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Détermination du régime de membrane dans les voiles minces de trans-
lation, a I'aide de la méthode du polygone funiculaire

Bestimmung des Membranspannungszustandes in Translationsschalen mit Hilfe
der Seilpolygonmethode

Determination of the Diaphragm State of Stress in Translational Thin Shells by
Means of the Funicular Polygon Method

F. STUSSI PIERRE DUBAS
Prof. Dr, EPF, Zurich Prof. Dr, EPF, Zurich

Introduction

Dans ce méme volume des Mémoires '), MM. BELES et SOARE exposent
I’application de la méthode plurilocale au calcul des coques de translation; ils
rappellent pour commencer les divers procédés que 1’on peut utiliser pour
résoudre le probléme et citent en passant la méthode du polygone funiculaire.
Nous avons donc pensé utile de montrer I’emploi de cette méthode pour le
calcul des voiles minces de translation ou, plus exactement, pour la détermina-
tion du régime de membrane dans ces surfaces gauches, admises travaillant
sans flexion 2).

1) A. A. BELES et M. SoArE, Application de la méthode plurilocale au calcul des
coques de translation, Mémoires A.I.P.C., 21le volume, Zurich 1961, page 11.

2) La méthode du polygone funiculaire a déja été appliquée & un probléme semblable,
celui de la torsion, régi par une équation différentielle qui est un cas particulier de celle
intervenant dans les voiles de translation; on consultera a ce sujet F. StUss1, Zur Prandtl-
schen Membrananalogie der Torsion, Zeitschrift fiir angew. Math. und Physik, Fest-
schrift Jakob Ackeret, 1958, Vol. IXb, p. 661, ou Entwurf und Berechnung von Stahl-
bauten, 1. Band, Grundlagen des Stahlbaues, Springer, Berlin/Goéttingen/Heidelberg
1958, p. 206.

Pour les voiles de translation, I’emploi de la méthode du polygone funiculaire a été
exposé par Z. PELKA, voir Obliczanie powlok translacyjnych metoda wieloboku sznuro-
wego, Rozprawy Inzynierskie, Tom VII, Zeszyt 4, Warszawa 1959, p. 465, ou Powloki
translacyjne, Towarzystwo Naukowe Ekspertéw Budownictwa W Polsce, Warszawa 1960 ;
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Etablissant tout d’abord briévement I’équation qui régit le probleme, nous
montrerons comment on peut résoudre numériquement cette équation diffé-
rentielle en y substituant un systéme d’équations linéaires, écrites en un cer-
tain nombre de points du domaine étudié. Pour illustrer 1’exposé, nous trai-
terons deux exemples numériques, ce qui par ailleurs donnera une idée de
P’ordre de précision obtenu.

Bases théoriques

Considérons un voile mince dont la surface moyenne est engendrée par la
translation d’une courbe quelconque, mais contenue dans un plan vertical,
le long d’une autre courbe, contenue dans un plan vertical perpendiculaire au
précédent; cette surface moyenne est définie par une équation de la forme

=2 () +25(Y), (1)

si xy désigne le plan horizontal de référence (fig. 1). Comme la fonction z; ne

2
dépend que de x et z, ne dépend que de y, la torsion géodésique EZsz est
2 d2 . o F
nulle sur toute la surface et les courbures g%, E?;; sont des dérivées totales.
Désignons par Z la force, supposée paralléle a 1’axe z, appliquée a 1'unité
de surface en projection horizontale. Lorsque ’on admet que le voile travaille
sans flexion, on peut exprimer le régime de membrane par trois composantes,

les efforts élémentaires longitudinaux S;, S, et le cisaillement 7'. Pour écrire

1\\

voir aussi Powloka katenoidalna, Rozprawy Inzynierkie, Tom VIII, Zeszyt 4, Warszawa,
1960, p. 697, et Catenoidal Shell, Bulletin de ’Académie Polonaise des Sciences, Série
des Sciences Techniques, Volume VIII, Numéro 8, Varsovie 1960, p. 477. Le mode
d’application exposé dans ces publications n’est toutefois pas tout & fait exact & notre
avis; nous y reviendrons plus loin.

e -
AR

No 6 N\, s N

Fig. 1.
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les conditions d’équilibre d’un petit élément de voile, qui se projette selon un
rectangle dx dy (fig. 2), il est indiqué de considérer les projections N,, N, y &b
N, des efforts élémentaires. Les équations d’équilibre prennent alors la forme
suivante:

ON, 0N,

e T oy T @ - dy

oN, 0N, N, I +N, Iy +7Z = 0. (2)
=0,

oy ox

<4
-«

Fig. 2.

On a négligé les infiniments petits d’ordre supérieur et tenu compte, dans la
derniére équation, de la torsion géodésique nulle.

Comme dans les problémes d’élasticité plane, les deux premiéres équations,
relatives aux axes x et y, sont satisfaites si I’on pose

> F
ox oy (3)

:2F < *F — =
m=a—y2_, N:”:?}EZ_’ oy = Nyp = —

c¢’est-a-dire si I’on introduit une fonction d’effort F3), analogue & la fonction
de tension d’A1RY. Quant a la troisiéme condition d’équilibre, relative & 1’axe
z, elle devient grice aux relations (3)

3) Ce procédé a été introduit par A. PUCHER, Uber:den Spannungszustand in doppelt
gekrimmten Flichen, Beton und Eisen, 33. Jg., 1934, p. 298; voir aussi B. LAFFAILLE,
Mémoire sur I’étude générale des surfaces gauches minces, Mémoires A.I.P.C., 3e volume,
1935, p. 315.
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d*z, 62F+ d?z, *F
dy? 0x?  da? 0y:

— 7. (4)

Cette équation?) linéaire aux dérivées partielles du second ordre permet en
principe, avec les conditions aux limites, de définir la fonction F5). Nous ne
considérerons ici que le cas, courant en pratique, d’un voile dont la projection
sur le plan horizontal zy est rectangulaire et qui est lié, le long du périmetre
de sa projection, & des tympans qui ne présentent pas de rigidité appréciable
hors de leur plan. Les conditions au contour s’expriment donc de la fagon
suivante (fig. 1):

_ 2
x=zta: Nx==—a——]:=0,
ay
_ »F (5)
y:ib y=ax2=

Ces relations signifient que la fonction F doit avoir une variation linéaire le
long des lisieres. D’aprés les équations (3), seules les dérivées secondes de F
ont une signification physique et F n’est déterminé qu’a une fonction 4 + Bz +
+ C'y prés 8); rien ne nous empéche donc de poser comme conditions au contour

F =0 sur tout le contour. (6)

La fonction F une fois connue, les relations (3) permettent de remonter
aux projections N. Les efforts de membrane sont alors données par les relations
suivantes

4) Dans le cas le plus général, avec des forces appliquées quelconques, de compo-
santes X, ¥, Z, le terme de droite de I’'équation (4) se généralise en

oz oz 0%z , 0%z
~Z+X o Ya—y-jLﬁfdeﬂua_yJYdy
et les relations (3) deviennent
2 F
dxoy”
Voir par exemple 8. TiMoSHENKO and S. WoiNowsKY-KRIEGER, Theory of Plates and
Shells, Second Edition, Me Graw-Hill, 1959, p. 461.

