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Determination du regime de membrane dans les voiles minces de trans¬
lation, ä Faide de la methode du polygone funiculaire

Bestimmung des Membranspannungszustandes in Translationsschalen mit Hilfe
der Seilpolygonmethode

Determination of the Diaphragm State of Stress in Translational Thin Shells by
Means of the Funicular Polygon Method

F. STÜSSI PIERRE DUBAS
Prof. Dr, EPF, Zürich Prof. Dr, EPF, Zürich

Introduction

Dans ce meme volume des Memoires x), MM. Beles et Soare exposent
l'application de la methode plurilocale au calcul des coques de translation; ils
rappellent pour commencer les divers procedes que l'on peut utiliser pour
resoudre le probleme et citent en passant la methode du polygone funiculaire.
Nous avons donc pense utile de montrer l'emploi de cette methode pour le
calcul des voiles minces de translation ou, plus exactement, pour la determination

du regime de membrane dans ces surfaces gauches, admises travaillant
sans flexion2).

a) A. A. Bele§ et M. Soare, Application de la methode plurilocale au calcul des

coques de translation, Memoires A.I.P.C, 21e volume, Zürich 1961, page 11.

2) La methode du polygone funiculaire a dejä ete appliquee ä un probleme semblable,
celui de la torsion, regi par une equation differentielle qui est un cas partieulier de celle
intervenant dans les voiles de translation; on consultera ä ce sujet F. Stüssi, Zur Prandtl-
schen Membrananalogie der Torsion, Zeitschrift für angew. Math, und Physik,
Festschrift Jakob Ackeret, 1958, Vol. IXb, p. 661, ou Entwurf und Berechnung von
Stahlbauten, 1. Band, Grundlagen des Stahlbaues, Springer, Berlin/Göttingen/Heidelberg
1958, p. 206.

Pour les voiles de translation, l'emploi de la methode du polygone funiculaire a ete
expose par Z. Pelka, voir Obliczanie powlok translacyjnych metoda wieloboku sznuro-
wego, Rozprawy Inzynierskie, Tom VII, Zeszyt 4, Warszawa 1959, p. 465, ou Powloki
translacyjne, Towarzystwo Naukowe Ekspertöw Budownictwa W Polsce, Warszawa 1960;
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Etablissant tout d'abord brievement l'equation qui regit le probleme, nous
montrerons comment on peut resoudre numeriquement cette equation
differentielle en y substituant un Systeme d'equations lineaires, ecrites en un
certain nombre de points du domaine etudie. Pour illustrer l'expose, nous trai-
terons deux exemples numeriques, ce qui par ailleurs donnera une idee de

l'ordre de precision obtenu.

Bases theoriques

Considerons un voile mince dont la surface moyenne est engendree par la
translation d'une courbe quelconque, mais contenue dans un plan vertical,
le long d'une autre courbe, contenue dans un plan vertical perpendiculaire au
precedent; cette surface moyenne est definie par une equation de la forme

z z1(x) + z2(y), (1)

si xy designe le plan horizontal de reference (fig. 1). Comme la fonetion zx ne

depend que de x et z2 ne depend que de y, la torsion geodesique g
est

nulle sur toute la surface et les courbures -—^, -i~4- sont des derivees totales.
dx2 dy2

Designons par Z la force, supposee parallele ä Taxe z, appliquee ä 1'unite
de surface en projection horizontale. Lorsque l'on admet que le voile travaille
sans flexion, on peut exprimer le regime de membrane par trois composantes,
les efforts elementaires longitudinaux Sl9 S2 et le cisaillement T. Pour ecrire

\ \
Fig. 1.

voir aussi Powloka katenoidalna, Rozprawy Inzynierkie, Tom VIII, Zeszyt 4, Warszawa
1960, p. 697, et Catenoidal Shell, Bulletin de l'Academie Polonaise des Sciences, Serie
des Sciences Techniques, Volume VIII, Numero 8, Varsovie 1960, p. 477. Le mode
d'application expose dans ces publications n'est toutefois pas tout a fait exact ä notre
avis; nous y reviendrons plus loin.
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les conditions d'equilibre d'un petit element de voile, qui se projette selon un
rectangle dx dy (fig. 2), il est indique de considerer les projections Nx, Ny et
Nxy des efforts elementaires. Les equations d'equilibre prennent alors la forme
suivante:

SN,
dx

cy

dNv*
0i

¦ + ¦

dy
dNXi
dx 0,

x dx2^
d^%

y dy2^ 0. (2)

lt*

dx

\r

öS,S* + dx1 d
ar dxr+
9x

Fig. 2.

On a neglige les infiniments petits d'ordre superieur et tenu compte, dans la
derniere equation, de la torsion geodesique nulle.

Comme dans les problemes d'elasticite plane, les deux premieres equations,
relatives aux axes x et y, sont satisfaites si l'on pose

N„
82F - d2F

Nv dx2'
AT A^±y xy XT yx

82F
dxdy

(3)

c'est-ä-dire si l'on introduit une fonetion d'effort jP3), analogue ä la fonetion
de tension d'AiRY. Quant ä la troisieme condition d'equilibre, relative ä l'axe
z, eile devient gräce aux relations (3)

3) Ce procede a ete introduit par A. Pucher, Überjden Spannungszustand in doppelt
gekrümmten Flächen, Beton und Eisen, 33. Jg., 1934, p. 298; voir aussi B. Laffaille,
Memoire sur l'etude generale des surfaces gauches minces, Memoires A.I.P.C, 3e volume,
1935, p. 315.
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dy2 dx2 dx2 dy2
K }

Cette equation4) lineaire aux derivees partielles du second ordre permet en

principe, avec les conditions aux limites, de definir la fonetion F5). Nous ne
considererons ici que le cas, courant en pratique, d'un voile dont la projection
sur le plan horizontal xy est rectangulaire et qui est lie, le long du perimetre
de sa projection, ä des tympans qui ne presentent pas de rigidite appreciable
hors de leur plan. Les conditions au contour s'expriment donc de la fa§on
suivante (fig. 1):

- d2F
x ±a: Nx=j^ 0,

- d2F
(5)

Ces relations signifient que la fonetion F doit avoir une Variation lineaire le

long des lisieres. D'apres les equations (3), seules les derivees secondes de F
ont une signification physique et F n'est determine qu'ä une fonetion A + Bx +
+ Cy pres 6); rien ne nous empeche donc de poser comme conditions au contour

F 0 sur tout le contour. (6)

La fonetion F une fois connue, les relations (3) permettent de remonter
aux projections N. Les efforts de membrane sont alors donnees par les relations
suivantes

4) Dans le cas le plus general, avec des forces appliquees quelconques, de composantes

X9 Y, Z, le terme de droite de l'equation (4) se generalise en

_ ^dz ^rdzt d2z f_, d2z f___

et les relations (3) deviennent

d2F r ^ ^7 d2F C Tr ^ iT d2F
Na

d2F f___ - d2F f __

w~JXdx; Ny d^-)Ydy;
Voir par exemple S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and
Shells, Second Edition, McGraw-Hill, 1959, p. 461.

5) Dans les problemes d'elasticite plane, l'equation differentielle pour la fonetion
d'AiRY decoule d'une condition de compatibilite car ces problemes sont hyperstatiques
au plus haut degre. Les problemes relatifs aux voiles de translation que nous allons
examiner sont par contre isostatiques ou, au plus, une fois hyperstatique comme indique
ä la note 6.

