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Influence Surfaces for Bending Moments in Circular Cylindrical Shells

or Curved Plates

Surfaces d'influence pour les moments de flexion des voiles cylindriques ou des

plaques ineurvees

Momenteneinflußflächen von kreiszylindrischen Schalen oder gekrümmten Platten

IVAR HOLAND
Dr. techn., The Technical University of Norway, Trondheim

Introduction

In the last two decades influence surface diagrams have found extensive
use for calculating bending moments in plates loaded with concentrated loads.
Numerous charts for rectangular plates are given by Pucher [1] and by
Günter Hoeland [2] and for circular plates by Persen [3].

The very first influence surface diagram for a cylindrical shell was probably
given by Yuan [4], but charts of real practical use were not given tili the
thesis of Bieger [5] appeared.

The approaches known to the writer, which have been used for analyzing
the influence of concentrated loads on shells, may be arranged in three groups.
As was shown originally by H. Reissner [6], any kind of loading on a simply
supported cylindrical shell may be treated by developing the load in a double
trigonometric series. This method has been used by Bijlaard [7, 8] for
calculating moments and forces under rectangular loads. The method has the
advantage of giving a simple expression for the general series term, but the
series converges very slowly. An effective way of improving the convergence,
shown by Wlassow [9], is to subtract the series Solution for the corresponding
plate problem and calculate the plate quantities by other methods.

A second group of methods result in a single Fourier series with trigonometric

functions in the circumferential direction and damped trigonometric
functions longitudinally. A Solution in this form is obtained if the load is
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considered an edge disturbance from a section through the load point and
normal to the axis (used by Ernst [10] and Koepcke [11] and for a load on
a rib by Lundgren [12]). Alternatively a Solution in the same form may be
obtained by representing the concentrated load by a Eourier series circum-
ferentially and a Fourier integral longitudinally (used by Yuan [4], Yuan and
Ting [13,14], Bieger [5], and Morley [15]). A disadvantage of the method is

that the Solution must be completed by taking into account slowly damped
edge disturbances from the traverses, except for extremely long shells (com-
pare ref. [14]).

The method used in the present paper belongs to a third group, where
forces and displacements are also represented by a single Fourier series, but
with trigonometric functions longitudinally and damped trigonometric functions

circumferentially. According to Koepcke [11] this method was used
first in 1936 by Rabich in a paper which has not been published. Rabich
considered shells reinforced by ring ribs and with a load acting on a rib. Edge
disturbances from the load generatrix were calculated using Finsterwalder's
theory. Aas-Jakobsen [16,17] used a similar approach, but solved the edge
disturbance problem by his own iteration method. Odquist [18] considered
short line loads along a generatrix of an isotropic shell and used Schorer's
theory for analyzing the edge disturbances. The effect of line loads was
investigated in the same manner by Hoff, Kempner and Pohle [19] and by
Kempner, Sheng and Pohle [20], with the exception that these authors
calculated the edge disturbances from Donnell's theory. Forces and displacements

caused by radial and tangential line loads were also given by the writer
[23] as special cases of a more general treatment of edge disturbances. The
theory applied in [23] contained first order corrections to Donnell's theory.

In the present paper influence surfaces for isotropic shells are calculated
by developing a concentrated load in a Fourier series in the direction of the
generatrix. The analysis of the edge disturbances caused by each term in the
load series is based on Donnell's theory and differs only formally from the
one used in references [19] and [20].

The application of Donnell's theory implies a slight inaccuracy for long
shells. However, it has the pronounced advantage of giving expressions for
forces and displacements which depend on one parameter only, except for a

multiplier to each quantity.

Fourier Series for a Concentrated Load

Let a simply supported shell of length l and radius r be subject to a
concentrated radial unit load P 1 acting at a point with coordinates cp 0 and
x x0 (Fig. 1). This load may be considered a delta-function of x

P S(x-x0). (1)
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This delta-function has the following properties

8 (x — x0) 0 for x 4= x0,

8(x — x0) oo for x x0,
X0 + €

J" 8 (x — x0) d x 1 for any value of e.
x0—e
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Fig. 1. Simply Supported Shell Loaded by a Concentrated Radial Load.

