Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 21 (1961)

Artikel: Tables for the analysis of cylindrical tanks or tubes with linearly variable
thickness

Autor: Holand, Ivar

DOl: https://doi.org/10.5169/seals-18250

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-18250
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Tables for the Analysis of Cylindrical Tanks or Tubes with Linearly
Variable Thickness

Tables pour le calcul de réservoirs ou de tubes cylindriques a épaisseur
linéairement variable

Tabellen zur Berechnung von kreiszylindrischen Behdltern oder Rohren
mit linear verdnderlicher Stirke

IVAR HOLAND
Dr. techn., Technical University of Norway, Trondheim

Basic Theory

The theory of circular cylindrical shells with axial symmetrical load and
constant or linearly variable thickness is given in the common textbooks, for
instance [1] or [2]. The final expressions for forces and displacements are
found by combining a particular integral (approximated by the membrane
solution) and a solution of the homogeneous equation (edge disturbances).

Fig. 1 shows a cylindrical shell which is subjected to a moment M, and a
shear force @, evenly distributed along one edge. When influences from the
opposite edge are left out, and the shell thickness 4 is constant, the expressions
for forces and displacements may be written (compare for instance [1]):
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M, and @, are the bending moment and the shear force at a distance x from
the edge. Positive directions for M, and @, are as shown for M, and @, in
Fig. 1. N, is the circumferential force, positive when tensile. w is the radial
displacement, positive outwards. D is the flexural rigidity

Eh3
D_12(1—V2) (2)
and c is a shell parameter
I
c =l/3(1-—v2)ﬁ, (3)
where v is Poisson’s ratio.
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Fig. 2. Cylindrical Shell with Line-
arly Variable Thickness.

Fig. 1. Cylindrical Shell with Constant Thickness &
Subjected to Edge Forces My and Q.

In the case of linearly variable thickness the solution of the homogeneous
differential equation is obtained by use of Kelvin functions. When the coordi-
nate system is chosen as shown in Fig. 2, the expressions for forces and dis-
placements may be written (compare for instance [2])

M, = E(El—of—vz—)}/xo—l—x{ol(——nzkei'n+4:nkei77+8ker'77)
+ Oy (n?ker’' n —4 nker n+ 8kei’ n) + C5 (— 9 bei’  + 4 n bei n + 8 ber’ 7)
+Cy(n?ber’ p — 4 nber n+ 8bei’ 1)}, (4)
== —E_L_—Vx0+x{01(—nkern+2kei’~q)—Oz(nkeivl—l—2ker’77)
47rY3 (1 —»?)
+C3(—nbern+2bei’ n) - Cy(n bein+ 2ber’ 1)},

T
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Bo ——
N, = %on+x{01ker' n+ O, kei’ y+ Cyber’ o+, bei’ n},

w L ———={C  ker'y + Oy kei’ n+ C3 ber’ n+ O, bei’ 5},
on (4)
dw 1
- = — Cy (nkein+2ker' n)+ Cy(—nkern+2kei’ 1)
i SYPUN o {01 (nkeiq n)+ Gy (—nkerq 7

+C3(nbein+2ber’ n)+Cy(—nbern+2bei’ 5)}.

In these expressions « is a constant expressing the rate of change of the shell
thickness

and 7 is a nondimensional coordinate

n = 2YT2(1—) ) 2 2E (6)

C,—C, are constants of integration, which must be determined from the edge
conditions at an upper and a lower edge.

The form of solution (4) requires much more laborious numerical work
than does the simple solution (1) for constant thickness.

To avoid this, FAvRE [3] has proposed to use a series development where
the first term in the series is the solution for a shell of constant thickness
equal to the thickness %, at the edge. The solution still leaves a considerable
amount of numerical work, even when the variation of thickness is so small
(xy/7[hg < ~0,2) that only two terms in the series will suffice.

The present paper shows how a tabulation may be carried out, which gives
the solution for variable thickness and constant thickness in the same form.