6) Lorsque le probleme n'est symetrique ni par rapport ä x ni par rapport ä y, on

peut encore considerer un terme de la forme Dxy et, selon (3), le cisaillement NXy ne
sera defini qu'ä une constante pres. Le probleme est ainsi une fois hyperstatique et il
est necessaire de considerer dans ce cas une condition d'energie de deformation minimum;
on consultera ä ce sujet L. Broglio, Introduction d'une theorie generale pour l'etude
des voütes minces de translation, A.I.P.C, 3e Congres, Liege 1948, Rapport final, p. 553;
voir aussi B. Laffaiixe, op. cit. ä la note 3.
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a«\2

Sx Nx S2 NV 'AS
A3

dz\2
yi

dz\2' T NV

On peut egalement determiner les contraintes principales et leurs trajeetoires
mais il ne faut pas oublier que l'element de voile considere n'est rectangulaire
qu'en projection7).

Resolution de l'equation differentielle des voiles de translation par la methode du
polygone funiculaire

Comme dans la methode bien connue aux differences finies, nous allons
determiner la valeur de la fonetion F en un nombre fini de points, situes aux
noeuds d'un reseau rectangulaire qui decrit le domaine entre ses limites. Les
mailles seront toutes egales, avec une surface AxAy (fig. 3).

n+2

n+1

n

n-f

n-2

m-2

m,n

m+1

U**xA

m+2

" 1

Fig. 3.

C'est aux noeuds du reseau que l'on va remplir l'equation differentielle.
Pour ce faire, on exprime les derivees partielles de la fonetion F par des
relations qui ne contiennent que les valeurs nodales Fmn, c'est-ä-dire les inconnues

du probleme. On peut ecrire en chaque noeud interieur l'equation
differentielle transformee et tenir compte sur les lisieres de la condition (6) qui
determine directement les valeurs de la fonetion sur le contour. On obtiendra
donc autant d'equations, lineaires, qu'il y a de valeurs nodales inconnues. La
resolution de ces equations se fera par les procedes classiques qu'il est inutile
de rappeler ici.

Pour eliminer les derivees partielles, on utilise la relation du polygone
funiculaire qui donne justement une relation entre les valeurs des derivees

7) Voir A. Pucher, op. cit. ä la note 3, ou Z. Pelka, Powloki Translacyjne, cite ä la
note 2.
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secondes en certains points et les valeurs de la fonetion aux memes points.
Cette relation bien connue s'ecrit8):

Vm-l ~ 2 Vm + Vm+1 A % Km W)

ou, pour des derivees partielles et une fonetion F au lieu de y}

Fm-1 ~2Fm + Fm+1 A X K„
/d2F\

'• \dx2 j ' (8)

On peut bien entendu considerer des lignes verticales en remplacant x par
y et m par n.

Ces relations sont exaetes puisqu'il n'y est fait aueune hypothese sur l'allure
des derivees secondes et la maniere d'evaluer la charge nodale K. La formule,
par contre, devient approchee si l'on admet une Variation parabolique de la
derivee seconde entre les points m— 1 et m+l et que l'on calcule la charge
nodale en consequence:

^-^^4mirHmrmn «
Comme il s'agit d'un probleme bidimensionnel, il est indique d'introduire

la notion de charge nodale bidimensionnelle Kmn, que l'on obtient en gene-
ralisant la charge nodale classique bien connue. Pour une distribution de la
surcharge p admise parabolique dans les deux directions de la surface, on
obtient:

KmAp) 12

1

10

1
KM^\i^i\KM-AxAy144

1 10 1

10 100 10

1 10 1

P-(10)

Km y designe la charge nodale classique le long des lignes horizontales et Kn,
le long des lignes verticales.

Rien ne nous empeche de considerer chaque terme de l'equation differentielle

(4) comme une charge (dont on recherche ou on connait la valeur en
chaque point du reseau). On peut donc en former la charge nodale bidimensionnelle

K et ecrire la relation suivante:

w (dLhdH\^K (^idH\ -K (Z) an
m>n\dy2 dx2) m>n\dx2 dy2) Am,nK")- \

Comme l'equation (4) doit etre satisfaite en chaque point du domaine, la
relation (11) est exaete tant qu'on ne fait aueune hypothese sur la forme de

la charge nodale K. Cela est possible pour le terme de droite, qui contient les

charges donnees et dont on peut toujours, au moins en principe, evaluer

8) On consultera par exemple F. Stüssi, Entwurf und Berechnung von Stahlbauten,
cite ä la note 2, page 186, ou Numerische Methoden der Baustatik, Schw. Bauztg., 79. Jg.,
1961, p. 275.
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mathematiquement la charge nodale K exacte. Pour les deux termes de gauche,
par contre, qui contiennent les valeurs nodales F inconnues, il faut bien
admettre quelque chose et nous supposons que leur charge nodale est
parabolique.

Examinons le premier terme de gauche en determinant la charge Kmn ä

l'aide de la relation approchee (10); il vient:

K„ [dy2 dx2) 12 m\dy2 dx2)'

d2z2Comme le facteur ^-^ ne depend que de y, il ne varie pas le long des lignes
horizontales du reseau et on peut ecrire:

(d*z28*F\ Ax\(d2z2d2F\
m\dy2 dx2} 12 [\dy2 dx2)m_x A"2 ^2

<d2z, d2F
)m \dy2 dx2Jm+1]y2 8x2)m_x

' " \dy2 dx

12 \dy2) l\dx2Jm_1 \dx2Jm \dx2/m+1J

/*M ,8ßF\
\dy2) m\8x2)

II vient donc:

(dtzz 8*F\ A

m-n\dy2 dx2) 1

y.
12

i
10

i

d2z9

dy'
Kr

/d2F\
\dx2)'

En tenant compte de la relation du polygone funiculaire (8), on obtient finalement

l'expression

K« (d2z2 d2F\
>n\dy2 dx2)

Ay
l2Ax

+ 1-2+1
+ 10 -20 +10
+ 1-2+1

d2z2

dy2
F.

Pour le second terme de gauche, il suffit bien entendu de permuter x et y
ainsi que les lignes horizontales et verticales. Apres multiplication par —12,

l'equation (11) conduit donc ä la relation

Ay
Ax

-1+2-1
-10 +20 -10
-1+2-1

d2z9 „ Ax
Ay

-1 -10 -1
+ 2 +20 +2
-1 -10 -1

Ö'-12'- (Z).
(12)

II s'agit lä au fond simplement d'une combinaison lineaire de l'equation (4)
dans laquelle les derivees partielles ont ete exprimees, gräce ä la relation du
polygone funiculaire (8), par les valeurs nodales F.
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Ce schema (12) donne les coefficients 9) des equations lineaires qui permettent
de determiner les inconnues F. Les termes de charge de ces equations figurent
ä droite; la charge nodale K (Z) peut etre calculee exactement ou, si la surface
de charge est d'allure parabolique, evaluee ä l'aide de la relation (10).

