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Elasto-Plastic Analysis of an Interconnected Beam System

Calcul elasto-plastique d'une grille de poutres

Elasto-plastische Untersuchung eines Trägerrostes

D. V. REDDY A. W. HENDRY
Ph. D., M.S., D.I.C., B.E. D.Sc, Ph.D., M.I.C.E., M.I. Struct. E.

Department of Building Science, University of Liverpool, Liverpool, England

Introduction

This paper describes a method for estimating the ultimate load of torsion-
less interconnected beam Systems. As structures of this kind may develop
large deflections long before they can be considered to be reduced to a mechanism

by the formation of plastic hinges the Solution of the problem requires
the study of elasto-plastic behaviour.

Stüssi and Kollbrunner [1] pointed out the limitations of the simple
plastic theory using the idealized moment-curvature relationship. By varying
the relative stiffness of the centre and end spans of a three span continuous
beam loaded in the central span they obtained a wide ränge of collapse load
values for the same type of structure. This problem was further investigated
by Hodge [2] who expressed the deflection at the load point as a function of
ratio of the end span to central span and thus demonstrated quantitatively
the effect of deflection on collapse load. Similarly, Hendry [3] tested
rectangular portals subjected to central vertical loads and showed that keeping
the span constant and varying the height of the frame did not affect the
calculated collapse load values but led to greatly increased deflections at the
ultimate load end in the elasto-plastic ränge.

The exact nature of the problem has been very well described by Heyman
[4] who discussed plastic behaviour from the viewpoint of the three basic
design criteria — I. strength, II. stiffness and III. stability. Simple plastic
design methods are concerned only with the strength of the structure and
do not attempt to consider collapse in terms of the deflection. The mechanism
condition which replaces the requirements of compatibility in elastic theory
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requires that sufficient plastic hinges must form to turn the structure or part
of it into a mechanism of one or more degrees of freedom but does not specify
deflection limits. However it tacitly assumes unaltered geometry which is

only valid for small deflections.

During recent years considerable interest has been evinced in the analysis
of grid frameworks. The method of Guyon [5] and Massonnet [6] and that
of Hendry and Jaeger [7] offer easy Solutions to the elastic analysis of
interconnected beam Systems. Heyman [8,9] applied the Mechanism Solutions
developed by Symonds and Neal [10] to the analysis of grids supported on
all four sides and subjected to uniform loading. The loads calculated were
confirmed by experiment and were within the upper and lower bound limits
defined by Greenberg and Prager [11]. Heyman also indicated an iterative
procedure for improving the estimate of the collapse load. Haythornthwaite
[12] studied the elasto-plastic behaviour of certain simple grids. However,
this work was limited to three longitudinal grids with loading symmetrical
about the longitudinal axis. Haythornthwaite suggested a modified mechanism

method for Computing the ultimate load wherein any hinge which
depended for its formation on the torsional rigidity of a supporting member
was replaced by a mechanical hinge. The work of Heyman and Haythornthwaite

was in a way limited by the difficulties of elastic analysis. The chief
advantage of the method of Hendry and Jaeger is the presentation of results
in a parametric form. The distribution of moments and deflections in the
various members is determined by distribution factors which are expressed as
functions of the flexural and torsional parameters. Apart from the effective
starting point if provides for the elasto-plastic analysis the Hendry-Jaeger
method permits the consideration of the concept of "Moment ratios" which
is of importance in elasto-plastic behaviour.

The method of elasto-plastic analysis developed in this paper will be as
follows: the elastic Solution is first worked out and the cross-section where the
moment reaches the yield value for a load Py is determined. A plastic hinge
is assumed to have formed at the section and any subsequent increase in
loading A Py is assumed to cause the hinge to undergo rotation while the
bending moment remains constant at the value of the fully plastic moment at
the section. Elsewhere the structure will behave elastically. Thus the subsequent

increments of bending moment and deflection will be the same as those
which would be caused by loads A Py applied to the frame if it were behaving
elastically but with a mechanical hinge at the section where the plastic hinge
had formed.

