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Influence Surfaces for Bending Moments in Circular Cylindrical Shells
or Curved Plates

Surfaces d’influence pour les moments de flexion des votiles cylindriques ou des
plaques incurvées

Momenteneinflufflichen von kreiszylindrischen Schalen oder gekriimmien Platten

IVAR HOLAND
Dr. techn., The Technical University of Norway, Trondheim

Introduction

In the last two decades influence surface diagrams have found extensive
use for calculating bending moments in plates loaded with concentrated loads.
Numerous charts for rectangular plates are given by PucaHER [1] and by
GUNTER HorraxDp [2] and for circular plates by PErsEN [3].

The very first influence surface diagram for a cylindrical shell was probably
given by Yuvan [4], but charts of real practical use were not given till the
thesis of BieGER [5] appeared.

The approaches known to the writer, which have been used for analyzing
the influence of concentrated loads on shells, may be arranged in three groups.
As was shown originally by H. Re1ssNER [6], any kind of loading on a simply
supported cylindrical shell may be treated by developing the load in a double
trigonometric series. This method has been used by BisLaarp [7, 8] for cal-
culating moments and forces under rectangular loads. The method has the
advantage of giving a simple expression for the general series term, but the
series converges very slowly. An effective way of improving the convergence,
shown by Wrassow [9], is to subtract the series solution for the corresponding
plate problem and calculate the plate quantities by other methods.

A second group of methods result in a single Fourier series with trigono-
metric functions in the circumferential direction and damped trigonometric
functions longitudinally. A solution in this form is obtained if the load is
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considered an edge disturbance from a section through the load point and
normal to the axis (used by Erxst [10] and KoeprckE [11] and for a load on
a rib by LuNDGREN [12]). Alternatively a solution in the same form may be
obtained by representing the concentrated load by a Fourier series circum-
ferentially and a Fourier integral longitudinally (used by Yuvax [4], YvaN and
Tina [13, 14], BrecEr [5], and MorLEY [15]). A disadvantage of the method is
that the solution must be completed by taking into account slowly damped
edge disturbances from the traverses, except for extremely long shells (com-
pare ref. [14]).

The method used in the present paper belongs to a third group, where
forces and displacements are also represented by a single Fourier series, but
with trigonometric functions longitudinally and damped trigonometric func-
tions circumferentially. According to Korpcke [11] this method was used
first in 1936 by RaBIicH in a paper which has not been published. RaBicu
considered shells reinforced by ring ribs and with a load acting on a rib. Edge
disturbances from the load generatrix were calculated using Finsterwalder’s
theory. AAs-JAKOBSEN [16,17] used a similar approach, but solved the edge
disturbance problem by his own iteration method. OpqQuisT [18] considered
short line loads along a generatrix of an isotropic shell and used Schorer’s
theory for analyzing the edge disturbances. The effect of line loads was inves-
tigated in the same manner by Horr, KEMPNER and Porre [19] and by
KeEMPNER, SHENG and PonLE [20], with the exception that these authors
calculated the edge disturbances from Donnell’s theory. Forces and displace-
ments caused by radial and tangential line loads were also given by the writer
[23] as special cases of a more general treatment of edge disturbances. The
theory applied in [23] contained first order corrections to Donnell’s theory.

In the present paper influence surfaces for isotropic shells are calculated
by developing a concentrated load in a Fourier series in the direction of the
generatrix. The analysis of the edge disturbances caused by each term in the
load series is based on Donnell’s theory and differs only formally from the
one used in references [19] and [20].

The application of Donnell’s theory implies a slight inaccuracy for long
shells. However, it has the pronounced advantage of giving expressions for
forces and displacements which depend on one parameter only, except for a
multiplier to each quantity.

Fourier Series for a Concentrated Load

Let a simply supported shell of length I and radius » be subject to a con-
centrated radial unit load P =1 acting at a point with coordinates ¢ =0 and
x =x, (Fig. 1). This load may be considered a delta-function of x

P =8(x—x,). (1)
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This delta-function has the following properties
d(x—xy) =0 for x + x,,

d(x—xy) =0 for x = x,,

Zo+€
| 6(x—xy)dx = 1 for any value of e,
Xo—€

;//'l/f/
—

Fig. 1. Simply Supported Shell Loaded by a Concentrated Radial Load.

