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Elasto-Plastic Analysis of an Interconnected Beam System
Calcul élasto-plastique d’une grille de poutres

Elasto-plastische Untersuchung eines Trdgerrostes

D. V. REDDY A. W. HENDRY
Ph. D.,M.S., D.1.C., B.E. D.Sec., Ph.D., M.1.C.E., M.I. Struct. E.
Department of Building Science, University of Liverpool, Liverpool, England

Introduction

This paper describes a method for estimating the ultimate load of torsion-
less interconnected beam systems. As structures of this kind may develop
large deflections long before they can be considered to be reduced to a mecha-
nism by the formation of plastic hinges the solution of the problem requires
the study of elasto-plastic behaviour.

Stt'sst and KoLLBRUNNER [1] pointed out the limitations of the simple
plastic theory using the idealized moment-curvature relationship. By varying
the relative stiffness of the centre and end spans of a three span continuous
beam loaded in the central span they obtained a wide range of collapse load
values for the same type of structure. This problem was further investigated
by HopgE [2] who expressed the deflection at the load point as a function of
ratio of the end span to central span and thus demonstrated quantitatively
the effect of deflection on collapse load. Similarly, HENDRY [3] tested rec-
tangular portals subjected to central vertical loads and showed that keeping
the span constant and varying the height of the frame did not affect the
calculated collapse load values but led to greatly increased deflections at the
ultimate load end in the elasto-plastic range.

The exact nature of the problem has been very well described by HEYMAN
[4] who discussed plastic behaviour from the viewpoint of the three basic
design criteria — I. strength, II. stiffness and III. stability. Simple plastic
design methods are concerned only with the strength of the structure and
do not attempt to consider collapse in terms of the deflection. The mechanism
condition which replaces the requirements of compatibility in elastic theory
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requires that sufficient plastic hinges must form to turn the structure or part
of it into a mechanism of one or more degrees of freedom but does not specify
deflection limits. However it tacitly assumes unaltered geometry which is
only valid for small deflections.

During recent years considerable interest has been evinced in the analysis
of grid frameworks. The method of Guvox [5] and Massox~NET [6] and that
of HENDRY and JAEGER [7] offer easy solutions to the elastic analysis of inter-
connected beam systems. Heymax [8,9] applied the Mechanism solutions
developed by Symonps and NEAL [10] to the analysis of grids supported on
all four sides and subjected to uniform loading. The loads calculated were
confirmed by experiment and were within the upper and lower bound limits
defined by GREENBERG and PRAGER [11]. HEYMAN also indicated an iterative
procedure for improving the estimate of the collapse load. HAYTHORNTHWAITE
[12] studied the elasto-plastic behaviour of certain simple grids. However,
this work was limited to three longitudinal grids with loading symmetrical
about the longitudinal axis. HAYTHORNTHWAITE suggested a modified mecha-
nism method for computing the ultimate load wherein any hinge which
depended for its formation on the torsional rigidity of a supporting member
was replaced by a mechanical hinge. The work of HEyman and HAYTHORN-
THWAITE was in a way limited by the difficulties of elastic analysis. The chief
advantage of the method of HENDRY and JAEGER is the presentation of results
in a parametric form. The distribution of moments and deflections in the
various members is determined by distribution factors which are expressed as
functions of the flexural and torsional parameters. Apart from the effective
starting point if provides for the elasto-plastic analysis the HENDRY-JAEGER
method permits the consideration of the concept of ‘“Moment ratios’’ which
is of importance in elasto-plastic behaviour.

The method of elasto-plastic analysis developed in this paper will be as
follows: the elastic solution is first worked out and the cross-section where the
moment reaches the yield value for a load F, is determined. A plastic hinge
is assumed to have formed at the section and any subsequent increase in
loading 4 P, is assumed to cause the hinge to undergo rotation while the
bending moment remains constant at the value of the fully plastic moment at
the section. Elsewhere the structure will behave elastically. Thus the subse-
quent increments of bending moment and deflection will be the same as those
which would be caused by loads 4 P, applied to the frame if it were behaving
elastically but with a mechanical hinge at the section where the plastic hinge
had formed.