The general approach in the analysis will be to express the incremental
loading as a function of an arbitrary displacement at the load point. Since
deflection is the limiting factor in the determination of the ultimate load for
a grid the moments and deflections are expressed as functions of the
incremental deflections A and the flexural stiffness parameter a. Each new hinge re-
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duces the degree of indeterminacy by one and transforms the grid into a new
structure which will be termed the "Reduced Grid". For a given value of the
flexural parameter a the Solutions of the so called "Reduced Grids" can be
combined to establish the elasto-plastic behaviour under a certain loading system.

The concept of the "plastic hinge" as used in this analysis has caused
some controversy. However, an assessment of the extensive analytical and
experimental research work on steel structures carried out both in Europe
and the U.S.A. indicates that the assumptions of the simple plastic hinge are
sufficiently accurate for practical purposes in the present context. The
significance of the assumptions made in the simple plastic theory has sometimes
been misconstrued. Kuzmanovic [13] has criticised the phenomenon of
redistribution of moments in an indeterminate structure and suggested that
the tests at Cambridge by Baker were not convincing in showing moment
redistribution because the differences in the moment values were small.
However, a test by Yang, Beedle and Johnston [14] on a fixed-ended beam
with third point loading showed clear evidence of redistribution of moments
although the centre moment is only one half of the moment at the fixed ends.
Of course a plastic design which takes into account strain hardening would be
more desirable but the complexity of the problem would be considerable. It
was Aristotle who pointed out the merit of resting satisfied with that degree
of precision which the nature of the subject admits and not seeking exactness
where only an approximate Solution is possible.

Analysis of a Four Girder Grid

The method of analysis will be illustrated by considering a No-Torsion
grid with four longitudinals and three transversals loaded as shown in Fig. 1.

The possible modes of elasto-plastic behaviour are shown in Fig. 2. The particular

"mode" of elasto-plastic behaviour is completely determined in terms
of the flexural parameter a and there is no need for trial and error. Since the
method of analysis is the same for different modes it is sufficient to analyse
the load-deflection behaviour of one mode only.

The analysis will now be described for a particular mode but with alternative

hinge positions in Stage I.

Stage I
Deflection Y^B Ax. Load at 2 B P±.

Two methods of analysis can be used for this stage

a) Hendry-Jaeger Method [15]. By replacing the transverse members of a

grid by a uniformly spread medium and applying harmonic analysis to the
loading distribution coefficients for the various longitudinals are determined.
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The moments and deflections in the various members of the frame are found
using these distribution coefficients which are functions of a flexural stiffness

parameter. This parameter

_ 12/iynEIz

emerges from the harmonic analysis Solution. As the method has been described
in the reference cited it will not be necessary to discuss it in detail here.

a. 0

f
7

LL

Fig. 1.

b) Slope-deflection Method. The force system is shown in Fig. 3. The
compatibility conditions for the deflections of transversals and longitudinals are
easily expressed in terms of the moment-deflection relationships of the
transversals derived by Covington [16] from the well known Slope-Deflection
equations.

The transverse moments M'2Bt M'SBt M'2At M'ZAf are treated as unknowns.
Considering sagging moments to be positive the moment deflection relationships

for the transversals may be expressed as follows (Fig. 4 a).

2i^(972'B-673'B + 74'B-471'B),M' —

M> 2EI2(97,'B-67,'B+71'B-474'B),

M'tAr

M'3At

2EI
5 h*

2 EI,

2(97^-67^ + 7^-47^),

5Ä2
^ (97,^-67^ + 7^-47^).

(la)

(lb)

(lc)

(ld)

For longitudinals (1), (3) and (4) the deflections at transversal positions (A)
and (B) are as follows:
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Fig. 2. Modes of Elasto-Plastic Behaviour.
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Where WB and WA refer to the loads at sixth points A and centres B of any
particular longitudinal.

For longitudinal (2) the deflection Y£A is expressed as a function of Y%B A1

by means of the simple Moment-area relationships.

*»a-21Ai ±86 EIL\ h h )' (3)

ZM- 2AT'Ul
YjA Yza

ZH:

Fig. 3. Force System.