Quant aux conditions aux limites (6), il est bien facile d'en tenir compte;
toutes les ordonnees F sur les bords sont nulles et les coefficients correspondants

des Schemas n'interviennent pas dans les equations.
Les equations lineaires une fois resolues, toutes les valeurs nodales de la

fonetion Fmn seront connues. Pour determiner les efforts de membrane du

voile, il faudra cependant evaluer encore les derivees de F, en partieulier les

derivees secondes (voir equations (3)).
Sur le contour, les derivees secondes sont fixees directement par les

conditions (5) et l'equation differentielle (4); on obtient en effet:

d2F n d2F Z
x ±a: -1—¥ 0, d ou -5—«- - -™—,dy2 dx1 d*z2

dV2 (13)
PF „ d2F Z

y +b: -7—^ 0, d ou -r—s- - -75—.y dx2 dy2 d2zx
dx2

Pour les autres points, on a recours ä la relation du polygone funiculaire (9).

En ecrivant cette formule aux divers points interieurs situes sur une ligne du

reseau choisi et en tenant compte des valeurs donnees par la relation (13)

pour les points au bord, on obtient autant d'equations lineaires qu'il y a de

derivees inconnues. II est indique d'etablir la matrice inversee du Systeme

d'equations, ce qui permet de calculer, par multiplication et sommation, les

derivees secondes ä partir des conditions au contour et des valeurs F connues.
A titre d'exemple, nous donnons les tableaux 74, I6 et I8, relatifs ä des lignes

comportant un nombre de divisions usuel (fig. 4). Les valeurs nodales sont

9) On remarquera que les facteurs variables -=—- et sont ecrits ä la droite de
et y et x

l'operateur I I. Explicitement, le premier terme s'ecrit donc:

~.— \~3—^-) —Fm-i,n + i + 2Fm, n + 1 —Fm + i,n + i)Ax Y\dy2 /n+i

+ (4~?) (-lOFm-1,n + 20Fm,n-IOFm+i,n)\dy2 Jn

+ 2
1 —Fm-i,n-i-\-2Fm,n-i~Fm + i,n-l) \

d2Z2
on sait en effet que la derivee seconde 7 0 est constante sur une ligne horizontale n+1,

1 dirnoun-1. °
d2 d2II n'est par consequent pas indique de mettre les facteurs

g
et

g
devant

l'operateur comme le fait M. Pelka (voir note 2), c'est-ä-dire de multiplier tous les coefficients

par les valeurs des facteurs au point central m, n; la precision en souffrira.
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4-

2*

t f i« f r t* f*

Fig. 4.

Tableau (1$). Quatre mailles, derivee seconde y" donnee au bord

Cas symetrique

2/i 2/i*=l 2/2 2/2*= 1 2/3=1 y»=y>'.= l/l2
y 0 partoutyf y?- o

2/2

2/3

+ 19,591837

- 3,918367
-43,102041
+ 47,020408

+ 23,510204
-43,102041

-0,10204082
+ 0,02040816

Tableau (Iq)- Six mailles, derivee seconde y" donnee au bord

Cas symetrique

2/i 2/i* 1 2/2 2/2*= 1 2/3 2/3*= 1 2/4=1 y'{=y';.= lß2
y 0 partoutyr=yf. o

2/2

2/3

yl

+43,645361

- 4,453608
+ 0,890722

-91,744330
+53,443299
-10,688660

+ 53,443299
-102,432990
+106,886598

- 5,344330
+53,443299
-97,088660

-0,10103093
+0,01030928
-0,00206186

Tableau (1%)- Huit mailles, derivee seconde y" donnee au bord

Cas symetrique

2/i 2/i*=l 2/2 2/2*= 1 2/3 2/3*= 1 2/4 2/4*= 1 2/5=1

y 0 partoutyl=yl- o

2/2

2/3

2/4

2/5

+77,58384
- 7,83837
+ 0,79983
- 0,15997

-163,00604
+ 94,06040
- 9,59800
+ 1,91960

+ 94,06040
-172,60404
+ 95,98000

- 19,19600

- 9,59800
+ 95,98000
-182,20204
+190,04041

+ 0,95980

- 9,59800
+ 95,02020
-172,60404

-0,10102062
+0,01020621
-0,00104145
+0,00020829

l2
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_ 7 )d2z2

ha I dy2

admises symetriques par rapport au milieu de la ligne, les asterisques designant
justement les points symetriques10). Pour plus de generalite, la fonetion est

designee par y; dans le cas des voiles, sur une ligne horizontale du reseau, y"
d2 F

designe donc -r~^ et y'[ yl* correspond ä la valeur sur le bord, donnee par la
lefi ~F\ "

relation (13), soit U—s-)

Pour les cisaillements T, nous avons besoin, selon l'equation (3), des deri-
d2 F

vees mixtes -rr—r—. A cet effet, nous calculons d'abord les derivees premieres
dF dF vxcy
-7— ou -Tr- ä l'aide des relations suivantes11), fondees egalement sur les pro-dx dy °
prietes du polygone funiculaire ou, plus exactement, sur l'analogie entre
l'effort tranchant d'une poutre chargee et la derivee premiere du moment de

flexion:

pour un point sur le bord
Ax2J

Axy'i Vz-Vi—j2"(3,5yj + 3yJ ¦0,5y;),

pour un point interieur

Axy'm 2 \2/m+l Vrr
Ax2

12

(14)

(ym+i~ym-i) •

En introduisant dans ces relations les valeurs y" donnees par les tableaux I,
on peut etablir les tableaux II ci-dessous qui permettent de determiner, par
multiplication et sommation, les derivees premieres lorsque l'on connait les

valeurs nodales et la derivee seconde sur les bords, d'apres la relation (13).

Pour passer ä la torsion geodesique on procede bien entendu de la
dF dFdxdy

meme maniere, en prenant pour fonetion y les derivees premieres ^— ou

Nous examinerons dans les applications les particularites du calcul.

Tableau (IIa)- Quatre mailles, derivee seconde y" donnee au bord

Cas symetrique, 2/3=0

2/i 2/i*=l 2/2 2/2*= 1 2/3=1 y"i=y"i.= Vi2
y 0 partouty' yl' o

2/i

2/2

-5,265306
-1,918367

+ 7,183673
-0,979592

-1,918367
+ 2,897959

-0,06632653
+ 0,02040816

10) On peut bien entendu etablir des tableaux correspondants pour le cas antisymetrique

et, par superposition, pour le cas general. Comme nous n'en aurons pas besoin
dans les applications, nous ne les reproduisons pas ici. On les trouvera dans Pierre Dubas,
Calcul numerique des plaques et des parois minces, Publ. No 27 de l'Institut de statique
appliquee ä l'EPF, Leemann, Zürich 1955.

