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A General Analysis of Elasto-Plastic Three-Dimensional Frames
Etude générale des cadres tridimensionnels élasto-plastiques

Eine allgemeine Untersuchung von elasto-plastischen 3-dimensionalen Rahmen

A. L. L. BAKER _
Professor of Concrete Structures and Technology, Imperial College, London

Introduction

The purpose of this paper is to establish, by the Principle of Virtual Work,
General Analytical Equations and to present a method of design for elasto-
plastic three-dimensional frames, taking account of all internal resistances.
Generally, a special and simpler procedure for uni-planar reinforced concrete
frames subject to deformation due to bending only, is all that is required.
However, cases do arise when the influence of torsion or axial force on defor-
mation must be considered. It is important, too, to be able to determine when
deformations due to causes other than bending are negligible; for instance,
torsional strain induced by a secondary beam causing dangerous shear stresses
in a main beam. It is probable that, in building frames generally, the influence
of deformations apart from those due to bending is negligible, at any rate in
regard to ultimate strength criteria, except, perhaps, for brittle conditions,
such as may occur in beams not reinforced for shear. More tests are required,
so that safe limiting values of the parameters governing shear and torsion
strength and deformation for various shapes of section, and the spread of
plasticity at releases, can be firmly established by statistical treatment of the
inevitable scatter of the results. An important point emerges in favour of
basing designs on ultimate criteria. The application of linear equations to
homogeneous elastic three dimensional systems becomes very complex when
cracking, as in reinforced concrete, affects the stiffness of sections. When an
assumed ultimate distribution of bending moments etc. has been made, the
neutral axis position and cracked zones of all sections can be determined, and
hence the required stiffness factors.
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Definition of Elasto-Plastic Members

For the purpose of this analysis, the essential characteristics of elasto-
plastic frame members are that, when subject to bending, torque, shear or
axial load of uniform distribution along a member, the load-deformation
diagram for the member approximates to the idealised diagram in Fig. 1.
Deformations are angular in the case of bending and torsion, uni-directional
in the case of shear or axial load. Analytical calculations are based on such
limits as L; and L, (ref. Fig. 1), so that calculated strength values are less
than actual values, but calculated elastic deformation greater than actual
values. Maximum permissible plastic deformation values are less than possible
values. Occasionally, when studying research results, it may be necessary to
use a limit such as L; over parts of a frame deforming elastically in a direction
which produces negative values of calculated plastic deformation, as indicated
by the sign and influence of the terms of the general equations.

Notation

Ref. Fig. 2 (a)

X1 = unknown force acting in direction X at section K.

X% = unknown force acting in direction Y at section K.
X% = unknown force acting in direction Z at section K.
X% = unknown moment acting in plane O XY at section K.
X% = unknown moment acting in plane O X Z at section K.

X% = unknown moment acting in plane O Y Z at section K.

Ref. Fig. 2 (b)

B = deformation at section K in direction of X} due to X} =1 acting.
= deformation at section K in direction of X} due to X?=1 acting.

%¢ = deformation at section K in direction of X§ due to X¢ =1 acting.

U}l = deformation at section K in direction of X} due to external load acting.
Ui = deformation at section K in direction of X% due to external load acting.

deformation at section K in direction of X¢ due to external load acting.

-
=
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al = movement at section K in direction of X} due to other influences?).
ap = movement at section K in direction of X7 due to other influences.
a$ = movement at section K in direction of X§ due to other influences.

w} = ordinate at any section of frame of distribution diagram for X7 =1.

e = displacment in direction of application of w} over unit length of member
caused by unknowns such as w} =1 acting.

Equations of Equilibrium

Each force of any system of forces acting on a body can be replaced by
components in directions OX, OY, OZ parallel to three axes of reference
mutually at right angles (ref. Fig. 2). Each set of components in each direc-
tion can be combined to give either a single resultant in that direction or
equal and opposite resultants, i.e. a couple. The external forces or loads
acting on a body can therefore be reduced to three forces, such as Py Py P,
acting in directions OX, OY, and O Z, or pairs of equal and opposite forces,
such as Py Py and P,.