Sign Convention:

Sagging Moments 1

Downward Deflections > Positive.
Downward Forces

9
„ h

©

I*?

a)O

y, W

Fig. 4.

Substituting the values of Y^B, Y%B, Y^A and Y^A in Eqs. (1) and introducing oc

which is the same as that used by Hendry and Jaeger, the following equations
are obtained:

(-+ 270

-130

+ 130

116,640

M^Bt

MsAt.

TT4 «/

+ 169 (-„
-286

"-11,664
EILhA1 + 7,776

P - 5,616

- 3,744

-260

+ 260

116,640
TT4

+ 172

l)

+ 338

-572

+ 206

324-
116,640 1\

TT* *)_

(4)



M'2B

mB
1

M'*BT> MpT
MpL

mBT
M'*B

MpT
MpL

M',B
MpT
MpL

M'iB
1
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Solution of the above equations gives values of M'2 Bt M'3 Bt M'2 At and Mf3 At
as functions of A1 and a. The longitudinal moments and deflections are easily
obtained from the force system and are tabulated in the Appendix.

The position of the first hinge is now determined as follows:

M'
a) If JB > 1 then the hinge occurs at 2 B,

M' M vand if -^77— > ^ J° hinge in transversal (B) at 2 B,

hinges in both longitudinal (2) and transversal
(B) at 2B,

hinge in longitudinal at 2 B.

b) If *B < 1 then the first hinge occurs at 1 B and the following
mib condition must be considered

MiB,>Mpr
M[B < MpL'

M'
c) If 2fB 1 then hinges occur simultaneously at 15 and 2 B.

When the position of the first hinge is located the value of the deflection is
formed and therefore all the moment and deflection values are easily calculated.

Moments evaluated from the Hendry-Jaeger method can be used in the
investigation of "Moment Inequalities". The Hendry-Jaeger Solutions express
moments as functions of distribution coefficients which are themselves functions

of ol. The distribution coefficients have been presented in the form of
tables and curves which enables easy application to design problems.

Stage II
Deflection y2B 82, Load P2 — Px.

The following alternatives have to be considered:

a) hinge in longitudinal at 2 B,
b) hinge in transversal at 2 B.

Case a. The equations are formed by the same method as that in Stage I. The
only difference is in the equation of the elastic line for longitudinal (2) for
now the longitudinal moment m'2A 0.

v" -1S- l P (2 m*A* m*J*\ (5)
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'(- 270-
116,640 1

9

+ 270

-130

+ 130

(- 594

+ 351

116,640 1\

260

+ 260

+

+ 338

-572

+ 206

m,

m

m

2BT

'S Bji
/f
2At

-m3Ar_

EILhS2

«• (—^
(6)

¦286

-11,664
+ 7,776

- 3,888

+ 2,592

The Solutions are tabulated in the Appendix as before.
The following "Moment Inequalities" have to be examined

1V1ZBIf

consider

If

consider

MlB

M.

>1

MIBil>M1t
3B

m;b<1
M"miB
miBt>mVt
M'{b<MVl

The incremental moment values m2BT, m1B and mlB are functions of the
unknown incremental deflection S2 and the above inequalities are of the form

which can be expressed as

r + s82

>kr-p

where p, q, r, s and Je are known values.

Case b. The transverse moment m'2BT 0 and the number of unknowns is
therefore reduced by one.

The deflection y2A is of the same form as that in Stage I and is as follows:

„ _ 13, 1_

y~h jt)'
The moment-deflection relationship of transversal B is expressed as (Fig. 4 b)

SEI
™ZBT 2 h2H2yU-(ylB+ylB)1- (8)
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The moment-deflection relationships for transversal A are similar to those in
Stage I, viz. (lc), (ld).

The equations are as follows:

¦(---^)
+ 169

-286

188

+ 52

116,640 1

9

-130

+ 206

+ 172 (---^).
m

m

3 JBjx

trr
2AT

EIL83h
P

+ 1296'

-5616
+ 3744

(9)

No moment inequalities need to be considered at this stage since it is
obvious that the next hinge occurs at 2 B in the longitudinal.

Stage III
Deflection y"2B 83, Load P3 — P2.