The solution (1) for constant thickness may be written

M, = a3, My+a,Vrh@,,

yrhQ, = gy Mo+ asVrh Q,

kN, = gy Mo+asVrh @,

E:ﬂw = ay My+auirhQ,, (7)
hdw

E h? ;%—Q5IMO+Q52}’T}&QO.
The coefficients a,;, are functions of the one variable

= V31— 8)

'—V2 g
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cr . Ccx
as follows Ay = eoor (cosT + s1n7) ,

Qg5 = [3 (1 —v2)]"Ve—calr singrf,
@1 = —2[3 (1 —v%)]"2ay,,
Gy = €077 (cosc—; — Smc;v) (9)

A3 = Ay = 2[3 (1 —v2)]"2ay,,
Agp = Qe = 2[3 (1 —v2)]W4e—calr cos(}Tx,

as; = —2[3(1 -2 2ay,,
Az = —2[3(1 —v2)]12ay,

The coefficients a,;, may be tabulated for different values of the nondimensional
variable
x
f _ ==,
Vrh
The first step in order to bring the expressions (4) into a form similar to Eqgs. (7),
is to introduce similarly reduced quantities. First, all quantities are divided

by the constant

(10)

% Var
4:8(1 -—-Vz) 24i/12 (]_ _V2).

This may be done because of the arbitrary constants occurring in the expres-
sions.
With the new notation

2Y12 (1 =9 2V12(1—+#)
— 2Y12(1—9) }/ = 11
Mo ) (x}/T/}I, ( )
which is the value of » at the edge =0, Eqgs. (4) may be written
M, = n{C; (—n?kei’ n+ 4 nkein+8ker y)

+ Cy (n2ker’ n — 4 nker n+ 8kei’ n) + C3 (—n? bei’ n + 4y bei n + 8 ber’ )
+Cy(n?ber’ n —4 nber n+8bei’ 3)},

VrheQ, = [12(1—v®)[* 54 n{C; (—nkern+2kei’ n)
—Cy(nkein+2ker’ 5)+ C3(—nbern+2bei’ n) —Cy(nbein+2ber’ 5)},
hy N, = [12 (1 —2)V2 925 {C, ker’ 5 + Oy kei’ n + Oz ber’ n+ C, bei’ 5},
2
Ehow = [12 (1 —v?)2 ¢ n~1{C  ker' n + Oy kei’ n + Csber’ n+ Oy bei’ n},

r

Eh} 1/7&?-03—;0 = —[12 (1 —»®) ng =2 {0y (n kei n + 2 ker’ 7) N

+ Oy (—nker n 4+ 2kei’ n) + C3(nbein + 2ber’ n) + Cy (—yber 5 + 2 bei’ )} .



CYLINDRICAL TANKS OR TUBES WITH LINEARLY VARIABLE THICKNESS 133

Hence, the reduced quantities depend on the value of 7, given by Eq. (11),
that is on the quantity

B = a‘/}% (13)

This parameter expresses the rate of thickness variation. Furthermore, the
reduced quantities vary in the axial direction depending on the coordinate

n = 2'712(1_1/2)]/%‘:;”=2‘?/12(1-V2)%V1+ﬁ§, (14)
xr
where £ = ]/r—kT, (15)

The coordinate ¢ is the same as the coordinate for the shell of constant thick-
ness, if only the constant shell thickness % in Eq. (10) is replaced by the edge
thickness A, .

In Eqgs. (4) and (12) the functions ker and kei and their derivatives give
edge disturbances originating from the upper edge, whereas the functions ber
and bei and their derivatives give edge disturbances originating from the lower
edge. These two groups of edge disturbances may be treated separately. If
they interfere, the final result is obtained by superposition.

To treat the edge disturbances from the upper edge only, one must put
C3=C,=0. When the edge is subjected to a moment M, and a radial force @,
evenly distributed along the edge (Fig. 3), Egs. (12) give

My = Cymy (ng) +Comy (7)),

- (16)
Vrho Qo = Cy gy (1) +Ca s ()
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Fig. 3. Cylindrical Shell with Linearly Variable Thickness Subjected to Edge Forces
My and Qo at the Upper Edge.
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where my (19) = — g kei’ ng+ 4 nikei ng+ 8 no ker’ »,,
My () = miker’ ng—4ngker no+ 8 nokei’ o,
q1(no) = [12(1—v*)JV4 (= niker no + 2 nikei’ n,),
gz (no) = [12(1 —vH)]"* (= nikei 7o —2niker 7).

