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Theorie der allgemein gekriimmten Schalen
Theory of Shells of any Shape

Théorie des voiles de forme quelconque

E. BOLCSKEI, Budapest

1. Ziel der Abhandlung

Das Ziel der vorliegenden Abhandlung ist, die auf das rdumliche Achsen-
kreuz bezogenen allgemeinen Gleichgewichts- und Formanderungsgleichungen
der gekriimmten Schalen (gekriimmten Platten) herzuleiten. Es wird eine
beliebige Belastung, eine allgemeine Form der Mittelfliche und eine konstante
Starke vorausgesetzt.

2. Berechnungsgrundlagen

Bei unseren Berechnungen setzen wir folgendes voraus:

a) Im Vergleich zu den anderen beiden Abmessungen soll die Schalenstirke
gering sein.

b) Ein auf der Normalen der Mittelfliche befindlicher Punkt fallt nach der
Formanderung in die Normale der deformierten Mittelfliche.

c) Die Forminderungen sind gering gegeniiber der Schalenstirke.

d) Homogener und isotroper Stoff, der dem Hookeschen Gesetz unterworfen
ist, d. h. daBl ein linearer Zusammenhang zwischen den Dehnungen und
Spannungen besteht.

e) Auf die Mittelfliche senkrechte Spannungen sind gering und werden ver-
nachlédssigt.
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3. Geometrische Charakteristiken der Mittelfléiche

Die Gleichung der Mittelfliche der unbelasteten gekriimmten Schale sei

z=f(xy).
Bezeichnen wir wie iiblich die ersten Differentialquotienten mit
_9of _ of
b= é_; und q = @’7
und die zweiten Differentialquotienten mit
_ O _O%f
"= S—axay’ t“ayz'

Der Ortsvektor eines Punktes A der Mittelfliche (Fig. 1) und der absolute
Wert dieses Vektors seien

€ bzw. ¥ sind die Tangentenvektoren der parallel zu den Ebenen zx bzw. zy
liegenden Schnittkurven der Mittelfliche. IThre Projektionen und absoluten
Werte sind

1 I _
=10/, |&=V1+p% =1, |&]=V1+e. (1)
P q

Der Normalvektor der Oberfliche ergibt sich als ein Vektorprodukt der
Vektoren #* und #. Die Projektionen und der absolute Wert des Normalvek-
tors sind daher

ijk| |-p -
B=FW=10p|=]|—-q|, |Bl=V1+p2+gz=T. (2)
01g 1
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In unseren weiteren Berechnungen werden wir den auf die Vektoren # und 7
senkrechten Vektor 7¥ und den auf die Vektoren #* und 7 senkrechten Vektor
7n* brauchen. Diese Vektoren und ihre absoluten Werte lassen sich in der Form

i gk [ —pg ik f’1+q2H
w=| —p —q 1 = 1+p*, =10 1 9\=)-p3),

1 0 p . g | —p —q 1 !A P

72| = TV +p?; |7v| = TV1+¢. (3)

anschreiben. Das sich iiber das rechteckige Element dx dy der Ebene befind-
liche Element der Mittelfliche ist ein Flachenelement allgemeiner Form. Dieses
Flachenelement kann in der Tangentialebene der Mittelfliche als Parallelo-
gramm mit den Seitenlingen dz )1+ p® bzw. dy V' 1+¢? betrachtet werden.
Seine zu den Koordinatenebenen xz bzw. yz parallelen Seiten schliefen den
Winkel « ein. Fiir diesen Winkel lassen sich die Beziehungen

Pg Sino = r (4)

Co8 ot = ————
Vi+p2V1+g? V1+p2V1+q?

anschreiben. Die Schale hat die Dicke », in Richtung der Flichennormale
gemessen. Das Schalenelement, das zu dem soeben beschriebenen Flachen-
element gehort, ist nicht prismatisch, sondern stellt infolge der doppelten
Krimmung ein «schartenférmiges» Element mit Ausbreitung in Richtung der
konvexen Seite dar. Der in Richtung der Schalenstidrke parallel der tangen-
tialen Ebene der Mittelfliche genommene Schnitt wird ebenfalls eine Par-
allelogrammenform aufweisen, wo der durch die Seiten eingeschlossene Winkel
dem entsprechenden Winkel der Mittelfliche gleich, die Seitenlinge aber
ungleich ist. Die Seitenlinge des iiber der Mittelfliche in Hohe v befindlichen
Flachenelements ist namlich durch die Formeln

RY+w»

Re 4o S—
dsw = dyVTTg2r (5)

R=

ds®® =dx l/1+p2

darstellbar, wo R, bzw. B, Kriimmungshalbmesser einer durch die Tangenten-
vektoren t* bzw. #¥ der Mittelfliche und durch den Normalvektor n bestimm-
ten Ebene sind, d.i. in beiden Féllen einer Normalebene. Die Kriimmung der
Normalquerschnitte ist im allgemeinen durch die Gleichung

1 ra24+2sab41b2

R y1¥ P2+
zu bestimmen, wo a, b, ¢ Richtungskosinus der Tangente des Normalquerschnit-

tes bedeuten. Die Kriimmung des bei #* bzw. # liegenden Normalquerschnitts
ist daher

_ 1 _ 7 1 _ t (6)
R* — (1+p9) T’ R (1+d) T
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4. Gleichgewichtsgleichungen