The moment-deflection relationships for transversals are similar in form
to those in Stage IIb.

The equations are as follows:

135
31,104 1

$
+ 169

-286

188-

+ 52

116,640 ;)

+ 172 324

-130

+ 206

116,64-3.TT4

m3 Bj>
nr
2AT

\-m3ATJ

m
EILS3h

P

+ 1296'

-3888
+ 2592

(10)

The moment inequality to be considered is

M'U>
M%B <

MpT
Mvl'

Stage IV
Deflection y%B S4, Load Pi-Pz,

m,2B 0.
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The moment-deflection equations are

m3\ ^f [2 yTs ~ (y?B + Vii)].

SEIA>
2 h2

[2 sfo-Gfo+*&)]•
The equations are

31,104 1

135

65

-130

218 31.104 1

l3BT

l:ijf

EIL8th
P

+ 1296

+ 432

(11)

(12)

(13)

The collapse load is P„ P4 and the deflection at the load point is

Ai Zl1 + §2 + 83 + S4.

Experimental Confirmation

The analytical Solutions were verified by application to a Model grid which
was tested to collapse (Fig. 5). The properties of the grid tested were as follows:

1 36" h 12"

Longitudinals: H sections 2" X 1" X 2.5 lbs.

From control tests EIL 121.25 x IO5 lb. in.2

MpL 23,300 in. lbs.

III
a aa;

N

/
:

Fig. 5. Test Set-up.
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Transversals: H sections 11" Xf" X 1.5 lbs.

From control tests EIT 53 X IO5 lb. in.2

MpT 7680 in. lbs.

a 3.26

The grid was instrumented with both deflection and resistanee strain
gauges. The strain gauge readings confirmed the sequence of hinges obtained
from the analytical procedure. However it was difficult to define the exact
limits of the successive stages from the experimental data. The load deflection
relationship for the loaded longitudinal is given in Fig. 6 and those for the
unloaded longitudinals are given in Fig. 7. The values obtained from the
analytical Solution are shown in dotted lines.

P^H50
P?*S730

5000

P2 t/520

3860
&

tieasurea values
Calculated values

DeFlection {LBS)
0.350.05 0.15 OM 0.55

Fig. 6. Load-Deflection Curves at Mid-span of Longitudinal (2).

s &i
~P,=5130 ¦¦1«s—

:zF
P9-M20n^Y

iOOO

3860

i\XM
I I

o—o Measured values

— Calculated values
HSNt-ISO

<=S • <5S

.0

1 DeFlection (INS)

LÜT_JJ 0.05 0.15 025

Fig. 7. Load-Deflection Curves at Mid-spans of Longitudinals (1) and (3).
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Discussion

It will be observed from the foregoing that there is reasonable agreement
between the experimental results and the values obtained from the analytical
method outlined in the paper. A mechanism Solution of the grid gives the
value of the collapse load as

GMpL 5MpT
l + 2 h ' (14)

5500 lbs.

This value corresponds to the value of P4 5450 lbs. obtained from elasto-
plastic analysis. A deflection value of 0.630in., which is indeed large for a

span of 36", is necessary for this load to be reached. If a permissible central
displacement is specified the corresponding load can be calculated and it will
not be necessary to calculate all the stages of the elasto-plastic analysis.

Space does not permit discussion of other analytical and experimental
work on different types of grids with various loading conditions including
multiple loads. When the degree of indeterminacy becomes greater suitable
approximations can be made to simplify the analysis. For example, a member
with a plastic hinge can be neglected in the succeeding stages of the elasto-
plastic behaviour of the structure. The degree of accuracy of the analytical
values thus obtained can be improved by an iteration procedure similar to
that described by Reddy and Hendry [17]. The stage by stage method of
elasto-plastic analysis can be easily programmed for an electronic Computer
by a procedure similar to that used by Lightfoot and Sawko [18]

Notation

EIL, EIT Flexural rigidity of longitudinal and transversal res¬

pectively.
h Spacing of longitudinals.
I Span of grid.
M'i}-, M'lj, M"j, Ml'l Moments in longitudinal i at its intersection with

transversal j when a number of hinges corresponding

to the number of primes are formed.
ra"y, my, m% Incremental moments (My - M'tj), (M^ -M'!}),

