the column R.

In a determinate auxiliary we can find by definition, using statics and kine-
matics, the force transformation A4 ; that is, we can find the transaction matrix
A that applied to the action @ results in the member action N; that is, we
can by statics and kinematics find 4 in N=4¢@. It is possible to write 4
as a sparse ‘“‘topological matrix’’, containing only one- and zero-elements,
premultiplied by coordinate transformation matrices, but this factorization is
inessential in the present treatment.

The transaction matrix 4 can be partitioned into two groups of columns:
one, C, that transforms the given structure action P and one, D, that trans-
forms the redundant action R, both into member action N :
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A=[CiD], N=AQ=CP+DR. (11)

The flexibility f of all members was assumed to be known in their prescribed
modes of loading. By this the associated elastic member response is fN.
Adding non-elastic member ‘‘response’’ n‘ due to ‘‘action’’ by temperature,
misfit, initial elongations, settlements, plasticity, etc. we find the complete
member response

n=fN+n'. (12)

Since N = 4 @, we find by CLEBSCH’s theorem (2):

for the auxiliary structure response. Substitution of (11) and (12) gives
q=A*fN+A*nt = A*fAQ+¢, (14)
I—¢=9Q, g=A4*f4, ¢ =A%n.

Solution of the indeterminate equations. For a second application of part-
inversion let us solve Eq. (14). We repeat it, splitting the matrices ¢, ¢, 4 by

(10), (11):
L0 =ole) [ = Lo s
O A Y N

In (15) the given action P is known, but the redundant action R is unknown.
However, R are to be adjusted so as to nullify the redundant response r (gap
displacements and lock forces) which thus are known and should be moved
into the second member of (15). For this purpose (15) is part-inverted by (5),

(6):

p—p P P P
4 e Pl B el ] e o
e —d*K] K=—k1
h= [—Kd K ] e =ct+d*Kd (18)

The second row of (17)
R=KdP+KD*n (19)

is substituted into (11) or N=C P+ D R to give
N =(C+DKd)P+DKD*n' or
N =N:‘P+N°n!, N'=C+DKd, N°¢=DKD* (20)
and into (12) or n=fN +n’ to give

n=n'P+nn!, ni=fNi n°=fNe+1I. (21)
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The first row of (17) gives
p—C*nt =eP+d*KD*nt,

22
p=p'P+p'nt, pi=e=c+d*Kd, p°=C*+d*KD* =Ni*, (22)

The formulas (20), (21), (22) are written in influence coefficient form. For
instance, the member action N in the indeterminate structure is given as the
structure action P premultiplied by influence coefficients N?, in exactly the
same manner as employed in conventional influence line theories.

In some cases the complete analysis (20), (21), (22) of the structure is not
required. In such cases the analysis can often be considerably simplified by
omitting the rows that are not used in these equations.

Ezxample. The principal characteristics of this method of analysis are
illustrated in the following simple example.

lPZ Lock For rotation r2 P23 M22 M37

/31 { Franslation possible) ') N
') (474 ifor _/ dall mef
£I=1 (‘ mom. R1 }
L=7 3 |
L=1 1
4 |
|
=174
Given structure Auxiliary Members Transaction
Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

The frame in Fig. 1 is given. It is locked and cut as in Fig. 2 to form an
auxiliary, using the members Fig. 3, 4, 5. This is determinate because it is
possible by statics and kinematics only to find as in (11) the transaction 4:

P, 10010
Moo 00{01 | P
M,, 00i10 | |P, [P

= L R = AQ=[CiD] |5 : 1
Py, 0100 | & |0 Y=4¢ [O'D][R] (31)
Mgy 0001 [ry|

The transaction 4 transforms the structure action, given load P, P, and
redundants R,, r, as shown in Fig. 6, into the member action .