5) Dans les problémes d’élasticité plane, I’équation différentielle pour la fonection
d’A1ry découle d’une condition de compatibilité car ces problémes sont hyperstatiques
au plus haut degré. Les problémes relatifs aux voiles de translation que nous allons
examiner sont par contre isostatiques ou, au plus, une fois hyperstatique comme indiqué

& la note 6.
6) Lorsque le probléme n’est symétrique ni par rapport & x ni par rapport & y, on

2 —— 2 —
Z\,Tz:;—fde; Ny=—2?ﬁ27—dey; Ngy =

peut encore considérer un terme de la forme Dxy et, selon (3), le cisaillement Nz ne
sera défini qu’a une constante prés. Le probléme est ainsi une fois hyperstatique et il
est nécessaire de considérer dans ce cas une condition d’énergie de déformation minimum;
on consultera & ce sujet L. BrocLio, Introduction d’une théorie générale pour I'étude
des voltes minces de translation, A.I.P.C., 3e Congrés, Liége 1948, Rapport final, p. 5563;

voir aussi B. LAFFAILLE, op. cit. & la note 3.
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e (B e (2 _
S;=N, :E?};z; Sz‘_‘Ny :E:i_%? T:ny. (7)

On peut également déterminer les contraintes principales et leurs trajectoires
mais il ne faut pas oublier que 1’élément de voile considéré n’est rectangulaire
qu’en projection 7).

Résolution de I’équation différentielle des voiles de translation par la méthode du
polygone funiculaire

Comme dans la méthode bien connue aux différences finies, nous allons
déterminer la valeur de la fonction F en un nombre fini de points, situés aux
neeuds d’un réseau rectangulaire qui décrit le domaine entre ses limites. Les
mailles seront toutes égales, avec une surface 4 x4y (fig. 3).

nel |\m-2 |m-17 \m m+! | m+2
n+1
't >
‘n mn \
n-7
n-2
4
e 2X
> X
Fig. 3.

C’est aux noeuds du réseau que 1’on va remplir 1’équation différentielle.
Pour ce faire, on exprime les dérivées partielles de la fonction F par des rela-
tions qui ne contiennent que les valeurs nodales F,, , , c’est-a-dire les incon-
nues du probléme. On peut écrire en chaque noeud intérieur 1’équation diffé-
rentielle transformée et tenir compte sur les lisiéres de la condition (6) qui
détermine directement les valeurs de la fonction sur le contour. On obtiendra
donc autant d’équations, linéaires, qu’il y a de valeurs nodales inconnues. La
résolution de ces équations se fera par les procédés classiques qu’il est inutile
de rappeler ici.

Pour éliminer les dérivées partielles, on utilise la relation du polygone
funiculaire qui donne justement une relation entre les valeurs des dérivées

7) Voir A. PUCHER, op. cit. & la note 3, ou Z. PELkA, Powloki Translacyjne, cité a la
note 2.
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secondes en certains points et les valeurs de la fonction aux mémes points.
Cette relation bien connue s’écrit 8):

Ym—— 2 Ym T Ym+1 = 4 me (y”)
ou, pour des dérivées partielles et une fonction F au lieu de y,

*2F
F,,-2F,+F,,  =4dzK, (‘5:]&2)- (8)
On peut bien entendu considérer des lignes verticales en remplacant x par
y et m par n.

Ces relations sont exactes puisqu’il n’y est fait aucune hypotheése sur I’allure
des dérivées secondes et la maniére d’évaluer la charge nodale K. La formule,
par contre, devient approchée si ’on admet une variation parabolique de la
dérivée seconde entre les points m—1 et m+1 et que 'on calcule la charge
nodale en conséquence:

Ax2T /02 F o2 F 02 I
Bona=2 Bt B =79 [(sz )m_ﬁ 10 (sz )m + (7 ),,HJ - O

Comme il s’agit d’un probléme bidimensionnel, il est indiqué d’introduire
la notion de charge nodale bidimensionnelle K,, ,, que ’on obtient en géné-
ralisant la charge nodale classique bien connue. Pour une distribution de la
surcharge p admise paraboligue dans les deux directions de la surface, on

obtient:

1 10 1
. 4 dz dx A4
Ko@) = 72110 | K, (p) = 55 [110 1K, () = =1 7| 10100 10 [p.(10)
1 10 1

K,, y désigne la charge nodale classique le long des lignes horizontales et K,
le long des lignes verticales.

Rien ne nous empéche de considérer chaque terme de 1’équation différen-
tielle (4) comme une charge (dont on recherche ou on connait la valeur en
chaque point du réseau). On peut donc en former la charge nodale bidimen-
sionnelle K et écrire la relation suivante:

. d*z, 0* F = d?z; *F\ -
Km,n(W awz)"'Km,n(W 3y2) - —Km,n(Z) (11)

Comme [’équation (4) doit étre satisfaite en chaque point du domaine, la
relation (11) est exacte tant qu’on ne fait aucune hypothése sur la forme de
la charge nodale K. Cela est possible pour le terme de droite, qui contient les
charges données et dont on peut toujours, au moins en principe, évaluer

8) On consultera par exemple F. Sttss1, Entwurf und Berechnung von Stahlbauten,
cité & la note 2, page 186, ou Numerische Methoden der Baustatik, Schw. Bauztg., 79. Jg.,
1961, p. 275.
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mathématiquement la charge nodale K exacte. Pour les deux termes de gauche,
par contre, qui contiennent les valeurs nodales F inconnues, il faut bien
admettre quelque chose et nous supposons que leur charge nodale est para-
bolique.

Examinons le premier terme de gauche en déterminant la charge I-(_m’n a
P’aide de la relation approchée (10); il vient:

1
— d?z, O F dy d?zy O F
22 1 ==210 =
Bt aw) = 0|10 Kol )

Comme le facteur % ne dépend que de y, il ne varie pas le long des lignes

horizontales du réseau et on peut écrire:
K d?zy * F Ax d?zy *F d?zy, 2 F d?z, 2 F
—2 +
m\dy? ox? dy? ox? dy 0 x? dy? 02% ),

A e 2

d2z, 2 F
= (%) Ko (7 )
Il vient done:
1
= d%z, 2 F dy d?z >r
— 10 2
K’”’"(dgﬁ 8x2) 12 d y? Ko (8902)

1

En tenant compte de la relation du polygone funiculaire (8), on obtient finale-
ment 1’expression

+ 1 -2 4+ 1

- N2 2
Kmn(f;?gf) =12"A~’/ +10 —20 +10 ‘éz;p,
yrox iy -2 41 |%Y

Pour le second terme de gauche, il suffit bien entendu de permuter z et y
ainsi que les lignes horizontales et verticales. Apres multiplication par —12,
P’équation (11) conduit donc & la relation

A_1+2—12 -1 -10 -1}
Y —10 +20 —10 El_fzp+_‘l_f +2 +20 +2|Php 10 (Z).
Ax dyz Ay dx2 m,n

-1 +2 —1 -1 —-10 -1 (12)

Il s’agit 14 au fond simplement d’une combinaison linéaire de 1’équation (4)
dans laquelle les dérivées partielles ont été exprimées, grice & la relation du
polygone funiculaire (8), par les valeurs nodales F.
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Ce schéma (12) donne les coefficients °) des équations linéaires qui permettent
de déterminer les inconnues F. Les termes de charge de ces équations figurent
a droite; la charge nodale K (Z) peut étre calculée exactement ou, si la surface
de charge est d’allure parabolique, évaluée & I’aide de la relation (10).

Quant aux conditions aux limites (6), il est bien facile d’en tenir compte;
toutes les ordonnées F sur les bords sont nulles et les coefficients correspon-
dants des schémas n’interviennent pas dans les équations.