- Any member of a frame can be isolated from the frame by cuts such as
those at sections ¢ and k (Fig. 2). The cuts may be made parallel to the most
convenient of the planes of reference OX Y, OY Z, O Z X. Section K parallel
to plane O Y Z may be considered as a typical section or cut. The cut releases
all internal restraints which act across section K when the frame is loaded
and there is full continuity. If, after making the cut, the internal restraints
are replaced by equal and opposite external restraints or support reactions
which are applied to the members on either side of the cut, the continuity of
the member in effect will be restored. At a section such as K, all such restraints
can be resolved into components and reduced to resultants which are some-
times referred to as stress resultants, such as:

X} = a force in direction X (axial force)
X3} = a force in direction Y (shear)
X3 = a force in direction Z (shear)

X% = a moment in plane OX Y (moment)

1) Other influences include (1) Plastic movement.
(2) Creep movement.
(3) Shrinkage.
(4) Support movement.
(56) Temperature movement.
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X% = a moment in plane O X Z (moment)
X¢ = a moment in plane O Y Z (torque)

The value and location of action of the above forces or moments will
depend on the unit stress-values and their distribution throughout the section.
Each cut, such as K, may therefore release six resultant restraints. It is con-
venient to assume that restraints can be released separately or in groups, if
required, by inserting suitable imaginary devices. It may help to visualise
such devices as follows:

for moments — a frictionless hinge acting in one plane;

for shear — a frictionless slide acting in one direction;

for axial forces — a frictionless slide acting in one direction;
for torsion — a frictionless swivel acting in one plane.

Generally, such imaginary devices may be referred to as ‘““Releases’’ or
more particularly, say, a shear release or, say, “X7? release’’, which means
that the release, when inserted, reduces to zero the internal force or moment
X7 . When internal restraints, such as X7, are replaced by equal and opposite
external forces or moments X7 applied to the members on either side of the
release, the external force or moment X7 is referred to as a Re-action or Support
Re-action when such forces or moments are considered as supports to a loaded
member or body. When considered as unknown external forces or moments
acting on members of the frame, when made statically determinate, by the
insertion of a sufficient number of releases, such forces or moments are referred
to as “unknowns’’.

A body or member, as in Fig. 2, is generally isolated from a frame by two
cuts, such as at sections ¢ and %, or one cut, if the frame member is a cantilever,
or one cut, if the frame is an isolated ring. The member between the cuts
may, in principle, have any shape. The following conditions of equilibrium
must apply:

1. The sum of the resultant forces acting on the member in each of the three
directions of reference must be zero.

2. The sum of the moments of the resultant forces acting on the member in
each of the three directions of reference about each axis of reference must
be zero (moments, either as loads or support reactions, being regarded as
equal and opposite forces appropriately spaced apart).

The above conditions provide six equations for each isolated member,
referred to as the ““Equations of Equilibrium’’.

When all loads and reactions are in one plane, such as O Y X, condition (1)
gives two equations and condition (2) only one equation, making a total of
three equations.
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Degree of Statical Indeterminacy

. A space frame may be divided by cuts into isolated members, such as in
Fig. 2, their positions being selected as shown in the typical frame Fig. 3, so
that each restraint which may act on the isolated member is released. Where
several members intersect at a joint, a cut in one of the members can be
omitted, since it is already isolated by the other cuts adjacent to the joint.

It is assumed that each support is joined by an infinitely short connection
to the frame. When the supports are rigidly fixed in position and direction,
a cut in the support connection releases six possible restraints, as in typical
section K (Fig. 2). In any space frame, let:

M be the number of isolated members;

C' Dbe the number of cuts required to isolate the members;

R be the number of real releases to be constructed in the
frame or to exist at the supports.