The load may be expanded in a sine series

Zc sinn;x,
where the coefficient c,, is
2 ! nmwx 2 . nwx,
Cn =7 O[Psm 7 dx—zsm 7
2 oo}
Hence P =5 (x—x,) 723111”77% n;rx
n=1

Fourier Series for the Bending Moments

113

(3)

The stress resultants from each term of the series (3) may be calculated
by the known methods for a simply supported shell. In the present paper the
Donnell theory will be used for this purpose. Comments on the accuracy of
this theory are given later. When influences from other edges are left out, the

edge conditions along the loaded generatrix are:

shear force NV, =
displacement in the direction of the arcv=0,
angular rotation in the direction of the arc$,=0,
transverse edge force R,= —14 (v —x,),
when the part of the shell which corresponds
to a positive value of ¢ is considered.
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Hence, the general term in a sine series for the transverse edge force is

1. nmxy . nwx
Rq,,n=—7s1n 7 sin——. (4)

In the usual Fourier analysis for simply supported shells, the general series
term for an arbitrary quantity caused by an edge disturbance may be written
(compare [22])

H =[HIR{C,H,emv+C,H,em}, (5)

In Eq. (5) influences from secondary edges are neglected. C; and C, are complex
constants of integration. m, and m, are the roots of the characteristic equation

my=p(—oyg+iBy), my=p(—ay+ify), (6)
where oy = 272 [{1 4+ (1 + k)22 4 (1 + k)22,
Bu = 2IR[{L+ (L2} (14 T2,

ay = 2L+ (1=~ (1= ), "
s = 2712[{1 + (1 —x)2}2 4 (1 — k)]¥2.

kx and p are the shell parameters

_ an Vi
3a—w !

G 4
p = Vn_ﬂ/s(l—vz)]@‘/%. (8)

R {z} means the real part of a complex number z.

The quantities [H], H , and H, are given in Table 1 for the quantities
occurring in the edge conditions mentioned above, and for the bending moments
M, and M, (for the development see for instance ref. [23] or [24]).

K

Table 1. [H], Hi and Hs

H [H] A, A

v E,fpkzs = = {l4+i[1—(1+0)l} | Me{l—i[1+(1+»)«]}
% E%z" ' n—? i e

Noo —V—l;c sn;x mit — M2t

R, ;;sinnTm g {1 — (1 —») ik — i} — g {1+ (1 =)k +75}
M, §%sinn—;—a3 —k+(L4w)y—vi —k~(l=x)v—vi
M, é%\sinﬁ%@ 14+ (1 —p)k—1i — 14+ (1= x—i
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m, and 7, are the reduced roots

A ml A MZ
m, = —, My = —. (9)
oy 2T op

Since ¢ =0 at the edge considered, Eq. (5) gives the edge quantity
H, = [HIR{C, H, +C; H,}. (10)

Then the edge conditions

1. nmrx, . nwx
0, R, = —sin Ogin

v=1 0= 77 ] ]

=N

® zp =

give the following 4 equations

—A;+ By [1-(1+v)x]+ 45+ By [1+(1+v)x] = 0,
—Bl +B2=0: (11)

2p . nmx,

- sin——,

A [1—(1=v)x]+By—A,[1+(1—v) ]+ By = —

from which A =B =—A,= By, =L sin?"%

2757 (12)

The constants of integration being known, the bending moments may be
determined. On substituting the proper values from Table 1 and Eq. (12), one
obtains the general series terms for the bending moments from Eq. (5), for
v=20

M,, = T in 2T Togin Mg, 1A+zem1¢—1A_zem2‘P , (13)
: 4pl l l 1y My
ro. . 144 . 1—2 .
M,, = ——4plsmn7;x°s1nn;xl%{ﬁz (I+r—1)eme+ m:(l——K—l-Z)emz¢ )

(14)
For a value of Poisson’s ratio different from zero the moments are obtained

from
Mq)’v = M¢’V=O+VM

M

2, v=0>

=Mac,v=0+VM (15)

x,v @, v=0

(the relations are exact only when the actual value of v is used for calculating
k and p).
Eqgs. (13) and (14) are transformed into real form by introducing

em? = e—atifope — e=up e (cosBipp+isinf pp) = f+ify, (16)
em® = ety = ¢=02p7 (cos By pp+isinBypp) = fu+ifs, (17)
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which gives

_ 1 . nmx, . ’nﬂ'xl = % * "
M, —n=1;3 ”2nﬂ_sm ] sin ] 2KVK{(°‘1 +B1) f— (e = B{) /o (18)
+ (o = BF) fa+ (o +B5) fa}
- 1 . nrmzy . nomaxl — 2
M, =n_1;3 S SR Osin 7 'éKVK {— [a{“+(1+;)ﬂ1’"] I5
=1,2,3... (19)
2 2
(0 2)ur | fom | = (1-2) B | fs= | (1-2) 2 |
and
1 . nmxy . nmx — “
Mot M= Y sin™ G 0in TV (=Bt fot o B oo ),
’ . (20)
h % g % 1
whnere oy (x%—[‘-B%’ /91 CZ%’*"B%’ (21)
ok =2 B3 =_£2_
ey A

The equations (18) and (19) give the moments at an arbitrarily chosen
point (z,¢), caused by a unit load at the point (x,,0). The moment found at
(z, @), however, is equal to the moment at (z,,0) caused by a unit load at (z, ¢).
In other words, the function resulting constitutes the influence surface for
the bending moments at (z,,0).

