Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 20 (1960)

Artikel: Membrane stresses in hyperbolic paraboloid shells circular in plan
Autor: Popov, Egor P. / Medwadowsky, Stefan J.
DOI: https://doi.org/10.5169/seals-17563

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-17563
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Membrane Stresses in Hyperbolic Paraboloid Shells Circular in Plan

Contraintes membranaires dans les paraboloides hyperboliques minces sur plan
circulaire

Membranspannungen in hyperbolischen Paraboloidschalen mit kreisformigem
Grundrif3

EGOR P. POPOV STEFAN J. MEDWADOWSKI

Ph. D., Professor of Civil Engineering, Ph. D., Consulting Structural Engineer,
University of California, Berkeley San Francisco, California

Introduction

In recent years the behavior of thin shells in the form of hyperbolic para-
boloid was studied rather extensively. However, so far problems discussed in
the literature pertain to hyperbolic paraboloid shells which are rectangular
or rhombic in plan. In this paper hyperbolic paraboloid thin shells circular in
plan are considered, and membrane stresses for such shells are obtained. Plane
polar coordinate system, being appropriate one for the problem, is employed
in the solution.

The membrane state of stress is formulated in terms of Airy’s stress func-
tion following the procedure first used by PucuEr [1]!) and since applied to
the solution of a number of problems by many investigators, notably TESTER [2].

The problem of membrane displacements such as studied by Frtvaee and
GayrinG [3] for hyperbolic paraboloids rectangular in plan is not considered.
However, from the established state of stress for the problem considered,
discontinuities in displacements along dividing characteristics may be fully
anticipated. This indicates the need for further investigations of hyperbolic
paraboloids on the basis of a bending theory such as considered by HRUBAN
[4] or RE1ssNER [5]. The latter work is of fundamental significance for this
problem. It contains the derivation of the strain-displacement relations, a
qualitative study of edge bending effect, and shows that the membrane equa-
tions follow by specializing the equations of the general theory.

1) See numbered references in the Bibliography, Appendix B.
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Basic Equations of the Problem

Consider a thin hyperbolic paraboloid shell having a circular plan subjected
to a distributed load p (r, ) 2) acting in the direction of the positive z-axis. In
plane polar coordinates, the middle surface of the shell is defined by the
equation: 1
z(r,<p)=ﬁ¢2sin2qo, (1)

where £ is a constant which characterizes the rise of the shell.

By considering the shell shallow, in the sense defined by Reissner [5], the
governing differential equation in terms of Airy’s stress function F (r,q)
written in polar coordinates becomes:

1]. 2 2
_[s1n2<pF,,.,+;cos2ch ﬁcos.‘Z(pF,q)

2

srp

1. 1 . N (2)
_;s1n2<pF,r—;2—s1n2goF,W] =kp(r, o).

The horizontal projections of in-plane stress-resultants are defined in
terms of the stress function by the familiar relations:

1 1

Nr = ;F’T+FF’¢¢7

Nq, = FJM” (3a’>b>c)
o [1 1 1

Vo= =g | Foe] = Foo =y B

Since the shell is assumed shallow, the normal in-plane’stress-resultants are
approximately equal to their horizontal projections. -

The relations for the strain in terms of stress-resultants follow from
Hooke’s law and are:

Ehe, = N,—uN,,

Ehey=—uN,+N,, (4a,b,c)
2(1+u)
Yo = T gh e

The strain-displacement relations appropriate for this problem are:

1 .
€ =U,,+5rsin2ew

k 1P
1 1 1
€y =;u+;v,q,+%(3082<pw,q,, (5a,b,c)
1 1 1 1. .
Yrp = ;u,q,+v,,—;v+7c-rcos2<pw,,.+zsm2<pw,q,.

2) All symbols are defined in Appendix A. Throughout the paper, comma in subscript
denotes differentiation.
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The system of Eqs. (2), (3), (4) and (5) can be obtained directly from the
system of equations of the general bending theory of thin shallow shells as
given in polar coordinates by REISSNER [6] by assuming that the shell has no
bending rigidity.

The solution of a given problem consists in exhibiting a function # such
that it satisfies q. (2) and the appropriate boundary conditions. On physical
grounds it is plausible to expect that such function not only exists, but that
the membrane state of stress it defines is unique.

Boundary Conditions

For the membrane state of stress of the shell, on the boundary » = R only
stress-resultants NV, and N,, may occur. Therefore, the boundary conditions
should be prescribed in terms of these two quantities. The physically meaning-
ful conditions are as follows:

a) Free Edge. For this case both stress-resultants must vanish, i.e.
N, (R,¢) =0, NW(R,(p)zO. (6a,b)

The conditions (6) imply that adequate supports are provided to carry external
load p either along some portions of the boundary r= R and/or at the interior
of the shell region.

b) Edge Supported by Wall. 1f it is assumed that a vertical wall supporting
the shell possesses infinite extensional rigidity and zero bending rigidity, then
the radial stress resultant N, vanishes, but not N,,. Thus,

N,(R,p) =0 but N,,(R,¢)=+0. (7a,b)

If it is assumed further that the entire applied vertical load P is carried by
the forces developed along the outer boundary, for a complete circle, we have

o

N,y (R, ¢) 2, (R.g)dg = P. (70)

re

[e=]

In this manner two conditions (7a) and (7¢) at the boundary become available
for this case.

c) Suspended Edge. 1f it is assumed that along the outer boundary the shell
is supported by numerous rigid elements capable of transmitting axial forces,
but not shear, then N,, vanishes but N, differs from zero, i.e.

