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Theorie der allgemein gekrümmten Schalen

Theory of Shells of any Shape

Theorie des voiles de forme quelconque

E. BÖLCSKEI, Budapest

1. Ziel der Abhandlung

Das Ziel der vorliegenden Abhandlung ist, die auf das räumliche Achsenkreuz

bezogenen allgemeinen Gleichgewichts- und Formänderungsgleichungen
der gekrümmten Schalen (gekrümmten Platten) herzuleiten. Es wird eine
beliebige Belastung, eine allgemeine Form der Mittelfläche und eine konstante
Stärke vorausgesetzt.

2. Berechnungsgrundlagen

Bei unseren Berechnungen setzen wir folgendes voraus:

a) Im Vergleich zu den anderen beiden Abmessungen soll die Schalenstärke
gering sein.

b) Ein auf der Normalen der Mittelfläche befindlicher Punkt fällt nach der
Formänderung in die Normale der deformierten Mittelfläche.

c) Die Formänderungen sind gering gegenüber der Schalenstärke.

d) Homogener und isotroper Stoff, der dem Hookeschen Gesetz unterworfen
ist, d. h. daß ein linearer Zusammenhang zwischen den Dehnungen und
Spannungen besteht.

e) Auf die Mittelfläche senkrechte Spannungen sind gering und werden ver¬
nachlässigt.
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3. Geometrische Charakteristiken der Mittelfläche

Die Gleichung der Mittelfläche der unbelasteten gekrümmten Schale sei

z f(x,y).
Bezeichnen wir wie üblich die ersten Differentialquotienten mit

V IL
dx

und q ~^-,
dy

und die zweiten Differentialquotienten mit

r
d2f d2f

dxdy'
t

dy'2*

Der Ortsvektor eines Punktes A der Mittelfläche (Fig. 1) und der absolute
Wert dieses Vektors seien

r \r\ Vx2 + y2 + z2.

<<?*>

B<^ t

Fig. 1.

tx bzw. ty sind die Tangentenvektoren der parallel zu den Ebenen zx bzw. zy
liegenden Schnittkurven der Mittelfläche. Ihre Projektionen und absoluten
Werte sind

tx \l*\ Yl+p2; P \pi\ Vl+q2. (1)

Der Normalvektor der Oberfläche ergibt sich als ein Vektorprodukt der
Vektoren tx und P. Die Projektionen und der absolute Wert des Normalvektors

sind daher

ri=txtv
i j k -p
1 0 p -9
0 1 q 1

i\ \/l+pZ + q*= T. (2)
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In unseren weiteren Berechnungen werden wir den auf die Vektoren P und n
senkrechten Vektor ny und den auf die Vektoren tx und n senkrechten Vektor
nx brauchen. Diese Vektoren und ihre absoluten Werte lassen sich in der Form

i j k -pq
-p -q 1 l + p2

1 0 p
w

TVl+p2;
-p -q
\nv\ T]/l+q2

k l+q2
q -pq
i p

(3)

anschreiben. Das sich über das rechteckige Element dxdy der Ebene befindliche

Element der Mittelfläche ist ein Flächenelement allgemeiner Form. Dieses
Flächenelement kann in der Tangentialebene der Mittelfläche als Parallelogramm

mit den Seitenlängen dx\/l+p2 bzw. dy]/l-\-q2 betrachtet werden.
Seine zu den Koordinatenebenen xz bzw. yz parallelen Seiten schließen den
Winkel a ein. Für diesen Winkel lassen sich die Beziehungen

T
(4)COSa pq

Vl + p2Vl+q2
sma

Vl + p2Yl+q2

anschreiben. Die Schale hat die Dicke v, in Richtung der Flächennormale
gemessen. Das Schalenelement, das zu dem soeben beschriebenen Flächenelement

gehört, ist nicht prismatisch, sondern stellt infolge der doppelten
Krümmung ein «schartenförmiges» Element mit Ausbreitung in Richtung der
konvexen Seite dar. Der in Richtung der Schalenstärke parallel der tangentialen

Ebene der Mittelfläche genommene Schnitt wird ebenfalls eine
Parallelogrammenform aufweisen, wo der durch die Seiten eingeschlossene Winkel
dem entsprechenden Winkel der Mittelfläche gleich, die Seitenlänge aber
ungleich ist. Die Seitenlänge des über der Mittelfläche in Höhe v befindlichen
Flächenelements ist nämlich durch die Formeln

dsxv dxVl + p2
Rx + v

Rx ' ds*v dyVl+q2
Ry + v

Ry (5)

darstellbar, wo Rx bzw. Ry Krümmungshalbmesser einer durch die Tangentenvektoren

tx bzw. P der Mittelfläche und durch den Normalvektor n bestimmten
Ebene sind, d. i. in beiden Fällen einer Normalebene. Die Krümmung der

Normalquerschnitte ist im allgemeinen durch die Gleichung

_!_ _
ra2 + 2sab + tb2

R ~
]/l+p2 + q2

zu bestimmen, wo a, b, c Richtungskosinus der Tangente des Normalquerschnittes
bedeuten. Die Krümmung des bei tx bzw. P liegenden Normalquerschnitts

ist daher

(6)Rx (i+p«) 2" Ry (l+q2)T'
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4. Gleichgewichtsgleichungen

Fassen wir das Gleichgewicht des aus der Mittelflache z f(x,y)
herausgeschnittenen Elementes mit Hilfe eines Grundrisses dx dy ins Auge. Seien
die auf die Schalenoberflache wirkenden und in der tangentialen Ebene der
Oberflache liegenden, den Ebenen xz bzw. yz parallelen wirklichen Normal-
krafte mit Nx bzw. Ny bezeichnet. Die spezifischen Werte der in der Tangentialebene

auftretenden Querkrafte gleicher Richtung seien durch Nxy bzw. Nyx

Us
^j

rM ny*

Fig. 2.