Les équations linéaires une fois résolues, toutes les valeurs nodales de la
fonction F, , seront connues. Pour déterminer les efforts de membrane du
voile, il faudra cependant évaluer encore les dérivées de F, en particulier les
dérivées secondes (voir équations (3)).

Sur le contour, les dérivées secondes sont fixées directement par les con-
ditions (5) et 1’équation différentielle (4); on obtient en effet:

—ta: 82F_O dot >2F Z
xrx = TQa. ‘é—yg—-— 3 ou 72 = "‘Ez‘z—z,
4y (13)
2F . &F 7
y—_—i W=O,d0u ay2=-@.
dx?

Pour les autres points, on a recours & la relation du polygone funiculaire (9).
En écrivant cette formule aux divers points intérieurs situés sur une ligne du
réseau choisi et en tenant compte des valeurs données par la relation (13)
pour les points au bord, on obtient autant d’équations linéaires qu’il y a de
dérivées inconnues. Il est indiqué d’établir la matrice inversée du systéme
d’équations, ce qui permet de calculer, par multiplication et sommation, les
dérivées secondes & partir des conditions au contour et des valeurs F connues.
A titre d’exemple, nous donnons les tableaux I,, I et I, relatifs & des lignes
comportant un nombre de divisions usuel (fig. 4). Les valeurs nodales sont

2 2
9) On remarquera que les facteurs variables 57222 et -‘(% sont écrits & la droite de
I’opérateur | l Explicitement, le premier terme s’écrit donc:
4 d2z
A‘i—/ [(3722) 1 ( ‘-Fm-lg n+1+ 2Fm, n+1 —‘Fm+1, n+1)
n
d2z
(F2), (= 10Fnos+20 Py =10, 0)
n
d2z
+ (d—y;)n—l (—=Fm-150-14+2Fmyn-1—Fms1, n—l)] )
. po . dz 22 . .
on sait en effet que la dérivée seconde TuE est constante sur une ligne horizontale n + 1,
noun—1l. y g 22
11 n’est par conséquent pas indiqué de mettre les facteurs ?;23 et %%1« devant I'opé-

rateur comme le fait M. PELKA (voir note 2), c’est-a-dire de multiplier tous les coefficients
par les valeurs des facteurs au point central m, n; la précision en souffrira.
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Fig. 4.

Tableau (I). Quatre mailles, dérivée seconde y” donnée au bord

Cas symétrique

= .= ]_ = * = ]_ = 1 ” ”
Yi=1 Y2=Y2 Ys Yy =yl.=1/2
Yl =yl =0 y =0 partout
Y +19,591837 —43,102041 +23,510204 —0,10204082 1
Ya — 3,918367 +47,020408 —43,102041 + 0,02040816

Tableau (I¢). Six mazilles, dérivée seconde y” donnée au bord

Cas symétrique

= «=1 = » == 1 = = 1 = 1 ” ”

Y1 =Y1 Y2 =1Y2 Ys=1Ys Ya Yl =yle=1JI2

” ” = 0 t

Yl =yl=0 Y partou

Ya +43,645361 -91,744330 + 53,443299 - 5,344330 -0,10103093

Y3 - 4,453608 | +53,443299 -102,432990 +53,443299 +0,01030928

Ya + 0,890722 -10,688660 +106,886598 -97,088660 -0,00206186

Tableau (Is). Huit mailles, dérivée seconde y” donnée au bord
Cas symétrique

Pi=yr=1| ya=yar=1 | ys=ya»=1 | yu=yax=1 ys=1 Yl =yl=1/2
gl =yl=0 y =0 partout

yy | +77,58384 | —~163,00604 | + 94,06040 | — 9,59800 | + 0,95980 | -0,10102062
ys | — 7,83837| + 94,06040 | -172,60404 | + 95,98000 | - 9,59800 | +0,01020621
yy |+ 0,79983 | — 9,59800 | + 95,98000 | —182,20204 | + 95,02020 | -0,00104145
ys |- 0,15997 } + 1,91960 | — 19,19600 | +190,04041 | -172,60404 | +0,00020829

263
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admises symétriques par rapport au milieu de la ligne, les astérisques désignant
justement les points symétriques?). Pour plus de généralité, la fonction est

désignée par y; dans le cas des voiles, sur une ligne horizontale du réseau, y”
2F . .
désigne donc =— et Y= yi’. correspond & la valeur sur le bord, donnée par la

2 2
relation (13), soit (g l:) . -7 Zyz;z
a

Pour les cisaillements 7', nous avons besoin, selon I’équation (3), des déri-

’ . aZF r_ " 7 5%
vées mixtes ——. A cet effet, nous calculons d’abord les dérivées premiéres

oF _ oF ,0%%
7 % 5y 4 l’aide des relations suivantes), fondées également sur les pro-

priétés du polygone funiculaire ou, plus exactement, sur I’analogie entre
Deffort tranchant d’une poutre chargée et la dérivée premiére du moment de
flexion:

pour un point sur le bord

7 A " - ”
dxy; = ys—y, — (3 S5y +3ys —0,5y3),

pour un point intérieur (14)
’ A xz " ”
A2Ym = § Umsr=Ym-1) =5 Ums1 = Im-a)-

En introduisant dans ces relations les valeurs y” données par les tableaux I,
on peut établir les tableaux Il ci-dessous qui permettent de déterminer, par
multiplication et sommation, les dérivées premiéres lorsque 1’on connait les

valeurs nodales et la dérivée seconde sur les bords, d’aprés la relation (13).
2
Pour passer & la torsion géodésique dwdy > OO procéde bien entendu de la

oF oF
méme maniére, en prenant pour fonction y les dérivées premieres 2y °% 9a
Nous examinerons dans les applications les particularités du calcul.
Tableaw (I114). Quatre mailles, dérivée seconde y” donnée an bord
Cas symétrique, y; = 0
= =1 = « =1 =1 ” ”
Yr=Yu Y2=1Y2 Ys Yl =yi.=1/12
” ” 9y =0 partout
yi =yi.=0 WSS RS
Y1 —5,265306 +7,183673 —1,918367 —~0,06632653 1
Ya —1,918367 —0,979592 + 2,897959 + 0,02040816 l

10) On peut bien entendu établir des tableaux correspondants pour le cas antisymsé-
trique et, par superposition, pour le cas général. Comme nous n’en aurons pas besoin
dans les applications, nous ne les reproduisons pas ici. On les trouvera dans PTERRE DUBAS,
Calcul numérique des plaques et des parois minces, Publ. No 27 de I’'Institut de statique
appliquée & ’EPF, Leemann, Zurich 1955.