As was mentioned previously, influences from other edges were left out in
the analysis outlined above. Strictly speaking, the influence functions (18)
and (19) are thus only valid for shells extending to infinity in the circum-
ferential direction. Except for points near the edge, the influence from other
straight edges are of little importance. In all cases such disturbances may be
described by one or a few Fourier terms and may be calculated by known
methods.

Improvement of Convergence, Numerical Work

Since the bending moment at (x,, 0) will be infinite when the load is placed
at the same point, (z,,0) is a singular point in the influence surface. This
singularity makes the series (18)—(20) converge slowly in points near the
load generatrix.

In the numerical computations which follows, influence surfaces for the
point z,=1/2 only will be considered. The slowest convergence occurs along
the generatrix ¢ =0. Along this generatrix the bending moments obtained
from Eqs. (18) and (20) are
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1 . L x\ K -
Mx:é.;n_l%‘{)' (—1) 2 %—sm(nwi)%l/lc(~a{“+ﬁi"+0€§k+ﬂ£“)> (22)
1 n-ly 2\ Vi
M$+M¢=;n=1235“.(_1) 2 %SIH(”I/WZ)TK(OCI*"*‘CC;)) (23)

where the expressions

3 Vi (=it + B e +5)

Ve

and 3

(o + i)

approach 1 when n increases. Hence, the convergence of the series (22) and
(23) may be improved by subtracting the series

X
n—1 cos
— 1 . 1
(—1) 2 wsm(nw%) = —§ln———l—a—c. (24)
n=1,3,5... n 1+S].1'17T7
Eqgs. (22) and (23) are then replaced by
1 cosmy 1 a1y .,
Mx=—4—ln——lw+2—— > (—-1) 2 gsm(nw%)
7T : Tp= 5. ..
1+sin7s n=1,3,5.. (25)
o —
SV (o pratpn -1,
cos 7> 1
1 1 1,
M, +M,= —J—]n————l—x-}—— > (=1) 2 —sm(nrr%c—)
. 1+sin7; T n=1,3,5... n (26)

Vi

: [7 (a1*+a,§=)—1].

The diagrams which follow have been computed from Egs. (25) and (26) for
p=0, and from Eqs. (18) and (20) for ¢+ 0. The shape of the influence surfaces
depends on a parameter characterizing the dimensions of the shell

_k

Vrh
The parameters occurring in the series may be expressed by 8 (compare
Eqgs. (8) and (16)) as follows

3

na Vrh nwm

4, = 4——-——8’
V3(1—v7) ! V3(1-?) (27)

el . o 4 o W ey e
pp = VnrV3 (1 —v?) V%V%: Vi V3 (1 —v?) Va%.

K =
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The moments have been calculated for

- 0.1, 0.2, 0.3, 0.4, 0.45, 0.5
%: 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5

For y/l=0 the series diverge in the point x/l=0.5, which in this case has been
replaced by x/l =0.48. Between the points thus obtained the equidistant curves
in the diagrams have been drawn by curvilinear interpolation.

The value of Poisson’s ratio occurring in Eqgs. (27) is of no actual impor-
tance. In the numerical computations it has been put equal to 0.2.

The calculations outlined were programmed by the Mathematics Group
at the Norwegian Defence Research Establishment and carried out at their
Ferranti Mercury computer.

Figs. 3—7 and 9—13 show the resulting influence diagrams for various
values of the parameter 8 =I/}/rh from 8§=1 to §=25. For comparison, the
case 6 =0 (plane plate) is shown in Figs. 2 and 8. These diagrams are based
on those of PucHER [1]. 6 =1 corresponds to a very slight curvature, and the
diagrams show no substantial difference from 8 =0.

As the curvature increases the area of positive influence coefficients near
the load is diminished. This is particularly the case for M, and to a lesser
degree for M ,.

The diagrams show furthermore that loads outside the zero curve sur-
rounding the point considered give only small moments in this point.