11) Voir les references ä la note 8.
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Tableau (Hg)- Six mailles, derivee seconde y" donnee au bord

265

Cas symetrique, 2/4=0

2/i 2/i*=l 2/2 2/2* 1 2/3 2/3*= 1 2/4=1 y!=yl*=lfi2
2/ 0 partout2/i,=2/l/* 0

2/i

2/2

2/3

-7,849485
-2,938144
+ 0,593814

+ 10,193814

- 0,742268

- 4,125773

-2,938144
+ 4,422680
-0,742268

+ 0,593814
-0,742268
+ 4,274227

-0,04432990
+ 0,01374570
-0,00137457

Tableau (11%) - Huit mailles, derivee seconde y" donnee au bord

Cas symetrique, 2/5=0

2/i 2/1* 1 2/2 2/2* 1 2/3 2/3* 1 2/4 2/4* 1 2/5=1 yl=yi*=l/l*
y 0 partout2/1 2/i'* 0

2/i

2/2

2/3

2/i

-10,465320
- 3,918350
+ 0,799833
- 0,079983

+13,583837

- 0,979796
- 5,598000
+ 0,959800

-3,838367
+5,797959
-0,019996
-5,598000

+0,799833
-0,999792
+5,797959
-0,979796

-0,079983
+0,099979
-0,979796
+5,697980

-0,03324828
+0,01031035
-0,00104145
+0,00010414

Premiere application numerique

Afin de permettre une comparaison directe, nous examinons d'abord
l'exemple traite par MM. Beles et Soare1), c'est-ä-dire un voile de translation

dont la surface moyenne est engendree par des directrices circulaires,
de rayons r± et r2, et qui est definie par l'equation (fig. 1)

z r1-\-r2— ir\ — x2— ir\ — y2.

Les derivees secondes de la surface moyenne valent donc:

d*zx
dx2 r\{r\ —x2)~^2,

d2z2

dy2
rl(rl~y2)-^2.

(15)

(16)

Pour travailler avec des grandeurs sans dimensions, nous multiplions par rx
tous les termes de l'equation (12) et, en mettant ä droite de l'operateur | ] les

facteurs constants -j~ et --—, ce qui est licite, il vient:

-1+2-1
-10 +20 -10
-1+2-1

Ax

Ay
Ax r1r2(r2-y2)-*l2F +

-1 -10 -1
+ 2 +20 +2
-1 -10 -1

Ax
Jy

12riKm)n(Z).

r\{r\-x2)-^2F

(17)
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Les conditions au contour sont donnees bien entendu par la relation (6), soit
^ 0 sur tout le perimetre.

Pour etudier l'amelioration de la precision avec le nombre de divisions,
nous avons examine des reseaux comportant 4x4, 6x6 et 8x8 mailles. Ce
dernier reseau est visible ä la fig. 5, avec la numerotation des noeuds, qui reste

OA 1.4 24 SA UM

0.5 1.5 2.5 5.5 «.5

0.2 1.2 2.2 5.2 4.2

Co at 1.1 2.1 3.1 41
Vr

i 0.0 1.0 2.0 5.0 4.0

L Zct'dAx

Fig. 5.

valable en principe pour les autres reseaux; chaque point est donc designe

par ses coordonnees, 1'unite etant la maille.
Pour les rapports choisis par MM. Beles et Soare, soit

Ax
b 0,8a,

241
ri 24Ö2a'

A vd'oü -r^ 0,8 etAx
2^

r2 ö 2 a >

Ay
1,25,

on peut determiner sans difficulte la valeur des facteurs -r-^ et -r-^ (formule 16)

pour tous les points. On obtient le tableau III ci-dessous.
Ces valeurs et la relation (17) permettent d'ecrire en chaque noeud interieur

une equation lineaire en F. Lorsque la surcharge est symetrique par rapport
aux deux axes de coordonnees, le nombre d'inconnues Fmn se limite ä 4 pour

Tableau III

Ay/JxnrKrt-y2)-^2

0

1,205

6/4

1,2468434

6/3

1,2810916

6/2

1,3881134

26/3

1,5651938

36/4

1,6919636

x

Ax\Ayr\{r\-x2)-^2

0

1,25

a/4

1,2796274

a/3

1,3034896

a/2

1,3759211

2 a/3

1,4892403

3 a/4

1,5658629
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le reseau ä 4 x 4 mailles, ä 9 pour celui ä6x6 et ä 16 pour celui ä 8 x 8. II faut
naturellement tenir compte des points symetriques en ecrivant les equations.
Pour la premiere equation du reseau ä 4x4 mailles, par exemple, ecrite au
point 0,0, le coefficient de F10 (x a/2, y 0) vaut:

2(-10-1,205 + 2-1,3759211) -24,1 + 5,50368;

celui de F01 (x 0, y b/2):

2( + 2-l,3881134-10-1,25) +5,55245-25;

et celui de F1± (x a/2, y b/2):

4 - 1 • 1,3881134-1 • 1,3759211) - 5,55245 - 5,50368.

Si l'on veut obtenir une matrice ä peu pres symetrique par rapport ä sa
diagonale principale, il faut des lors multiplier par 2 l'equation ecrite au noeud
1,0 et celle du noeud 0,1, par 4 celle du nceud 1,1 etc. Ces facteurs figurent
dans la premiere colonne des tableaux IV et V reproduisant les equations.

Quant ä la derniere colonne de ces tableaux, eile contient les termes de

charge, c'est-ä-dire les termes de droite de la relation (17). La surcharge est
admise uniformement repartie, donc symetrique par rapport aux deux axes
comme nous l'avons suppose. D'apres les conditions au contour (5), le coin
du voile (x a, y b) est caracterise par des efforts Nx et Ny tous deux nuls.
L'equation differentielle (4) ne peut donc etre satisfaite au coin que si la
surcharge y est nulle ou qu'elle est reprise par une flexion du voile12). Comme
nous voulons nous limiter ä un regime de membrane, nous admettrons ici que
les coins ne sont pas charges. La charge nodale vaudra donc AxAyZ pour les
noeuds ordinaires; pour le nceud situe sur la diagonale, juste avant le coin,

143
on aura par contre, pour une Variation admise parabolique, täjA xAyZ selon
la formule (10). 2a256 26

Si l'on designe par n le nombre de mailles, on a A x — —— et A y —;
le terme de charge ordinaire s'ecrit alors:

12r1KmtnZ=12r12^^Z=1^r1(2b)2Z. (18)

Pour le nceud pres du coin, on multipliera comme indique ci-dessus par 143/144.
Le tableau IV ci-dessous reproduit le Systeme d'equations correspondant

au reseau ä 4x4 mailles (w 4 pour la formule 18) et le tableau V, celui ä

6x6 (n 6). Quant ä la fig. 6, eile montre schematiquement la matrice relative

12) Pour un voile presentant une torsion geodesique non nulle, la surcharge au coin
est reprise par des cisaillements car l'equation differentielle (4) comprend dans ce cas un

d2z d2F 82z
terme 2 -—-— -—-—. A la limite, pour -—-— 0 comme dans les voiles de translation,dxdy dxdy dxdy
ces cisaillements devraient etre infinis en cas de charge au coin, ce qui est physique -

ment impossible. En realite l'etat de membrane sera complete par des flexions.
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Tableau IV. Systeme d'equations pour le reseau ä 4x4 mailles13)

-^0,0 -^1,0 Fo,i -Fi.i T. de charge

lx 0,0
+ 24,1

+ 25,0

+ 49,1

-24,1
+ 5,50368

- 18,59632

+ 5,55245
-25,0

- 19,44755

- 5,55245

- 5,50368

- 11,05613

+ 0,9375

+ 0,9375

2X 1,0
-24,1
+ 5,0

+ 0,389002

+ 48,2
+ 55,03684

+ 96,00283

- 5,55245

- 5,0

-18,11759

+ 11,10491

- 55,03684

- 48,23279

+ 1,875

+ 2,239689

2X 0,1
+ 4,82
-25,0
+ 0,410998

- 4,82

- 5,50368

+ 0,187148

+ 55,52454
+ 50,0

+ 94,14097

- 55,52454
+ 11,00737

- 58,08789

+ 1,875

+ 2,679464

4X 1,1
-4,82
- 5,0

+ 0,2

+ 9,64
-55,03684

+ 0,511611

- 55,52454
+ 10,0

+ 0,6233546

+ 111,04907
+ 110,07369

+ 158,02575

+ 3,723958

+ 6,727564

Sol. 10-3 + 71,20656 + 55,04707 + 54,73085 + 42,57258 Xri(26)2Z

0.0

1.0

2.0

5.0

0.1

1.1

2.1

5.1

0.2

1.2

2.2

3.2

0.3

1.3

2.5

55

00 1.0 20 30 0.1 1.1 2.1 5.1 0.2 1.2 2.2 3.2 0.5 1.5 2.3 3.3

• •
• • •

• • •
• •

• •
• • •

• • •
• •

• •
- • • •

• • •
• •

• •
• • •

• • •
• •

Fig. 6. Systeme d'equations schematique pour le reseau ä 8 X 8 mailles.