Real releases, as distinct from imaginary releases, are devices such as
hinges or sliding bearings, which may be included in the construction of the
frame in order actually to release restraints which would otherwise act under
load. Freedom of a support to move is equivalent to inserting one or more
real releases according to the number of degrees of freedom. Thus, the releases,
to be assumed as ‘‘Real Releases’ in the support connection, must release
the same restraints which movement of the support would release, if the
connection were fully continuous.

For each isolated member, there are six equations of equilibrium, and for
each cut six unknowns. A frame is therefore 6 C —6 M — R times statically
indeterminate, the degree of statical indeterminacy being the number of
restraints remaining unknown after solving the equations of equilibrium.

Applying the above expression to the frame in Fig. 3:

Fig. 3. Typical Space Frame.

[}

I

[}

|

i

[}

|

1

* | -+

/\('AY\\\
%‘(g{\& 2 Wkﬁg

T

m Fig. 4. Typical Space Frame.



A GENERAL ANALYSIS OF ELASTO-PLASTIC THREE-DIMENSIONAL FRAMES 7

C=20, M=12, R=0.

The frame is therefore 48 times statically indeterminate.
In the frame in Fig. 4, which is in one plane,

C=4, M=3 R=0.

The frame is therefore three times statically indeterminate.

Equations of Deformation

At a sufficient number of sections, such as K, in a frame which is 6C—6 M — R
times statically indeterminate, 6 C —6 M — R imaginary releases are inserted,
so that the frame as a whole and in regard to each member remains stable,
under any external load, i.e. so that the equations of equilibrium can be
satisfied. The frame is then statically determinate, since each isolated member
is acted on by only six unknown restraints, and there are six equations of
equilibrium for each member. It is then possible to divide the loads acting
on the frame into (6 C'—6 M — R)+ 1 cases, as follows:

1. The external load. ,
2. Remaining cases. Each of the selected unknowns, such as X7, assumed

equal to unity, acting in opposite directions on the members on either
side of the imaginary releases.

The distribution of the internal restraints, caused by external load and
each unknown such as X7} =1, along each member can then be found and
plotted along each member. From such diagrams, values of U} and f3* can
be found. Then, at any section K, to satisfy the condition of continuity in the
frame, the resultant deformation due to all loads, unknowns and other influ-
ences in the direction of each restraint, is zero. Thus, the following general
equation is established:

U+ 2 X iy +a =0. (1)

Evaluation of U’:l and fl':l"

The internal restraints, such as w}, together with X% =1, form a balanced
system of forces acting on certain members of the frame. If another influence,
such as the external load or the unknown X% =1, acts and deforms the frame,
the virtual work done by the internal restraints w’ is equal to the virtual
work done by X% =1, which = 1.z,

Each short length ds of the frame is deformed w?e,ds when X?=1 acts.
The virtual work, therefore, done over a short length ds by w} is w?e, w}ds.

Then ‘ W= (wle,wlds (2)
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deformations being integrated over any part of the frame where restraints
due to X7 and X7 act and internal virtual work is done. The value of Uy, can
be evaluated in a similar way only substituting restraints due to external load
for those due to X7=1.

Eq. (2) may be applied with respect to each kind of unknown, e.g. when
X7 and X7 are moments referring to w} as

. M Ee M
M, and wPas M,. Since T = WZME"'
Where M = bending moment, I = moment of inertia of section, e = strain

at compression edge, Z = Young’s modulus of material, n = depth of neutral

axis _
= [ Mg, .

Solution of Deformation Equations

Elastic case (1). All deformations equal to, or less than, L, value ( Fig. 1 )

From the general Eq. (1) 6C —6M — R linear equations are developed
having 6 C'—6 M — R unknowns and may be solved by relaxation or matrix
methods. There is considerable scope for selecting releases which result in
well-conditioned equations (ref. 1).