_11) Voir les références & la note 8.
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Tableau (I1g). Six mailles, dérivée seconde y” donnée au bord

Cas symétrique, y; = 0
= * = ]_ 1 - * T 1 : * — ]. = 1 ” ”
Yi=uy1 Y2=Y2 Ys=1Ys Y4 Yl =yl =1/I2
Yl =1l=0 y =0 partout
Y1 —7,849485 | +10,193814 —2,938144 +0,593814 —0,04432990 1
Y —2,938144 | — 0,742268 +4,422680 —0,742268 +0,01374570 7
Ys +0,593814 | — 4,125773 —0,742268 +4,274227 —0,00137457
Tableaw (I1s). Huit mailles, dérivée seconde y” donnée au bord
Cas symétrique, y; = 0
y1:y1.=1 yzzyzt:l y3=y3‘:1 y4‘__y4*:1 y5:1 in:yi/*:]_/lz
” ” = 0 t t
Yl =yl = Y partou
y; | -10,465320 | +13,583837 | -3,838367 | +0,799833 | -0,079983 -0,03324828
ys | — 3,918350 | — 0,979796 | +5,797959 | -0,999792 | +0,099979 +0,01031035 1
ys | + 0,799833 | — 5,598000 | -0,019996 | +5,797959 | -0,979796 -0,00104145 l
vy |~ 0,079983 | + 0,959800 | -5,598000 | -0,979796 | +5,697980 +0,00010414

Premiére application numérique

Afin de permettre une comparaison directe, nous examinons d’abord
I’exemple traité par MM. BELES et SoARE!), c’est-a-dire un voile de trans-
lation dont la surface moyenne est engendrée par des directrices circulaires,
de rayons r, et r,, et qui est définie par 1’équation (fig. 1)

2 =1 4+7ry— Vri—a2— Vr3—y2. (15)

Les dérivées secondes de la surface moyenne valent done:
2 2
d?z, d?z, _
d x? dy?

= 11} —a?) 2, =y (16)

Pour travailler avec des grandeurs sans dimensions, nous multiplions par r,
tous les termes de 1’équation (12) et, en mettant a droite de I’opérateur | | les

facteurs constants 24'% et Aiya—c, ce qui est licite, il vient:
—1+2—1A —1—10—1A
x
—10 +20 —10 Zgylrg(rg_yz)—3/2F+ T2 420 +2 |20 (t_at) e F
-1 +2 -1 -1 —-10 -1

=12r K, . (Z). (17)
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Les conditions au contour sont données bien entendu par la relation (6), soit
# =0 sur tout le périmetre.

Pour étudier ’amélioration de la précision avec le nombre de divisions,
nous avons examiné des réseaux comportant 4 x4, 6 X6 et 8 X8 mailles. Ce
dernier réseau est visible & la fig. 5, avec la numérotation des noeuds, qui reste

Y
PO# 14 24 34 44

03 |73 |23 |33 [43

02 |12 |22 |32 (42

8 ar |17 |27 |37 lar
w

. o |10 |20 |30 |40
Dy > X
N

@

Q

N

2a=8d4dx

x
R

Fig. 5.

valable en principe pour les autres réseaux; chaque point est donc désigné
par ses coordonnées, |’'unité étant la maille.
Pour les rapports choisis par MM. BELES et SOARE, soit

4
b=08a, don Y_os et 2%_195,
dx 4y
241 2
rl=m2a, 72=§2a,
2 2
on peut déterminer sans difficulté la valeur des facteurs %yi: et %5 (formule 16)

pour tous les points. On obtient le tableau III ci-dessous.

Ces valeurs et la relation (17) permettent d’écrire en chaque nceud intérieur
une équation linéaire en F. Lorsque la surcharge est symétrique par rapport
aux deux axes de coordonnées, le nombre d’inconnues F, , se limite & 4 pour

Tableauw 111

y=| 0 b4 b/3 b/2 2b/3 3b/4
Ayjdzrird (rZ-y2)-32 | 1,205] 1,2468434 | 1,2810916 | 1,3881134 | 1,5651938 | 1,6919636

x= 0 al4 al3 al2 2a/3 3a/4
Ax]Ayrd (ri—x2)-3/2 1,25 | 1,2796274 | 1,3034896 | 1,3759211 | 1,4892403 | 1,5658629
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le réseau & 4 X 4 mailles, & 9 pour celui & 6 X 6 et & 16 pour celui & 8 x 8. Il faut
naturellement tenir compte des points symétriques en écrivant les équations.
Pour la premiére équation du réseau a 4 X 4 mailles, par exemple, écrite au
point 0,0, le coefficient de F , (x=a/2, y=0) vaut:

2(—-10-1,205+2-1,3759211) = —24,145,50368;

celui de Fy; (x=0, y=0/2):
2(+2-1,3881134—-10-1,25) = +5,565245 —25;

et celui de F}; (xr=a/2, y=0/2):
4(—-1-1,3881134—1-1,3759211) = —5,55245 — 5,50368.

Si I’on veut obtenir une matrice & peu prés symétrique par rapport a sa dia-
gonale principale, il faut dés lors multiplier par 2 I’équation écrite au noceud
1,0 et celle du nceud 0,1, par 4 celle du nceud 1,1 etc. Ces facteurs figurent
dans la premiére colonne des tableaux IV et V reproduisant les équations.
Quant & la derniére colonne de ces tableaux, elle contient les termes de
charge, c’est-a-dire les termes de droite de la relation (17). La surcharge est
admise uniformément répartie, donc symétrique par rapport aux deux axes
comme nous I’avons supposé. D’aprés les conditions au contour (5), le coin
du voile (x=a, y=>b) est caractérisé par des efforts N, et N. , tous deux nuls.
L’équation différentielle (4) ne peut donc étre satisfaite au coin que si la
surcharge y est nulle ou qu’elle est reprise par une flexion du voile2). Comme
nous voulons nous limiter & un régime de membrane, nous admettrons ici que
les coins ne sont pas chargés. La charge nodale vaudra donec dx 4y Z pour les
neeuds ordinaires; pour le nceud situé sur la diagonale, juste avant le coin,

143 fe 4 y Z selon

on aura par contre, pour une variation admise parabolique, Tid

la formule (10).

Si I’on désigne par n le nombre de mailles, on a 4 =?7TCL = 2’21) et dy -——gné;
le terme de charge ordinaire s’écrit alors:
— 2,6b 2b 15
IZTle,nZ=l27‘1 2 b*{Z=;2‘T1(Zb)2Z. (18)

Pour le nceud prés du coin, on multipliera comme indiqué ci-dessus par 143/144.

Le tableau IV ci-dessous reproduit le systéme d’équations correspondant
au réseau & 4 x4 mailles (n=4 pour la formule 18) et le tableau V, celui &
6 <X 6 (n=6). Quant a la fig. 6, elle montre schématiquement la matrice relative

12} Pour un voile présentant une torsion géodésique non nulle, la surcharge au coin

est reprise par des cisaillements car ’équation différentielle (4) comprend dans ce cas un

2z @o*F 2

0xdy 0x0y dxdy

ces cisaillements devraient étre infinis en cas de charge au coin, ce qui est physique-
ment impossible. En réalité I’état de membrane sera complété par des fiexions.

terme 2 . A la limite, pour =0 comme dans les voiles de translation,
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Tableaw IV. Systéme d’équations pour le réseau a 4 X 4 mailles3)

