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Transversely Loaded Compression Members
Made of Materials Having No Tensile Strength

La capacité portante des piéces comprimées et fléchies transversalement, formées
de matériaux sans résistance o la traction

Die Tragfihigkeit von querbelasteten, gedriickten Bauteilen, die aus Baustoffen
ohne Zugfestigkeit hergestellt sind

SVEN SAHLIN

‘Tekn. D., Docent, Division of Building Statics and Structural Engineering,
Royal Institute of Technology, Stockholm, Sweden

The present paper is a study of the load-carrying capacity of transversely
loaded compression members, such as columns, walls, struts, or the like, which
are made of materials having no tensile strength. Furthermore, a comparison
is made with the corresponding conditions of loading in the cases where the
material possesses tensile strength. In both cases, it is assumed that failure in
compression is not to be taken into consideration. The transverse loading is
supposed to consist of one or two symmetrically applied concentrated loads,
see Fig. 1 and Fig. 4, respectively.

In dealing with the conditions of loading shown in Fig. 1, use can be made
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Fig. 1. Compression Member Submitted to a Transverse Load at the Centre.
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of Fig. 2. Fig. 2 was taken from [1], see also [2]. This figure represents, for
several values of the load and the eccentricity, the angle of rotation of the
end of a wall having no tensile strength, which is submitted to an eccentric
load at one end.

On the assumption that the deformations are small, that the material is
elastic, and that it has no tensile strength, we obtain Egs. (1), (2) and (3)

from Fig. 1.
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Fig. 2. Relation between the compressive load P and the angle of rotation ¢, of an end

of a compression member made of a material having no tensile strength, which is sub-

mitted to an eccentric load at one end and to a central load at the other end. The full-line

curves represent the relations which are obtained when the eccentricity e has certain

constant values, while the dash-line curves refer to the relations which are obtained
when the edge stress has certain constant values.
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Fig. 3. Relation between the transverse load H and the compressive load P for com-
pression members under the conditions of loading shown in Figs. 1 and 2. The abscissa,

. Hh
represents Ha for the full-line curves and Prd for the other curves. The curves are
E

marked in accordance with the table below.

Pd

Conditions of load-
ing shown in Fig. 1

Conditions of load-
ing shown in Fig. 4

Hh
Prd

Material having no
tensile strength

Material having
tensile strength*)

a=%}
(C)

[24

(B)

.....

*) These curves apply only to the values assumed on p. 249.

%ZQDW

2o _ H

h P’
e,+ep = e,

where ¢, P, and ¢, have the same significance as in Fig. 2, while Ah=54/2.

(1)

(2)
(3)
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From Egs. (1), (2), and (3) we get

AR g € ¢ e HAh
4P 4 ~d d-d 2Pd )
HAh e Ah

and hence Q—I)d— = E - —Zl—"q)v (5)
Hh e Ah

and Pd - (3“7%)' )

For a series of constant values of P, the maximum values of the right-hand
member of Eq. (6) can be found from Fig. 2 (for this purpose, % may possibly

be plotted as f(e/d) in order that the maximum values may be determined

more sharply). o
After this operation has been carried out, the maximum values of Fd for

a series of values of P are known. The result of such calculations is represented
by the full-line curve (4) in Fig. 3. As the Euler critical load PE="—2—€’—] has

h2
been introduced, the abscissa in this graph expresses a relative value.
In order that an idea of the absolute magnitude of H may be formed,

ra =1 (2,)

is also shown in Fig. 3 by the dash-line curve (4).
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Fig. 4. Compression Member Submitted to Two Symmetrically Applied Transverse
Loads H/2.

A direct treatment of the case of loading represented in Fig. 4 was not
possible with the aid of the available data. To begin with, it was therefore
necessary to make a preparatory calculation so as to determine the angle of
rotation of an end of a compression member, e.g. a wall, having no tensile
strength, which is subjected to loads of equal eccentricity at both ends. Fig. 5
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shows the results of this calculation, which has been carried out by using

those solutions of the equation of the elastic curve of members made of materials

having no tensile strength which had been published in [3], [4], [5], and [1].
From Fig. 4 Wejget the equations (7), (8) and (9).
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Fig. 5. Relation between the compressive load P and the angle of rotation ¢, of an end

of a compression member made of a material having no tensile strength, which is sub-

mitted to loads of equal eccentricity at both ends. The full-line curves represent the

relations which are obtained when the eccentricity e¢ has certain constant values, while

the dash-line curves refer to the relations which are obtained when the edge stress has
certain constant values.
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H eq
e,+e; =e, (9)

where ¢, is the angle of rotation of an end of a compression member which is
submitted to an eccentric load at one end only (Fig. 2) and ¢,, is the angle
of rotation of an end of a compression member which is subjected to loads of
equal eccentricity at both ends (Fig. 5).