The load may be expanded in a sine series

P X cnsm—r~,

where the coefficient cn is

Hence

2 t» mrx 2 nirxn
cn T .rsm—=—&# Tsm—=—-.n Z

o
Z Z Z

jP o (# — x0) — 2j sm —^—- sm —=—.In=i l l

(2)

(3)

Fourier Series for the Bending Moments

The stress resultants from each term of the series (3) may be calculated
by the known methods for a simply supported shell. In the present paper the
Donnell theory will be used for this purpose. Comments on the accuracy of
this theory are given later. When influences from other edges are left out, the
edge conditions along the loaded generatrix are:

shear force Nxq> 0,
displacement in the direction of the are v 0,
angular rotation in the direction of the are # 0,
transverse edge force R(p — \ 8 (x — x0),

when the part of the shell which corresponds
to a positive value of cp is considered.
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Hence, the general term in a sine series for the transverse edge force is

^ 1 n7TXn mrx
ß(p,n ~7Sm — l Sm-y-. (4)

In the usual Fourier analysis for simply supported shells, the general series

term for an arbitrary quantity caused by an edge disturbance may be written
(compare [22])

H [#] R {C1 Hx e™i <p + C2 H2 em* *>}. (5)

In Eq. (5) influences from secondary edges are neglected. Cx and C2 are complex
constants of integration. mx and m2 are the roots of the characteristic equation

mi !/>(-ai + ift.), m9 p(-oc2 + iß2),

where «i 2-1/2[{l + (l+/c)2p + (i+K)]i/2j
ßi 2_1/2 [{1 + (1 + *)2}1/2- (1 + *)]1/2>

a2 2-1/2[{1 + (1-ac)2}1/2-(1-/c)]1/2,

ft 2~1/2 [{1 + (1 ~ *)2}1/2 + (1 - *)]1/2-

ac and /> are the shell parameters

mr Vrh"= T'

(6)

/3(l-v2)

p ]/n^rh(l-v2) 'ri lr
l V Ä" (8)

R{z} means the real part of a complex number z.

The quantities [jH], H1 and i?2 are given in Table 1 for the quantities
occurring in the edge conditions mentioned above, and for the bending moments
My and Mx (for the development see for instance ref. [23] or [24]).

Table 1. [H],H1andH2

H [ff] Hx H2

V

Nxv

r mrx
—-. -sin-—EhPK2 l

2p mrx-=-=—-sin—-—Eh,K2 l
1 mrx— COS—y—

1 7fc7ra?

27smA~

r mrx
27sm~r

-Wi{l+*[l-(l + v)ic]}

rki

m\i

mi{l — (1 — v)k — i)

— #e + (1 -\- k) v — vi

l + (l-v)K-i

m2{l-i[l + (l + v)K]}

m2

— m2i

-m2{l + (l-v)K + i}

— K— (1— k)v — vi

-\ + (\-v)K-i
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mx and m2 are the reduced roots

m1 A m2
m1 —±, m2 —. (9)

P P

Since <p 0 at the edge considered, Eq. (5) gives the edge quantity

HQ [H]'R{C1B[1 + C2HJ. (10)

Let C1m1 A1 + iB1, C2m2 A2 + iB2.

Then the edge conditions

o ,T _ ->
1 mr Xr. nrrx

v &v NX(p 0, B(p -ysm-y-ysm-y-

give the following 4 equations

-A1 + B1[1-(1+v)k]+A2 + B2[1 + (1+v)k] 0,

Ax +A2 =0,
-Bx +B2 0, (11)

A1[l-(l-v)K] + B1-A2[l + (l-v)K] + B2 -^sin^,
from which A1 B1 -A2 B2 -^rsin^^. (12)

The constants of integration being known, the bending moments may be
determined. On substituting the proper values from Table 1 and Eq. (12), one
obtains the general series terms for the bending moments from Eq. (5), for
v 0

^ Kr mrXr. nrrx^\l+i 1— i ,,^.Mrn= —:sm—^sm-r-Rk-e^^—__e™2<p, 13x'n 4pl l l \m1 m2 J
v ;

M(Dn --—ysm——°sin —1—B>\-^-(l + K-i)enw + -?r— (l-K + t)em^<p'n 4:pl l l \m1 v ' m2
v J

J

(14)

For a value of Poisson's ratio different from zero the moments are obtained
from

M cp, v — ^<p, v=0 + v -M-X, V=0 9

^x,v=^x,v=0 + ^^(p,v=0

(the relations are exact only when the actual value of v is used for calculating
k and p).

Eqs. (13) and (14) are transformed into real form by introducing

em1(p tf-oH+ißöpq, e-(XiP(P(cosß1pcp + i$inß1p(p) f2 + ifx, (16)

em2<p e(-(X2+iß2)p<P e-oL2P y (cos ß2p<p + i sin ß2pcp) fi + ifs, (17)
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which gives

w=l,2,3...
^sin^sin^*^{^

+ («}-ßI)fs + i«i + ßi)h}>

M

and

(p 2-i
w l,2,3...