Ultvmate or Plastic Case (2). All deformations at release sections lie between the
values Ly and L, (Fig. 1) '

It is generally possible to design and analyse a frame by a process of trial
and adjustment applied to the X values until Eq. (1) is satisfied at all
release sections. The X values are no longer unknown, since they are equal
to X p (vef. Fig. 1) the plastic restraint value for the assumed section. There
is, however, an unknown plastic deformation at each restraint section in a
direction opposed to each restraint which may be referred to as af.

Eq. (1) then becomes:

Up+ X Xpfrp+ap = —aj. (4)

Where X7 indicates a known plastic value of X7 and a} =ap +a}. All values
on the left of the equation are, therefore, known and it is only necessary to
check the value of af for the following reasons (1) unless the sign of a} has
the same sign as X%, members may not remain elastic as assumed between
the release sections.

(2) The value of a2 must be less than a permissible value related to the
deformation range between the limits L; and L,, and the spread of the plastic
zone along the member.
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In designing frames, it is generally not difficult to adjust X values to
satisfy (1), if they are moments and axial forces particularly if release sections
have been assumed at critical sections having maximum stress under elastic
conditions. Rules for determining permissible values of af are best established
from tests (refs. 2 and 3).

It may sometimes be necessary to reduce sections of members locally over
a short length including a release section to satisfy requirement (1). For the
practical purpose of obtaining uniformity, stronger sections may be used in
the actual structure without risk of weakening the frame seriously, due to
increasing deformations at other sections. The spread of plasticity which
actually occurs beyond the release sections does not invalidate the equations,
since such plastic deformation does not alter in sign when spread, and can be
assumed to be concentrated at the release section.

Reinforced Concrete Frames — Notation

E = secant value of concrete or steel at limit L, .

I — “Moment of Inertia’’ of “Equivalent Section’.

M, = bending moment ordinate on member due to X, =1 acting.

M, = bending moment ordinate on member due to X, =1 acting.

N, = axial force on member due to N;=1 acting.

N, = axial force on member due to Ny =1 acting.

A = area of web of beam assumed to resist shear.

S = total shear acting on a section.

S, = shear acting at a section due to X, =1 acting.

S, = shear acting at a section due to X, =1 acting.

L, = “equivalent plastic length’” on one side of a release section.

¢, = deformation per unit length between limits L; and L, at a release
section. ‘

L,e,= total deformation between limits L; and L, on one side of a release
section, assumed to be concentrated at the section.

I’ = distance from a release section to the point at which deformations
just reach limit L, .

d . = depth of section.

e, = strain of concrete between L, and L,.

n,d = depth of neutral axis for bending strains at L,.

e; = difference of strains across a section with the neutral axis outside the
section at limit L, in bending.
. n
Evaluation of [} e, ) ds

The distribution of w; and w; may be indicated in diagrams as shown in
Fig. 5. It is important to use such diagrams in order to ensure that w; and wy
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cause deformations of the same category in the same member. The indices
cannot always be used as a guide as on plane frames subject to bending only.
The value of ¢, at each section of the frame will depend on the category of

J 8 A A A MMM Bending on tension side
XN Srear (Tension direction)
ZZZ/ oA Torsion (Tension direction)
e Axlal compression
P T e Tension
8 Vi Y ¢ 4 7
£-8 A-A B-8 /
O = Momen! release g X
© ¢ I = orsion release Key
a) o) c)
a)
7 2 J 4 5 6 7
ozy ozy
Load M (0xY) S (0xv) M(ozx s(%%) 7 N
¢
a | T E BaEEEE
X J
14 ¢ 1] V2272 z b p==== e
P W} b hmc D O : %
y 7 N :
é& J é a o’

- %ﬂmmj

7137 3

X/=1 %
bﬂmﬂmmbc 0(: ,/\\
X =1 V3 ¢ UNEI back //§ front
’ aééd a d &
C
C
y | S | e
Ke=1 ) ¢ R — 2D
N 7 d
A4 | 04,
A ) b fronl ¢
» % % [
a Ci

Fig. 5. Table for Integration and Specific Deformation Categories.
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the w terms, i.e. whether they are bending, shear, torsion or direct stress. The
combined effect of these influences operating between 0 and limit L, over
each part of the frame must also be considered in regard to the effect of
cracking on the stiffness of the section.