The general approach in the analysis will be to express the incremental
loading as a function of an arbitrary displacement at the load point. Since
deflection is the limiting factor in the determination of the ultimate load for
a grid the moments and deflections are expressed as functions of the incre-
mental deflections 4 and the flexural stiffness parameter «. Each new hinge re-
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duces the degree of indeterminacy by one and transforms the grid into a new
structure which will be termed the “Reduced Grid’’. For a given value of the
flexural parameter « the solutions of the so called “Reduced Grids’’ can be com-
bined to establish the elasto-plastic behaviour under a certain loading system.

The concept of the “plastic hinge’” as used in this analysis has caused
some controversy. However, an assessment of the extensive analytical and
experimental research work on steel structures carried out both in Hurope:
and the U.S.A. indicates that the assumptions of the simple plastic hinge are
sufficiently accurate for practical purposes in the present context. The signi-
ficance of the assumptions made in the simple plastic theory has sometimes
been misconstrued. Kuzmanovié [13] has criticised the phenomenon of
redistribution of moments in an indeterminate structure and suggested that
the tests at Cambridge by Baker were not convincing in showing moment
redistribution because the differences in the moment values were small.
However, a test by Yang, BEEDLE and JoHNSTON [14] on a fixed-ended beam
with third point loading showed clear evidence of redistribution of moments
although the centre moment is only one half of the moment at the fixed ends.
Of course a plastic design which takes into account strain hardening would be
more desirable but the complexity of the problem would be considerable. It
was Aristotle who pointed out the merit of resting satisfied with that degree
of precision which the nature of the subject admits and not seeking exactness
where only an approximate solution is possible.

Analysis of a Four Girder Grid

The method of analysis will be illustrated by considering a No-Torsion
grid with four longitudinals and three transversals loaded as shown in Fig. 1.
The possible modes of elasto-plastic behaviour are shown in Fig. 2. The parti-
cular “mode’’ of elasto-plastic behaviour is completely determined in terms
of the flexural parameter « and there is no need for trial and error. Since the
method of analysis is the same for different modes it is sufficient to analyse
the load-deflection behaviour of one mode only.

The analysis will now be described for a particular mode but with alterna-
tive hinge positions in Stage I.

Stage I

Deflection Y, = 4,. Load at 2B = P,.

Two methods of analysis can be used for this stage

a) Hendry-Jaeger Method [15]. By replacing the transverse members of a
grid by a uniformly spread medium and applying harmonic analysis to the
loading distribution coefficients for the various longitudinals are determined.
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The moments and deflections in the various members of the frame are found
using these distribution coefficients which are functions of a flexural stiffness
parameter. This parameter

ko

_12/1\3nE 1y
= \r) EI,

emerges from the harmonic analysis solution. As the method has been described
in the reference cited it will not be necessary to discuss it in detail here.
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////
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b) Slope-deflection Method. The force system is shown in Fig. 3. The com-
patibility conditions for the deflections of transversals and longitudinals are
easily expressed in terms of the moment-deflection relationships of the trans-
versals derived by CovineTON [16] from the well known Slope-Deflection
equations.

The transverse moments M, , M3, M, 4., My 4, are treated as unknowns.
Considering sagging moments to be positive the moment deflection relation-
ships for the transversals may be expressed as follows (Fig. 4a).

Fig. 1.

M;p, = 25Eh€T (Y g —6Y z+Y/ g —4Y/p), (La)
e = ST (O~ 6 g+ Vi~ 4 Fp), (1b)
My, =2 B0, 6 ¥4 7)), (1)
g = ST 9K — 6 X+ ¥~ 4 ¥, ). (1)

For longitudinals (1), (3) and (4) the deflections at transversal positions (A4)
and (B) are as follows:
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Where W, and W, refer to the loads at sixth points A and centres B of any
particular longitudinal.

For longitudinal (2) the deflection Y, , is expressed as a function of ¥, =4,
by means of the simple Moment-area relationships.

13 1 B ! !
roo_ 7 _ 2 24y 3 Ay . ¢
Y4 27A1 486EIL( h h ) (3)

v 7 9 9

@ Y./ /4

/4
f, Y i, 3
oz 202, ) o o2,
& Vi '
7 i o }
Y743 .&9 l =
7 T @ ©) Q@
. 4 | |
WY 3 VA & )
% /fz | 2

Fig. 3. Force System. Fig. 4.