Fassen wir das Gleichgewicht des aus der Mittelfliche z=f(x,y) heraus-
geschnittenen Elementes mit Hilfe eines Grundrisses dx dy ins Auge. Seien
die auf die Schalenoberfiiche wirkenden und in der tangentialen Ebene der
Oberfliche liegenden, den Ebenen xz bzw. yz parallelen wirklichen Normal-
krifte mit N® bzw. N¥ bezeichnet. Die spezifischen Werte der in der Tangential-
ebene auftretenden Querkrifte gleicher Richtung seien durch N*¥ bzw. Nv*

Fig. 2.
Tabelle 1
Richtungscosinus
Absoluter Wert
des Kraftvektors v Yy z
des Einheitsvektors
NeVltg ! 0 P
V14 p2 V1 +p?
1 q
NevV1 + g2 0 —
e Y1+ q2 V14 g2
Y1+ a2 _pP 4 1
Qe¥l+q T T T
NvV1+ p? 0 ! g
V1+ g2 V1+ g2
NyzV1 + p2 _1 - 0 L
| Vi+p? V1t p?
P q 1
v 2 —_— —_— ——
QvV1+p T T 7
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Tabelle 11
Richtungscosinus
Absoluter Wert
des Momenten- x Y z
vektors
des Einheitsvektors
1 q
—M=*V1+q? 0 —
Y1+ q2 V1 + ¢2
1 P
M=zvV1+ g2 0 —
V14 p? V1+p2
’ _P _9q 1
Nev T T T T
—Q=Vitp Vit |— —B4 1+p? 2 __
TVi4p2 | TV14p2? TV1 + p2?
MyV1+p2 ——._1_ 0 p
V14p2 V1+p2
1 q
— Mv=V1+ p? 0 -
V14 g2 V1+ g2
_ _P _q 1
New T T T T
T e 1+¢2 Pq P
QUV1+p2V14+¢g2 | —2_— | —
2 TV1+4¢q? TVi+gq2| TV1+gq2

ausgedriickt. Weiter bendtigen wir noch die zur Oberflichennormalen n par-
allelen Querkrifte Q* bzw. Qv (Fig. 2). Die wirklichen Biegungsmomente
(Fig. 3) werden auf analoge Weise erklirt und bezeichnet. Seien M* und MY
wirkliche Momente, welche die Biegung in der Richtung « bzw. y hervorrufen,
deren Vektoren senkrecht auf die entsprechende Biegungsebene stehen. M=zv
bzw. Mv* sind die auf analoge Weise erklirten Torsionsmomente.

Das Gleichgewicht der auf das jetzt beschriebene Schalenelement wirken-
den Kriafte wird durch drei Projektions- und drei Momentengleichungen aus-
gedriickt. Um das Schreiben zu erleichtern, haben wir die auf das Schalen-
element wirkenden Krifte in der Tabelle I, die Momente in der Tabelle I1
zusammengestellt, wobei die Grofen der Krifte bzw. Momente sowie die
Projektionen der Richtungsvektoren angegeben sind.

Es sei die in Richtung x, y bzw. z gemessene Intensitéit der auf die Koordi-
natenebenen bezogenen Belastung der Schalenfliche durch die Belastungs-

funktionen
Zo (X, )5 Yo @, y), 2o(2, )

charakterisiert.
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Zwecks Vereinfachung unserer Berechnungen werden die Gleichgewichts-
gleichungen nicht mit den wirklichen Kriften bzw. Momenten, sondern mit
den sog. reduzierten Kriften bzw. Momenten aufgestellt. Die reduzierten
Krifte bzw. Momente bedeuten die in der waagrechten Ebene gemessene
Intensitdt der Projektion in Richtung z, y, z der wirklichen Krifte bzw.
Momente. Die reduzierten Krafte bzw. Momente werden mit den entsprechen-
den kleinen Buchstaben und den gleichen Indizes bezeichnet.

Die reduzierten Krifte werden auf Grund der Fig. 2 aus den wirklichen
Kriften mit Hilfe der nachstehenden Formeln berechnet:

ne =Nx—~—l/1_+.q2 nY = NV V1+p2
V1+ p? V1+q?
nev = Nev, nve = Nve, (7)
- Qx___ ll+q2 Y = yllﬂﬁ_
R e e

Die reduzierten Momente kénnen auf Grund der Fig. 3 mit Hilfe der unten-
stehenden Beziehungen aus den wirklichen Momenten berechnet werden.
mEx = Mx, mYy = M?/’
meY = Mxy_l_/_l_"_qz’ myr = Muvx Vl T+ pz’ 8)
Y1+ p? V1+g?

Auf Grund der Tabellen I bzw. II kénnen wir die Gleichgewichtsgleichungen
der Krifte bzw. Momente anschreiben. Zwecks Abkiirzung fithren wir aber
sofort die reduzierten Krifte bzw. Momente ein.

ng+ 1= (P4 — (Pg¥)y +% = 0,

7z + 1y —(99%)s —(99")y +Yo = 0, (9)

(P1)e+ (g 1Y)y + (@ ™), + (P ¥2)y + 45+ 4 +20 = 0;

miY +my—p (™ =) +pagt+(1+¢%)g¥ =0,

Mg +myT+ g (v —n¥®) + (1 +p*q®+pgg¥ = 0, | (10)