Bending

The following assumptions are made (ref. Fig. 6):

The distribution of strain across a section is linear.

The distribution of compressive stress in the concrete is parabolic.
Concrete resists no tension.

Limit L, is reached when, according to the neutral axis position, either
the steel begins to yield or the concrete develops a strain of 0.002. An
arbitrarily selected yield point must be assumed in the case of cold worked
and high tensile steels (ref. Fig. 7).

N

When the X values have been assumed, the resultant stresses at any
section due to combined bending and axial force and their distribution may
be found, and hence the resultant neutral axis and compression zone defined.
For the purpose of determining the I value of the section, an equivalent area

Ly =~ L;
npd _parabola"|
a
RS, ———
Strain Stress L, Stress Ly
1.
1
/7,0’ E ’1/ ,"
L.-="1, [fparabols
/II
,/Z,
/
/
L
i Strain 1,7 Stress

Fig. 6. Strain and Stress Distributions.
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may then be drawn (see Fig. 8a). The full line is derived from the dotted line
by increasing each horizontal ordinate in the ratio a%;—; (Fig. 8c). The equi-

valent steel area is found by multiplying the actual area by m—1, where

__ E for steel at L .
M = e onorete at Lo The equivalent area may then be used as though
the section were homogeneous in order to find the value of I for bending in
each of the directions of reference. ¢, then =ELI with the appropriate value of
in each direction of reference and E the secant value for concrete at L,.

M, Mkd (5)

Then for bendlng fwPe,wlds —f

The value of E I is approximately constant form 0 to L,, because £ reduces
as the stress distribution bulges. The value at L; may therefore be assumed
for ultimate deformation calculations.

Axial Force

The cross section of a member may be assumed to be the equivalent area:Al
(Fig. 8a).
Stress e

L, L2 s AF ultimate
""""""""""" e strain from fesls

[}
1
ll 3
[ [Arbitrary yield point
!/ from ftest
1
!
]

Strain Strain
0 0002 00035 Steel
Concrete

Fig. 7. Stress-Strain Relations.
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Y
> / a Jip
™ /
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/ paraboley” [/
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N Y\ «©zzz
. \ \ Bpuivalent
% J  Steel rea
y/ “ \ 4
R \ X
Cross section Strain distribution Stress distribution
a , ) ¢)

Fig. 8. Typical Combined Bending and Compression Stress Distributions.
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N Ny

T4, ds. (6)

Then fwyenw;gds=f
E being the secant value for concrete at L.

Shear

Since the tensile strength of concrete is uncertain and failure by tension
is brittle, unreinforced sections should be avoided. When shear reinforcement
is provided, it is assumed to act as the diagonal or vertical members of a
series of pin-jointed frames (Fig. 9b) and c¢)), in which diagonal compression

i —-d 7/0) 9 .
i -“ﬂ 45°
SE — € © @/Z

5)
///01 ®
c)

©/

3)

Nt

Fig. 9. Typical Truss Systems for Shear Resistance.

is resisted by concrete members. It is assumed that the frames can be super-
imposed regardless of their relative stiffness, and that the concrete in diagonal
compression governs the stiffness in shear. When the correct amount of shear
reinforcement is provided, so that at L, the maximum diagonal compression
in the concrete just reaches ultimate unit strength, the average diagonal strain

in the concrete, assuming a parabolic distribution, will be about TESZ—E’"’ where
E is the secant value for concrete at L; when the strain is 0.002. The shear
deformation per unit length will then be about 1_52A§E
48,8
Then _fwienwkd,S:J‘ 3AEk' (7)
Torsion

As in shear, the strength of concrete in tension being uncertain, failure
being brittle, unreinforced sections for torsion should be avoided, except
where pre-stressing provides an adequate margin of safety. Information
regarding the strength and deformability of such sections, and the influence
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of bending compression and pre-stress is given in reference 4. L; and L, must
be assumed to coincide, since plastic deformation is negligible.