M* MÜ

M*

^M* "?*

mV*

my

fmx<4m*y

Fig. 3.

Tabelle I

Absoluter Wert
des Kraftvektors

Richtungscosinus

X y z

des Einheitsvektors

1
0

i

VN*Vl + q*
Vl+p2

0

V
T

0

1

Vi+p2

qN^Vi + q2
Vl + q2

q
T

1

Vl + q2

1

T

g

QxVl + q2

NyVl+p2
H + q2

0

q
T

Vl + q2

VN^Vl + p2
Vl+P2

V
T

Vl + P2

1

TQyVl + p2
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Tabelle II

23

Absoluter Wert
des Momenten-

vektors

Richtungscosinus

X y z

des Einheitsvektors

0

1

l q

Vl + q2

V

-M*Vl + q2
Vl + q2

0

<l

T

l+P2
TVl+p2

0

1

M*vVl + q2
Vl + p2

V
T

pq

Vl+p2
1

~T

q-Q*Vl+p2 Vl + q2
TVl+p2

1

TVl+p2
VMyVl+p2

Vl + p2

0

V
T

l+q2
TVl + q2

Vl+p2

q-MyxVl+p2

— JSfyx T

Vl + q2

<2

T

pq

Vl + q2

1

T

VQyVl+p2Vl + q2
TVl + q2 TVl + q2

ausgedrückt. Weiter benötigen wir noch die zur Oberflächennormalen n
parallelen Querkräfte Qx bzw. Qy (Fig. 2). Die wirklichen Biegungsmomente
(Fig. 3) werden auf analoge Weise erklärt und bezeichnet. Seien Mx und Mv
wirkliche Momente, welche die Biegung in der Richtung x bzw. y hervorrufen,
deren Vektoren senkrecht auf die entsprechende Biegungsebene stehen. Mxy
bzw. Myx sind die auf analoge Weise erklärten Torsionsmomente.

Das Gleichgewicht der auf das jetzt beschriebene Schalenelement wirkenden

Kräfte wird durch drei Projektions- und drei Momentengleichungen
ausgedrückt. Um das Schreiben zu erleichtern, haben wir die auf das Schalenelement

wirkenden Kräfte in der Tabelle I, die Momente in der Tabelle II
zusammengestellt, wobei die Größen der Kräfte bzw. Momente sowie die
Projektionen der Richtungsvektoren angegeben sind.

Es sei die in Richtung x, y bzw. z gemessene Intensität der auf die
Koordinatenebenen bezogenen Belastung der Schalenfläche durch die Belastungs-
funktionen

^o (^ y); Vo (x> y) > zo (x> y)

charakterisiert.
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Zwecks Vereinfachung unserer Berechnungen werden die Gleichgewichts-
gleichungen nicht mit den wirklichen Kräften bzw. Momenten, sondern mit
den sog. reduzierten Kräften bzw. Momenten aufgestellt. Die reduzierten
Kräfte bzw. Momente bedeuten die in der waagrechten Ebene gemessene
Intensität der Projektion in Richtung x, y, z der wirklichen Kräfte bzw.
Momente. Die reduzierten Kräfte bzw. Momente werden mit den entsprechenden

kleinen Buchstaben und den gleichen Indizes bezeichnet.
Die reduzierten Kräfte werden auf Grund der Fig. 2 aus den wirklichen

Kräften mit Hilfe der nachstehenden Formeln berechnet:

n« ^S2, ny -j^Eg,
Vl + p2 Vl+q2

nxy ]$xy^ nyx tfyx ^ (7)

nx ^W y nv Vl + P'
q* Qx 9 qv Qv r

.2

Vl+p2 + q2' Vl+p2 + q2'

Die reduzierten Momente können auf Grund der Fig. 3 mit Hilfe der
untenstehenden Beziehungen aus den wirklichen Momenten berechnet werden.

mx Jjfx^ my Jtfy^

l/l +a2

Vl + p2
myx Jjfyx

Vi + p2 (8)

Vl+q2'
Auf Grund der Tabellen I bzw. II können wir die Gleichgewichtsgleichungen
der Kräfte bzw. Momente anschreiben. Zwecks Abkürzung führen wir aber
sofort die reduzierten Kräfte bzw. Momente ein.

nx + nyx-(pqx)x-(pqy)y + x0 0,
nxy + nv-(q qx)x - (qqy)y + y0 0, (9)

(p nx)x + (q ny)y + (q nxy)x + (p ny% + qx + qy + z0 0;

m%y + mvy- p {nxy -nyx) + pqqx + (1 + q2) qy 0,
m% + myx+q{nxy-nyx) + {l+p2)qx + pqqy 0, (10)

- (q mx)x + (p mxy)x + (p my)y - (q myx)y + (nxy - nyx) -qqx + pqy 0.