+

1 niTXc, 7l77#
sm—p^sm-y-2wrr 6 6 2̂ ^{-[«f + ^+^A* h

(l+^«*_j8*]/ä8-[«|'-(l-^j8a*]/3-[(l-^«a* + /Sa*

(18)

(19)

Mx + Mv= Yj mrX0 n-rrX

« 1,2,3. 2m
sin^A_°sin — ^ _ß*k + a*h _p*/a + a*/4)

Z Z

where

«2

«f + jSf

«! +$'

ßf ßi
4+ßV

ß*
oc22 + ßf

(20)

(21)

The equations (18) and (19) give the moments at an arbitrarily chosen

point (x,cp), caused by a unit load at the point (x0,0). The moment found at
(x, cp), however, is equal to the moment at (x0, 0) caused by a unit load at (x, cp).

In other words, the function resulting constitutes the influence surface for
the bending moments at (x0,0).

As was mentioned previously, influences from other edges were left out in
the analysis outlined above. Strictly speaking, the influence functions (18)
and (19) are thus only valid for shells extending to infinity in the
circumferential direction. Except for points near the edge, the influence from other
straight edges are of little importance. In all cases such disturbances may be

described by one or a few Fourier terms and may be calculated by known
methods.

Improvement of Convergence, Numerical Work

Since the bending moment at (x0, 0) will be infinite when the load is placed
at the same point, (#0,0) is a singular point in the influence surface. This

singularity makes the series (18)—(20) converge slowly in points near the
load generatrix.

In the numerical computations which follows, influence surfaces for the

point x0 l/2 only will be considered. The slowest convergence occurs along
the generatrix ^ 0. Along this generatrix the bending moments obtained
from Eqs. (18) and (20) are
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Mx=~- 2 (-1) * -üainirj\^/«(-"t+ßi+*t+ßi)> (22)

1 !Lzl 1 / r\ Vic
Mx + M^- X (-1) ^ -sin ^Tryp-(a* + a2*), (23)

^ w=l, 3,5..' ^ \ lI Z

where the expressions

and _Ji(a* + a*)

approach 1 when ^ increases. Hence, the convergence of the series (22) and
(23) may be improved by subtracting the series

X

2 (-1) 2 -smlnnj) ~öln 5

COS 77-

(24)

Eqs. (22) and (23) are then replaced by

COS77t i n-l
M* ~4^rln A +i ^ (-1) 2 ^BinUTrf)

1 + Binwi. - -.-.-- (2ß)

CB

1 COSTTy j ^A 1 / £C\^ +^=-ö^ln A + ± 2 (_i) 2 i-sin(nfff

•p^(«l*+«J)-l].

The diagrams which follow have been computed from Eqs. (25) and (26) for
<p 0, and from Eqs. (18) and (20) for <p4=0. The shape of the influence surfaces
depends on a parameter characterizing the dimensions of the shell

s=A]/rh
The parameters occurring in the series may be expressed by 8 (compare
Eqs. (8) and (16)) as follows

n-rr Vrh mr
4/3(l-v2X l h(l-v2)

p(p= Vn~7rh(l-v2) y|j^^= ]/n~vh(l-v2) ]/§~|.

(27)
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The moments have been calculated for

y= 0.1, 0.2, 0.3, 0.4, 0.45, 0.5

| 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5

For yjl 0 the series diverge in the point x/l 0.5, which in this case has been
replaced by x/l 0AS. Between the points thus obtained the equidistant curves
in the diagrams have been drawn by curvilinear interpolation.

The value of Poisson's ratio occurring in Eqs. (27) is of no actual importance.

In the numerical computations it has been put equal to 0.2.
The calculations outlined were programmed by the Mathematics Group

at the Norwegian Defence Research Establishment and carried out at their
Ferranti Mercury Computer.

Figs. 3—7 and 9—13 show the resulting influence diagrams for various
values of the parameter 8 l/]/rh from 8 1 to 8 25. For comparison, the
case 8 0 (plane plate) is shown in Figs. 2 and 8. These diagrams are based
on those of Pucher [1]. 8 1 corresponds to a very slight curvature, and the
diagrams show no substantial difference from 8 0.

As the curvature increases the area of positive influence coefficients near
the load is diminished. This is particularly the case for Mx and to a lesser
degree for M^.

The diagrams show furthermore that loads outside the zero curve
surrounding the point considered give only small moments in this point.