When reinforced diagonally to resist torsion tension, a rectangular beam
may be treated as a box section (ref. Fig. 9a)) with each side designed to
resist the combined shear due to torsion and normal shear. The shear defor-

Tﬁij—E as in the case of
normal shear, but where S is the shear due to torsion only. It is assumed that
when each side is designed for resultant shear under combined shear and
torsion, that resultant shear will develop at limit L, for the combined shears
in each face. Test results are required to show to what extent modification of
this assumption may be required for sections of small width in relation to
depth. The virtual work done by forces w; when forces w, act, may be con-

sidered for each side of the box section separately, and the total obtained by
4Sz Sk
3AE
S, being shear due to torsion only. The value of af due to torsion is the sum

of all such integrals worked out for each side of the box section.

mation in each side per unit length will then be about

addition, so that [w;e,w,ds= for each side of the box section, S; and

Permissible Values of af
(see Note below on research)

Generally, permissible values of

ap = L,e,. (8)

Values of L, (see Fig. 10)

In the case of bending or combined bending and compression, the value
of L, on one side of the critical section is about L’/2 or d/2, whichever is the
greater. In the plastic zone, shear is not fully effective, and the stress at the
critical section tends to spread and be uniform on either side at a distance of

iﬁ’e/ease section

€p

Ly curvature
-

L, curvature.-

/ curvature

~—— Distance —

Fig. 10. Typical Curvature Distribution along Member.
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about d/2. In compression, an approximately semi-circular plastic zone
develops, and in tension ductility in the steel cracking and bond slip of the
concrete cause local truss action.

The value of L’ depends on the gradient of the actual load/deformation
curve between L; and L,, and may be assumed as a safe value to be equal
to the length over which the bending compressive stress in the concrete
reduces by 109, according to the idealised assumptions.

In the case of shear or torsion, 2 L, may be assumed =d.

Values of €,

€p

Bending. Cracked sections ¢, =— within safe limits (see Fig. 6).
Uncracked sections ep=% (approximately).

Safe limiting values, e,=¢;=0.0015 unbound concrete,
e,=¢3=0.01  well-bound concrete.
Value of n,d is based on linear strain distribution and concrete
strain at L, =0.0035.

Axial Force. e,=e, safe limiting value = 0.0015.

4 ..
Shear ©=34F% safe limit value of £ = secant value for concrete at
7,.. 0:0035—0.002
1 0.002
Torsion €, as for shear on each side of box section.

Influence of Pre-stress

When a frame has been made statically indeterminate by the insertion of
releases, the pre-stressing forces act in the same way as external loads applied
to the sections. The influence of pre-stressing may therefore be investigated
by introducing the pre-stress forces as additional external loads. This has
been discussed and the influence of cracking in reference 2.

Future Research

Many load/deformation curves in regard to bending in one plane have
now been obtained from tests, and safe-limiting values of parameters governing
L, and L, deduced. More work, however, requires to be done in regard to
bending in two planes and in regard to shear and torsion, in order to base
safe limiting values of all the parameters governing deformations on a wide
variety of tests. The influence of combined shear and bending on ultimate
strength and deformation also requires careful study. The parameter values
given above may be recommended in regard to bending in one plane, but for
other cases should be considered to be approximate only.
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Examples Indicating Procedure of Calculating a? Values

Many examples have already been published (see refs. 2 and 3) for plane
frames ignoring the influence on deformation of shear torsion and axial force.
In practice, it is usually sufficiently accurate to consider only the influence
of deformation due to bending. The following example indicates how defor-
mation due to all possible causes may be considered. It also shows how,
very complex the rigorous treatment of a space frame may become, and the
desirability of being able to show that deformations, except those due to
bending, may be neglected.