— (qmE),+ (P, + (pm¥), — (gmI), + (07 — 1) —q g7+ pg¥ = 0.
Nach Durchfiihrung der Operationen in den Gleichungen und nach Abzug

des p-fachen der ersten und des ¢g-fachen der zweiten Gleichung von der dritten
ergeben sich folgende Beziehungen:

ng+ny®—(pe®),— (pg¥), +x, = 0,

nZ¥ +nf—(99%)s — (9 9¥)y + Yo = 0, (11)
ro®+s (™ +n¥T) iV + T (1T'9%), + T (T ¢¥), + 20— P2y —qYo = 0;

mz¥ +my—p (W =)+ pq g+ (1+¢%)g¥ =0,

mg+my=+ q (v —n¥*) +(1+p?)¢®+pqq¥ = 0, (12)
rm® —s (m* —m¥) —tmV® + T2 (n*¥ —n¥®) = 0.
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Werden die Werte ¢* und ¢V mit der ersten und zweiten Gleichung von (12)
bestimmt und in die Gleichungen (11) bzw. in die dritte Gleichung von (12)
eingesetzt, so erhalten wir folgende vier Beziehungen:

1402 2
[+ v =)+ PEED g . )|
X
2 1 2
+ [ny:c _ pZ (nxy — n?l«l?) — _PJTZ-Q (mg +m125.1‘) _{_p_(#) (mgy + mg)] +x0 = () s
Y
1-+qg2 2
X
?p q(1+p?)
+ =gy~ G gy + L o | vy =0,
7 nE+ s (Y +n¥T) +tnY
2
1 [~ L g gy + - ) = 7 s — )|
x
14+ p2

+ 1 | Dt g i) 2

T
+2—P%y—qYo =0,

rm*¥ —gs (m®—mY) —tmv® + T2 (n™ —n¥*) = 0.

(m3¥+ml)+p T (n™Y — n?/x)]
v

In der Gleichung (13) finden wir nur noch die folgenden 8 Unbekannten:
n®, n¥, N, n¥*

m=x, mY, m*v, my*®

5. Priifung der Formiinderung

Priifen wir die Bewegungen eines iiber der Mittelfliche der Schalenform
z=f(x,y) in Hohe v befindlichen Punktes. Die Bewegungen der Mittelfliche
in den Richtungen z, y, 2 werden durch die Bewegungsfunktionen

E=E¢xy); n=7y); {(={(xy)

charakterisiert. Nach Eintreten der Forménderung geht der iiber der Mittel-
fliche in der Hohe v liegende Punkt in die Stellung P’ iber (Fig. 4). Die

Bewegung P P’=¢’ setzt sich aus zwei Komponenten zusammen. Die erste
Komponente ergibt sich aus der reinen Verschiebung, welche durch die Be-
wegungsfunktionen charakterisiert werden kann. Die zweite Komponente
stellt eine durch die Verdrehung des Mittelfliichennormalvektors entstehende
Bewegung dar, deren Komponenten mit den Funktionen =, H, Z ausgedriickt
werden kénnen.

Der Ortsvektor des Punktes P ist
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P=7+ 2y
7|
und derjenige des Punktes P’ ist
P =F+p+w,
7|

wobei ¢ der Bewegungsvektor, 77 der Normalvektor der urspriinglichen Flache
und 7’ der Normalvektor der deformierten Fliche sind. Der Bewegungsvektor
ist daher

Fig. 4.

Die in diesen Vektorgleichungen ausgedriickten Grofen kénnen auf Grund
der Flichentheorie bestimmt werden.
Im deformierten Zustand ist der Normalvektor der Fliche
') j k
n =1+ gx Ne PT Cw ’
& l+m, ¢+,
oder, was dasselbe ist

—p+@m.—pn,—-4) | | -p A_"
n=| —q+(-9&+pE+L) | = | —q | +| B .
1+ (€, +7,) 1 0 |

Der absolute Wert dieses Vektors ist

7| =V1+p*+@®+2(—pA—qB+C)+ A2+ B2+ C2.

Vernachlissigen wir im Ausdruck [7| die zweiten Potenzen der die Form-
anderungsglieder enthaltenden Groflen 4, B, C — als zweitrangig geringe
Groflen —, so erhalten wir die Beziehung
—pA—qB+C
Vi )

|m=T(1+

Setzen wir die obigen Gréfen in die Matrix des Verschiebungsvektors ein, so
gelangen wir zu der Beziehung
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1 pd+qgB-C P
§+?(—p+A)(l+————qT—)v+—T~v
1 A+qB-C
e = n+7(—q+B)(1+?——"%,’—2——)v+%
1 pA+qB-C 1
—1_:+7,— (1+O)(1+———~1—,2———)v—-,ﬁv_
oder
r
T3{1+q (Pfx"l‘(l%—gx)— prq (p§y+q77y—
= sl —Pe PEtan~L)+1L+p) (DE,+q,—
v
+ml P PL+am—L)+ ¢ (pé+amy—

27

M)
L)}
Cy)}

Das erste Glied dieses Ausdruckes bedeutet die reine Verschiebung, das zweite
aber jene Bewegung, welche infolge der Verdrehung der Flichennormale ent-

standen ist. Bezeichnen wir letztere — wie bereits gesagt — mit den ent-
sprechenden griechischen Majuskeln, so erhalten wir die Beziehungen
. - s
= |nl|+v| H| = |y
- Z | X

6. Spezifische Dehnungen und Winkelverinderung

Bestimmen wir die bei einem in der Hohe v liegenden Flachenelement des
untersuchten parallelogrammférmigen Schalenelements auftretenden spezi-
fischen Dehnungen. Unter spezifischer Dehnung verstehen wir — auch im
System der schiefen Winkel — den Quotient der untersuchten Projektion des
Verschiebungsvektors und der urspriinglichen Seitenldnge, oder

ev 1"
€0 = — .
7] [
p . |
X — 7 ————{7” 1+¢%)—pgs} 1—vD
wo 1= y—%'v . v = 0—*{8 1+q®)—pqt}| = |0—v H
1
1_2+7ﬁv —~W{pr+qs} p—ovF