Hence, if the curvature is not too small, the bending moments under a load
distributed over a small area is a local effect which is little influenced by edge
effects or other loads. For this reason the diagrams presented may be used
for calculating the bending moments under a concentrated load in any place
on the shell, if only not too near the edge. For such a purpose, a representation
showing less difference between the various values of & would have been
preferable. At the same time a higher degree of accuracy is desirable for the
high values of 8. This may be obtained by choosing as variables for instance

) x x ¥ Y
for M, : Sl =V and & L=

_ il Y ¥
for M ,: 7 and V8l AT

The writer intends to present, in a subsequent paper, diagrams in this
form and tables for moments under loads covering small areas.
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Comments on the Accuracy of the Solution

In reference [23], pp. 95 and 83, expressions are given for bending moments
caused by a sine-shaped line load. The expressions are deduced from a “New
approximate’ theory containing correction terms to the Donnell theory. For
the case of a concentrated load these expressions give for ¢ =0 and »=10

n—1
1 > (—I)T%sin(nw%)%l/;(—-oc1*+ﬁ1"‘+oc2”‘+[5’2*), (28)

27 p-13.5...

M

xr

1 noly z\ Vi
Mm‘l‘M(p:'— Z (—1) 2 zS]ﬂ(nﬂz)-z—[d{k“‘dék

T n=1,3,5... (29)
1
+%§(—°¢1*+/81*+/3§+“5k)] .

where p is defined in Eq. (8). In addition « should be replaced by K——2~t)~2 in

Eqgs. (7) when calculating o, B8;, o, and B,, from which «f, 8§, «F and B¥ are
calculated by use of Eqs. (21).

For a normally long concrete shell roof one may take [=2,57, r=100A
which gives (compare Eqgs. (8)) p?a16n, k~0.107%.

Formulas (28) and (29) for these values of the parameters give differences
from the results obtained from Donnell’s theory (Egs. (22) and (23)) of the
magnitude

0.001 in M,

0.0001 in M.

Thus, the errors are of no importance for engineering purposes, even in the
case of shells of this length.

- Notations
r shell radius
l shell length (span)
& coordinate measured axially from end of span
Z value of x at the load point

Y, p=ylr coordinates measured along the arc

P concentrated load

S (x —xy) o-function

Cn coefficient of the general term in a Fourier series
N,, shear force

R, transverse edge force

M, bending moment in z-direction

M, bending moment in g-direction
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v displacement in ¢-direction

D angular rotation of an arc

N 0.0 €tC. the general term in the Fourier series for the corresponding
quantity

H arbitrary force or displacement

[H] multiplier of H

H,, H, characteristic coefficients of H

R {z} real part of a complex number z

v imaginary unit

E modulus of elasticity

v Poisson’s ratio

K, p, © nondimensional shell parameters

My, My roots of the characteristic equation

My, Mg reduced values of m, and m,

«y,P1,%,B8s real and imaginary parts of 7, and 7,
af,af,BF,BF nondimensional quantities (see Eq. (21))
ABC constants of integration
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Summary

The paper presents influence surfaces for the bending moments in circular
cylindrical shells of various curvatures.

The influence surfaces have been calculated in the following manner: A
unit radial load is represented by a Fourier series in the axial direction. By
use of the Donnell theory the bending moments corresponding to the general
term in the load series are found as explicit expressions. The influences from
other edges parallel to the axis are left out. Thus single Fourier series for the
bending moments are established. They are evaluated numerically by an
electronic computer.
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Résumé

L’auteur présente des surfaces d’influence pour les moments de flexion des
voiles cylindriques circulaires, en considérant différentes valeurs de la «cour-
bure».

Ces surfaces ont été calculées de la fagon suivante: Une charge unitaire
radiale est représentée par une série de Fourier le long d’'une génératrice. La
théorie de Donnell permet d’écrire explicitement les moments de flexion cor-
respondant au terme général des séries de charge. On néglige les influences
provenant des autres lisiéres, paralléles a ’axe du voile. Ainsi les moments
de flexion sont représentés par des séries simples, dont les valeurs sont déter-
minées a 'aide d’une calculatrice électronique.

Zusammenfassung

In dieser Abhandlung werden fiir verschiedene Kriimmungswerte Momen-
teneinfluBflichen von Kreiszylinderschalen vorgelegt.

Der Berechnungsgang ist der folgende: Eine radial wirkende Kinheitslast
wird in eine Fourierreihe lings der Mantellinie entwickelt. Mit Hilfe der
Theorie von Donnell kénnen die dem allgemeinen Glied der Belastungsreihe
entsprechenden Biegungsmomente in expliziter Form angeschrieben werden.
Die Einfliisse von andern parallel zur Schalenachse verlaufenden Réndern
werden vernachlassigt. Auf diese Art und Weise werden die Biegungsmomente
durch einfache Fourierreihen dargestellt. Diese werden dann von einer elek-
tronischen Rechenmaschine numerisch ausgewertet.
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