Fig. 5a) shows a portal frame with fixed supports carrying loads P, and
P, on a bracket. In considering deformations in the frame, the moments and
shears transmitted from the bracket may be assumed to be applied directly to
the frame at the joint. The frame is six times statically indeterminate. Releases
may be inserted as shown at (b). Axes of reference and a key to the distribution
diagrams of w values are shown at (c). At (d) column (1) gives the loads and
X values assumed to act on the statically determinate frame. Thus X2 indi-
cates an external moment equal to the plastic moment of resistance applied
at section a in the plane O Y X (ref. Fig. 2a)). Other X values are similarly
indexed. The direction and section of application of the moments is indicated
in the diagrams by arrows. The direction of view of the frame diagrams is as
shown at (a), Columns (2) to (7) show diagrammatically the distribution of w
values due to influences of column (1) along the various members, separated
into moments and shears, according to their plane of action, and into torsions
(7T') and axial forces (N). Each member can only resist moments or shear in
one of two planes. Thus, the horizontal rows show under categories the dis-
tributions of w values due to each X or load. In any member the internal
stresses due to any X = 1 acting, can only do virtual work when other influences
produce in that member stresses and deformations of the same category.
Thus, [w;w,ds can only have a value when both w, and w, act on the same
member and occur in the same vertical column. The « values caused by load
or X influences can easily be indicated numerically on the diagrams in any
particular case, and the [w,w,ds values evaluated, using the appropriate
value of ¢ for each member according to the category of the w values. By
plotting the w diagrams as indicated in the key, the sign of [w; w,ds may be
determined, the value being positive when w, and w; are not opposed and
negative when opposed. Values of a? (Eq. (3)) can then be checked for each
release and adjustments made to X values, if necessary, to ensure that a? is
positive in value and not excessive. X values should not be given (when
making adjustments) negative values, but the diagrams should be re-drawn,
showing the correct direction of action.



A GENERAL ANALYSIS OF ELASTO-PLASTIC THREE-DIMENSIONAL FRAMES 17

References

1. HenDERsON, J. C. de C. and Morice, P. B., “The Analysis of Engineering Struc-
tures”. Fiftieth Anniversary Conference. Institution of Structural Engineers, October,
1958.

2. Baker, A. L. L., “The Ultimate-load Theory Applied to the Design of Reinforced
and Prestressed Concrete Frames”. Concrete Publications Ltd., 1956.

3. BakEer, A. L. L., “Tragberechnung von Stahlbeton- und Spannbeton-Rahmentrag-
werken”’. Bauplanung — Bautechnik, Heft 11, 1957.

4. Cowan, H. J., “Experiments on the Strength of Reinforced and Prestressed Concrete
Beams and of Concrete-encased Steel Joists in Combined Bending and Torsion’.
Magazine of Concrete Research No. 19, March, 1955.

5. GARTNER, R., “Statically Indeterminate Structures’’. Concrete Publications Ltd.,
London, 1944.

Summary

The paper uses the Principle of Virtual Work to extend the application
of the Miiller-Breslau general elastic equations as used for elastic frames to
three-dimensional elasto-plastic frames, with allowance for deformations and
restraints due to bending and shear in two planes, torsion and axial forces.
The elasto-plastic characteristics of members of the frame are idealised and
assumed to be within safe limits defined by a load-deformation relation, which
is linear from O up to a limit L, and then constant in restraint up to an ultimate
deformation limit L,. L, is defined by the yield characteristics, and L, by the
ultimate strength and deformation characteristics of critical sections. Frames
must be designed to satisfy the general equations, so that deformations under
assumed ultimate load are between limits L, and L, at selected critical sec-
tions. The assumption of ultimate strength at these sections enables the extent
of cracking to be known at all sections and hence the stiffness. It is recognised
that only occasionally is it likely to be necessary to allow for deformations
due to shear and axial forces, but it is important to know, or to be able to
determine, when these influences cannot be ignored without loss of security.
For instance, the influence of restraint from secondary beams through torsion
on the shear in the main beams may at times be critical.