Foo Fio Fo,1 Fi1 T. de charge
+24,1 — 94,1 + 555245 | — 5.55245
Ix 10,0 | 4950 + 5,50368 | —25,0 _ 550368 | + 09375
+49,1 _18,59632 | —19,44755 | — 11,05613 | + 0,9375
_ 24,1 48,2 — 5,55245 | + 11,10491
2xX 1 L0 50 +55,03684 | — 5,0 _ 5503684 | TL875
+ 0,389002] +96,00283 | —18,11759 | — 48,23279 | +2,239689
+ 4,82 _ 4,82 1 55,52454 | — 55,52454 .
2x | 0L 1 959 — 5,50368 | +50,0 + 11,00737 | L1875
4 0,410998 | + 0,187148 | +94,14097 | — 58,08789 | +2,679464
— 4,82 + 9,64 —55,52454 | +111,04907 -
ax L g —55,03684 | +10,0 +110,07369 | T3.723958
+ 0,2 + 0511611 | +0,6233546 | +158,02575 | +6,727564
Sol. | 10-3 | +71,20656 | +55,04707 | +54,73085 | + 42,57258 | xr1 (26)°%
00 10 20 30 07 77 21 37 Q2 12 22 32 03 13 23 33
Q0 [ BN ) [ K ]
70 ojo|0® [ 2N BN J
20 ojoe|eo L BN ]
30 [ 2N J [ ]
(74 oo [ BN ] [ AN ]
77 [ BN BN J [ 2K 2K J [ BE BN )
27 elelo| [ole olele
31 [ 2N J @ [ BK J
o2 (2N J ole [ 2K J
12 o0 [ 2L BK ] [ EN 3K J
22 [ AN ) [ BE 2K J [ 2K BX ]
32 [ ] [ K J [ BK ]
o3 [ AN ] [ BK J
73 [ AN AN J [ 2K 2K ]
23 [ 3K 2K J o|lo|®
33 [ BN J eole

Fig. 6. Systéme d’équations schématique pour le réseau & 8 X 8 mailles.

13) Pour faciliter le contrdle, on a écrit séparément, 'un au-dessous de l’autre, les
chiffres correspondants aux 2 termes de gauche de la relation (17). D’autre part, le
tableau contient la résolution compléte d’aprés Gauss.
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au réseau & 8 X 8 mailles; on voit que les coefficients sont groupés autour de la
diagonale principale, ce qui facilite la résolution. Par contre les matrices ne
sont pas exactement symétriques par rapport a cette diagonale (voir tableaux
IV et V); les calculs sont donc un peu plus longs. Nous avons utilisé I’algo-
rithme bien connu de Gauss et obtenu les solutions figurant sous les tableaux
IV et V pour les réseaux 4 4 X 4 et 6 X 6 mailles; pour le réseau 8 x 8, les résul-
tats sont indiqués dans le tableau VI.

Tableaw VI. Solutions des équations pour le réseau a 8§ X 8 mailles

0 1 2 3

32,83214 31,11460 25,77711 16,09730
54,42505 51,46534 42,30249 25,92425
66,82399 63,12435 51,70375 31,45804
70,87845 66,93395 54,76940 33,25913

r1(2b)2Z10-3

S =~ N W

La fonction F est représentée graphiquement a la fig. 7.

Fig. 7. Fonction de force F'.

5  0F v O2F ,
Les efforts N,=-— et N,=_— sur le contour sont donnés par les rela-
Y ox

ZZ—;; et —327222 étant tirées du tableau III (bien entendu
sans les facteurs 4x/4y ou 4y/4dx). Les dérivées secondes g—zfz— et g—zy—f sur le
contour et les solutions F données dans les tableaux IV, V ou VI peuvent
maintenant étre introduites dans les tableaux I, ce qui détermine les dérivées
secondes et par conséquent les efforts N, et N, a I'intérieur. A titre d’exemple

et pour montrer la convergence, ces valeurs sont indiquées au tableau VII

tions (13), les valeurs
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pour le réseau & 4x41%) et au tableau VIII pour celui & 8x 8 mailles. Elles
sont également représentées graphiquement aux fig. 8 et 9.

Tableau VII. Efforts Nzet N y pour le réseau a 4 x 4 mailles

- otF =~ 02F
Ne= gy T
o | 1 2 o | 1 2
2 -1,0 -0,90848 0 2 0 0 0
eV
1 -0,58289 -0,44810 0 1 -0,24039 -0,29206 | -0,57632
0 -0,561609 -0,38940 0 0 -0,32127 -0,37933 | -0,66390
Tableaw VIII. Efforts N et N, y pour le réseau a 8 X 8 mailles
= &2F
"oy
0 1 2 3 4
4 —-1,0 —0,97685 —0,90848 —0,79828 0
3 —0,70492 —0,67396 —0,57475 —0,37488 0 "7
2 —0,58251 —0,565020 —0,44940 —0,26854 0
1 —0,53095 —0,49928 —0,40260 —0,23689 0
0 —0,51658 —0,48530 —0,39036 —0,22927 0
= _OF
YT ox?
0 1 2 3 4
4 0 0 0 0 0
3 —0,13952 —0,14661 —0,17369 —0,25078 —0,47282 .y
2 —0,24061 —0,25171 —0,29123 —0,38245 —0,57632
1 —0,30095 —-0,31368 —0,35728 —0,45122 —0,64162
0 —0,32095 —0,33407 —0,37863 —0,47323 —0,66390

2
14) Pour le point x=a, y=0 sur le bord, par exemple, la relation (13) donne aa_"fz, =
Z . 2F 0,8
= = Sodit i avec le tableau III, on obtient: (8702‘)0,2 = — mg mnZ=—0,66397rZ.
Pour le centre 0,0 il vient dés lors, & partir des tableaux (I4) et IV:
o2 F 1
—_— N M — o -— . . -3 2
(awg )0,0 Y3 Za) (+ 47,020408-55,04707 — 43,102041-71,20656) - 10-37r1 (2b)2Z

+ 0,02040816 ( — 0,6639) 71 Z = —r1 Z (0,82.0,48081 + 0,01355) = — 0,32127r1 Z.
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Fig. 8. Efforts N. Fig. 9. Efforts N,.
’ . - N 2K N
Pour déterminer les cisaillements 7'=N,, = ~zay° OO procéde comme

indiqué plus haut, c’est-a-dire on calcule d’abord les dérivées premiéres, par
exemple %, a I’aide du tableau II (ou directement a partir des relations 14,

avec les ordonnées F' et les dérivées secondes évaluées précédemment).
Pour les dérivées mixtes, on répéte les mémes opérations en prenant cette

fois comme fonction y les dérivées %1;? que ’on vient de calculer et en dérivant
dans le sens y, le long des lignes verticales. Une seule difficulté se présente:

on a besoin des valeurs y” = aa—;z (%%) sur le bord y =b. On pourrait bien entendu

partir de la relation (13) et déterminer 3—8—8—2 mathématiquement, par déri-
ation de % — z On ad ttra'tx insi i licit t que la charge Z
vation de 75 = — ;s mettrait ainsi implicitement qu g

est constante jusqu’a proximité immédiate du coin. En réalité, tous nos
calculs ont été faits en supposant que Z avait une variation parabolique le

long de la derniére maille, prés du coin; il en sera donc de méme pour N, et il
3

convient de déterminer numériquement, & 1’aide du tableau II et en

ox 0y? 5
partant des valeurs nodales des dérivées secondes g—{:— connues sur le bord et
HF : ) s ar oY :
de W:O au coin. Pour le réseau & 8 8 mailles, on obtient par exemple

les valeurs suivantes, en tenant compte que 1/l—>1/2a2=0,8/2b.
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0.25a

0,50a

0,75a

1,0a

—0,337101

—0,157579.

—2,886820.