Die Linge, bzw. der absolute Wert dieses Vektors ergibt sich nach Vernach-
lassigung der quadratischen Glieder zu
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) 2
|7 = V1—2vD+p2—20pF = V1+p2]/1—1+7;02(D+19F)
S v
= V1+202{1—m—2)—77§7‘(1+p2+92)}
- Rr+w

— alj_ "l 2
1+ {1 <1+p2>T”} 47
Die gesuchte spezifische Dehnung ist daher

_ B fe+pl, E.4pZ
T x x z xl 4
R”+v{ 14 p? T 1+ p? (14)

€

Auf Grund eines éhnlichen Gedankenganges findet man

VY — Rv 77'y+<1§y va+qu}
RV+v| 1+¢2 1+¢% |

(15)

Wir haben noch den Wert der Winkeldnderung zu bestimmen. Unter Winkel-
dnderung verstehen wir die Verzerrung des durch die Achsen eingeschlossenen
Winkels des schiefwinkligen Koordinatensystems. Dies setzt sich aus zwei
Teilen zusammen (Fig. 5).

erv R eyv npv
— A1? 2v v — 2 —
A N R N N

[Z

Mﬁ?(-}%) If)/‘tx
1
Fig. 5.
Daher ist
o B L [E,+vE +vH,, {,+ Z]~—-————1 1‘"+2092
4 CRtro YT S e @ Sz Y “rY1+p2 qp
und nach der Entwicklung haben wir
o - 2 o [ PaE (14 P mt gt v {~ pg Bt (1499 Ho 4 g B},
Y .Rx+’UT(1+p2) x x | x x x x
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Mit einem &hnlichen Gedankengang ergibt sich

RY 1
2V 2 _ PAR - 3
= Ry-l-?) T(l +q2) [(1+Q )fy pqny+pgy+v{(l+q )’—’y quy+pZy}]- (16)

Y

7. Verschiebungsgleichungen

Die Winkelverzerrungskomponenten konnen auch in der nachstehenden
Form angeschrieben werden:

Pa_, R

7 e T Rw—l—’l) T{nx+QCx+v(Hx+gZx)}’
o P9 o _ B
Ve = i, T{§y+pé +v(&8,+pZ,)}.

Auf diese Weise konnen wir letzten Endes folgende vier Beziehungen fiir die
spezifischen Dehnungen und Winkelverzerrungskomponenten anschreiben:

Rx 4+

E,+pl+v(BE,+pZ,) = Tz (L+ %) ™,
RY+v
ny+ql,+v(Hy+97Z,) = Ry —(1+¢?) ¢
Rx+v 1v xv
Netqltv(Hy+qZ,) = (Ty'"+pge),
- Rv+v .
&ty to(E,+pZ,) = RY (Ty**+pger).
Fiithren wir die Bezeichnungen
x
P = RR+—0(1+202) ™, Q = C1+gr) e,
(17)
R* 4w Ry+'a .
Sy = —E—(TV”‘FZ?QG”“’) Sy = Ry (T'y**+pger)

ein. Wenn wir aus der Summe der nach xy differenzierten dritten und vierten
Gleichungen die nach y zweimal differenzierte erste bzw. nach x zweimal
differenzierte zweite Gleichung abziehen, gelangen wir zu der Beziehung

ery—ZSXxy'{"twa:(81+82)xy_Pyy_sz° (18)
Es besteht ferner auch die Beziehung
¢x =P—-px, (19)

sowie die Beziehung

‘py: Q—QXy- (20)
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Mit Hilfe dieser drei Gleichungen konnen wir die Forménderung der Schalen-
fliche immer bestimmen, vorausgesetzt, dafl die spezifischen Dehnungen €*?,
€¥?, v’ und die Winkelverzerrung bereits bekannt sind. Aus diesem koénnen
namlich mit Kenntnis der Schalenflichenkonstanten die Werte P, @, S,, S,
ermittelt werden und nach Kinsetzen dieser in die obigen Gleichungen ver-
bleiben nur noch die Verschiebungsfunktionen ¢, 4, x unbekannt. Wir erhalten
daher schlieBlich drei Differentialgleichungen, aus welchen die drei unbekann-
ten Verschiebungsfunktionen erhalten werden koénnen. Nach deren Bestim-
mung konnen die gesuchten Bewegungen der Mittelfliche &, », { aus dem
Differentialgleichungssystem

¢=§+—;—3(1+q2)(p§x+qnx—§x)—-;g pq P&+an,—L);

¢=n—% Pq (p£m+qnx—§x)+%(l+p2)(p§y+qny—ly), (21)

x=ltgs P WhAdn—l)+gs 4 B&+an,—{,)

unter Beachtung der entsprechenden Randbedingungen errechnet werden.

8. Spezifische innere Krifte und Momente

Untersuchen wir jenen Teil der Schale, der sich iiber dem Element vom
Grundril dx dy befindet und durch Ebenen aus der Platte herausgeschnitten
wird, welche parallel zu den tangentialen Vektoren der Mittelfliche und dem
Normalvektor stehen.

Die auf den ausgeschnittenen Flichen der Platte wirkenden spezifischen
Krifte werden durch die Beziehungen

-i-h/;2 +h/2R
V4o V+v
Ne = | S e dy, & =J o votdy,
—h/2 —h/2
+h/_%.3 +h/_213
T X v
v =f —ovdo, My =f vy,
—h/2 —h/2
e L
Y Y
va=f R’:”mdv, va=f Rj”vmdv, (22)
—hf2 —nf2
+h L
o x .
Nvz — f iy, Mye = | Ty e gy,
—h/2 —h/2
-i*h/;B +h/%
. V4o T+
Q* = T 2 dv, Qv =f R_: T2 dv.
—h/2 —h/2
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bestimmt. In diesen Gleichungen bedeuten o%, o¥, 7%, 79, 7%, 7¥% die im schief-
winkligen System angegebenen Spannungen.