From Eq. (16) the constants C; and C, may be expressed by M, and @, as
follows

(17)

O. — Qz(’?o)Mo“mz(%)Vﬁng"
Yomy (10) 42 (10) —M2(70) 41 (M0)
C. — ~ ¢4 (mo) My +my (1) V7 by Qo_

2 My (10) 92 (M0) — M3 (10) 91 (1o)

(18)

Substituting these values for the constants in Eqs. (12) the quantities are
obtained in the form

M, = a11M0+a12V77?EQ0,

Vrhy @, = Qg Mo+ g, 1/7”_};()_@0’

kON(p = a31M0+a32 V@Qo;

ER __ (19)
w = @y Mo+agVrhy Q.

7
ho dw —
Ek(ﬂ/f q 5y Mo+ asVrhg Qo-

The coefficients a,; are functions of the variable ¢ and the parameter of thick-
ness variation 8. For B=0 they are replaced by corresponding coefficients in

Eqgs. (7).
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Fig. 4. Cylindrical Shell with Linearly Variable Thickness Subjected to Edge Forces
Mo and Qo at the Lower Edge.
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To treat the edge disturbances from the lower edge one must put C;=C,=0
in Eqgs. (12). Again, it is convenient to measure the coordinates x and ¢ posi-
tive from the edge (Fig. 4). Hence, « in Eq. (5) is negative. The change of the

sign of z makes it necessary to change the signs of @, and ad—;g in Eqgs. (12).

A procedure which otherwise is the same as the one shown above, again leads
to expressions in the form (19).

In the expressions above Poisson’s ratio v only occurs in 1 —v2. Hence, the
real value of v is of minor importance. In the tables it has been put equal to 0.2.

The calculations outlined were programmed by the Mathematics Group at
the Norwegian Defence Research Establishment and carried out on their
Ferranti Mercury computer.

The resulting values of a,;, are given in Tables 1—10 for disturbances from
the upper edge (8=0, 0.1, 0.2 ... 1.0), and in Tables 11—20 for disturbances
from the lower edge (3=0, —0.1, —0.2 ... —1.0). In both cases the values of
the variable are £=0,0.2,0.4 ... 4.0. When edge disturbances from the lower
edge are considered, one must have

r = x,
hence, in Tables 11—20
g N
Vr by B

The computations were carried through with a maximal error of the order
of magnitude 10-6. The tables, however, give only 3 digits (4 when the first
digit is 1) in the maximum values of each column. More digits than those
given were found to be of no interest in actual design.

A Comparison with Favre’s Approximation

As mentioned previously, FAvRE [3] has proposed to solve the differential
equation for the cylindrical shell with variable thickness by a series develop-
ment. This solution gives an arbitrary quantity in the form

F(€)=Ffo ) +efi(E)+efa(6)+ -+ (20)

where f, (¢) is the solution found for a shell of constant thickness equal to the
edge thickness 4,, and

NN S (21)
V3 (1—?)
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FavrE includes only the two first terms in the series (20) and gives closed
formulas for the edge quantities (¢=0), which in the notation used in this
paper may be written

(@31)¢—0 = (a31)§=0,ﬂ=0 (1—2%¢)=-— (@52)¢=0>
(“32)§=o = (a31)§=0, B=0 (I—e),
(“52)§=0 = (“52)§=0, B=0 (1—2%e). _
A comparison of these values with those of the tables is shown in Fig. 5. The

figure shows that FAVRE’s solution with two series terms may be used with
sufficient accuracy even outside the eventual limits given by FavrE.

sgfe limits limits given by Fovre
} For the use of @ serves
eventual limiks Socution with two terms

N
=T
~a

10 -Q9-08 -07 -06 -05-04 -03 -02-01 0 Qf 02 03 04 05 06 07 08 09 10
B VTR

Fig. 5. Comparison of Table Values with Favre’s Approximation.
——— Tables ——— Favre, Two Terms.