Sign Convention:

Sagging Moments
Downward Deflections ; Positive.
Downward Forces

Substituting the values of Y 5, Y55, Y54 and Y3, in Eqgs. (1) and introducing «
which is the same as that used by HENDRY and JAEGER, the following equations

are obtained:

(——270——26’340 1) + 3561 — 260 + 338
o o
116,640 1
+2170 (—594— i O—) +260 — 572
kg (e 4
~130 +169 (—188—11—6’5—4—91) +206
v 04
116,640 1
+130 — 286 +172 (—324— nknine
_ T 4
By T 11,664 "
ipr | _BI hd, |+ 7,776
3 Ap — 3,744

).
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Solution of the above equations gives values of My 5 , M3 ., My 4, and Mj 4,
as functions of 4, and «. The longitudinal moments and deflections are easily
obtained from the force system and are tabulated in the Appendix.

The position of the first hinge is now determined as follows:

a) If 22 >1 then the hinge occurs at 2 B,
M; g
and if Mz,lil > M py hinge in transversal (B) at 2 B,
s Mpg
2Br — leép T hinges in both longitudinal (2) and transversal
2B Pr  (B)at 2B,
2 By M pr hinge in longitudinal at 2 B.
sz Mpr
b) If JJZ?B <1 then the first hinge occurs at 1 B and the following
1B condition must be considered
M, Br > M pT.
Mip = Mp,
c) If %?B =1 then hinges occur simultaneously at 1 B and 2 B.
1B

When the position of the first hinge is located the value of the deflection is
formed and therefore all the moment and deflection values are easily calculated.

Moments evaluated from the HENDRY-JAEGER method can be used in the
investigation of “Moment Inequalities’’. The HENDRY-JAEGER solutions express
moments as functions of distribution coefficients which are themselves func-
tions of «. The distribution coefficients have been presented in the form of
tables and curves which enables easy application to design problems.

Stage 11

Deflection y; 5 = 8,, Load = P,—P,.
The following alternatives have to be considered:
a) hinge in longitudinal at 2 B,

b) hinge in transversal at 2 B.

Case a. The equations are formed by the same method as that in Stage I. The
only difference is in the equation of the elastic line for longitudinal (2) for
now the longitudinal moment m; , =0.

” 1 1 3 mgAT mgAT
=58, - 5
Vo4 = 3% T (G BT, (2 3 no) (3)
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(—270 116,640 l) +351 — 260 +338
w o
+270 (— 594 — 110:040 1) +260 — 572
™ x
116,640 1
~130 +169 (—188———4— —) +206
ko o
116,640 1
+130 — 286 +172 (—324— a _)
| X aj |
"M, — 11,664 )
|55, | _ BI RS, + 7,776
My 4y B ~ 3,888 |
M3 4y

+ 2,592
The solutions are tabulated in the Appendix as before.
The following ‘“Moment Inequalities’” have to be examined

1. If 3B 1
Mi g
. M” M
consider 20r > Pz
Msp = Mpy
2. If 25 =1
Mig
n
consider 25> M Py

The incremental moment values m;z,, m;z and mj; are functions of the
unknown incremental deflection 6, and the above inequalities are of the form

p+q82>k
r+88, <’

which can be expressed as 8,2 i

2 < q —-k‘s s
where p, q, r, s and k are known values.

Case b. The transverse moment m,z =0 and the number of unknowns is
therefore reduced by one.

The deflection y; 4, is of the same form as that in Stage I and is as follows:

.13 1 B
?/2A=§‘8 (2

_ mé’AT . mgAT (7)
72 486 E I, h h
The moment-deflection relationship of transversal B is expressed as (Fig. 4b)
, _3EI,

3Br = " 972 [2ysp— (Wip+Y2p)]-

(8)
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The moment-deflection relationships for transversal 4 are similar to those in

Stage I, viz. (1¢), (1d).
The equations are as follows:

B 1,104 1
(-135—3’4 —) + 52 —130
a0 o
116,640 1
+ 169 (—188———@;—0~) +206
) v [0 4
11 40 1
— 286 + 172 (—324-—-@4?_0_)
“mY ., T + 12967
el B ) S5 W)
dap | =5 | —5616 (9)
_mg’AT_ _+ 3744

No moment inequalities need to be considered at this stage since it is
obvious that the next hinge occurs at 2 B in the longitudinal.