9. Das Hookesche Gesetz in schiefwinkligen Koordinaten

Ein im Grundri8 rechteckiges Flichenelement wird auf der Schalenfliche
in Wirklichkeit die Form eines schiefwinkligen Parallelogramms aufweisen.
Wir benotigen daher die Zusammenhinge zwischen den im Koordinaten-
system z y mit einem Offnungswinkel « gegebenen o, ¢¥ bzw. 7% Spannungen
sowie den im selben System festgesetzten Dehnungen €%, ¢ und der Winkel-
verzerrung y. Das ist das Hookesche Gesetz, dessen Giiltigkeit fiir die schief-
winkligen Koordinaten durch P. LARDY bestimmt wurde [3]. Diese Beziehun-
gen — unter Weglassen der Herleitungen — fiihren wir im folgenden an:

e.’l?_

= Fsn [0% + (cos® o — usin?a) o¥ + 27 cos o],
o

e’ [0® (cos? o — usin® o) + 6% + 27 cos o],

" Esina

1
= ——w[oﬂ”coSa-l-ochSoc%-Z’r].

E

Wollen wir die Spannungen mit Hilfe der spezifischen Dehnungen bzw. der
Winkelveranderung aus diesen Gleichungen ausdriicken, so ist das Gleichungs-
system mit drei Unbekannten fiir die Spannungen zu losen.

Driicken wir die Winkelfunktionen mit den partialen Differentialquotien-
ten der Mittelflichengleichung aus, so erhalten wir die Beziehungen

E Vi+p2V1+g?

= 7 {(e+pe)T—ypa},
E Vi+p2V1+q?
oV = 1—pu2 pT2 Tipe+er) T—ypg), (23)
- =Li{ [2(1+p*)(14+¢*)—(1+u) T - (14+p)(+e)pg T}
2(1—p2) T2 g g '

10. Spezifische innere Krifte und Momente in Abhingigkeit der Formiinderung

Setzen wir die Beziehungen der spezifischen Dehnungen (14), (15) bzw. der
Winkelverdnderung (16) in die Formel der Spannungen ein, so erhalten wir
die Gleichungen
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Xz 'Rx X x _R?/
(o2 =am(8 +’UA )+aRy+U (199”+v@“’),
X
oV = aFRM (Sy—l—vA?/)—l—ochiv (S +v0Ov),
o« R= o« RY
T =5 gy QUL t5 p (B0 O™),
WO
V14 p2V1+¢?
6r = pT3 4 [(1+92)§x—ﬁ7(l77x+27€x],
V14+p2V1+¢ o
47 = pT:,, Ll0+¢) E,~paHo+p Z,),
Vi+p2V1+
9 = e [= (140 Dty + (PP + Ty = (=g T,
e V1t V14g 202 4 T 2 )
0" =gz TP IE, A+ E+p T Hy = (P g —pg T%) Z,),
Y V1+p V1+q 2 2 2 2
¥ =i (P Te TN E-pa(+ P ne = (P -up T L],
Vi4p? V142 .
av = (lfpz)qu (PP +pT?) E—pq(L+p°) Ho— (P —pp T?) Z,],
Vi4+p*V1+¢
W= pTg Ll-paé,+(1+p)n,+40,], ‘ (24)
V1+p2V1+¢ -
e = pTg Ll-pg&,+(1+p) H,+q7,],
1
(1+u)qu2(§ +pC )}
1
A = Grpyre P A=—m 202 @ —pg B+ (L p?) Ho 9 2]

—(I+p)peT*(E,+p0Z,)},

¥ = a7 LT A=+ 281+ ) & —pan, + L]
—(+p)pgT?(n,+9L)},

1
oy

@ =

[T?(1—p)+2p?¢®1[(1+¢*) B, —pqH,+p Z)]

Auf Grund obiger Angaben bestimmen wir im weiteren die Werte der tat-
sichlichen spezifischen Kréifte und Momente
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+h/2

- RV 4w
Nz = T ocdv,
~hj2
+h/3~2 Rz +h/3%1/ R
Y4 v +v Y
= W Bie (8x+vAz)dv+af B Ritoe (*+vO%)dv.
—h/2 —h/2
Fiihren wir die vorgeschriebenen Integrationen durch:
+h/2R ’ . +h2R +7/2 +h/2
-l—v Y+
Nz = 3 8 j Rto %y AxJ JoZ vdv+ou9~xfdv+a@vadv
—h/2 —h/2 —hj2 —h/2
=I+4+II+1II+1V,
I =l ge o4 (R = Ro)log (1 "
——aﬁ; i v+ (RY — R*) og( +—Ea—;)]_h/2
h
1+ 5551
R= 2R
= aFSx h +(Ry—R‘z)10g
2Rx
R* h h3
= aWSx h+(Ry—Rx)(F+'m+ s . )]
Rz [, R¥ h® RV—-R=
gaRySQ’ _h’Rm +ﬁ R=z3 ]
R 1 1 1
== h8 +a12 Rx(Rx—_Ry)ax’
. +h/2
& v
II =a—R7A“’f{'v+(RU-—Rx) R”+fv}dv
—n/2
B 4= |2 4 (Rv— Ro)v— Relog (1 T
— Az Y RTY gy — —
% p [2 +( )v og( +R“’)]_h/2
147
R 2R*
= aTﬁAx (RY — R®) (h—leog 7 )
" 2Rs