13) Pour faciliter le contröle, on a ecrit separement, l'un au-dessous de l'autre, les
chiffres correspondants aux 2 termes de gauche de la relation (17). D'autre part, le
tableau contient la resolution complete d'apres Gauss.
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au reseau ä 8 X 8 mailles; on voit que les coefficients sont groupes autour de la
diagonale principale, ce qui facilite la resolution. Par contre les matrices ne
sont pas exactement symetriques par rapport ä cette diagonale (voir tableaux
IV et V); les calculs sont donc un peu plus longs. Nous avons utilise l'algo-
rithme bien connu de Gauss et obtenu les Solutions figurant sous les tableaux
IV et V pour les reseaux ä4x4 et 6x6 mailles; pour le reseau 8x8, les resultats

sont indiques dans le tableau VI.

Tableau VI. Solutions des equations pour le reseau ä 8x8 mailles

0 1 2 3

3

2
1

0

32,83214
54,42505
66,82399
70,87845

31,11460
51,46534
63,12435
66,93395

25,77711
42,30249
51,70375
54,76940

16,09730
25,92425
31,45804
33,25913

n(26)2Z10-3

La fonetion F est representee graphiquement ä la fig. 7.

+ 2ö

Fig. 7. Fonetion de force F.

Les efforts 2V=^-^ et N,. ^-T- sur le contour sont donnes par les rela-x dy2 y dx1 x

tions (13), les valeurs —^ et -=-?£ etant tirees du tableau III (bien entendu
ax* ay* d2F d2F

sans les facteurs A xjA y ou A yjA x). Les derivees secondes jr-j et j—j sur le

contour et les Solutions F donnees dans les tableaux IV, V ou VI peuvent
maintenant etre introduites dans les tableaux I, ce qui determine les derivees
secondes et par consequent les efforts Nx et Ny ä 1'interieur. A titre d'exemple
et pour montrer la convergence, ces valeurs sont indiquees au tableau VII



VOILES MINCES DE TRANSLATION 271

pour le reseau ä 4x414) et au tableau VIII pour celui ä 8x8 mailles. Elles
sont egalement representees graphiquement aux fig. 8 et 9.

Tableau VII. Efforts Nx et Ny pour le reseau ä 4x4 mailles

Nx
d2F

Ny _ d2F
~ 'dx2

• 1 2 o 1 2

2

1

0

-1,0 -0,90848 0

0
0

2 0 0 0

-0,57632
-0,66390

-0,58289
-0,51609

-0,44810
-0,38940

1

0
-0,24039
-0,32127

-0,29206
-0,37933

nZ

Tableau VIII. Efforts Nx et Ny pour le reseau ä 8x8 mailles

- d2F
dy2

0 1 2 3 4

4 -1,0 -0,97685 -0,90848 -0,79828 0

0
0
0
0

3

2
1

0

-0,70492
-0,58251
-0,53095
-0,51658

-0,67396
-0,55020
-0,49928
- 0,48530

-0,57475
- 0,44940
-0,40260
-0,39036

-0,37488
-0,26854
-0,23689
-0,22927

is
¦ d2F
,y~d^

0 i 2 3 4

4 0 0 0 0 0

-0,47282
-0,57632
-0,64162
-0,66390

3

2
1

0

-0,13952
-0,24061
-0,30095
-0,32095

-0,14661
-0,25171
-0,31368
-0,33407

-0,17369
-0,29123
-0,35728
-0,37863

-0,25078
-0,38245
-0,45122
-0,47323

?riZ

nZ

d2F
14) Pour le point x a, y 0 sur le bord, par exemple, la relation (13) donne -^—^

—™—atat', avec le tableau III, on obtient: (tt-H — ' -nZ —0,6639 riZ.
d2zi\dy2^ \dx2J 0,2 1,205

Pour le centre 0,0 il vient des lors, ä partir des tableaux (I4) et IV:
1

\d*)o.o-y* 2 (+ 47,020408 • 55,04707 - 43,102041 -71,20656) • 10-3n (26)2Z
(2 a)

+ 0,02040816 - 0,6639) rxZ -nZ(0,82.0,48081 + 0,01355) -0,32127n£.
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-=—? I 1-/>-
Nx

z XX Hr •—,=/>z

^uiJiiUiJ
^J-U^LU1
"^uüJiiJiLl 11 I I 11 Ud ?um

mnI I I I I I II—U_L_U

Fig. 8. Efforts iV^

Pour determiner les cisaillements T Nxy

Fig. 9. Efforts Nv.
d2F

0 0 on procede commedxdy r
indique plus haut, c'est-ä-dire on calcule d'abord les derivees premieres, par

r) TP

exemple -^, ä l'aide du tableau II (ou directement ä partir des relations 14,

avec les ordonnees F et les derivees secondes evaluees precedemment).
Pour les derivees mixtes, on repete les memes Operations en prenant cette

fois comme fonetion y les derivees -r— que l'on vient de calculer et en derivant
dans le sens y, le long des lignes verticales. Une seule difficulte se presente:

on a besoin des valeurs y" ^-^ (-0—) sur le bord y b. On pourrait bien entendu

partir de la relation (13) et determiner ¦=—-^—z mathematiquement, par deri-
P2 TP *7 dxdy

vation de ^—2 — -^—^. On admettrait ainsi implicitement que la charge Z
est constante jusqu'ä proximite immediate du coin. En realite, tous nos
calculs ont ete faits en supposant que Z avait une Variation parabolique le

long de la derniere maille, pres du coin; il en sera donc de meme pour Nx et il
d3Fconvient de determiner -——- numeriquement, ä l'aide du tableau II et en

dxdy g2-p,
partant des valeurs nodales des derivees secondes ttat connues sur le bord et

d*F dy
de

2Q ^ 0 au coin. Pour le reseau ä 8x8 mailles, on obtient par exemple
les valeurs suivantes, en tenant compte que l/Z->l/2a 0,8/2 6.
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X 0,25a 0,50a 0,75a 1,0a

d d2F
dx dy2

-0,337101 -0,157579. -2,886820. - 6,446379 nZ/2b

En effectuant les calculs, on peut etablir le tableau IX, qui contient egalement

les valeurs intermediaires -=—.dx

dF d2F
Tableau IX. Derivees premieres —— et cisaillements T — -—-— pour le reseau ä 8x8 mailles

dx dxdy

dF
dx

0 1 2 3 4

4
3

2

1

0

0
0
0
0
0

0

0,017705
0,030506
0,038121
0,040638

0

0,037359
0,064023
0,079633
0,084758

0

0,062873
0,105325
0,129400
0,137238

0

0,106589
0,164179
0,196697
0,207308

— d2 F
dy

*

0 1 2 3 4

4
3

2

1

0

0
0
0
0
0

-0,19952
-0,15337
-0,10220
- 0,05050

0

-0,40355
-0,32770
-0,21047
-0,10296

0

-0,77386
-0,51200
-0,33016
-0,15711

0

-1,41240
-0,77296
-0,42841
-0,21400

0

n 2a Z

nZ

On obtiendrait exactement les memes valeurs en determinant d'abord les
P TP

derivees premieres -=— puis en derivant dans le sens des lignes horizontales,
dy

pourvu que l'on determine les dsF
dy dx2 au bord comme ci-dessus.