Stage 111

mo__
2B —

Deflection ¥ Load =

3

P,—P,.

The moment-deflection relationships for transversals are similar in form

to those in Stage ITb.
The equations are as follows:

3 31,104 1
(—135— . —) + 52 —130
ks (04
116,640 1
+ 169 (~188———§’4——) +206
T o
116,64
— 286 +172 (—324—#1)
my g, | 4+ 1296 |
" EI,8:h
o | = —;—3 — 3888 (. (10)
mg/AT _+ 2592
The moment inequality to be considered is
247> MPT.
M3, = M p,,
Stage IV
Deflection y3% =3, Load = P,—F;,
My, = My, = 0, myy = 0.
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The moment-deflection equations are

nn 3 E I 3 nr " mn
My g, :izhgT[zysy—(?]41f+?/31;)]: (11)
nr 3 E I mne n nn .
M3 4y = _'72}&221[2?/3;1_'(y4‘~l+y2;1):l' (12)
The equations are
1,104 1 i 1 5
(_ 135 — _3_7’;4__ ;) —150 i | o s |129
LC%a :
- 8 . 113
_ 218 31,104 1 B 1 -
— 65 S TRt i _mwT— £5 o

The collapse load is P,=P, and the deflection at the load point is
A, =4,+8,+3;+39,.

Experimental Confirmation

The analytical solutions were verified by application to a Model grid which
was tested to collapse (Fig. 5). The properties of the grid tested were as follows:

1 = 86" = 12"

Longitudinals: H sections 2" x 1" x 2.5 lbs.
From control tests EI;=121.25x10%1b.in.?

M p; = 23,300 in. 1bs.

Fig. 5. Test Set-up.
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Transversals: H sections 11" x 3" x 1.5 lbs.
From control tests E 1, =53x10°%]b.in.?
M pp = 7680 in. lbs.
o« = 3.26

The grid was instrumented with both deflection and resistance strain
gauges. The strain gauge readings confirmed the sequence of hinges obtained
from the analytical procedure. However it was difficult to define the exact
limits of the successive stages from the experimental data. The load deflection
relationship for the loaded longitudinal is given in Fig. 6 and those for the
unloaded longitudinals are given in Fig. 7. The values obtained from the
analytical solution are shown in dotted lines.

7000 T T
F_,_,-o—
6000 . M/_o/-‘
= w B
soop- 22| — ——;;7%—’0—{:_ s i N i
| pew| || T - | |
Wl | p 4,; | ! |
£ = 3860 — F |
f ’//’V | | |
000 @ 4l i |
X // EI " o—o Measured valyes |
N V7 3 3 ’:; ——Calculsted values
2000 2 S S, S |
p r IL T*Q "‘i. I ) j
V/ ql N < %l
| | e
w4 } i r g
Vi s
| | Deflection (LBS)| < ™
005 o5 | oz 035 | o 255 l

7700 i 2
om0 8 O Q-
]
]
| _ X580 N I A BV NN ERN 1" i HP
I 7 577 s I S W 7 O g |
5007 7 =TT T
L — |
|
s ot e £ g e e I Epe— —"7 1 4 i
B =3860 I Al !
/ ‘ l !
o v l[ -
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Fig. 7. Load-Deflection Curves at Mid-spans of Longitudinals (1) and (3).
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Discussion

It will be observed from the foregoing that there is reasonable agreement
between the experimental results and the values obtained from the analytical
method outlined in the paper. A mechanism solution of the grid gives the

value of the collapse load as
_6Mp; 5 Mpy
e N (14)
= 5500 lbs.

This value corresponds to the value of P,=54501lbs. obtained from elasto-
plastic analysis. A deflection value of 0.630in., which is indeed large for a
span of 36", is necessary for this load to be reached. If a permissible central
displacement is specified the corresponding load can be calculated and it will
not be necessary to calculate all the stages of the elasto-plastic analysis.