For A=a=1, Eqgs. (7), (8), and (9) yield

Hh e Ah Ah '
ﬁ= 6[3_(799%_‘_7‘7)%)]' (10)

While Eq. (6) is used for one transverse load, Eq. (10) is employed in a
Hh
Pd
values of P. In this case, %h%a is obtained from Fig. 2 and
mined from Fig. 5.

The results of this calculation are shown in Fig. 3, where the full-line

) for various
mazx.

Ah
d

similar way for two transverse loads in order to find (

@y, 18 deter-

curve (B) represents g—d}f and the dash-line curve (B) represents %

The curves (C) for « =% are obtained in an analogous manner.

If the material is assumed to be able to take certain limited tensile stresses,
then the equation of the elastic curve of a member made of a material having
tensile strength gives the following moment at the centre of a member sub-
mitted to combined compression and bending in accordance with Fig. 1:

H h
Mmaz=ﬂtg(k§)’ (11)
P 17}/? ™
Where k—VEj_ﬁ E—za.
Hhtg(Za
2
Mmaa:—__%' (12)

For a rectangular cross section (bd), the maximum tensile stress is

_ P &M
bd

g =

=2 (13)

By substituting Eq. (12) in Eq. (13) and by transforming, we get

Hh 40 h?
v (72d2+—z—a2)acot (%a). (14)

Thus, the maximum transverse load H is a function of both the tensile
strength and the compressive load. In other words, this is a stress problem,
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which differs in principle from the case of a material having no tensile strength,
where H was determined by the compressive load alone, that is to say, where
we had to deal with a stability problem.

The following calculation shows how the results shown in Fig. 3 are modified
when the material has tensile strength.

Assume o=1kp/em?, F=10000kp/cm?, ~/d=25. Then

Hh 4625  w 77
Pod = (W———~——_10000+3a)a00t (—ia). (15)

We obtain the dot-line curve (1) in Fig. 3. This curve is compared with
the dash-line curve (A).

A certain tensile strength of the material causes an increase in H at very
small loads P. This is further emphasised by the dot-line curve (5), which
was calculated for o=5kp/cm?, the other values being unchanged.

In the above calculations it was assumed that the transverse load H is
that load at which the tensile strength of the material is exceeded, i.e. the
cracking load. Now cracking does not necessarily imply that the load-carrying
capacity of the member has been exhausted. A position of equilibrium which
involves a partly cracked cross section and a certain tensile zone is fully
conceivable. Such a possibility would permit a substantial increase in A above
the cracking load in certain cases. Thus, it would be possible to raise the
relevant portions of the curve (1) in Fig. 3 above the curve (4). However, it
may be imagined that the stress concentration at the root of the crack would
give rise to almost total cracking on the side in tension. Therefore, the case
where the material has no tensile strength should for the time being be regarded
as a lower limit on the safe side. Accordingly, the maximum transverse load
H is determined either by the cracking load calculated from the tensile strength
of the material in question, or by the ultimate load of the material having no
tensile strength, whichever of these two values is the greater.

Example, See Fig. 6

Otensile = 1 kp/ cm?

E = 10000 kp/cm?

L = 6m W L
d = 12 cm

P = 4Mp/m

Fig. 6. Example. TP
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h=§=3000m, %:%:12, %:0,0001,
Py TIO000100:1
52%20,253, a=]/;g=0,501.
From Kq. (14)
1];];30 = (%-0,0001-12%%-0,253)-0,501 eot(%-o,ml) = 0,141,

/

H = 185 kp/m (=cracking load).
From Fig. 3, Curve (4), Hh H

—-12 =024
Pad Py 0,24,

H = 984_%218@ = 320kp/m ( £ ultimate load).