Rappeions pour terminer que ces cisaillements, comme indique ä la note 12,

dependent fortement de l'etat de charge au coin, ce qui n'est pas le cas pour
les efforts longitudinaux Nx et Ny. Comme nous avons suppose que la charge
varie paraboliquement, de Z ä 0, sur la maille pres du coin et que la surface

de cette maille vaut A x A y
2a26
~n? (eile depend par consequent du reseau

choisi), nous avons au fond examine pour chaque reseau un cas de charge
different.

En realite, pour les conditions au contour (5) adoptees, le probleme ne
peut pas etre resolu exactement dans l'hypothese d'un regime de membrane:
vers les coins, une partie de la charge sera reprise par des flexions du voile et le
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reste par les efforts de membrane. La difficulte que nous rencontrons ä
determiner la valeur exacte des cisaillements maxima, au coin, ne provient donc

pas de la methode du polygone funiculaire mais bien des donnees theoriques
du probleme. Bien au contraire, cette methode du polygone funiculaire est
specialement indiquee pour resoudre le probleme exact: une fois connue la
distribution de la charge correspondant au regime de membrane, il sera aise
d'en considerer la Variation lors de l'etablissement des termes de charge des

equations (12).
En supposant par exemple que la distribution effective des charges

relatives au regime de membrane soit celle que nous avons admise pour notre
reseau ä 8x8 mailles — c'est-ä-dire decroissance parabolique de Z ä 0 sur la

derniere maille, de surface j —— on obtiendrait les resultats donnes graphique-
ment ä la fig. 10.

A titre de recapitulation, nous groupons dans le tableau X les valeurs des

ordonnees Fmax F0J) et des efforts NX S1 et Ny S2 au centre du voile,
valeurs calculees pour les divers reseaux etudies, avec extrapolation pour
n oo. On voit la remarquable precision et la bonne convergence, environ
proportionnelle ä n4, de la methode du polygone funiculaire. On pourra
comparer ces valeurs ä celles evaluees ä l'aide de la methode aux differences finies et
de la methode plurilocale, indiquees dans le tableau 6 de MM. Beles et Soare x).

%+N~
r*y r,Z X

JJiJllU-J-LiJ-L^--^

Fig. 10. Efforts Nxy.
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Tableau X

275

Fo,o — Fmax Erreur ($1)0,0 Erreur ($2)0,0 Erreur

4x4
6x6
8x8

00

71,207
70,933
70,878
70,85

+ 0,50%
+ 0,12%
+ 0,04%

-0,51609
-0,51649
-0,516576
-0,51661

-0,101%
- 0,023 %
-0,007%

-0,32127
-0,32100
-0,320945
-0,32092

+ 0,109%
+ 0,025%
+ 0,008%

10-3n(26)2Z nZ nZ

Remarquons que, pour tous les reseaux, les efforts S1 et 82 trouves satis-
font exactement l'equation differentielle (4). Pour le centre du reseau ä 4x4
mailles, par exemple on a:

S, NX

d2z1
dx2

d2F

w
1,0;

-0,51609;
d2F

S, tf„ =-^- -0,32127;dx2

d2z,

dy'f= 1,50625:

d'oü -0,51609-0,32127-1,50625 1,0.

II en est de meme pour toutes les valeurs des tableaux VII et VIII15). Cela
montre simplement que les calculs numeriques sont corrects mais n'a rien
ä voir avec la precision inherente ä la methode. Les erreurs de Nx et Ny sont
tout simplement de signe inverse et, apres multiplication par les facteurs
d2z\ d2Z2
-7—0- ou -j—£-, se compensent exactement.
a x a y

Seconde application numerique

Dans l'exemple precedent, la distribution de la surcharge Z etait admise
uniforme, ce qui pourrait expliquer la precision relativement satisfaisante
de la methode aux differences. Nous allons examiner maintenant un voile
soumis ä une charge variable et choisissons ä cet effet un exemple dejä resolu
mathematiquement16): il s'agit d'une surface moyenne en paraboloide ellip-
tique, definie par l'equation

Z rr2 a* 2 b* ' (19)

15) Cela n'est vrai que si l'on calcule avec une charge au coin nulle. Autrement, on
introduirait implicitement, dans les equations lineaires, l'equation differentielle (4) ecrite
au coin, ce qui est en contradiction avec les conditions au contour (5).

16) Voir E. Ttjngl, Das elliptische Paraboloid über rechteckigem Grundriß, österr.
Bauzeitschrift, 11. Jg., 1956, p. 274; voir aussi K. Girkmann, Flächentragwerke,
5. Auflage, Springer, Wien, 1959, p. 390.
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Les derivees secondes -r-^ ~ et ~^f ^f sont donc constantes sur tout le

domaine; si l'on suppose que la surface couverte est carree, avec a betAx Ay,
et que Ton prend ±\ ~ ^, la relation (12) se simplifie et devient, apres
division par 2:

-1-4-1
,(Z). (20)-4 +20 -4

-1-4-1
F «**

Dans notre exemple numerique, nous choisirons un rapport j= 1,25.

Quant ä la charge Z, correspondant au poids propre de ce voile d'epaisseur
variable, eile obeira ä l'equation

z=41+1'0I(S+S)]-

Le tableau XI contient les valeurs nodales Z dont nous aurons besoin.

(21)

Tableau XI. Valeurs nodales de la charge Z

x 0 a a
X=2

3ax=~ x a

y a 0

3a
2,13625 2,578125

a
y 2

1,505 1,820625 2,2625

a
*=4 1,12625 1,315625 1,63125 2,073125

y 0 1,0 1,063125 1,2525 1,568125 2,01

•9o

On remarquera que, comme dans l'exemple precedent et pour les memes
raisons, nous admettons que la charge correspondant au regime de membrane
est nulle au coin, au lieu de 3,02 g0 selon (21). Cette charge doit etre reprise
par une flexion locale du voile pres des coins.

Comme toutes les donnees sont symetriques par rapport aux diagonales
du carre, il en sera de meme de la fonetion F et l'on peut en tenir compte
lors de l'etablissement des equations. On n'obtient ainsi que 3 inconnues pour
le reseau ä 4x4 et 10 pour celui ä 8x8 mailles. La numerotation nodale
adoptee sera la meme que dans l'exemple precedent et la relation (20) permet
d'etablir sans difficultes les tableaux XII et XIII reproduisant les systemes
d'equations pour les reseaux ä4x4et8x8 mailles.