Space does not permit discussion of other analytical and experimental
work on different types of grids with various loading conditions including
multiple loads. When the degree of indeterminacy becomes greater suitable
approximations can be made to simplify the analysis. For example, a member
with a plastic hinge can be neglected in the succeeding stages of the elasto-
plastic behaviour of the structure. The degree of accuracy of the analytical
values thus obtained can be improved by an iteration procedure similar to
that described by REppy and HeExbrY [17]. The stage by stage method of
elasto-plastic analysis can be easily programmed for an electronic computer
by a procedure similar to that used by LicaTrooT and Sawko [18]

Notation
EI;,EI, = Flexural rigidity of longitudinal and transversal res-
pectively.
h = Spacing of longitudinals.
l = Span of grid.
M, M3, M7, MY = Moments in longitudinal ¢ at its intersection with

transversal § when a number of hinges correspond-

ing to the number of primes are formed.

mi;, mg;, mg; = Incremental moments (M;;—M;;), (M —M),
(M3] — M7;) respectively.

= Moments and Incremental moments in transversal j
at intersection 77.

Mop;, = Tull plastic moment of longitudinal.

M pp Full plastic moment of transversal.

n = Number of transversals.

ijp 2 7 djpo
” nr "
mih ,m

’ " 17/ m
M M iir s M 5jp }
gz > Mijp
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P.,FR, P, P = Concentrated load at 2 B for first, second, third and
fourth hinges respectively.
P, = Ultimate load.
Y, Y5, Y, Y = Deflections at ¢§ when a number of hinges corresponding
to the number of primes are formed.
Yis Yiss Yis = Incremental deflections (Y;; —Y;7), (Y] —Y;7), (Y7 —Y7).
12(I\3n E I
= Flexural parameter = — (5| ——=%.
* P p (h) EI,
4,,4,, 44,4, = Displacements at load point at the formation of first,
second, third and fourth hinges.
3y, 83, 8, = Incremental deflections at load point (4,—4,), (43— 4,),
(4,—4,) respectively.
Appendix
Stage 1
Load: P, = E;TIE—A—I (0.1776 % + 34.50 03 + 700.4 2 4 3023 x + 1622)
1
where D; = 0.00111004+ 0.2281 o3+ 5.849 2+ 38.83 « + 33.79
Longitudinal Moments: sz]. = E—;TI;# (@ct+bod+ca2+date)
1
Table I-A
, Coefficients
M;;
a b c d e
M{A —-0.005928 1.347 26.68 53.84
Mg ~0.01775 3.254 55.92 108.7
M, , 0.004450 0.6640 9.330 108.4 135.2
My 0.01332 2.737 70.19 466.0 405.5
M, ~0.008890 0.3812 18.02 125.6
Mgy —-0.07092 2.016 41.99 183.2
M}, 0.001481 0.4828 4.330 ~35.90
M, 0.004437 0.6186 6.962 ~72.48
’ EIpdih
Transverse Moments: M, = ~BD, (@ot+bad+ca+da)
Table I-B
, Coefficients
M.
vr a b c d
Mg, 0.07107 11.44 175.5 329.2
Mg 0.01774 0.8145 15.80 ~219.4
éAT -0.000031 2.362 72.34 158.5
éAT 0.000020 2.489 18.08 -105.7
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Deflections: Yéj = —%—l—(aa4+ba3+6a2+da+e)
1
Table 1-C
, Coefficients
Y
a b c d e
Y4 0.0007127 0.1402 2.541 5.014
1B 0.001475 0.2857 5.107 10.04
o4 0.0005342 0.1052 2.556 17.83 16.27
B 0.001110 0.2281 5.849 38.83 33.79
:;A 0.0003563 0.07010 1.834 11.70
Yig 0.0007403 0.1519 3.724 23.42
Yai4 0.0001777 0.03506 0.3537 -3.342
iR 0.0003700 0.06690 0.6918 —6.692
Stage 11, Case a)
PILd
Load: P;— Py = 5D (0.1435 4+ 25.77 23+ 413.8 42+ 1073 )
1
. . 4 EIL 82
: o= ~———— (A o o o
Longitudinal Moments: m;; = 2D, (aoct+bad+ca+da)
Table 11-A

, Coefficients
M ..