(M%-M%) respectively.
M'- M"> M"'- M"" }ijt> ijT> ^ijT> ijt [ __ Moments and Incremental moments in transversal j
™>iiT > mijT > müT J

at intersection i j.
MpL Füll plastic moment of longitudinal.
MpT Füll plastic moment of transversal.
n Number of transversals.
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-ML -*2 j ^3 9 -* 4

y/ y» yw y//

^ij ' ^/i'j ' ^'j

AX,A2,AZ,A±

<>2> §3' ^4

Concentrated load at 2 jB for first, second, third and
fourth hinges respectively.
Ultimate load.
Deflections at i j when a number of hinges corresponding
to the number of primes are formed.
Incremental deflections (Y{. - Y^), {Yfi - Y£), (Y/j" - Ytf).

Flexural parameter —-(-) T.
tt4 \h] E 1L

Displacements at load point at the formation of first,
second, third and fourth hinges.
Incremental deflections at load point (A2 — Ax), (A3~A2),
(A± — A.d) respectively.

Appendix

Stage I
EIlAxLoad: Px Tq t, 1

(0.1776a4 + 34.50a3 + 700.4a2 + 3023a + 1622)
i6 U\

where Di 0.001110a4 + 0.2281 a3 + 5.849a2 + 38.83a+ 33.79
TP T A

Longitudinal Moments: M'tj L 1
(a a4 + b a3 + c a2 + d a + e)

Table I-A

K
Coefficients

a b c d e

Ka
Kb
Ka
Kb
Ka
Kb
Ka
Kb

-0.005928
-0.01775

0.004450
0.01332

-0.008890
-0.07092

0.001481
0.004437

1.347
3.254
0.6640
2.737
0.3812
2.016
0.4828
0.6186

26.68
55.92

9.330
70.19
18.02
41.99
4.330
6.962

53.84
108.7
108.4
466.0
125.6
183.2
-35.90
-72.48

135.2
405.5

Transverse Moments; KjT E*3L£h(aoc* + baz + Coc* + d«)

Table I-B

Mk
Coefficients

a b c d

Kbt
Kbt
Kat
Kat

0.07107
0.01774

-0.000031
0.000020

11.44
0.8145
2.362
2.489

175.5
15.80
72.34
18.08

329.2
-219.4

158.5
-105.7
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Deflections: Fi, -=^- (a a4 + b a3 + c a2 + d ol + e)

Table I-G

y'
Coefficients

a b c d e

^Lt 0.0007127 0.1402 2.541 5.014

2-4

0.001475 0.2857 5.107 10.04

0.0005342 0.1052 2.556 17.83 16.27

x 2B 0.001110 0.2281 5.849 38.83 33.79

YL 0.0003563 0.07010 1.834 11.70

Y'x 32? 0.0007403 0.1519 3.724 23.42

Y'x \A 0.0001777 0.03506 0.3537 -3.342

YLb 0.0003700 0.06690 0.6918 -6.692

Stage II, Case a)

Load: P2-Pi PIl8z (0.1435a4 + 25.77a3 + 413.8a2+ 1073a)
l*Di

JE II §2,
Longitudinal Moments: m^ -jäTj~ (a a4 + 6 a3 + c a2 + d a)

Table II-A

mij
Coefficients

a b c d

<A
m{B
m2A
m2B

mSB
<A
™Ib

0.002727
0.02051
0.007189

0
0.001356
0.01026
0.000686
0.005122

0.9774
3.428
0.8325

0

-0.3027
2.601
0.6401
0.4133

21.19
53.73
-2.162

0
9.702

45.68
5.747
4.026

45.71
100.6
-32.51

0
110.7
246.7
-30.48
-67.05

Transverse Moments: m^T
EIL$2h

Z3 Di
Table II-B

(aa4 + 6a3 + Ca2 + da)

miJT

Coefficients

a 6 c d

m2BT
m3BT
m2AT
m3AT

0.1066
0.02661

-0.03695
-0.009191

14.70
-1.361
-1.486

4.521

195.2
-10.32

29.55
39.64

329.2
-219.4

109.7
-73.16
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Deflections: y"j -yy-(aa4 + 6a3 + ca2 + d a + e)