Avec ajf =1,25, les termes de charge valent ici (n= nombre de mailles
2a\Ax):
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ß. 1,25a Km§n(Z) 7,5aKm>n(Z) ^(^)*
1 10 1

10 100 10

1 10 1

z

et les charges nodales y sont donnees exactement par la relation (10) puisque
la distribution est effectivement parabolique selon (21).

Tableau XII. Systeme d'equations pour le reseau ä 4x4 mailles

i^o,o -^1,0 ^0,1 ^1,1 T. de charge

lx
4X
4X

0,0
1,0
1,1

+ 20

-16
- 4

-16
+ 72

-32

- 4

-32
+ 80

+ 0,5082031
+ 2,50625
+ 2,9403646

Solutions 0,12012902 0,09791667 0,08192768 goa(2a)2

Tableau XIII. Systeme d'equations pour le reseau ä 8x8 mailles

^0,0 ^1,0 F2,0 ^3,0 ¦ft.! F2,l ^3,1 ^2,2 Fsf2 -^3,3 T. de charge

y4x 0,0 +5 - 4 - 1 29,91333

lx 1,0 -4 +18 - 4 - 8 - 2 127,05078

lx 2,0 - 4 +20 - 4 - 2 - 8 - 2 149,24316

lx 3,0 - 4 +20 - 2 - 8 186,23047

lx 1,1 -1 - 8 - 2 +20 - 8 - 1 134,44824
2X 2,1 - 2 - 8 - 2 - 8 +38 - 8 - 8 - 2 313,28125
2X 3,1 - 2 - 8 - 8 +40 - 2 - 8 387,25586

lx 2,2 - 1 - 8 - 2 +20 - 8 - 1 178,83301
2X 3,2 - 2 - 8 - 8 +38 - 8 431,64063

lx 3,3 - 1 - 8 +20 250,34994

•goa(2a)210-3

La resolution des equations est ici specialement aisee puisque la matrice
est symetrique par rapport ä la diagonale principale. Pour le reseau ä 4x4
mailles, les Solutions trouvees figurent sous le tableau XII; pour celui ä 8x8
mailles, dans un tableau special XIV. Les cases vides correspondent aux
noeuds symetriques par rapport ä la diagonale.

po ]E7 oo Tp

Sur le contour, les efforts N„ tt-it et Nol ttat sont donnes par les relations
dx2 dx2

(13), avec l -=-^= 1 —^= 1,25a et Z d'apres le tableau XI. Pour les noeuds

interieurs, on utilise le tableau I. Par suite de la symetrie par rapport ä la
diagonale principale, il suffit de calculer -^-^ ou 7—-; les valeurs dans l'autre
direction s'obtiennent par permutation des lignes horizontales et verticales.
Les valeurs trouvees sont indiquees dans les tableaux XV et XVI et ä la
figure 11.
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Tableau XIV. Solutions des equations pour le reseau ä 8x8 mailles

0 1 2 3

3

2

1

0 120,285933
110,576089
115,235062

82,170453
94,574674
98,069634

38,463844
54,594561
61,091121
62,819366

g0a(2a)2\0'3

Tableau XV. Efforts Ny (ou Nx) pour le reseau ä 4x4 mailles

0 1 2

2 0 0 0

1

0
-0,425852 -0,940625
-0,625 -1,139773

-2,828125
-2,5125

•goa

Tableau XVI. Efforts Ny (ou Nx) pour le reseau ä 8x8 mailles

0 x—i 2 3 4

4 0 0 0 0 0

-3,222656
-2,828125
-2,591406
-2,5125

3

2
1

0

-0,207928
-0,427339
-0,574837
-0,625000

-0,287652
-0,547435
-0,703906
-0,754070

-0,577623
- 0,940625

- 1,097097
-1,138287

-1,335156
-1,698159
-1,751411
-1,752228

-goa

Fig. 11. Paraboloide. Efforts Ny

#
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A titre de comparaison, nous avons egalement resolu le probleme ä l'aide
de la methode aux differences finies17), c'est-ä-dire en remplacant l'equation
differentielle par la relation

-1
1 + 4

-1
1 F =jAx*Z 1,25a (v)' Z. (22)

en chaque nceud du reseau. Pour le reseau ä 8 X 8 mailles, on obtient alors les

equations figurant au tableau XVII. On voit que le Systeme n'est guere plus
simple et que la resolution ne demandera que legerement moins de temps que
celle du Systeme donne par la methode du polygone funiculaire (tableau XIII).

Tableau XVII. Methode aux differences. Systeme d'equations pour le reseau ä 8x 8 mailles

^0,0 Fito F2,o ^3,0 ^1,1 F2,l -^3,1 F2,2 ^3,2 F3t3 T. de charge

y4x 0,0 +1 -1 0,3125
lx 1,0 -1 +4 -1 -2 1,328906

lx 2,0 -^1 +4 -1 -2 1,565625

lx 3,0 -1 +4 -2 1,960156

lx 1,1 -2 +4 -2 1,407813
2X 2,1 -2 -2 +8 -2 -2 3,289063
2x 3,1 -2 -2 +8 -2 4,078125
lx 2,2 -2 +4 -2 1,88125
2X 3,2 -2 -2 +8 -2 4,551563
lx 3,3 -2 +4 2,670313

•a/64(2a)20ro

Quant au tableau final XVIII, il contient les valeurs de quelques ordonnees

Fmn et de quelques efforts Ny -^-j (ou Nx ^-~\, valeurs calculees par la
methode du polygone funiculaire et celle aux differences — dans les deux cas

pour 4x4 et 8x8 mailles — ainsi que par un procede mathematique18).
Sur la diagonale du carre, on a tt-j -r-^ Par raison de symetrie et l'equation

differentielle (4) donne dans notre cas directement:

Nx Ny i. 1,25aZ 0,625ag0 [l + 1,01 (~2 + Qj
17) Cette comparaison a dejä ete faite par Z. Pelka pour le reseau ä 4 X 4 mailles

(Powloki translacyjne, cite ä la note 2, p. 24 sqq.). Quelques erreurs numeriques se sont
cependant glissees dans les calculs, surtout pour la methode du polygone funiculaire, ce
qui fausse la comparaison.