Hence, if the curvature is not too small, the bending moments under a load
distributed over a small area is a local effect which is little influenced by edge
effects or other loads. For this reason the diagrams presented may be used
for calculating the bending moments under a concentrated load in any place
on the shell, if only not too near the edge. For such a purpose, a representation
showing less difference between the various values of 8 would have been
preferable. At the same time a higher degree of accuracy is desirable for the
high values of 8. This may be obtained by choosing as variables for instance

forJf • 8% -^L and 8 % -£=,
l Vrh l Yrh

!-1 *? - prfer

The writer intends to present, in a subsequent paper, diagrams in this
form and tables for moments under loads covering small areas.
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Comments on the Accuracy of the Solution

In reference [23], pp. 95 and 83, expressions are given for bending moments
caused by a sine-shaped line load. The expressions are deduced from a "New
approximate" theory containing correction terms to the Donnell theory. For
the case of a concentrated load these expressions give for cp 0 and v 0

Mx=— Z (-1) -^[nnjUVK(^af + ßf + af+ßf)9 (28)
^^n-1,3,5... ^ \ t] Z

r^± 1 / x\
£ (-1) « -sin^T)-* ^w=l,3,5... n \ V 2

1
(29)

+ 2^ä(-«i*+)31*+/3* + aa*)

where p is defined in Eq. (8). In addition k should be replaced by k — ~—^ in

Eqs. (7) when calculating a1? /51; a2 and /32, from which af, /?f, a^ and ßjf are
calculated by use of Eqs. (21).

For a normally long concrete shell roof one may take l 2,5r, r=100h
which gives (compare Eqs. (8)) p2£&16n, K^O.lOn.

Formulas (28) and (29) for these values of the parameters give differences
from the results obtained from Donnell's theory (Eqs. (22) and (23)) of the
magnitude

0.001 inilf^,
0.0001 inMx.

Thus, the errors are of no importance for engineering purposes, even in the
case of shells of this length.

Notations

r shell radius
l shell length (span)
x coordinate measured axially from end of span
x0 value of x at the load point
y,cp yjr coordinates measured along the are
P concentrated load
8(x — x0) 8-function
cn coefficient of the general term in a Fourier series

NX(p shear force
R^ transverse edge force
Mx bending moment in x-direction
My bending moment in 99-direction
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v displacement in 9-direction
ftp angular rotation of an are

Nxqtn etc. the general term in the Fourier series for the corresponding
quantity

H arbitrary force or displacement
[H] multiplier of H
H1, H2 characteristic coefficients of H
R {z} real part of a complex number z

i imaginary unit
E modulus of elasticity
v Poisson's ratio
k, p, 8 nondimensional shell parameters
mx, m2 roots of the characteristic equation
mx, m2 reduced values of mx and m2

ai j ßi 9 a2 > ß2 rea,l an(i iniaginary parts of mx and m2

af, af ,ß$, ß$ nondimensional quantities (see Eq. (21))
ABC constants of integration
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Summary

The paper presents influence surfaces for the bending moments in circular
cylindrical shells of various curvatures.

The influence surfaces have been calculated in the following manner: A
unit radial load is represented by a Fourier series in the axial direction. By
use of the Donnell theory the bending moments corresponding to the general
term in the load series are found as explicit expressions. The influences from
other edges parallel to ,the axis are left out. Thus single Fourier series for the
bending moments are established. They are evaluated numerically by an
electronic Computer.
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Resume

L'auteur presente des surfaces d'influence pour les moments de flexion des

voiles cylindriques circulaires, en considerant differentes valeurs de la «courbure

».

Ces surfaces ont ete calculees de la fa9on suivante: Une charge unitaire
radiale est representee par une serie de Fourier le long d'une generatrice. La
theorie de Donnell permet d'ecrire explicitement les moments de flexion
correspondant au terme general des series de charge. On neglige les influences

provenant des autres lisieres, paralleles a Faxe du voile. Ainsi les moments
de flexion sont representes par des series simples, dont les valeurs sont
determinees ä l'aide d'une calculatrice electronique.

Zusammenfassung

In dieser Abhandlung werden für verschiedene Krümmungswerte Momen-
teneinflußflächen von Kreiszylinderschalen vorgelegt.

Der Berechnungsgang ist der folgende: Eine radial wirkende Einheitslast
wird in eine Fourierreihe längs der Mantellinie entwickelt. Mit Hilfe der
Theorie von Donnell können die dem allgemeinen Glied der Belastungsreihe
entsprechenden Biegungsmomente in expliziter Form angeschrieben werden.
Die Einflüsse von andern parallel zur Schalenachse verlaufenden Rändern
werden vernachlässigt. Auf diese Art und Weise werden die Biegungsmomente
durch einfache Fourierreihen dargestellt. Diese werden dann von einer
elektronischen Rechenmaschine numerisch ausgewertet.
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