Nach Durchführung der Operationen in den Gleichungen und nach Abzug
des ^-fachen der ersten und des g-fachen der zweiten Gleichung von der dritten
ergeben sich folgende Beziehungen:

nx + nyx-(pqx)x-(pqy)y + x0 0,
nxxy + ny-(qqx)x-(qqy)y+y0 0, (11)

rnx + s(nxy + nyx) + tny+T{Tqx)x+T(Tqy)y + z0-px0-qy0 0;

m%y + my-p(nxy-nyx)+pqqx + (l+q2)qy 0,
m% + mlx+q{nxy-nyx) + (l+p2)qx + pqqy 0, (12)

r mxy - s {mx -my) -tmyx + T2 {nxy -nyx) 0.
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Werden die Werte qx und qy mit der ersten und zweiten Gleichung von (12)
bestimmt und in die Gleichungen (11) bzw. in die dritte Gleichung von (12)
eingesetzt, so erhalten wir folgende vier Beziehungen:

\nx + pq(nxy-nyx) +
V^ J^g \mx + myx)-^(mxy + my)

+ \nyx-p2(nxy-nyx)-^|(m% + myx) + P^2P )(m%y + my)\ +x0 0,

nxy + q2 (nxy _ nyx} +
?V + >

(mx + myxj _ %V (mxy + mV)

nv-vq (nxy ^nyx)_^P {mx + myX) +
g (l+f) (m?/ + mpj +yQ 0,

(13)

r nx + s (nxy + nyx) + tnv

+ t\ ^K + mf)+^(m? +mJ)-^(#-#)
+ T ^ {ml + mf)- +P

{m%y + my)+p T (nxy-nyx)

+ z0-px0-qy0 0,

r mxy — s (mx — my) — t myx + T2 (nxy — nyx) 0.

In der Gleichung (13) finden wir nur noch die folgenden 8 Unbekannten:

nx, ny, nxy, nyx

mx, my, mxy, myx

5. Prüfung der Formänderung

Prüfen wir die Bewegungen eines über der Mittelfläche der Schalenform
z f(x,y) in Höhe v befindlichen Punktes. Die Bewegungen der Mittelfläche
in den Richtungen x, y, z werden durch die Bewegungsfunktionen

£ £(%,y); v v(x>y)'> i l{x>y)

charakterisiert. Nach Eintreten der Formänderung geht der über der Mittelfläche

in der Höhe v hegende Punkt in die Stellung P' über (Fig. 4). Die
Bewegung PP' ev setzt sich aus zwei Komponenten zusammen. Die erste
Komponente ergibt sich aus der reinen Verschiebung, welche durch die
Bewegungsfunktionen charakterisiert werden kann. Die zweite Komponente
stellt eine durch die Verdrehung des Mittelflächennormalvektors entstehende
Bewegung dar, deren Komponenten mit den Funktionen S, H, Z ausgedrückt
werden können.

Der Ortsvektor des Punktes P ist
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— _ nP r +7=7-^
\n\

und derjenige des Punktes P' ist
nP' r+p+-r=yrV,

\n I

wobei e° der Bewegungsvektor, ri der Normalvektor der ursprünglichen Fläche
und n' der Normalvektor der deformierten Fläche sind. Der Bewegungsvektor
ist daher r _, _ -,

LP I MJ

JL.
in'l

r+9

JL

Fig. 4.

Die in diesen Vektorgleichungen ausgedrückten Größen können auf Grund
der Flächentheorie bestimmt werden.

Im deformierten Zustand ist der Normalvektor der Fläche

n
i j k

l+L Vx p+L
fjy l + r]y q + iy

oder, was dasselbe ist

~P+(<lVx-PVy-U
-V + i-iZx + PÜy+Q

i + (£x + Vv)

Der absolute Wert dieses Vektors ist

-p ~A

-1 + B
1 G

\n'\ Vl+p2 + q2 + 2(-pA-qB + C)+A2 + B2 + C2.

Vernachlässigen wir im Ausdruck \n\ die zweiten Potenzen der die
Formänderungsglieder enthaltenden Größen A, B, G — als zweitrangig geringe
Größen —, so erhalten wir die Beziehung

-pA-qB + C\i'\ t(i+-
J12 ')¦

Setzen wir die obigen Größen in die Matrix des Verschiebungsvektors ein, so

gelangen wir zu der Beziehung
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e°

oder

\ 1
/ aJi pA+qB-C\ pi+-jf(-p+A)\l+^ A fv + -frv

T?+-y(-<2+-B)^+- p j*> + ^A
- 1 „ „j, 2j4 + g£-C\ 1

t+Y (1 + cf)(1 + - |ä j^-^A

f +^{(1+22)(2>£* + ?'te-£B)- M (2>f„+?*?»-£»)}

*?+^,{ -VI (P^x + 1Vx~U + (l+P2)(P^v + <lVv-Cv)}

Das erste Glied dieses Ausdruckes bedeutet die reine Verschiebung, das zweite
aber jene Bewegung, welche infolge der Verdrehung der Flächennormale
entstanden ist. Bezeichnen wir letztere — wie bereits gesagt — mit den
entsprechenden griechischen Majuskeln, so erhalten wir die Beziehungen