18) Pour les ordonnees F, les valeurs de la derniere colonne, dites valeurs «exactes»,
ont ete calculees par extrapolation pour n=co, ä partir des reseaux du polygone
funiculaire. Pour les efforts Ny ou Nz, on a utilise le tableau 1 donne par E. Ttjngl, op. cit,
ä la note 16. La derniere decimale n'est pas assuree.
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Tableau XVIII. Comparaison de diverses methodes

Methode du polygone Methode aux differences
Solufuniculaire finies tions

«exac-
tes»X y 4x4

mailles /o
8x8

mailles /o
4X4 %

mailles
8x8

mailles /o

F 0 0 0,120129 0,14 0,120286 0,01 0,107617 11,79 0,116942 2,87 0,12030
go- 0 a/2 0,097917 0,17 0,098070 0,01 0,088086 11,35 0,095459 2,75 0,09808

a(2a)2 a/2 a/2 0,081928 0,32 0,082170 0,02 0,073438 11,92 0,079835 2,95 0,08219

Ny aß 0 -0,75407 0,0 -0,74991 0,5 -0,7538

(Nx)
0 a/4 -0,57484 0,0 -0,57900 0,7 -0,5751

a/2 0 -1,13977 0,1 -1,13829 0,0 -1,09688 3,8 -1,12463 1,2 -1,1384
0 a/2 -0,42585 0,3 -0,42734 0,0 -0,46875 9,7 -0,44099 3,2 -0,4272

3/4 a 0 -1,75223 0,0 -1,73529 1,0 -1,7519
goa 0 3/4a -0,20793 0,2 -0,22486 8,0 -0,2083

a/2 a/4 -1,09710 0,0 -1,08557 1,1 -1,0972
a/4 a/2 -0,54743 0,0 -0,55896 2,1 -0,5474
a/2 3/4 a -1,69816 0,1 -1,66926 1,7 -1,6973
3/4 a a/2 -0,57762 0,2 -0,60653 4,9 -0,5786

Nous n'avons donc pas considere les points de la diagonale dans notre tableau
(pour Ny ou Nx) puisque toutes les methodes y donnent des valeurs exactes,
pourvu que les calculs numeriques le soient (voir aussi tableau XV et XVI).

Quant aux cisaillements T, pour les raisons exposees ä l'exemple precedent,

nous ne les avons pas determines puisque leur repartition ne peut pas
etre connue exactement tant que l'on ignore la part de charge reprise par
flexion vers les coins.

L'examen du tableau XVIII conduit aux constatations suivantes:

— La methode du polygone funiculaire a une precision etonnante; les valeurs
determinees ä l'aide d'un reseau assez lache, ä 4x4 mailles, sont dejä
suffisamment exactes pour les besoins de la pratique.

— La convergence est excellente; comme dans l'exemple precedent, eile est
environ proportionnelle ä n^, n designant le nombre de mailles dans une
direction.

— La precision de la methode aux differences finies est de loin inferieure;
pour un reseau ä 8 X 8 mailles, les erreurs sont encore plus de dix fois plus
grandes que celles correspondant ä la methode du polygone funiculaire,
pour un reseau ä 4 x 4 mailles seulement.

— La convergence de la methode aux differences finies est lente puisque les

erreurs y sont environ proportionnelles ä 1/n2.
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Precision de la methode du polygone funiculaire

Les deux applications que nous venons de donner ne permettent pas en soi
d'etablir des regles generales pour la precision. Toutefois, de nombreux autres
calculs effectues pour resoudre des problemes bidimensionnels regis par d'autres
equations differentielles — plaques minces et elasticite plane — conduisent
au critere suivant:

Si 1'intervalle entre deux points d'inflexion consecutifs correspond ä

2 3 4 6 8 mailles

la precision sera de l'ordre de 6% 2% 0,7% 0,15% 0,05%

pour les valeurs des ordonnees F et des derivees secondes Ny ou Nx. Pour les
derivees d'ordre impair, multiplier par 1,5+-2.

Pour les conditions au contour (6), on peut admettre que l'intervalle ä

considerer est la longueur totale 2a ou 2 6; dans nos applications le nombre
de mailles serait donc de 4, 6 ou 8. Les tableaux X et XVIII montrent que,
pour l'equation (4) des voiles minces sans flexion, les erreurs sont en general
inferieures19). Les indications ci-dessus donnent donc une idee de l'ordre de

precision que l'on peut attendre du reseau choisi.

Conclusions

La relation du polygone funiculaire peut etre appliquee avec succes ä la
determination du regime de membrane dans les voiles minces de translation.
Pour ce faire, on substitue ä l'equation differentielle (4) un Systeme d'equations

lineaires, guere plus complique que celui obtenu en utilisant la methode
aux differences finies, dejä proposee par Pucher20) pour l'etude de ces voiles.
La precision du polygone funiculaire est cependant de loin superieure, ce qui
permet, pour obtenir un meme degre d'exactitude, de choisir un reseau
comportant sensiblement moins de mailles et par consequent de reduire conside-
rablement Vetendue des Operations numeriques.

Par rapport aux methodes analytiques dites rigoureuses, la methode du
polygone funiculaire offre l'avantage de ne recourir qu'ä des notions simples,
familieres ä tout ingenieur, et de n'exiger que des Operations numeriques
elementaires (resolution d'equations lineaires). De part son caractere numerique,

ce procede permet en outre d'etudier sans aueune difficulte des voiles
de translation dont la surface moyenne est definie par n'importe quelles direc-

19) Pour les efforts Ny et Nx qui, comme nous l'avons dit, remplissent toujours exactement

l'equation (4), cela n'est vrai que pour la plus grande des valeurs car l'erreur relative

de l'autre peut etre grande si l'effort est petit.
20) A. Pucher, Die Berechnung von doppelt gekrümmten Schalen mittels Differenzen -

gleichungen. Der Bauingenieur, Bd. 18, 1937, p. 118,
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trices et dont la charge est variable selon une loi quelconque (par exemple,
poids propre d'un voile d'epaisseur variable ou, pour la Solution complete
considerant les flexions, la surcharge relative au regime de membrane, deduction

faite de celle reprise par flexion locale). Lorsque Ton utilise un procede
analytique, par contre, on est souvent amene ä fixer la forme du voile par des

considerations de simplicite des developpements mathematiques21) ou ä

admettre des surcharges definies par une equation simple22), qui ne correspon-
dent qu'imparfaitement aux donnees reelles. La methode du polygone
funiculaire laisse de ce point de vue toute liberte au constructeur de rechercher
les formes les plus avantageuses et les plus economiques, compte tenu des

conditions de chantier23).

Resume

Les auteurs exposent l'application de la methode du polygone funiculaire
ä la determination du regime de membrane dans les voiles minces de
translation. Pour resoudre l'equation aux derivees partielles qui regit le probleme,
on y substitue un Systeme d'equations lineaires, les inconnues etant les valeurs
nodales de la fonetion. Les Operations numeriques sont donc analogues ä Celles

que l'on rencontre dans la methode bien connue aux differences finies mais la
precision est de loin superieure.

Zusammenfassung

Dieser Beitrag zeigt die Anwendung der Seilpolygonmethode auf die
Bestimmung des Membranspannungszustandes in Translationsschalen. Die das
Problem beherrschende partielle Differentialgleichung wird in ein lineares
Gleichungssystem umgesetzt, in dem als Unbekannte die Knotenwerte der
Funktion erscheinen. Die in diesem Lösungsweg vorkommenden numerischen
Berechnungen sind somit den in der normalen Differenzenmethode auftretenden

ähnlich, wobei die erreichte Genauigkeit aber weit höher liegt.

Summary

The authors describe the application of the funicular polygon method to
the determination of the diaphragm state of stress in translational thin shells.
The partial differential equation governing the problem is replaced by a
system of linear equations in which the nodal values of the function appear as
the unknowns. The numerical computations arising in this method of Solution
are therefore similar to those met with the well-known method of finite
differences, but the accuracy attained is far greater.

21) Voir par exemple P. Csonka, Ein Beitrag zur zweckmäßigen Formgebung der
Kappenschalen über rechteckigem Grundriß, Memoires A.I.P.C, 16e volume, 1956, p. 71.

22) Voir E. Tungl, article cite ä la note 16.
23) A ce sujet, on pourra lire les remarques de B. Laffaille, au debut de l'article

cite ä la note 3,
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