4 a b c d
mi’A 0.002727 0.9774 21.19 45.71
mig 0.02051 3.428 53.73 100.6
my 4 0.007189 0.8325 -2.162 -32.51
My p 0 0 0 0
’mgA 0.001356 -0.3027 9.702 110.7
m{i’B 0.01026 2.601 ' 45.68 246.7
my 4 0.000686 0.6401 5.747 -30.48
myp 0.005122 0.4133 4.026 -67.05

Transverse Moments: m;;, = Elp%h (aot+bod+co?+da)
iir 13D,
Table I11-B
” Coefficients

s a 6 c d
mé’BT 0.1066 14.70 195.2 329.2
Mg, 0.02661 ~1.361 ~10.32 -219.4
m'z'AT -0.03695 —1.486 29.55 109.7
My 4 ~0.009191 4.521 39.64 ~73.16
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Deflections: y;; = % (@t +bod+ca2+d a+te)
1
Table I1I-C
, Coefficients
y..
“ a b c d o
i
v, 0.000670 0.1314 2.278 4.487
Y s 0.001480 0.2765 4.660 9.058
ygA 0.000503 0.09144 1.910 12.34 11.26
Yo 0.001110 0.2281 5.849 | 38.83 33.79
ygA 0.000335 0.06105 1.628 35.36
ygB 0.000740 0.1518 3.500 67.36
yZA 0.000168 0.03518 0.3246 -2.992
Yap 0.000370 0.06235 0.5802 —6.039
Stage 11, Case b)
Load: P3—Ps = E;fgas (4.992 03 + 294.2 42 + 2436 &+ 2198)
2
where Dy = 0.04451 o3+ 3.586 42+ 38.93 o + 45.78
Longitudinal Moments: m;; = _EEI%_SE (@l +ba?+ca+d)
2
Table 1I-D
, Coefficients
Y a b , c ' d
m . 0.3395 16.34 | 35.79 |
V4 n
mipg =Mig
mgA —0.08809 -8.305 92.11 183.1
m'z'B 0.5341 43.03 467.2 549.4
m:',)’A —0.009982 16.63 114.5
mgB 0.4093 12.03 176.4
mZA 0.1747 -0.1456 -39.34
mZB -0.03493 2.153 -70.31
”n E IL 82 h
Transverse Moments: My = “BDs (aad3+ba+ca)
Table 1I-E
, Coefficients
Misp
a b c
mé’BT 0 0 0
mgBT -1.258 13.79 -185.8
%AT 2.037 98.03 214.7
34y 1.677 -7.771 -143.2
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Deflections: y;; = B2 (@aed+ba2+ca+d)
Do
Table II-F
” Coefficients
Y a b c d
yi’A 0.02200 1.059 2.320
Y 0.0409 1.967 4.308
yr 0.0165 1.307 17.57 22.04
yig 0.04451 3.586 38.93 45.78
yr 0.0110 1.504 9.140
Y 0.0260 1.704 17.79
yZA 0.0055 0.05511 -3.410
Y 0.007444 0.1315 ~6.743
Stage 111
Load: P3— Py = %1%?(2.5580(34—89.11 o2+ 450.1 «)
Longitudinal Moments: m; = @gﬁ% (@a2+ba+tc)
12 Dy
Table ITI-A
. Coefficients
my
Y a | b c
;,A 0.2627 ‘ 9.966 24.78
g =,
v ~0.1118 ~12.37 ~44.05
- 0 0 0
” ~0.1382 9.691 88.78
mg’B 0.4908 14.66 150.7
Z,A 0.2005 0.1379 -32.00
e ~0.1140 -2.345 ~62.97
Transverse Moments: m;; = E_’l%)b‘_:_h (@2 +ba+c)
Table ITI-B
W Coefficients
iz a b c
mg’BT 0 0 0
" —~1.887 ~14.90 ~185.8
my 4 1.576 59.80 148.7
mlsﬂAT 2.146 8.277 -99.11




ELASTO-PLASTIC ANALYSIS OF AN INTERCONNECTED BEAM SYSTEM

315

Deflections: y;; = B3 (@oB+ba+ca+d)
D,
Table III-C
" Coefficients
Yos
" a b c i d
y7, 0.0170 0.6459 1.606 {
y'l”B 0.03162 1.200 2.982 |
y'z”A 0.01277 0.9662 12.16 ] 15.26
Yo 0.04451 3.5860 38.93 g 45.78
v, 0.008228 0.7660 7.474 }
yg’B 0.02413 1.488 14.70 4
yZ’A 0.004256 —0.0600 -2.934 |
yZ’B 0.003747 —0.1443 -~5.859 )
Stage 1V
Load: Py— Py = 2128 (2.074 02 + 50.58 )
3 Ds3
where D3 = 0.136002+6.631 2+ 10.20«
Longitudinal Moments: my; = El,?;[ 554 (@o?+ba)
Table IV-A
. Coefficients
M s
“ a b
mi"y 0 0
mig 0 0
my'y 0.2880 -1.533
myp 0 0
miy'y ~0.2306 11.49
mih, 1.036 39.08
myp = —3m3p

m EILSLIh'