'$ 3 [>1
V + v H — </<

u_ Z_ _X_

6. Spezifische Dehnungen und Winkelveränderung

Bestimmen wir die bei einem in der Höhe v liegenden Flächenelement des
untersuchten parallelogrammförmigen Schalenelements auftretenden
spezifischen Dehnungen. Unter spezifischer Dehnung verstehen wir — auch im
System der schiefen Winkel — den Quotient der untersuchten Projektion des

Verschiebungsvektors und der ursprünglichen Seitenlänge, oder

e° tx
€xv _ __

I fXV I I fX I J

1-^3{r(^+q2)-pqs}

wo F»= y-~fV **>= 0-~{s(l+q2)-pqt}

P-7j^{pr + qs)

Die Länge, bzw. der absolute Wert dieses Vektors ergibt sich nach Vernachlässigung

der quadratischen Glieder zu

x —¥
y-1*
z +

1

Tv_

—
—]

1-vD

0-vE

p-vF
_ _!
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\txv\ Vl-2vD + p2-2vpF Vi + p2]/1 -j^~2(D + P F)

Vr^2{l-(1+*2)T3r(l+p2 + q2)}

Vi + p2 i (l+p2)T
Die gesuchte spezifische Dehnung ist daher

v\ Vi + p2
Rx + v

Rx '

Rx \L + PL + V*x + Pzx
Rx + v\ 1+p2 l+p2

Auf Grund eines ähnlichen Gedankenganges findet man

Ry \r)v + qty + vHy + qZy
Ry + v\ 1+q2 1+q2

(14)

(15)

Wir haben noch den Wert der Winkeländerung zu bestimmen. Unter
Winkeländerung verstehen wir die Verzerrung des durch die Achsen eingeschlossenen
Winkels des schiefwinkligen Koordinatensystems. Dies setzt sich aus zwei
Teilen zusammen (Fig. 5).

y yLV + ylv i ..2ü e^u 71*
I tXv j /yi X I

L 11/

.2v _
eyv ny

*\4

Daher ist

A^/ä
/&*,

e'"

A
^

In'l¦m

**(>-% r&

Rx

und nach der Entwicklung haben wir

R

Fig. 5.

\£x + vSx, t}x + vHx, £x + vZx]
T Vl + p2

-pq
l + p2

ff

yl" ^+^r(i+Pa)[~M^+(1+y2)^+g^+^{~yggx+(1+y2)^+ggz}]'
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Mit einem ähnlichen Gedankengang ergibt sich

Ry 1

y^V=zWVv T(l+q2) Ul+y2^y-PyVy+Pty+v{(l + q2)Sy-pqHy+pZy}]. (16)

7. Verschiebungsgleichungen

Die Winkelverzerrungskomponenten können auch in der nachstehenden
Form angeschrieben werden:

ylv + Wexv=1^A_{r]x + qL + v{Hx + qZx)h

Y2V+Meyv=z^L_lr{^ + pCy + v{Sy + pZv)h

Auf diese Weise können wir letzten Endes folgende vier Beziehungen für die
spezifischen Dehnungen und Winkelverzerrungskomponenten anschreiben:

£* + Ptx + v(Bx + pZx) ¥^{l+p*)e",

Vv + qtv + v(Hv + qZy) ?^(l+q*)cV*,

Vx + lCx + v(Hx + qZx) ^j±l(Tyi* + pqe*«),

Zy + pty + v(Ey+pZy)=^±l(Ty*« + pqev«).

Führen wir die Bezeichnungen

Rx + v Hy 4- v

J?x i «. 7?^ 4- ?;
(17)

ein. Wenn wir aus der Summe der nach x y differenzierten dritten und vierten
Gleichungen die nach y zweimal differenzierte erste bzw. nach x zweimal
differenzierte zweite Gleichung abziehen, gelangen wir zu der Beziehung

rXyy-2sXxy + tXxx (sl + s2 )xy ~ Pyy ~ Qxx • (18)

Es besteht ferner auch die Beziehung

<f>x P~PXx (19)

sowie die Beziehung

fv-Q-lXv (2°)
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Mit Hilfe dieser drei Gleichungen können wir die Formänderung der Schalenfläche

immer bestimmen, vorausgesetzt, daß die spezifischen Dehnungen exv,

eyv, yv und die Winkelverzerrung bereits bekannt sind. Aus diesem können
nämlich mit Kenntnis der Schalenflächenkonstanten die Werte P, Q, Sl9 S2

ermittelt werden und nach Einsetzen dieser in die obigen Gleichungen
verbleiben nur noch die Verschiebungsfunktionen <f>, ifj, x unbekannt. Wir erhalten
daher schließlich drei Differentialgleichungen, aus welchen die drei unbekannten

Verschiebungsfunktionen erhalten werden können. Nach deren Bestimmung

können die gesuchten Bewegungen der Mittelfläche £j, rj, £ aus dem
Differentialgleichungssystem

<t> €+7jw(l+q2)(p^+qvx-U-7fi3 pq (pSv+qyy-ty),

<A v-Tps pq (p£x+QVx-&+ip*(1+p2)(p(;v+Q'nv-Cy)> (21)

X=£+^3 P (P€x + 97lx-£x)+7ps Q (Pty + qVy-Zy)

unter Beachtung der entsprechenden Randbedingungen errechnet werden.