Appendix

The elastic curve of a compression member made of a material having no
tensile strength is assumed to have the general shape shown in Fig. 7. The

total length 2 of the member is calculated in a way which is in principle
indicated in this figure. Cf. [5] and [1].
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Fig. 7. Elastic Curve of a Compression Member Made of a Material Having no Tensile
Strength.
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The function f=f(p, m), which is different in 3 intervals, is dependent on

m=6§ and p=3%0-——% as follows:

fi(p,m) =3V(1—p)(38—m)(1+2p—m)
2—m+p+V(B-m)(1+2p—m)

1 — 3/2
+ 4 (1 —p)32In 1—p , (A1)
1<m<3, 2—1§p<1.
. 1+Vp
fa(pm) = Vp(1—p)+}(1—pprln "L
l—l/p
+arc sin 1-p —arcsin {m l_p (A2)
1+3p 1+3p)’
0s=m<l1, 0sp<l.
f3(p,m) = ——&rcsm-Hzp,
m—1 (A3)
<p<0, 0<m<l1.

2

where m, is the relative eccentricity at the top end of the member and m, is
the relative eccentricity at the bottom end of the member.

The angle of rotation ¢,, of an end of the compression member is dependent
on p and m as follows

b mytm, ]/ P

a‘ﬂvvl = 6 ih FJF(p9m1)’ (A4)
where F (p,m,) is different in 3 intervals so that F; corresponds to f,, etc.
1]/ 1+2p—m,
,m 5 As
1+3

Fy(p,m) = ¢ }/1 - (A6)
Fy(p,m) =3 V(1+2p)*—mi. (A7)

We consider half the compression member in accordance with Fig. 1. We
calculate the angle of rotation at the centre, observing that m,=0 and. A=h/2
in Eq. (A4)

_m1 f_k]/_—i)_—
2d =5 —zVEJ i 2y Fem). (A8)

From Eq. (5) we get
Ah h e Hbh

FACRETACIE PV R (4.9)
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Eqgs. (A8) and (A9) yield

Hh V
Pd =2h T F(p,m,). (A 10)

From Eqgs. (A1) to (A3) and Fig. 7 we find

P
h]/E—JZ z[f(pao)_f(pzml)]7 (All)
which, together with Eq. (A 10), gives
= 41/ D, 0~ (2. me)) F (p,my), (A12)

where ml_l, cf. Eq. (4).
By substituting P, ——E— and by squaring Eq. (A11), we obtain

P 4
E = ﬁ[l‘(p’ O)_f(p’ml)]z . (A13)
and multiplying by Eq. (A 12) gives
Hh 16
PE - 2 [f f D> ml ]3F(1) ml) (A 14)

Eqgs. (A12), (A13), and (A14) give a solution to the problem of finding a
maximum value of H as a function of P or P/Py.

If the compression member is acted upon by two transverse loads, then
the respective analytical expressions ¢, and ¢, are substituted in Eq. (10),
and the calculation is similar to that in the case where a single transverse load
is applied at the centre. An analogous procedure is used in the case of several
transverse loads.
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Summary

This paper is a study of the load-carrying capacity of transversely loaded
compression members which are made of materials having no tensile strength.
Detailed calculations were carried out in the cases of one and two symmetri-
cally applied, concentrated transverse loads, see Figs. 1 and 4, respectively.
The former case was also compared with solutions relating to materials having
tensile strength. The case of no tensile strength is a stability problem, while
the case of tensile strength is a stress problem. The results are shown in Fig. 3.

Résumé

Le présent rapport est une étude de la capacité portante des pieces com-
primées et fléchies transversalement, formées de matériaux sans résistance
a la traction. Des calculs détaillés ont été faits en considérant une ou deux
charges transversales concentrées symétriques (voir fig. 1 et 4). En outre, dans
le premier cas, on a comparé la solution obtenue & celles relatives aux maté-
riaux résistants a la traction. Le cas sans résistance a la traction est un pro-

bléme de stabilité, tandis que le cas avec résistance & la traction est un pro-
bléme de contraintes. Les résultats sont représentés a la fig. 3.

Zusammenfassung

Dieser Bericht behandelt die Tragfihigkeit von querbelasteten, gedriickten
Bauteilen, die aus Baustoffen ohne Zugfestigkeit hergestellt sind. In den Fillen
einer bzw. zweier symmetrisch angebrachten Einzelquerlasten, siehe Abb. 1
bzw. 4, wurden ausfiihrliche Berechnungen angestellt. Der erstgenannte Fall
wurde auch mit Losungen verglichen, die sich auf Baustoffe mit Zugfestigkeit
beziehen. Der Fall ohne Zugfestigkeit ist ein Stabilitdtsproblem, wihrend der
Fall mit Zugfestigkeit ein Spannungsproblem ist. Die Ergebnisse sind in
Abb. 3 dargestellt.
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