Transverse Moments: my;, = D, (ao2+ba)
Table IV-B
” Coefficients
m
v a b
z 0 0
o -3.802 ~41.38
Mgy 0 0
my, 2.592 ~13.79
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nr

Deflections: y;; = g—i(aa2+bo¢+c)
3

Table IV -C

” Coefficients
g

Y a b c
y']”;‘ 0 0 0
y{% 0 0 0
yg';i 0.0506 2.182 3.399
yl 0.1360 6.631 10.20
Yo 0.02027 1.128
Yy 0.0544 2.278
Yap =—%Y3p
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Summary

A method of elasto-plastic analysis is presented for the load-deflection
behaviour of an interconnected beam system without torsion. Owing to the
importance of the stiffness criterion in plastic theory the general approach has
been to express incremental loading as a function of the displacement at the
load point.

The possible modes of elasto-plastic behaviour are indicated and Moment
ratios examined to decide on the particular mode. A step-by-step procedure
is used: as soon as a plastic hinge is formed it is replaced by a mechanical
hinge and the resulting transformed structure is analysed for a further incre-
ment in deflection at the load point. The moments and deflections are obtained
as functions of the incremental deflections and a flexural stiffness parameter.

The analytical solutions are confirmed by a satisfactory measure of agree-
ment between the theoretical values and experimental results on a model grid
framework tested to collapse.

Résumé

Les auteurs exposent dans cet article une méthode de calcul élasto-plastique,
qui a pour but 1’étude de la relation existant entre la grandeur de la charge
appliquée et la déformation d’une grille de poutres, en négligeant 1’influence
de la torsion. Conformément & 1’influence du critéere de rigidité dans la théorie
de la plasticité, le procédé général consiste & exprimer I’augmentation de la
charge en fonction du déplacement de son point d’application.

Les auteurs énumeérent les différentes possibilités du comportement élasto-
plastique et ils indiquent pour chaque forme le rapport correspondant des
moments. Il s’agit d’un procédé par cheminement: aussitét qu’une articulation
plastique est formée, elle est remplacée par une articulation mécanique et 1’on
calcule 'augmentation du déplacement du point d’application de la charge
pour ce nouveau systeme. Les moments et les fleches peuvent étre déterminés
en fonction de 'augmentation du déplacement et d’un parameétre de rigidité.
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Les solutions analytiques concordent de facon satisfaisante avec les résul-
tats obtenus par des essais, effectués sur un modele de grille de poutres, qui
a été chargé jusqu’a la rupture.

Zusammenfassung

Fir das Belastungs-Durchbiegungsverhalten eines Trégerrostes ohne Tor-
sionseinflul wird eine elasto-plastische Untersuchungsmethode dargestellt.
Entsprechend der Wichtigkeit des Steifigkeitskriteriums in der Plastizitéats-
theorie bestand das allgemeine Vorgehen darin, einen Belastungszuwachs als
Funktion der Verschiebung des belasteten Punktes auszudriicken.

Die verschiedenen Formen des elasto-plastischen Verhaltens werden ange-
geben und die Verhiltnisse der Momente, die zu einer bestimmten Form
fithren, werden untersucht. Das Verfahren wird schrittweise durchgefiihrt:
sobald sich ein Fliegelenk ausgebildet hat, wird es durch ein mechanisches
Gelenk ersetzt, und das damit geschaffene neue Tragsystem wird fiir einen
weiteren Durchbiegungszuwachs im belasteten Punkt untersucht. Die Momente
und Durchbiegungen lassen sich als Funktionen des Durchbiegungszuwachses
und eines Steifigkeitsparameters bestimmen.

Die analytischen Losungen werden bestdtigt durch eine befriedigende
Ubereinstimmung zwischen den theoretischen Werten und den versuchs-
technischen Resultaten an einem Trigerrostmodell, das bis zum Bruch unter-
sucht wurde.
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