R i (K B3
=gy (Rv—R)[h—R (Rx+12Rx3+---)]

73
a—(Ry R‘”)Ax

IIT = « h 92,

p2]+hI2
IV = «®* [ ] =0
2 | w2
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Im Endresultat ist daher:
ahd3( 1 1 %

Mit einem dhnlichen Gedankengang kénnen wir die Ausdriicke fiir die weiteren
Krifte und Momente bestimmen. Die Teilrechnungen weglassend, gelangen
wir zuletzt zu folgenden Beziehungen:

Ne L(8w+ﬁx)+K(Ry—}%>(Ax—%;),
Nv L(8y+ﬁy)+K(I§x 7%17)(@” %),
N#v = g(SWJrfﬂy) ]2{(7;; - j@lx_) (Aw“ igiz)’
Nvz — L(Sxy+l9xy) 12{(721; — 7317) (@xy—%i:) ;

M: =K

(=)
My _-__—_K— _l__i M+ A4+ 6Y
R® Rv ’
mev = K ( L

Mve — _f?f_ (_7 Ry) amv+z1wv+@w]

11. Allgemeine Differentialgleichung der gekriimmten:Schalen

AnlaBlich der Behandlung der Gleichgewichtsgleichungen haben wir be-
wiesen, dafl eine Beziehung (13) zwischen den Unbekannten n*, n¥, n*¥, n¥*,
m=®, m¥Y, m*¥, m¥® besteht.

Setzen wir in diese auf die reduzierten Krifte bzw. Momente bezogenen
Gleichungen die mit den Verschiebungsfunktionen ¢, 7, { ausgedriickten und
sodann entsprechend reduzierten Werte der tatsichlichen Krifte bzw. Momente
ein, so erhalten wir die Beziehungen

g q,7,8t &, %, Yo, Z)>
h(p,q,7,8, 8 & n, § %o, Yo 20)
v (p> q 7,8, t, £, 1, g, Zo> Yo zo):
T a7, 8,8, & 1, L, %, Yos %)

(26)
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In obigen vier Gleichungen kommen nur noch die Unbekannten ¢, n, { vor.

Es stehen uns vier Gleichungen mit drei Unbekannten zur Verfiigung; wir
konnen aber beweisen, dafl die vierte Gleichung zu einer Identitédt fiithrt, so
daBl wir nach Weglassen dieser vierten Gleichung im Endresultat ein Differen-
tialgleichungssystem aus drei Gleichungen mit drei Unbekannten erhalten.
Mit den entsprechenden Randbedingungen losen wir dieses Gleichungssystem
und so konnen die Verschiebungsfunktionen ¢, %, { bestimmt werden und in
deren Kenntnis sind auf Grund der Endformeln des vorigen Kapitels die
inneren Kréafte bestimmbar.

Dieses Differentialgleichungssystem kann damit auf gekriimmte Schalen
beliebiger Form und beliebiger Belastung verwendet werden. Im Falle einer
konkreten Aufgabe haben wir daher nur die ersten bzw. zweiten Differential-
quotienten aus der Gleichung der fraglichen Fliche zu bilden und diese in
obige Gleichung einzusetzen. Aus der so gewonnenen Gleichung koénnen die
Bewegungen und inneren Krifte der Mittelfliche der untersuchten Schale
bestimmt werden.

Somit haben wir die Aufgabenstellung der Einleitung erfiillt. Als Beweis
fur die Verwendbarkeit dieser Losung fithren wir im folgenden einige charak-
teristische Beispiele an. Obige Gleichung ist nidmlich fiir die Behandlung von
Problemen der Platten, Scheiben, Membranschalen und Schalen beliebiger
Form geeignet.

12. Beispiele

a) Die Differentialgleichung der ebenen Platte

Die Gleichung der Fliche ist in diesem Falle z=f(z,y)=0, daher p=q=
=r=8=1t=0.

Die Belastung sei zo=p (2,¥), ¥,=0, ,=0. Demzufolge gestalten sich die
Gleichgewichtsgleichungen wie folgt:

Z+q+p(x,y) =0, mE+mi*+q* =0, mz¥+mi+q¥ = 0.
Wir setzen die nach x differenzierte zweite und nach y differenzierte dritte
Gleichung in die erste Gleichung ein:
—mZ, —2mgy—mY, +p(x,y) = 0.
Die Momente sind i
m® = K ({ept+ply), m¥=K(,+pl,), m¥=Q10-p) K,
Werden diese in die Gleichgewichtsgleichung eingesetzt, so ergibt sich die

Beziehung

(z,y)
Cxx:wc +2 wayy + nyﬂy = %—?—/_ )
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b) Die Differentialgleichung einer Scheibe

Die Mittelfliche der Scheibe ist eine Ebene, deren Gleichung z =0 ist, daher
p=q=r=8=1t=0.
Die Belastung fillt in die Ebene der Scheibe. Daher haben wir
T =% (¥,9); Yo=Y (*¥); % (x,y)=0.
Es tritt keine Biegung auf, so dafl wir von vornherein wissen, da@
m*=m¥V =mY =m¥* =q*=q¥ =0

ist. Gehen wir von der Forméinderungsgleichung aus. Sie hat im Falle einer
ebenen Platte die Form

(Sl+S2)zy_Pyy"' Qpz = 0.
Die Forminderungen konnen durch die Beziehungen
€y ez = Vays

1 2(1

bestimmt werden. Werden diese in die Forménderungsgleichungen eingesetzt,
so erhalten wir
ngy —pny, +nl, —png, = 2(1+p)ny.