Résumé

L’auteur étend, a 1’aide du principe des travaux virtuels, ’application des
équations générales de l’élasticité de Miiller-Breslau, telles qu’elles ont été
établies pour les cadres porteurs élastiques, aux cadres tridimensionnels
élasto-plastiques; les déformations et les contraintes résultant de la flexion et
des efforts tranchants dans deux plans sont prises en considération, ainsi que
la torsion et les efforts normaux. Pour les caractéristiques élasto-plastiques
des éléments des cadres, il est admis théoriquement qu’elles sont définies dans
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des limites sGires par une relation contrainte-allongement, qui présente une
allure linéaire de 0 4 une valeur limite L,, pour passer ensuite sous contrainte
constante a la limite d’allongement & la rupture L,. L; est donné par la limite
élastique et L, par les valeurs de la contrainte de rupture et de 1’allongement
a la rupture des sections critiques. Le projet du cadre doit satisfaire a ces
équations générales dans des conditions telles que les déformations sous la
charge de rupture admise, dans des sections critiques choisies, restent com-
prises entre les limites L, et L,. Le fait d’admettre la charge de rupture dans
ces sections permet de déterminer 'importance de la formation des fissures
dans toutes les sections et par suite également la rigidité. Il est reconnu qu’il
n’est qu’occasionnellement nécessaire de faire intervenir les déformations
résultant des efforts tranchants et des efforts normaux; il n’est pas moins
essentiel de savoir, ou d’étre en mesure de déterminer quand il n’est plus
possible de négliger ces influences sans nuir a la sécurité. A titre d’exemple,
P’auteur indique que l'influence qu’exerce ’encastrement des poutres secon-
daires sur les contraintes de cisaillement des poutres principales, par suite de
la torsion, est souvent dangereuse.

Zusammenfassung

In dieser Veroffentlichung wird mit Hilfe des Prinzips der virtuellen
Arbeit die Anwendung der allgemeinen Elastizitatsgleichungen von Miiller-
Breslau, wie sie fiir elastische Rahmentragwerke aufgestellt wurden, auf drei-
dimensionale, elasto-plastische Rahmen erreicht, wobei die Forménderungen
und die Spannungen infolge Biegung und Querkrifte in zwei Ebenen, Torsion
und Normalkrifte, beriicksichtigt werden. Fiir die elasto-plastischen Eigen-
schaften der Rahmenglieder wird idealisierend angenommen, daf sie in siche-
ren Grenzen durch eine Spannungs-Dehnungsbeziehung definiert sind, welche
von 0 bis zu einem Grenzwert L, linear verlauft, um dann bei konstanter
Spannung bis zur Bruchdehnungsgrenze L, weiterzugehen. L; wird durch den
FlieBzustand und L, durch die Bruchlast- und Bruchdehnungswerte der kri-
tischen Querschnitte gegeben. Der Entwurf des Rahmens muf} die allgemeinen
Gleichungen so weit erfiillen, dafl die Forméinderungen unter angenommener
Bruchlast in besonderen kritischen Schnitten zwischen den Grenzen L, und L,
bleiben. Die Annahme der Bruchlast in diesen Querschnitten gestattet das Aus-
mal der Rissebildung in allen Schnitten und damit auch die Steifigkeit zu
erfassen. DaB} es nur gelegentlich notwendig werden kann die Forménderungen
infolge Quer- und Normalkrifte zu beriicksichtigen, ist anerkannt, aber es ist
immerhin wichtig, zu wissen oder bestimmen zu kénnen, wann diese Einfliisse
ohne Sicherheitseinbule nicht mehr vernachlissigt werden kénnen. Zum
Beispiel kann der Einflul der Einspannung von sekundiren Trigern durch
Torsionswirkung auf die Schubspannung in Haupttrigern manchmal gefihr-

lich werden.
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