8. Spezifische innere Kräfte und Momente

Untersuchen wir jenen Teil der Schale, der sich über dem Element vom
Grundriß dx dy befindet und durch Ebenen aus der Platte herausgeschnitten
wird, welche parallel zu den tangentialen Vektoren der Mittelfläche und dem
Normalvektor stehen.

Die auf den ausgeschnittenen Flächen der Platte wirkenden spezifischen
Kräfte werden durch die Beziehungen

+h/2 +h/2
CRy + v „ CRy + v^-^^> MX -^y—V(jXdv>

-h/2 -h/2
+h/2 +h/2

-h/2 -h/2
+h/2 +h/2
f Ry + v f Ry + vNxy T^dv, Mxy .7 vi^ydv,

-h/2 -h/2
+h/2 +h/2
r Rx+v C Rx+vNyx= rvxdv, Mvx jT vryxd[v,

(22)

-h/2 -h/2
+h/2 +h/2

Qx =j~^rx*dv, Qy =j R
-h/2 -h/2

Rx + v ryzdv.
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bestimmt. In diesen Gleichungen bedeuten ax, oy, rxy, ryx, rxz, ryz die im
schiefwinkligen System angegebenen Spannungen.

9. Das Hookesche Gesetz in schiefwinkligen Koordinaten

Ein im Grundriß rechteckiges Flächenelement wird auf der Schalenfläche
in Wirklichkeit die Form eines schiefwinkligen Parallelogramms aufweisen.
Wir benötigen daher die Zusammenhänge zwischen den im Koordinatensystem

xy mit einem Öffnungswinkel a gegebenen ox, oy bzw. rxy Spannungen
sowie den im selben System festgesetzten Dehnungen ex, ey und der
Winkelverzerrung y. Das ist das Hookesche Gesetz, dessen Gültigkeit für die
schiefwinkligen Koordinaten durch P. Lardy bestimmt wurde [3]. Diese Beziehungen

— unter Weglassen der Herleitungen — führen wir im folgenden an:

** [ox + (cos2a — jjisin2 oc)ay + 2r cos a]F sin oc

1

Fsin a
[er* (cos2 a — [jl sin2 a) + ay + 2 r cos a]

y —=f- \ox COS a + a^cos a + 2t]

Wollen wir die Spannungen mit Hilfe der spezifischen Dehnungen bzw. der
Winkelveränderung aus diesen Gleichungen ausdrücken, so ist das Gleichungssystem

mit drei Unbekannten für die Spannungen zu lösen.
Drücken wir die Winkelfunktionen mit den partialen Differentialquotienten
der Mittelflächengleichung aus, so erhalten wir die Beziehungen

E Vi + v2 Vl+o2
aV _a_ ^ + y+g{(ia€* + €J07_yM}, (23)

T =2(l-^)J^{y[2(1+y2)(1+g2)~(1+ia)ra]~(1+iLt)(6X + 6i/)ygr}-

10. Spezifische innere Kräfte und Momente in Abhängigkeit der Formänderung

Setzen wir die Beziehungen der spezifischen Dehnungen (14), (15) bzw. der
Winkelveränderung (16) in die Formel der Spannungen ein, so erhalten wir
die Gleichungen
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^ xw+^^x+vA^+oc\w+^^x+v@x^
Rx Ry

wo

Vi + v*Vi+q*sx ^3—-{.(i+tfSx-PVyx+pZx}'J>3

Ax ^+p^+q\{l+(f)Ex_vqHx+vZx]y

#* =y\*fj!)12!3q\-(i+q2)pq£y-Hp2q2+v<T2)vv-(p2q-MT2)Zvl,

Qx
Vl + p2 Vl+q2

l+q2)T* l-(l+q2)PqZy + (P2q2 + nT2)Hy-(p2q-MT2)Zy],

n*l^T3q\{P2 + q2 + ^T2)Zx-pq{l+p2)rlx-{pq2-vpT2)lx\,

AV ^j^^l(P2q2+^T2)Sx-pq(l+p2)Hx-(pq2-flpT2)Zx],

Vl + v2Vl+a2
&y ^v i-y +q [_pq^+{l+pi)7]y+qlv]> ^

Vl + v2Vl+a2
@y +y +g [-pqSv + (l + p2)Hy + qZv],

8xy {l+L)Tz{lT2(1-^ + 2P2^^-p<i^+^+p2)ix+qU
-(l+ripqTifa + pQ},

*xv {l+\)T3{[T2(l-[J.) + 2p2q2][-pq3x + (l+p2)Hx + qZx]

-(l+fl)pqT2(Sx + pZx)},

^ (1+^)^3 {[y2(l-^) + 2p2g2][(l+ga)^-pg^ + yy
-(l+^pS^^ + S^)},

0xy (i+^)y3{[y2(1-^ + 2^2g2][(1+g2)gi/-pg^+P^

Auf Grund obiger Angaben bestimmen wir im weiteren die Werte der
tatsächlichen spezifischen Kräfte und Momente
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+h/2
r Ry+v

J s» c^dv,
-h/2

+h/2 +h/2

-f *&!£;*>+"•>"+•!^t&i**«»'-
-h/2 -h/2

Führen wir die vorgeschriebenen Integrationen durch:

+h/2 +h/2 +h/2 +h/2
j?x /• j>y\v j?x r jpj/j.« r /*

^x *\w8x) -w+rdv+x\wAxj \whvdv+xd*j d*+«&x) »dv
-h/2

I + II + III + IV,
-h/2 -h/2 -h/2

i+—
-«^8.[*+(^-U-)log—^

r Ry w Ry-Rx~\
[ IF + ü Rx* J

h/2

h/2

2R*

12 Rx* ¦)]

— Ry

ochSx + oc

+h/2

Rx 12 Rx*

12 Rx \R* Ry) '

II .§Axj{v + (Ry^Rx)-^]dv
-A/2

-A*\^ + (Rv-R*)v-Rnog{l+^)\

1+—
^A*(Rv-R*){h-R*\og ^
:J*(^-jB*)[ä-W-^- +

• a.— I- 1 Ax
12\2J" R°f '

Rx

Ry

R^
Ry

+A/2

-A/2

12 RF ¦)]

III aA#*,

IV -Ht] +»/2
0,

-Ä/2
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Im Endresultat ist daher:

(25)

«¦-«*^^+TF(i-i)("--^)-
Mit einem ähnlichen Gedankengang können wir die Ausdrücke für die weiteren
Kräfte und Momente bestimmen. Die Teilrechnungen weglassend, gelangen
wir zuletzt zu folgenden Beziehungen:

Nx =L(8X + &X) +K[^-^)[AX-Pj,
Ny =L(Sy+^)+K^--^)[0y-^),
Nxy =|(3-+^)+f(^--^)(^-5)'
NyX =|(8x, + ^) +|^_^(^_^;

Mv =-K[{w-w)^y+Ay+6yl

Mxv "f \(lfl " Tp) *xy+Axv + ®xy\,

Myx ~ U~ - -L\ d*v + A*y + 9*v\

11. Allgemeine Differentialgleichung der gekrümmten Schalen

Anläßlich der Behandlung der Gleichgewichtsgleichungen haben wir
bewiesen, daß eine Beziehung (13) zwischen den Unbekannten nx, ny, nxy, nyx,
mx, my, mxy, myx besteht.

Setzen wir in diese auf die reduzierten Kräfte bzw. Momente bezogenen
Gleichungen die mit den Verschiebungsfunktionen £, rj, £ ausgedrückten und
sodann entsprechend reduzierten Werte der tatsächlichen Kräfte bzw. Momente
ein, so erhalten wir die Beziehungen

9 (p, q> r, s, t, £ 7], £, x0, y0, z0),

h(p,q, r,s, t, £, rj, l, xQ,y0,z0),
i (p,q,r,s,t,^,rj,^,x0,y0,z0),
j (p,q,r,s,t,i, rj, £,x0,y0,z0).
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In obigen vier Gleichungen kommen nur noch die Unbekannten f, 77, £ vor.
Es stehen uns vier Gleichungen mit drei Unbekannten zur Verfügung; wir

können aber beweisen, daß die vierte Gleichung zu einer Identität führt, so
daß wir nach Weglassen dieser vierten Gleichung im Endresultat ein
Differentialgleichungssystem aus drei Gleichungen mit drei Unbekannten erhalten.
Mit den entsprechenden Randbedingungen lösen wir dieses Gleichungssystem
und so können die Verschiebungsfunktionen £, 17, £ bestimmt werden und in
deren Kenntnis sind auf Grund der Endformeln des vorigen Kapitels die
inneren Kräfte bestimmbar.

Dieses Differentialgleichungssystem kann damit auf gekrümmte Schalen
beliebiger Form und beliebiger Belastung verwendet werden. Im Falle einer
konkreten Aufgabe haben wir daher nur die ersten bzw. zweiten Differentialquotienten

aus der Gleichung der fraglichen Fläche zu bilden und diese in
obige Gleichung einzusetzen. Aus der so gewonnenen Gleichung können die
Bewegungen und inneren Kräfte der Mittelfläche der untersuchten Schale
bestimmt werden.

Somit haben wir die Aufgabenstellung der Einleitung erfüllt. Als Beweis
für die Verwendbarkeit dieser Lösung führen wir im folgenden einige
charakteristische Beispiele an. Obige Gleichung ist nämlich für die Behandlung von
Problemen der Platten, Scheiben, Membranschalen und Schalen behebiger
Form geeignet.

12. Beispiele

a) Die Differentialgleichung der ebenen Platte

Die Gleichung der Fläche ist in diesem Falle z f(x,y) 0, daher p q

r s t 0.
Die Belastung sei z0 p(x,y), y0 0, x0 0. Demzufolge gestalten sich die

Gleichgewichtsgleichungen wie folgt:

tä + qy + Pfay) °> mx + myx + qx 0, mxv+.mv+~qv 0.

Wir setzen die nach x differenzierte zweite und nach y differenzierte dritte
Gleichung in die erste Gleichung ein:

~m%x-2m%y~myy + p{x,y) 0.