Numerical Example

As an example to demonstrate the use of the tables, an approximate
analysis of a cylindrical arch dam will be shown. A vertical section through
the dam is shown in Fig. 6a. The radius measured to the upstream face is
constant and equal to 60 m, and the thickness varies from 1.8 to 3.0 m. The
arch dam is supported by a bottom vault of much larger thickness and smaller
radius. The joint is designed so as to take no bending moment.

It is fully satisfactory for a preliminary design to approximate the arch
dam by a cylindrical tank with the same cross section. This method has been
proposed by TOLKE [4] («zweite Naherungsstufe»).

The bottom vault is very rigid in comparison with the flexible thin arch
dam, and the edge conditions are supposed to be

w=DM,=0.
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The extended concrete dimensions at the crown are of little importance to the
stress distribution. The additional concrete area may be considered a ring of
area 4 =1m? supporting the upper edge. The edge conditions at the upper
edge are then

M,=0,

Woagutt = Wring

Fig. 6b shows the idealized static system and the hydrostatic load.

== 3 15ty 175“‘3'12 :
780 | (o
; /
Z Z
% 760 %
2 .
2 a0
ZE
R %
/
A 300 [%é i

E:\\:RN 362 E/m?
b)

a)

Fig. 6. Section Through Arch Dam. Dimensions in Metres.

a) Actual Shape.
b) Idealized Static System and Hydrostatic Loading.

As shown in [2] the particular integral gives a tangential force as in the
membrane state, hence

at the upper edge N,, = — 1.5:60 = — 90 t/m,

2
at the lower edge N,, = —36.2-60 = —2172 t/m.

Furthermore, the particular integral gives a bending moment

M,, = yr2az,[6(1—v?)

where y = specific weight of water = 1 t/m?
o = rate of thickness variation = 511—275 = 0.036
v = Poisson’s ratio ‘ = 0.2
x, = distance from intersection point
of wall faces to the zero point of
load diagram = 1.75/ax—1.5 = 47 m

Hence M,, =37 tm.
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Edge disturbances from the upper edge are of minor importance, as the parti-

cular quantities are small at this edge. For this reason they may be left out

when the edge equations for the lower edge are formed, without loss in accuracy.
As N,= E hw|r, the edge equations for the lower edge may be written

N¢0+ Nq’p = O,
My +M,, =0.
N, and M, are forces from the edge disturbances. According to Egs. (19)
fo N o = a31M0+a32]/m Qo>

a3, and ag, are found from Tables 15 and 16 for oyr/h,= —0.036)58.8/3.0 =
—0.16 and z=0. The edge equations become

3.99 M +2.95Vr by Q, = 2172-3.0,

M,=-37%
giving Vrhy @, = 2260 t,
Q, = 170 t/m

The edge quantities being known, M, for instance, may be found from
My =M, +ay My+a1,V7hy @,

a;; and a,, are found for a}7/h,=0.16 by interpolation in Tables 11 and 12.
This moment is shown in Fig. 7. The figure demonstrates that edge disturban-
ces from the upper edge give a small correction near the crown. The correction
is without practical importance, and it is included below for the sake of

completeness only.

o

24

22

20
+ 18
16
14
12
10 4 70

08 1 08

My 08 wi 1 06
oT 0% ’ o«
e/ ¢
} 02 . } 1+ gz
tmsm , / ¢/m ém?
500 40 300 200 190 = 20001800~ 1800 - 1400 ~1200- 1000 -800 - 600 - 400 ~200 ¢ =500 - 400 -300 - 200 - 100 ¢

Fig. 7. Diagrams of M, N, and w in the Case of Axial Symmetry.
—— Total. ———- Without Edge Disturbances from the Upper Edge.
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The magnitude at the upper edge of the edge disturbances from the lower
edge are found from Tables 12, 14 and 16 for

T _ 34.7 ~ 261,
Yrhy, V58.8-3.0
M, =—-0.005-2260 = —11t,
Q, = —0.002-170 ~ 0t,
1
Ny = —gq+0.04:2260 = — 30 t/m.

The additional quantitites are the particular integral quantitites and the edge
disturbances from the upper edge, determined by the set of edge quantities,
M, and @g. The resulting bending moment at the edge disappears, hence

M, +37—11=0, M= —26t.
@), is determined by the condition

w w.

vaull = Wring -

In the vault

1
*
58.8

r
For « 723 = 0.036 175 = 0.209.