— 6,446379

273

7‘1Z/2b

En effectuant les calculs, on peut établir le tableau IX, qui contient égale-

] s qe . oF
ment les valeurs intermédiaires —.

ox

2
Tableau IX . Dérivées premiéres g—xﬁ: et cisaillements T = — % pour le réseau a 8 X § mailles
or
or
0 1 2 3 4
4 0 0 0 0 0
3 0 0,017705 0,037359 0,062873 0,106589
2 0 0,030506 0,064023 0,105325 0,164179 r12aZ
1 0 0,038121 0,079633 0,129400 0,196697
0 0 0,040638 0,084758 0,137238 0,207308
= a2r .
T'=Ney=-— oxdy
0 1 2 3 4
4 0 —0,19952 —0,40355 —0,77386 —1,41240
3 0 —0,15337 —0,32770 —0,51200 —0,77296
2 0 —0,10220 —0,21047 —0,33016 —0,42841 rZ
1 0 —0,05050 —0,10296 —-0,15711 —0,21400
0 o 0 0 0 0

On obtiendrait exactement les mémes valeurs en déterminant d’abord les

e 4 .y or . /o s s .
dérivées premiéres —— puis en dérivant dans le sens des lignes horizontales,

pourvu que 1’on détermine les

oy

oy ox?

au bord comme ci-dessus.

Rappelons pour terminer que ces cisaillements, comme indiqué & la note 12,

dépendent fortement de 1’état de charge au coin, ce qui n’est pas le cas pour
les efforts longitudinaux N, et N,. Comme nous avons supposé que la charge

varie paraboliquement, de Z a 0, sur la maille preés du coin et que la surface
2a2b
nz

de cette maille vaut dxdy= (elle dépend par conséquent du réseau

choisi), nous avons au fond examiné pour chaque réseau un cas de charge
différent.

En réalité, pour les conditions au contour (5) adoptées, le probléme ne
peut pas étre résolu exactement dans I’hypothése d’un régime de membrane:
vers les coins, une partie de la charge sera reprise par des flexions du voile et le
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reste par les efforts de membrane. La difficulté que nous rencontrons 4 déter-
miner la valeur exacte des cisaillements maxima, au coin, ne provient done
pas de la méthode du polygone funiculaire mais bien des données théoriques
du probléme. Bien au contraire, cette méthode du polygone funiculaire est
spécialement indiquée pour résoudre le probléme exact: une fois connue la
distribution de la charge correspondant au régime de membrane, il sera aisé
d’en considérer la variation lors de I’établissement des termes de charge des
équations (12).

En supposant par exemple que la distribution effective des charges rela-
tives au régime de membrane soit celle que nous avons admise pour notre

réseau a 8 X 8 mailles — c’est-a-dire décroissance parabolique de Z a 0 sur la
ab

11 on obtiendrait les résultats donnés graphique-

derniére maille, de surface
ment a la fig. 10.

A titre de récapitulation, nous groupons dans le tableau X les valeurs des
ordonnées F, .. =F , et des efforts N,=8; et N,=S, au centre du voile,
valeurs calculées pour les divers réseaux étudiés, avec extrapolation pour
n=00. On voit la remarquable précision et la bonne convergence, environ
proportionnelle & n*, de la méthode du polygone funiculaire. On pourra com-
parer ces valeurs & celles évaluées & 1’aide de la méthode aux différences finies et

de la méthode plurilocale, indiquées dans le tableau 6 de MM. BELES et SOARE!).

77{ /V’WF_H s 2 ><,

N \
N\ \

=

a o

Fig. 10. Efforts N, .

1F‘TY
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Tableau X
Fo,o=F max Erreur (S1)0s0 Erreur (S2)os0 Erreur
4x4 71,207 + 0,50 9, —0,51609 —-0,1019, | —0,32127 + 0,109 9
6x6 70,933 + 0,12 9, -0,51649 | —0,0239% | —0,32100 + 0,025 9,
8x8 70,878 + 0,04 9 —0,516576 | —0,0079, | —0,320945| + 0,008 9%,
o) 70,85 — —0,51661 — —0,32092 —
10-3r:(26)2Z rnZ r1Z

Remarquons que, pour tous les réseaux, les efforts S; et §, trouvés satis-
font exactement 1’équation différentielle (4). Pour le centre du réseau a 4 x4
mailles, par exemple on a:

= 7 2?2 F

S1= N, = 55 = —0,51609; 8y =N, = 555 = —0:32127;
d?z, d?z,
= : = 2 .
= 1,0; iy 1,50625 ;
d’out - —0,51609—0,32127-1,50625 = 1,0.

Il en est de méme pour toutes les valeurs des tableaux VII et VIII1%). Cela
montre simplement que les calculs numériques sont corrects mais n’a rien
a4 voir avec la précision inhérente & la méthode. Les erreurs de N, et NV, sont

tout simplement de signe inverse et, aprés multiplication par les facteurs
dz2 z1 dz2 z9

32 Ou dg se compensent exactement.

Seconde application numérique

Dans 1’exemple précédent, la distribution de la surcharge Z était admise
uniforme, ce qui pourrait expliquer la précision relativement satisfaisante
de la méthode aux différences. Nous allons examiner maintenant un voile
soumis & une charge variable et choisissons & cet effet un exemple déja résolu
mathématiquement 18): il s’agit d’une surface moyenne en paraboloide ellip-
tique, définie par 1’équation

=ﬁﬁ+éy_2 (19)

15) Cela n’est vrai que si 'on calcule avec une charge au coin nulle. Autrement, on
introduirait implicitement, dans les équations linéaires, I’équation différentielle (4) écrite
au coin, ce qui est en contradiction avec les conditions au contour (5).

16) Voir E. TuneL, Das elliptische Paraboloid iiber rechteckigem GrundriB. Osterr.
Bauzeitschrift, 11. Jg., 1956, p. 274; voir aussi K. GIRKMANN, Fléchentragwerke,
5. Auflage, Springer, Wien, 1959, p. 390.
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d*z1 _ fi d?z2 _ f2
R = o et dyt =52 sont donec constantes sur tout le

domaine; sil’on suppose que la surface couverte est carrée, aveca=bet dx =4y,
b

Les dérivées secondes

et que 'on prend (% = Z% = a—fz, la relation (12) se simplifie et devient, aprés
division par 2:
-1 — 4 —1]| )
—4 +20 —4 lF =§‘LK (Z). (20)
—1 — 4 —1| /

] . s a
Dans notre exemple numérique, nous choisirons un rapport - = 1,25.

f

Quant & la charge Z, correspondant au poids propre de ce voile d’épaisseur
variable, elle obéira & 1’équation

2 2
Z=g0|:l+101(x #g)] (21)
a
Le tableau XI contient les valeurs nodales Z dont nous aurons besoin.

Tableauw XI. Valeurs nodales de la charge Z

x=0 = a x= a x = 3—? r=a
= =4 =3 =1 =
y=a 0
y:ng"’ 2,13625 2,578125
y=5 1,505 1,820625 2,2625  go
y=2 1,12625 1,315625 1,63125 2,073125
y=0 1,0 1,063125 1,2525 1,568125 2,01

On remarquera que, comme dans 1’exemple précédent et pour les mémes
raisons, nous admettons que la charge correspondant au régime de membrane
est nulle au coin, au lieu de 3,02g, selon (21). Cette charge doit étre reprise
par une flexion locale du voile prés des coins.

Comme toutes les données sont symétriques par rapport aux diagonales
du carré, il en sera de méme de la fonction F et ’on peut en tenir compte
lors de 1’établissement des équations. On n’obtient ainsi que 3 inconnues pour
le réseau & 4x4 et 10 pour celui & 8 X8 mailles. La numérotation nodale
adoptée sera la méme que dans I’exemple précédent et la relation (20) permet
d’établir sans difficultés les tableaux XII et XIII reproduisant les systémes
d’équations pour les réseaux a 4X 4 et 8 x 8 mailles.