Die Momente sind

mx K(£xx + ^yy), n%y Kttyy + n£xx), mxy (1 -^)Klxy.
Werden diese in die Gleichgewichtsgleichung eingesetzt, so ergibt sich die
Beziehung

i +2t +1 =p(x>y>>
^xxxx ' " ^xxyy ' ±>yyyy rr
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b) Die Differentialgleichung einer Scheibe

Die Mittelfläche der Scheibe ist eine Ebene, deren Gleichung z 0 ist, daher

p q r s t 0.
Die Belastung fällt in die Ebene der Scheibe. Daher haben wir

x0 x0(x,y); y0 y0(z,y); z0(^2/) 0-

Es tritt keine Biegung auf, so daß wir von vornherein wissen, daß

mx my mxy myx qx qy 0

ist. Gehen wir von der Formänderungsgleichung aus. Sie hat im Falle einer
ebenen Platte die Form

(ox + &2)xy ~~ *yy "" Qxx " •

Die Formänderungen können durch die Beziehungen

exv -=-(^-/i^),Mi

exv j-^yv «.v •

yy ' xx Yxy >

il Mi

bestimmt werden. Werden diese in die Formänderungsgleichungen eingesetzt,
so erhalten wir

Kv-V<y + nlx~^xxx 2(1+fx)n%y.

Führen wir nun die Spannungsfunktion ein. Wie bereits bekannt ist

n* hF-, nxy -hFxv; ny ÄJ5L;
daher ist
d.h.

•^xxxx " H* -^xxyy + ^yyyy " ^xxyy " A6 ^xxyy

F +2F +F•'-xxxx ' " Mxxyy ' Myyyy

xxyy
0.

Dies ist also die Differentialgleichung der Scheibe, anders gesagt jene des

zweiachsigen Spannungszustandes.

nTnHlHIHninn]

tlüiltllllplülJ
Fig. 6.

' c) Plattenbeulung

Die gebeulte Platte (Fig. 6) hat ursprünglich eine ebene Fläche. Schreiben
wir die Gleichgewichtsgleichungen für die gebeulte Form z £ (x, y) auf und
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nehmen wir an, daß die zweite Potenz dieser und deren Differentialquotienten
gleich Null sind, so daß

£2 £2 £2 _ l r 0.b bx *sy ^x^y w*

Die Gleichgewichtsgleichungen können in der Form

nx + nyx + x0 0,
nxy + ny + y0 0,

ixxnx + 2lxynxy + lyyny + qxx + qyy=0,
m% + myx + qx 0,

m%y+my+qy 0,
nxy _ nyx __ q

angeschrieben werden. Mit den Werten von qx und qy aus der vierten und
fünften Gleichung in die dritte eingesetzt, erhalten wir die Beziehung

Uxnx + ^Ly^xy + tyVny-mxxx-2m%y-myyy 0.

Im Falle unserer Annahmen ist

mx K(tsxx + lxlyy), my K{iyy + ^Zxx), mxy {1-^K^.
Diese Ausdrücke in unsere obige Gleichung eingesetzt, erhalten wir die
Beziehung

±xx M + 4 Lzy.y n + ^yy n J\. l^xxxx + ^ ^xxyy + ^>yyyy\ ^

oder das Endresultat:

K{AAQ- [lxxnx + 2 £xynxy + £yyny] 0.

Wie bekannt, ist dies die Differentialgleichung der Plattenbeulung.

d) Differentialgleichung von Membranschalen

Im Falle eines Membranspannungszustandes

mx my mxy myx qx qy 0

lauten daher die Gleichgewichtsgleichungen:

nx + nyx + x0 09

K + n%y + y0 0,

rnx + s(nxy + nyx) + tny + z0-px0-qy0 0.

Es kann leicht eingesehen werden, daß

nxy __ nyxt

Wenn die Spannungsfunktion eingeführt wird, erhalten wir das Endresultat

rFyy-2sFxy + tFxx + (z0-px0-qy0) 0.

Dies ist die wohlbekannte Differentialgleichung der Membranschalen.
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e) Die Biegung einer Kreiszylinderschale

Gleichung und Differentialquotienten der Fläche lauten

z =VR2-y2,

zy =y —w=S^> P= °>
Vr2- 2

'

R2
Zw t —, ' ; 5 0; r 0.yy (VR2-y2)3

Die Krümmung ist
1

~Rm

Mit Rücksicht darauf, daß die durch W. Flügge abgeleiteten Beziehungen in
Zylinderkoordinaten angegeben sind, transformieren wir unsere obigen
Formeln auf dieses Koordinatensystem (Fig. 7).

z VR2-y2 Rcosß,
y Rsinß,

zy —,
y -tgjS.y VR2-y2

Transformieren wir auch die Verschiebungen (Fig. 8)

£ u, rj vcosß + wsinß, £ — vsinß + wcosß.

Nach Bildung der entsprechenden Differentialquotienten der Fläche und der
Verschiebungsfunktion und nach Einsetzen in die Gleichungen (12) erhalten
wir die Beziehungen:

§x =*, ««, ** =^^fr|^ i(M,+V'
8v rfx llux, $y =21101 ^(W + Vßy

Sxy {1_(l)^+lk (l-rfv,, d*« (1-/.)--£= (1-^,Vl+q2
" r, x ^ Vl+q* R

Hy + qZy
__

IX

-q2
A* =Sx -wxx, @* ^^l+y ^(vß-wßß)>

Av =nEx -^wxx, @y ^±^l ^{Vß-Wßß),

j^-d-^)^^ ©- (i-M)-^ -(i -MÄVl+q2 Kl+g2 K

(l-V>)-ji(Vx-wßx)>
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Werden diese in die Gleichung (25) eingesetzt, so erhalten wir die Ausdrücke
für die tatsächlichen Kräfte und Momente

N* =ik+|(^+w) +_(_Wra)>

W =L[i.ux+±(vß +w)]+^(^ + ?g),

Mx =-^(-ux + Rwxx-^vß + -^wßß\,

m* -X^R^+m +-),

-2B*->*{ -»«)
«s» + 2«;£

*,

* /
ß / ß

JL

Fis. 7.