Fiihren wir nun die Spannungsfunktion ein. Wie bereits bekannt ist

n*=hE,; nV=-hE,; n=hE,;
daher ist E::x.m —2p 1’;:&:1/1/ + I;myy =—2 F;cxyy —2u Ewcyy
d. h. Foprot+2 By, +F,,, =0.

Dies ist also die Differentialgleichung der Scheibe, anders gesagt jene des
zweiachsigen Spannungszustandes.

1Y
il
Fig. 6.

o c¢) Plattenbeulung

Die gebeulte Platte (Fig. 6) hat urspriinglich eine ebene Fliche. Schreiben
wir die Gleichgewichtsgleichungen fiir die gebeulte Form z={(z,y) auf und
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nehmen wir an, daf3 die zweite Potenz dieser und deren Differentialquotienten
gleich Null sind, so daf3

P=0=0=0==0.

Die Gleichgewichtsgleichungen kénnen in der Form

ng+nYt+x, =0,

n¥+nY+y, =0,

Laa M+ 2Ly 0™+ Ly 0¥ + 45 +qy = 0,

mg+myT+q* =0,

mi¥ +my+q¥ = 0,

NV —n¥* = 0

angeschrieben werden. Mit den Werten von ¢* und ¢¥ aus der vierten und
fiinften Gleichung in die dritte eingesetzt, erhalten wir die Beziehung

Ly M° + 2 Loy n®Y 4 L 0¥ — M, — 2mEY —mY, = 0.
Im Falle unserer Annahmen ist
mx=K(Cxac+:u‘§yy)’ my=K(€yy+F'cmw)> mxy':(l—y“)Kny'

Diese Ausdriicke in unsere obige Gleichung eingesetzt, erhalten wir die Be-
ziehung
me n®+2 Cacy nr + Zyy n¥ — K [gxxxx +2 Cacacyy + nyyy] =0

oder das Endresultat:
K440 —[Len®+20,n+{,n¥] = 0.
Wie bekannt, ist dies die Differentialgleichung der Plattenbeulung.

d) Differentialgleichung von Membranschalen

Im Falle eines Membranspannungszustandes
maczmy=mxy=myx=qw=qy___0
lauten daher die Gleichgewichtsgleichungen:
ng+nYt+x, =0,
ng+n§gy+y0 = O,
rn®+8 (N 4+ nVE) +inV+ 20— pre—qy, = 0.
Es kann leicht eingesehen werden, daf3
n* = n¥=®,
Wenn die Spannungsfunktion eingefiihrt wird, erhalten wir das Endresultat
7By —28 Fpy+8 Fpp+ (20— D% —qYo) = 0.

Dies ist die wohlbekannte Differentialgleichung der Membranschalen.
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e) Die Biegung einer Kreiszylinderschale

Gleichung und Differentialquotienten der Fliche lauten

. — VB,
Y
2, =Qq= ; 0,
v =4 VRE— g p
2
Ryy=1=— _2{3‘_23, =0; r=0
(VR —y?)
Die Kriimmung ist
1
R

Mit Riicksicht darauf, daf die durch W. FLtcGE abgeleiteten Beziehungen in
Zylinderkoordinaten angegeben sind, transformieren wir unsere obigen For-
meln auf dieses Koordinatensystem (Fig. 7).

2z =/ R*—y% = Rcosf,

y = Rsinf,

y
2, = ———2 = _tgf.
TS Sy gp

Transformieren wir auch die Verschiebungen (Fig. 8)
£ =u, n = vecosB+wsinf, { = —wvsinB+wcosf.

Nach Bildung der entsprechenden Differentialquotienten der Fliche und der
Verschiebungsfunktion und nach Einsetzen in die Gleichungen (12) erhalten
wir die Beziehungen:

8 =¢,=u,, 9 = %gﬂ:g(w+vﬁ),

8 =pé, = pu,, GV =l7;’—:_tZTC”=%(w+vﬂ),

0% = (1—M)%¥;—;= (1-p)v,, dv = (l—p)-l/lciqz: (l—u)%g,
4 =5, = —wy,, 6" =M§%}gz&’=%(vﬂ—wﬁﬂ)’
AV =pE, = —pw,, ev :%:%(vﬁ—wﬁﬂ),
dev = (1— )Hl;cl“qux @xyz(1—M)V1%q2=~(1—p)w£”.
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Werden diese in die Gleichung (25) eingesetzt, so erhalten wir die Ausdriicke
fir die tatsdchlichen Kriafte und Momente

K
Ne =L [uw+%(vp+w)] + 5 (= Wes) s

1 1 K{w w
o =L[“uw+‘ﬁ(”ﬁ+w)]+f(‘1§5+‘1§'f)’

_rloe(, _us —) (Y Ve

. K
My =_E(1_M)(—2v$+2wﬁx),

T — up
Myr = 5T (1—p) (—E+2wﬂx——v$).

N
“ 14 S/
N y
N ,
N J/
\\\ ﬂ ,’/ ﬂ
N\ //’ ‘y
A‘»
Fig. 7.

Fig. 8. Fig. 9.

Wenn" die letzteren in die Gleichgewichtsgleichung (13) eingesetzt werden,
ergeben sich folgende drei Gleichungen:

Rzu +1 UBB-FPLR’LU +1 Rvﬁx

K 1—p
+R2L[ 2

l—p, x
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1—p

1+ :
T“Ruﬁx—l—'vﬁﬁ—i— 9 szxx+wﬁ
K 3(1—',“') 9 3_:“' 9 yORz_
+R2L[ 2 R, — 2—wazﬁ + 7 =0,
K 1-— 33—
.“Ru:c"l_vﬁ"'w-l'm[_z—pRuxﬁ,B_R:;wxxx'" 2“R2'Uxa:ﬁ

zo R
+R4wmm+2szmmg+wﬂﬂﬂlg+2wﬁlg+w] + OT = 0.