Avec a/f=1,25, les termes de charge valent ici (n=nombre de mailles =
2a|dx):
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10 1
. . 7.5 2a 2
61,250 K,,, (%) = 15aK,,(2)={;;(~~) a 10 100 10 |Z
1 10 1

et les charges nodales y sont données exactement par la relation (10) puisque
la distribution est effectivement parabolique selon (21).

Tableaw X11. Systéme d’équations pour le réseau o 4 X 4 mailles

Fo,o Fi0=Fo,1 Fy T. de charge
1x 0,0 + 20 —16 - 4 + 0,5082031
4% 1,0 —16 + 72 — 32 + 2,50625
4 % 1,1 - 4 —32 + 80 +2,9403646
Solutions 0,12012902 0,09791667 0,08192768 goa (2a)?

Tableaw XIII. Systéme d’équations pour le réseau a 8 X 8 mailles

Foo| Fr0| Fao| Fayo | Fi,1| Fo1 | Fs1| Fao| Fs2| Fs3| T.de charge
vix 1 0,0 +5 | - 4 -1 29,91333
1x 1,0 -4 | +18 | - 4 -8 -2 127,05078
1x 2,0 -41420 | -4 |-2|-8]|-2 149,24316
1x 3,0 - 4| +20 -2|-8 186,23047
1x 1,1 -1 {-8!-2 +20 | - 8 -1 134,44824
2 X 2.1 -2|-8|-2|-8|438|-8|-8|-2 313,28125
2 X 3,1 -21-8 - 81440 | -2 |- 8 387,25586
1x 2,2 -1|-8]-2]4201-81-1 178,83301
2 %X 3,2 -2|-8|-8|+38] -8 431,64063
1x 3,3 -1]-81|+20 250,34994

- goa(2a)2 10-3

La résolution des équations est ici spécialement aisée puisque la matrice
est symétrique par rapport a la diagonale principale. Pour le réseau a 4x 4
mailles, les solutions trouvées figurent sous le tableau XII; pour celui & 8 X 8
mailles, dans un tableau spécial XIV. Les cases vides correspondent aux
neeuds symétriques par rapport a la diagonale

Sur le contour, les efforts N, = et N, = o ~— sont donnés par les relations

a 2
(13), avec l/d 2 1/—33/—?: 1,25a et Z d’apres le tableau XI. Pour les noeuds

intérieurs, on utilise le tableau I. Par suite de la symétrie par rapport a la
diagonale principale, il suffit de calculer 2215 ou 221:, les valeurs dans ’autre
direction s’obtiennent par permutation des hgnesyhorlzontales et verticales.
Les valeurs trouvées sont indiquées dans les tableaux XV et XVI et & la

figure 11.



278

F. STUSSI - PIERRE DUBAS

Tableauw XIV. Solutions des équations pour le réseau a 8 x & mailles

0 1 2 3
3 38,463844
2 82,170453 54,594561 -goa (2a)210-3
1 110,576089 94,574674 61,091121
0 120,285933 115,235062 98,069634 62,819366
Tableaw XV. Efforts N, (ou N. ) pour le réseau a 4 X 4 mailles
0 1 ‘ 2
2 0 0 0
1 —0,425852 —0,940625 —2,828125 "Goa
0 —0,625 —1,139773 —2,5125
Tableauw XVI. Efforts N v (ou N ) pour le réseau a 8 x 8 mailles
0 1 2 ) 3 4
4 0 0 0 0 0
3 —0,207928 —0,287652 —0,577623 —1,335156 - 3,222656
2 —0,427339  —0,547435  —0,940625  —1,698159 | —2,828125 | 07
1 —0,574837 —0,703906 —1,097097 —1,751411 —2,591406
0 —0,625000 —0,754070 —1,138287 —1,752228 —2,5125
_ —iea- g,
ﬂme’fv
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Fig. 11. Paraboloide. Efforts N.
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A titre de comparaison, nous avons également résolu le probléeme & 1’aide
de la méthode aux différences finies'?), ¢’est-a-dire en remplacant 1’équation
différentielle par la relation

—1
2 2
1 44 1| F =% A22z=1954(*%) 2. (22)
1 f n

en chaque noeud du réseau. Pour le réseau a 8 X 8 mailles, on obtient alors les
équations figurant au tableau XVII. On voit que le systéeme n’est guere plus
simple et que la résolution ne demandera que légérement moins de temps que
celle du systéme donné par la méthode du polygone funiculaire (tableau XIII).

Tableauw X VII. Méthode aux différences. Systéme d’équations pour le réseau a 8 X 8 mailles

Foo | Fr10| Fao| Fso| F1,1 FZ,I Fs 1| Faz| F32 F3,3 T. de charge
Yux | 0,0 | 41 | -1 0,3125
1x 1,0 -1 +4 -1 -2 1,328906
1x 2,0 -1 +4 -1 -2 1,565625
1x 3,0 -1 +4 -2 1,960156
1x 1,1 -2 +4 -2 1,407813
2% 2,1 -2 -2 +8 -2 -2 3,289063
2% 3,1 -2 -2 +8 -2 4,078125
1x 2,2 -2 +4 -2 1,88125
2 X 3,2 -2 -2 +8 -2 4,551563
1x 3,3 -2 | +4 2,670313
. -a/64(2a)2go

Quant au tableau final XVIII, il contient les valeurs de quelques ordonnées

et de quelques efforts Ny=% ( u N 2= gy7)

méthode du polygone funiculaire et celle aux différences — dans les deux cas

pour 4 x4 et 8> 8 mailles — ainsi que par un procédé mathématique 18).
2F o2F R

Sur la diagonale du carré, on a — = 5,2 Par raison de symétrie et 1’équa-

tion différentielle (4) donne dans notre cas directement:

E

o
m,n valeurs calculées par la

2 2
N,=N,=3%125aZ = 0,625ag, [1+1,01 (Zié +%§)]

17) Cette comparaison a déja été faite par Z. PELKA pour le réseau & 4 X 4 mailles
(Powloki translacyjne, cité & la note 2, p. 24 sqq.). Quelques erreurs numériques se sont
cependant glissées dans les calculs, surtout pour la méthode du polygone funiculaire, ce
qui fausse la comparaison.

18) Pour les ordonnées F, les valeurs de la derniére colonne, dites valeurs «exactes»,
ont 6té calculées par extrapolation pour n= o0, & partir des réseaux du polygone funi-

culaire. Pour les efforts Ny ou N, on a utilisé le tableau 1 donné par E. TuNGw, op. cit.
a la note 16. La derniére décimale n’est pas assurée.
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Tableauw X VIII. Comparaison de diverses méthodes