The pure flexibility matrix of the beam 2 is found by conventional simple
integrations (L=KI=1):

Mgy | 1/3 1/1611/6 M,
Pos | = |1/16 1/48 1/16 | | Py |, m=gN. (32)
My 1/6 1/1671/3" | | M,

By a part inversion (8), (9) this is changed into the flexibility % for the
mode used in Fig. 4.
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k=1/3, K=-3 Kd=-[1/2 3/16],

P [1/12 1/32 ] . [1/4 1/32 ]

1/32 3/256 1/32 7/3-256
1/4  1/32 1/2 | | my, M,, |
h=|1/32 7/3-256 3/16 |, Pog | =h | Pog|.

For the members 1 and 3 i Fig. ¢ we find

( p| | L3EI L) [P, [131] [Py
My | L 0 |my _Ll 0| | my |

mgy = (1/3) M.

(34)

(35)

Thus the ‘“‘unconnected’’ flexibility f in the auxiliary, with member action

N ordered as in (31), is

n=fN or
P 1/3 1 Py
M, 1 0 My
Moy | 1/4  1/32  1/2 M,,
Pos | 1/32 7/3-256 3/16 P,y |
—M,, 12  3/16 -3 Mgy
o M | | 1/3J | M3, |

Blank spaces denote zeros. We obtain for g=A4*f4 in (14)

13 0 1/3 1

10 1 0 13 0 i1/3 1
fA = 0 1/32 1/4 1/2 , A*f A 07/32561/323/16

0 7/3-256 1/32 3/16 1737 1j3271117273)2

0 1/16 1/2 -3 1 3/16 {3/2 -3

0O 0 13 0 :

with partitioning of ¢ in given and redundant loads shown. Part-inversion of

g by (16), (18) gives

Keckre [0, 38 [_i-w

30 9/2

fd= [—5 _3/2] (=60, = [3 —9764] (=601 = [1412 3/5?25

1/4 0
—_ * _—
e=c+d Kd—[o 11/15-64]'

o]
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This is the flexibility matrix of the given structure. We further find

[-1/2 -3/40] T 1/2 -3/40

1/12 140 1/12  1/40

_|-1/2 -3/40 . e |-1/2 -3/40
DKd=| " o | Ni=C+DEKd=p*=| ' .t
1/12 1/40 | 1/12  1/40

~1/2 -3/40 | -1/2 -3/40 |

This N?is the transaction matrix (20) of the given indeterminate structure, or
its transposed temperature flexibility p¢, see (22). Several superfluous rows of
N7 could have been suppressed in this example.

The temperature transaction (20) is

10
01
., 10|36 18 101001}
¢ — *: 1 —6 2
Ne=DLD 00 [18—11}(/0”_01001041
01
36 18 36 0 18 36 | Py T P
|
18 —11 18 0 —11 18 -y -M,,
36 18 36 0 18 36 M m
c:’ e 22 — C | 22 \.
¥="0 000 0o 0o/ p =¥ L, (38)
18 —11 18 0 11 18 My | —My,
/36 18 36 0 18 36 piry | mgy

A temperature elongation of the beam 2 by 4 L causes my; =4 L,

n=[0000 04L]*.

Py | 36|
My 18
M,, 36
P, =10 4 L/60.
Moy 18
| M, | 36 |

Remarks. This example is by no means the easiest way of analyzing the frame
selected but the example serves the purpose of illustrating simply the main
points of the indeterminate analysis described in this paper. Very complicated
structures composed of bars, beams, plate members, and even solid body
members, can be treated quite analogously by the method. The calculations
then should be performed by a computer. In the author’s opinion an inter-
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pretive matrix routine is an indispensable complement in this. Then the hand
preparations needed for even a large analysis may be less than needed for the
hand computations spent in the preceding simple example. Discrimination is
required in the establishment of cuts and locks to create a determinate auxiliary
structure in such a manner that the total computational work becomes well
conditioned and a minimum. The task of attaining this is not treated in this
paper but it is well worth a treatment of its own. In the choice of members,
cuts, and locks a wide variation is possible, from all members being pure
flexibility members with all joints cut, to all members being pure rigidity
members with all joints locked. Both the force and the deformation methods
are included in the present analysis but all kinds of mixed modes are applicable
as well, under one and the same set of quite simple formulas.