Fig. 8. Fig. 9.

Wenn^die letzteren in die Gleichgewichtsgleichung (13) eingesetzt werden,
ergeben sich folgende drei Gleichungen:

!~AR2uxx + —^r-ußß + ixRwx +
1+/X Rvo

K \ 1—a „« 1 — /x „
R2L + 0,
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—g-^ R ußx + vßß+—y1 R2 vxx + wß

i
K [3(1-^a -*=±r*w J i

y°R*
Q+ R2L[ 2 xx 2

M WxxP\ + L ~ '

fi Rux + vß + w +^j-\—^- Ruxßß- R3wxxx ^R2vxxß

+ -R4 wrxrx + 2R2 wTxRR + wRRRR + 2 wRR + w +^ 0.

Die vierte Gleichung führt zu einer Identität, worüber man sich leicht
überzeugen kann. Die Gleichungen sind mit dem durch W. Flügge abgeleiteten
Gleichungen vollkommen identisch. Dies ist zugleich eine Kontrolle der durch
uns abgeleiteten Formeln.
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Zusammenfassung

Die Abhandlung stellt die auf das rechtwinklige Koordinatensystem
bezogenen, allgemeinen Gleichgewichts-Gleichungen der beliebig belasteten, allgemein

gekrümmten, gleichmäßig dicken Schalen (Platten) unter Verwendung
der sog. reduzierten Kräfte bzw. Momente auf. Unter den reduzierten Kräften
bzw. Momenten werden die auf die xy Koordinatenebene bezogenen
spezifischen Projektionskräfte, bzw. Momente verstanden. Mit den Verschiebungskomponenten

£, 77, £ der Richtungen x, y und z der Schalenmittelfläche werden
die spezifischen Dehnungen und anschließend die Winkelverzerrungen beschrieben,

sodann die spezifischen inneren Kräfte bzw. Momente unter
Berücksichtigung des im schiefwinkligen Koordinatensystem gültigen Hookeschen
Gesetzes bestimmt. Nach Einsetzen dieser Werte in die Gleichgewichtsgleichungen

erhält man letztlich drei Differential-Gleichungen, in denen nur
noch die drei Unbekannten £, rj, £ der Verschiebung der Mittelfläche auftreten.
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Dieses Differentialgleichungssystem kann auf gekrümmte Schalen behebiger

Form und beliebiger Belastung angewandt werden. Um die Verwendbarkeit

der Berechnungsergebnisse zu beweisen, werden einige charakteristische
Beispiele, wie die Ableitung der Differentialgleichungen von ebenen Platten,
Scheiben, Membranschalen, Kreiszylinderschalen und des Beulens vorgeführt.

Summary

The author derives general equations of equilibrium with reference to a
system of rectangular coordinates, for shells of any shape and of uniform
thickness, acted upon by any loads, by employing "reduced" forces and
moments. This means the specific forces and moments in projection, with
reference to the xy plane of the coordinates. The specific elongations and the
angular deformations are expressed by means of the components £, rj, £ of the
displacements of the median surface of the shell in the directions along x, y
and z, the author then determines the internal specific forces and moments by
introducing Hooke's law, which is valid in the system of oblique coordinates.
After the introduction of these values into the equilibrium equations, we
obtain three differential equations in which only the three unknowns |, r\, £

expressing the displacements of the median surface, appear.
This system of differential equations may be applied to shells of any

shape, acted upon by any load. In order to demonstrate the possible
applications of the results of the calculation, the author gives some characteristic
examples, such as the easy determination of the differential equations relating
to flat plates, to thin walls, to shells not subjected to bending, to cylindrical
shells and to the determination of buckling.

Resume

L'auteur etablit les equations generales d'equilibre, rapportees ä un
Systeme de coordonnees rectangulaires, pour des voiles de forme quelconque et
d'epaisseur uniforme, soumis ä des charges quelconques, en faisant appel aux
forces et moments «reduits». II faut entendre par lä les forces et moments
specifiques en projection, rapportes au plan xy des coordonnees. Les allongements

specifiques et les deformations angulaires sont exprimes ä l'aide des

composantes |, 77, £ des deplacements de la surface mediane du voile suivant
les directions x, y et z; l'auteur determine ensuite les forces et moments specifiques

internes en faisant intervenir la loi de Hooke, valable dans le Systeme
des coordonnees obliques. Apres avoir introduit ces valeurs dans les equations
d'equilibre, on obtient trois equations differentielles dans lesquelles n'appa-
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raissent plus que les trois inconnues £, rj, £ exprimant les deplacements de la
surface mediane.

Ce Systeme d'equations differentielles peut etre applique aux voiles de
forme quelconque, soumis ä une charge quelconque. Pour mettre en evidence
les possibilites d'application des resultats du calcul, l'auteur presente quelques
exemples caracteristiques, tels que la determination simple des equations
differentielles relatives aux plaques planes, aux parois minces, aux voiles sans
flexion, aux voiles cylindriques et la determination du voilement.
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