Méthode du polygone Méthode aux différences Solu-

funiculaire finies -

«exac-

4x4 8% 8 4x4 8x 8
z Yy >< % X % X % X % tes»
mailles mailles mailles mailles

F 0 0 0,120129 | 0,14 |0,120286| 0,01 [0,107617|11,79(0,116942; 2,87 | 0,12030
go- 0 a/2 10,097917 | 0,17 |0,098070| 0,01 |0,088086 11,35 |0,095459| 2,75 | 0,09808
a(2a)?| a/2 a/2 10,081928| 0,32 |0,082170| 0,02 1 0,073438 11,92 0,079835| 2,95 | 0,08219
ﬁy ald 0 -0,75407| 0,0 -0,74991| 0,5 | -0,7538
(’“ ) 0 ald -0,57484 | 0,0 -0,57900| 0,7 | -0,5751
“ al2 0 -1,13977| 0,1 |-1,13829| 0,0 |-1,09688| 3,8 |-1,12463| 1,2 | -1,1384
0 al2 |-0,42585| 0,3 |-0,42734| 0,0 |-0,46875| 9,7 |-0,44099| 3,2 | -0,4272
3/4a 0 -1,75223| 0,0 -1,73529| 1,0 | -1,7519
goa 0 3/4a -0,20793 0,2 -0,22486| 8,0 | -0,2083
af2 ald -1,09710{ 0,0 -1,08557| 1,1 | -1,0972
af4 al2 -0,64743| 0,0 -0,65896| 2,1 | -0,5474
al2 | 3/4a -1,69816| 0,1 -1,66926 | 1,7 | -1,6973
3/da | a2 -0,567762| 0,2 -0,60653! 4,9 | -0,5786

Nous n’avons donc pas considéré les points de la diagonale dans notre tableau
(pour N , ou N,) puisque toutes les méthodes y donnent des valeurs exactes,
pourvu que les calculs numériques le soient (voir aussi tableau XV et XVI).

Quant aux cisaillements 7', pour les raisons exposées a4 ’exemple précé-
dent, nous ne les avons pas déterminés puisque leur répartition ne peut pas
étre connue exactement tant que l’on ignore la part de charge reprise par

flexion vers les coins.

L’examen du tableau XVIII conduit aux constatations suivantes:

La méthode du polygone funiculaire a une précision étonnante; les valeurs

déterminées a 1’aide d’un réseau assez lache, & 4 x4 mailles, sont déja

suffisamment exactes pour les besoins de la pratique.

La convergence est excellente; comme dans 1’exemple précédent, elle est

environ proportionnelle & n%, n désignant le nombre de mailles dans une

direction.

La précision de la méthode aux différences finies est de loin inférieure;

pour un réseau a 8 X 8 mailles, les erreurs sont encore plus de dix fois plus
grandes que celles correspondant & la méthode du polygone funiculaire,

pour un réseau a 4 X 4 mailles seulement.

erreurs y sont environ proportionnelles & 1/n2.

La convergence de la méthode aux différences finies est lente puisque les
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Précision de la méthode du polygone funiculaire

Les deux applications que nous venons de donner ne permettent pas en soi
d’établir des regles générales pour la précision. Toutefois, de nombreux autres
calculs effectués pour résoudre des problemes bidimensionnels régis par d’autres
équations différentielles — plaques minces et élasticité plane — conduisent
au critere suivant:

Si 'intervalle entre deux points d’inflexion consécutifs correspond a
2 3 4 6 8 mailles

la précision sera de l’ordre de 6 %, 29, 0,79% 0,159, 0,059,

pour les valeurs des ordonnées F et des dérivées secondes N, ou N,. Pour les
dérivées d’ordre impair, multiplier par 1,5+ 2.

Pour les conditions au contour (6), on peut admettre que l'intervalle a
considérer est la longueur totale 2a ou 2b; dans nos applications le nombre
de mailles serait donc de 4, 6 ou 8. Les tableaux X et XVIII montrent que,
pour I’équation (4) des voiles minces sans flexion, les erreurs sont en général
inférieures 1%). Les indications ci-dessus donnent donc une idée de 1’ordre de
précision que ’on peut attendre du réseau choisi.

Conclusions

La relation du polygone funiculaire peut étre appliquée avec succes a la
détermination du régime de membrane dans les voiles minces de translation.
Pour ce faire, on substitue & 1’équation différentielle (4) un systéeme d’équa-
tions linéaires, guére plus compliqué que celui obtenu en utilisant la méthode
aux différences finies, déja proposée par PucHER ) pour I’étude de ces voiles.
La précision du polygone funiculaire est cependant de loin supérieure, ce qui
permet, pour obtenir un méme degré d’exactitude, de choisir un réseau com-
portant sensiblement moins de mailles et par conséquent de réduire considé-
rablement 1’étendue des opérations numériques.

Par rapport aux méthodes analytiques dites rigoureuses, la méthode du
polygone funiculaire offre 1’avantage de ne recourir qu’a des notions simples,
familiéres & tout ingénieur, et de n’exiger que des opérations numériques
élémentaires (résolution d’équations linéaires). De part son caractére numé-
rique, ce procédé permet en outre d’étudier sans aucune difficulté des voiles
de translation dont la surface moyenne est définie par n’importe quelles direc-

19) Pour les efforts Ny, et N; qui, comme nous I’'avons dit, remplissent toujours exacte-
ment I’équation (4), cela n’est vrai que pour la plus grande des valeurs car I'erreur rela-
tive de ’autre peut étre grande si ’effort est petit.

20y A. PucHER, Die Berechnung von doppelt gekrimmten Schalen mittels Differenzen-
gleichungen. Der Bauingenieur, Bd. 18, 1937, p. 118,
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trices et dont la charge est variable selon une loi quelconque (par exemple,
poids propre d’un voile d’épaisseur variable ou, pour la solution compléte
considérant les flexions, la surcharge relative au régime de membrane, déduc-
tion faite de celle reprise par flexion locale). Lorsque V’on utilise un procédé
analytique, par contre, on est souvent amené a fixer la forme du voile par des
considérations de simplicité des développements mathématiques?) ou a
admettre des surcharges définies par une équation simple 22); qui ne correspon-
dent qu’imparfaitement aux données réelles. La méthode du polygone funi-
culaire laisse de ce point de vue toute liberté au constructeur de rechercher
les formes les plus avantageuses et les plus économiques, compte tenu des

conditions de chantier 23).
Résumé

Les auteurs exposent I’application de la méthode du polygone funiculaire
a la détermination du régime de membrane dans les voiles minces de trans-
lation. Pour résoudre I’équation aux dérivées partielles qui régit le probléme,
on y substitue un systéme d’équations linéaires, les inconnues étant les valeurs
nodales de la fonction. Les opérations numériques sont done analogues & celles
que 1’on rencontre dans la méthode bien connue aux différences finies mais la
précision est de loin supérieure.

Zusammenfassung

Dieser Beitrag zeigt die Anwendung der Seilpolygonmethode auf die Be-
stimmung des Membranspannungszustandes in Translationsschalen. Die das
Problem beherrschende partielle Differentialgleichung wird in ein lineares
Gleichungssystem umgesetzt, in dem als Unbekannte die Knotenwerte der
Funktion erscheinen. Die in diesem Losungsweg vorkommenden numerischen
Berechnungen sind somit den in der normalen Differenzenmethode auftreten-
den dhnlich, wobei die erreichte Genauigkeit aber weit hoher liegt.

Summary

The authors describe the application of the funicular polygon method to
the determination of the diaphragm state of stress in translational thin shells.
The partial differential equation governing the problem is replaced by a
system of linear equations in which the nodal values of the function appear as
the unknowns. The numerical computations arising in this method of solution
are therefore similar to those met with the well-known method of finite diffe-
rences, but the accuracy attained is far greater.

21) Voir par exemple P. Csonka, Ein Beitrag zur zweckmifBigen Formgebung der
Kappenschalen tiber rechteckigem Grundrifl, Mémoires A.I.P.C., 16e volume, 1956, p. 71.

22) Voir E. TuNar, article cité 4 la note 16.

23) A ce sujet, on pourra lire les remarques de B. LArraruLE, au début de larticle
cité a la note 3.
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