Table II-C

vh
Coefficients

a b c d e

V'lB
yf2A

vIb
vIa
vIb
VIa
vIb

0.000670
0.001480
0.000503
0.001110
0.000335
0.000740
0.000168
0.000370

0.1314
0.2765
0.09144
0.2281
0.06105
0.1518
0.03518
0.06235

2.278
4.660
1.910
5.849
1.628
3.500
0.3246
0.5802

4.487
9.058

12.34
38.83
35.36
67.36
-2.992
-6.039

11.26
33.79

Stage II, Case b)

Load: P3-P2 EILh,
Z3 D2 (4.992 a3 + 294.2 a2 +2436 a+ 2198)

where D2 0.04451 a3 + 3.586a2 + 38.93a + 45.78
Tp J S

Longitudinal Moments: m'L 7. — (a a3 + b oc2 + c oc + d)
J iz U2

Table II-D

Coefficients
mij

a b c d

<A 0.3395 16.34 35.79
m'[B
m2A -0.08809

<A
-8.305 92.11 183.1

m2B 0.5341 43.03 467.2 549.4
mSA -0.009982 16.63 114.5

m3B 0.4093 12.03 176.4

<A 0.1747 -0.1456 -39.34
<B -0.03493 2.153 -70.31

77T T 5 ~L

Transverse Moments: m'L — —1JJT.2 - (aa3 + 6a2 + ca)jit i* jj2
Table II-E

m".
Coefficients

a b c

m2BT
m3BT
m2AT
mlAT

0
-1.258

2.037
1.677

0
13.79
98.03
-7.771

0

-185.8
214.7

-143.2
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Deflections: y".
S2

V D2

Table II-F

(aa3 + 6a2 + Ca + d)

rr
Coefficients

y%j
a b c d

y'iA 0.02200 1.059 2.320
y'lß 0.0409 1.967 4.308

rr
y2A 0.0165 1.307 17.57 22.04
yf2B 0.04451 3.586 38.93 45.78

VIa 0.0110 1.504 9.140
y'sB 0.0260 1.704 17.79

VIa 0.0055 0.05511 -3.410
rr

y*B 0.007444 0.1315 -6.743

Load: P3-P2

Stage III
EIl, S3

l3D2
(2.558 a3 + 89.11 a2 + 450.1a)

WI 8
Longitudinal Moments: w!'L n— (a oc2 + b a + c)

Table III-A

<i
Coefficients

a b c

rrr
m1B

rrr
m2B
<A
<B
<A

rrr
m±B

0.2627

-0.1118
0

-0.1382
0.4908
0.2005

-0.1140

9.966

<A
-12.37

0
9.691

14.66
0.1379

-2.345

24.78

-44.05
0

88.78
150.7
-32.00
-62.97

Transverse Moments: m'Z
13T

EIL83h
l3D2

(aa2 + 6a + c)

Table III-B

<ir
Coefficients

a b c

nr
m2Br

rrr
m2AT
<AT

0

-1.887
1.576
2.146

0

-14.90
59.80

8.277

0

-185.8
148.7
-99.11
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Deflections :

Table III-C

(aa3 + 6a2 + Ca + cZ)

Vit
Coefficients

a b c d

rrr
Via
y'iB
y*A
y%B

y'sA

y'iB
y"U

0.0170
0.03162
0.01277
0.04451
0.008228
0.02413
0.004256
0.003747

0.6459
1.200
0.9662
3.5860
0.7660
1.488

-0.0600
-0.1443

1.606
2.982

12.16
38.93

7.474
14.70
-2.934
-5.859

15.26
45.78

Stage IV

Load: P4-P3 E*t^A (2.074a2 + 50.58 a)
l6 Dz

where Dz 0.1360a2+ 6.631 a+ 10.20a
TP T £

Longitudinal Moments: m"^ 73 n— (aa2 + &a)
Z3D3

Ta&Ze IV-A

Coefficients

V1B

Ha
rt2B
<A
rv3B
Yt""Ha

0
0

0.2880
0

-0.2306
1.036

0

0

-1.533
0

11.49
39.08

— A- m!
ZA
im
SB

Transverse Moments: w!'J, EIL^h
l*D3 (aa2 + 6a)