N (a1 Mg+ gV 7 hoQ §) — 90 — 30,

Tables 5 and 6 give

Hence N,=-1624+12.9Q,’.

The displacements are equal when

Qor 1 ;
— 0 = o (—162+12.9Qp),

ko
which gives Qo ~1t/m.

This shear force is so small that it may be neglected in actual design.

The particular integrals and the edge disturbances from both edges being
known, the remaining work will be to compute forces and displacements by
aid of the tables. The resulting values of M,, N, and w are plotted in Fig. 7.

In the actual arch dam the radial displacement along the valley sides is
prevented. To complete the analysis above one must find the additional
stresses necessary to force the displacement shown in Fig. 7 back to zero along
the valley sides. TOLKE [4] carries this correction through by imagining the
vault divided in several separate arches without any mutual connection
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(«dritte Naherungsstufe»). One may improve this rather rough approximation
by taking into account the tangential restraining force acting on the arches.
For a complete investigation of the additional stresses mentioned, however,
the shell theory must be used. In the case of irregular valley sides the analysis
may be carried through by transforming the differential equations of the shell
to difference equations.

Analyses of the additional stresses show that they have the character of
damped edge disturbances originating from the valley sides. Thus the axially
symmetrical state of stress calculated above will prevail in the central part
of the dam.

Notations
r shell radius
h shell thickness
c =4}ﬁ3 (1 —»2)72/h?® nondimensional parameter
hy shell thickness at the edge
o rate of change of shell thickness
B=oayr[h, nondimensional parameter
e=pf /V?(T:;?) nondimensional parameter
x coordinate measured in the direction of the axis
E=x/Vrh, nondimensional coordinate

= 24}/12 (1—v2)V1+B¢/B nondimensional coordinate

z, distance from point of intersection of wall faces to shell edge
M, bending moment

M,, bending moment originating from the particular integral
M, bending moment at the edge

(R shear force

o shear force at the edge

N, circumferential force, positive when tensile

N,y circumferential force in the membrane state of stress
N, circumferential force at the edge

w normal displacement, positive when outwards

B modulus of elasticity

v Poisson’s ratio

D=Eh312 (1 —»?) flexural rigidity

C,-C, constants of integration

nondimensional coefficients

S
By
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Summary

The paper presents tables for the analysis of circular cylindrical shells with
axially symmetrical loads and a thickness which varies linearly in the axial
direction. The tables give the internal forces and displacements of the shell
expressed by the edge forces M, and ¢,. The mathematical basis for the tables
is the well known solution with Kelvin functions.

In a numerical example an approximate analysis of a cylindrical arch dam,
approximated by a complete cylinder, is shown.

Résumé

L’auteur présente des tables permettant de calculer les voiles cylindriques
de révolution qui sont chargés symétriquement par rapport & leur axe et dont
I’épaisseur varie linéairement le long des génératrices. Ces tables donnent les
sollicitations et les déformations du voile en fonction des efforts M, et @,
appliqués a son extrémité. Les valeurs contenues dans les tables ont été cal-
culées a 'aide de la solution bien connue qui utilise des fonctions de Kelvin.

Dans une application numérique, 1’auteur expose le calcul approché d’un
barrage-votiite cylindrique, assimilé approximativement & un cylindre fermé.
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Zusammenfassung

Es werden Tabellen vorgelegt zur Untersuchung kreiszylindrischer Schalen
bei symmetrisch zur Zylinderachse angeordneter Belastung und linear ver-
anderlicher Stidrke in Richtung der Achse. Die Tabellen geben die Schnitt-
krifte und Durchbiegungen in Funktion der Randkréifte M, und @,. Mathe-
matisch beruhen sie auf der wohlbekannten Auflésungsmethode mit Hilfe
von Kelvinfunktionen.

Als numerisches Beispiel wird eine Naherungsberechnung einer zylindrischen
Bogenstaumauer angegeben, in welcher die Mauer durch einen geschlossenen
Zylinder ersetzt wird.



	Tables for the analysis of cylindrical tanks or tubes with linearly variable thickness