The hand preparations mentioned include the establishment of the deter-
minate transaction matrix and the member flexibility matrices in proper
modes. Both of these tasks can often be considerably expedited by matrix
formulation and computer application, see for instance S. O. Asplund , Theory
of Trusses, AIPC Mémoires, Vol. 19 (1959), p. 1. The determination and
positioning of the design load etc. upon the influence lines also belongs to the
preparations but the evaluation of the resultant member actions can usually
be done by the computer.

Action not at proper joints. Action not at proper member joints can be han-
dled by establishing further member joints at the points of action. The problem
can also be dealt with in another way that is exactly applicable to distributed
loads as well.

According to the latter method the member section forces and the member
deformations, both at and between the existing joints, are first determined in
the auxiliary by conventional elastic structure methods for the action between
joints. Thereby each member joint is cut or locked as the case may be in the
auxiliary. The section force and deformation diagrams are saved to be added
at the end of the following analysis. The member response (joint reactions and
displacements) caused by this action between joints, is treated as elements of
n! for the auxiliary structure. They are entered into (14), causing ¢'=4*n/,
that are additional responses p=C*n! of this action between joints and
additional gaps or lock forces = D*n! to be observed in the reduction of » to
zero by proper adjustment of the redundants E.

For example a uniform load = P, upon the horizontal beam in Fig. 1
and 6 produces axial column forces of no effect, a left knee moment —M,, =
=P;/8 and a right knee rotation m,,= P,;/48 (see standard tables), thus
nt=[0 0 1/48 0 1/8 0]*P,. The member force obtained by (20) is
N=Nent=[-144 48 —144 0 48 —144]*/(-60-48) P,.
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Summary

Indeterminate analysis is generalized by treating displacements as forces
and the negative associated forces as associated displacements. The generaliza-
tion makes possible the application of redundant cuts and simultaneous
redundant locks. The resultant analysis follows lines parallel to the so-called
flexibility matrix method. Needed definitions of determinacy and indeter-
minacy are formulated. Simple formulas are deduced for the general method.
A method of ‘““part-inversion’’ is devised for their solution.

The force and the deformation methods for indeterminate analysis are
seen to be two extreme special cases of the general method here demonstrated.

Résumé

L’auteur généralise le calcul des systémes hyperstatiques en traitant de la
méme fagon les déformations et les forces ainsi que les forces correspondantes
négatives et les déformations correspondantes, ce qui permet de travailler
simultanément avec des blocages et des coupes surabondantes. Le calcul qui
en résulte présente certaines analogies avec la méthode dite «de la matrice de
flexibilité». L’auteur introduit les définitions concernant les systémes déter-
minés et indéterminés. Pour cette méthode générale, il établit des relations
simples et il les résout a 1’aide d’une méthode «d’inversion partielle».

La méthode des forces et celle des déformations sont deux cas particuliers
et extrémes de la méthode générale exposée.

Zusammenfassung

Der Autor gibt eine Verallgemeinerung der Theorie der statisch unbe-
stimmten Systeme. Darin werden die Verschiebungen wie Krifte behandelt
und die entsprechenden negativen Krifte als entsprechende Verschiebungen.
Diese Verallgemeinerung erlaubt es, mit iiberzihligen Schnitten und gleich-
zeitig wirkenden {iberzidhligen Verriegelungen zu arbeiten. Die daraus ent-
wickelte Berechnungsmethode folgt Richtlinien, die der sogenannten «Flexi-
bility Matrix Method» verwandt sind. Der Autor formuliert die notwendigen
Definitionen betreffend Bestimmtheit und Unbestimmtheit. Diese allgemeine
Methode fiihrt auf einfache Gleichungssysteme, welche mit einer auf Teil-
invertierung beruhenden Methode aufgelost werden.

Es zeigt sich, dal Krifte- und Deformationsmethode zwei extreme Spezial-
fille der hier behandelten allgemeinen Methode darstellen.
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