Table IV-B

«%,
Coefficients

a b

<BT
<BT
<AT

0

-3.802
0

2.592

0

-41.38
0

-13.79



316 D. V. REDDY - A. W. HENDRY

Deflections: y"![ =£-(aa2 + 6a + c)

Table IV-C

y'i'i
Coefficients

a b c

y'?A

y'Zi

0
0

0.0506

0
0

2.182

0
0

3.399

y"ü 0.1360 6.631 10.20

y'zA 0.02027 1.128
y'zB 0.0544 2.278

v*a
tm

y±B

— ^ysA
i».""
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Summary

A method of elasto-plastic analysis is presented for the load-deflection
behaviour of an interconnected beam system without torsion. Owing to the
importance of the stiffness criterion in plastic theory the general approach has
been to express incremental loading as a function of the displacement at the
load point.

The possible modes of elasto-plastic behaviour are indicated and Moment
ratios examined to deeide on the particular mode. A step-by-step procedure
is used: as soon as a plastic hinge is formed it is replaced by a mechanical
hinge and the resulting transformed structure is analysed for a further incre-
ment in deflection at the load point. The moments and deflections are obtained
as functions of the incremental deflections and a flexural stiffness parameter.

The analytical Solutions are confirmed by a satisfactory measure of agreement

between the theoretical values and experimental results on a model grid
framework tested to collapse.

Resume

Les auteurs exposent dans cet article une methode de calcul elasto-plastique,
qui a pour but l'etude de la relation existant entre la grandeur de la charge
appliquee et la deformation d'une grille de poutres, en negligeant l'influence
de la torsion. Conformement ä l'influence du critere de rigidite dans la theorie
de la plasticite, le procede general consiste ä exprimer l'augmentation de la
charge en fonetion du deplacement de son point d'application.

Les auteurs enumerent les differentes possibilites du comportement elasto-
plastique et ils indiquent pour chaque forme le rapport correspondant des
moments. II s'agit d'un procede par cheminement: aussitöt qu'une articulation
plastique est formee, eile est remplacee par une articulation mecanique et Ton
calcule l'augmentation du deplacement du point d'application de la charge
pour ce nouveau Systeme. Les moments et les fleches peuvent etre determines
en fonetion de l'augmentation du deplacement et d'un parametre de rigidite.
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Les Solutions analytiques concordent de fa§on satisfaisante avec les resultats

obtenus par des essais, effectues sur un modele de grille de poutres, qui
a ete charge jusqu'ä la rupture.

Zusammenfassung

Für das Belastungs-Durchbiegungsverhalten eines Trägerrostes ohne
Torsionseinfluß wird eine elasto-plastische Untersuchungsmethode dargestellt.
Entsprechend der Wichtigkeit des Steifigkeitskriteriums in der Plastizitäts-
theorie bestand das allgemeine Vorgehen darin, einen Belastungszuwachs als
Funktion der Verschiebung des belasteten Punktes auszudrücken.

Die verschiedenen Formen des elasto-plastischen Verhaltens werden
angegeben und die Verhältnisse der Momente, die zu einer bestimmten Form
führen, werden untersucht. Das Verfahren wird schrittweise durchgeführt:
sobald sich ein Fließgelenk ausgebildet hat, wird es durch ein mechanisches
Gelenk ersetzt, und das damit geschaffene neue Tragsystem wird für einen
weiteren Durchbiegungszuwachs im belasteten Punkt untersucht. Die Momente
und Durchbiegungen lassen sich als Funktionen des Durchbiegungszuwachses
und eines Steifigkeitsparameters bestimmen.

Die analytischen Lösungen werden bestätigt durch eine befriedigende
Übereinstimmung zwischen den theoretischen Werten und den
versuchstechnischen Resultaten an einem Trägerrostmodell, das bis zum Bruch untersucht

wurde.
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