Die vierte Gleichung fiihrt zu einer Identitdt, woriiber man sich leicht iiber-
zeugen kann. Die Gleichungen sind mit dem durch W. FLteGE abgeleiteten
Gleichungen vollkommen identisch. Dies ist zugleich eine Kontrolle der durch
uns abgeleiteten Formeln.

Literatur

1. W. FLtGeeE, «Statik und Dynamik der Schalen». Verlag von J. Springer, Berlin 1934.

K. GIRKMANN, «Flichentragwerke». Springer-Verlag, Wien 1946.

3. P. Larpy, «Die Elastizitétstheorie der parallelogrammférmigen Scheibe». Schwei-
zerische Bauzeitung 1949, Nr. 3, p. 419—422,

4. E. BOoLoskEI, «Deformation des voiles minces». Acta Technica Hungarica, Tom. V,

Fasc. 4, p. 489—506.

W. S. Wrasow, «Allgemeine Schalentheorie und ihre Anwendung in der Techniky.

Akademie Verlag, Berlin 1958.

6. W. FUCHSSTEINER und A. SCHADER, «Allgemeine Schalengrundgleichungen». Beton-
und Stahlbetonbau 1956. Jul. p. 145—153.

ke

pl

Zusammenfassung

Die Abhandlung stellt die auf das rechtwinklige Koordinatensystem bezo-
genen, allgemeinen Gleichgewichts-Gleichungen der beliebig belasteten, allge-
mein gekriimmten, gleichméBig dicken Schalen (Platten) unter Verwendung
der sog. reduzierten Krifte bzw. Momente auf. Unter den reduzierten Kriften
bzw. Momenten werden die auf die zy Koordinatenebene bezogenen spezi-
fischen Projektionskrifte, bzw. Momente verstanden. Mit den Verschiebungs-
komponenten ¢, 7, { der Richtungen «, ¥ und z der Schalenmittelfliche werden
die spezifischen Dehnungen und anschlieBend die Winkelverzerrungen beschrie-
ben, sodann die spezifischen inneren Krifte bzw. Momente unter Beriick-
sichtigung des im schiefwinkligen Koordinatensystem giiltigen Hookeschen
Gesetzes bestimmt. Nach Einsetzen dieser Werte in die Gleichgewichtsglei-
chungen erhdlt man letztlich drei Differential-Gleichungen, in denen nur
noch die drei Unbekannten £, 7, { der Verschiebung der Mittelfliche auftreten.
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Dieses Differentialgleichungssystem kann auf gekriimmte Schalen belie-
biger Form und beliebiger Belastung angewandt werden. Um die Verwend-
barkeit der Berechnungsergebnisse zu beweisen, werden einige charakteristische
Beispiele, wie die Ableitung der Differentialgleichungen von ebenen Platten,
Scheiben, Membranschalen, Kreiszylinderschalen und des Beulens vorgefiihrt.

Summary

The author derives general equations of equilibrium with reference to a
system of rectangular coordinates, for shells of any shape and of uniform
thickness, acted upon by any loads, by employing ‘‘reduced’’ forces and
moments. This means the specific forces and moments in projection, with
reference to the xy plane of the coordinates. The specific elongations and the
angular deformations are expressed by means of the components ¢, n, { of the
displacements of the median surface of the shell in the directions along x, ¥
and z, the author then determines the internal specific forces and moments by
introducing Hooke’s law, which is valid in the system of oblique coordinates.
After the introduction of these values into the equilibrium equations, we
obtain three differential equations in which only the three unknowns &, 7,
expressing the displacements of the median surface, appear.

This system of differential equations may be applied to shells of any
shape, acted upon by any load. In order to demonstrate the possible appli-
cations of the results of the calculation, the author gives some characteristic
examples, such as the easy determination of the differential equations relating
to flat plates, to thin walls, to shells not subjected to bending, to cylindrical
shells and to the determination of buckling.

Résumé

L’auteur établit les équations générales d’équilibre, rapportées & un sys-
téme de coordonnées rectangulaires, pour des voiles de forme quelconque et
d’épaisseur uniforme, soumis & des charges quelconques, en faisant appel aux
forces et moments «réduits». Il faut entendre par la les forces et moments
spécifiques en projection, rapportés au plan zy des coordonnées. Les allonge-
ments spécifiques et les déformations angulaires sont exprimés a 1’aide des
composantes £, 7, { des déplacements de la surface médiane du voile suivant
les directions z, y et z; ’auteur détermine ensuite les forces et moments spéci-
fiques internes en faisant intervenir la loi de Hooke, valable dans le systéme
des coordonnées obliques. Aprés avoir introduit ces valeurs dans les équations
d’équilibre, on obtient trois équations différentielles dans lesquelles n’appa-
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raissent plus que les trois inconnues ¢, 9, { exprimant les déplacements de la
surface médiane. ,

Ce systéme d’équations différentielles peut étre appliqué aux voiles de
forme quelconque, soumis & une charge quelconque. Pour mettre en évidence
les possibilités d’application des résultats du calcul, 1’auteur présente quelques
exemples caractéristiques, tels que la détermination simple des équations
différentielles relatives aux plaques planes, aux parois minces, aux voiles sans
flexion, aux voiles cylindriques et la détermination du voilement.
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