N,y (R,¢) =0 but N,(R,p)+0. (8a,b)

Again, if the entire load is carried by the reactions applied at the boundary,
for a complete circle, we have
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™

(N, (B, 92, (R,9) Rdgp = P. (50)

Eqgs. (8a) and (8¢) are the boundary conditions for this case.
d) Fized Edge. This condition can be realized by supporting the edge of
the shell on an infinitely rigid support. Neither N, nor N, , can be zero, i.e.

N,(R,¢) 0, N,,(R,g)+0. (9a,b)

Neither one of these relations is useful as a boundary condition. However,
fixed edge implies that all components of the displacement vector must vanish
identically at the edge. Therefore, as may be seen from Eq. (5b), no strain in
the tangential direction at the boundary can take place. Thus, according to
Eq. (4b), we have

N(p(R:(P)_F“Nr(R:(P):O' (9¢)

In order to satisfy this relation for all values of ¢ the coefficients of all sine
terms as well as cosine terms must vanish independently. In this manner two
conditions become available from one relation. The condition of vertical
equilibrium of boundary forces with the applied load cannot be enforced
directly.

For each of the four types of boundary supports discussed above, two
conditions were established. These conditions may be expressed in terms of
derivatives of F on the boundary. The specification of two conditions on the
curved boundary r= R [7], subject to certain restrictions, is necessary and
sufficient to ensure the existence of a unique solution of the problem under
investigation. This is so because a hyperbolic paraboloid is a surface of negative
Gaussian curvature and the governing differential equation is hyperbolic. It
should be noted that these comments apply only to the problem of membrane
state of stress inside one quarter of a circle; no conditions are prescribed on
F or its derivatives along the lines x=0 or y=0. If the region of interest is
contained within a full circle, Riemann procedure may lead to discontinuities
along the dividing characteristics. Conceivably these discontinuities might be
removed by recasting the problem as a boundary value problem. This would
mean that one would be able to prescribe only one condition on the curved
boundary = R. One recalls that this is true for the case of membrane state
of stress in shells of positive Gaussian curvature, where the governing differen-
tial equation is of elliptic type. Whether or not this recasting from an initial
value into a boundary value problem is possible for the case of circular regions
is outside the scope of this investigation.
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Solution of the Problem

The problem of finding a sufficiently general solution of eq. (2) so as to
satisfy the prescribed boundary conditions may be done in at least two diffe-
rent ways. In the one procedure, we note that the homogeneous part of eq. (2)
is separable under the assumption F (r, )= F; (rsin )+ F, (rcos ). Thus the
homogeneous part of the solution may be assumed formally as follows:

F(r,p) =X A,r"sin"g+> B, r"cos" ¢. (10)
n n

However, if we confine our attention to the investigation of load functions
p (r, ) which are even functions of p with respect to lines x = + y, the function
F also must be even with respect to the same lines. This leads to the conclusion
that the constants 4, and B, of the series must be equal. However, one set
of free constants is not sufficient to ensure satisfaction of the two prescribed
boundary conditions at r= R. Therefore, unlike the case of hyperbolic para-
boloid shells with rectangular boundaries where this procedure is applicable
[2], in the present investigation this method of solution is discarded.

An alternative general method of solving Eq. (2) is due to RIEMANN [7]
and is the one used in this paper. This method of solution also was used by
Frieee and Gayring [3] for determining membrane stresses and displace-
ments of hyperbolic paraboloid shells rectangular in plan.

Riemann’s method is based on the assumption that on the boundary r = R
for the region the value of the function F (R,¢) and its normal derivative
F, (R,p) are specified. Then the value of the function F (r,¢) at some point
(r,p) located inside a region bounded by two characteristics and a curve may
be uniquely determined.

The characteristics of the system are lines x=const. and y=const. The
boundary r= R defines the curve. By applying Riemann’s method of inte-
grations for the case considered, the expression for the stress function # at an

Y . Y

Fig. 1. Quadrant of the Shell Used in
Establishing Riemann’s Integration of the Fig. 2. Designation of the Various Regions
Equation. of the Shell.
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interior point (r, ¢), see Fig. 1, reduces to

F(r,p) = 3[F(R,¢1)+ F (R, q,]

P2
~3R| [sin(z(p)F,T(R,qo>+—}g—cos<zqo>F,q,(R,qa)]dq» (1)

P1
+fkp(r,p)dA.
omn
Whereas the above solution is developed only for the first quadrant of a

circle, the other regions II, I1I, and IV shown in Fig. 2 may also be included
into the solution. Thus, since the load function was assumed to be even with
respect to lines x= +y, F;=F; and Fi;=F;y, where subscripts designate
the region of stress function. Therefore, the solution inside the region III is
also given by Eq. (11). For the solution inside regions II and IV the value
of function F and its normal derivative F, also may be specified on the bound-
ary, and F inside the regions calculated again with the aid of Eq. (11). If
discontinuities in magnitude or direction of the stress-resultants along the
dividing characteristics x=0 and y=0 occur, it is understood that a beam
cruciform in plan view of adequate strength and rigidity must be provided.

Solution of a Particular Problem

In the remainder of the paper the investigation is confined to the parti-
cularly important problem of an uniformly distributed load p (r,¢) = —p. For
this case it appears reasonable to choose the quantities on the boundary in the
form of the following Fourier series:

F(R,¢) =24,sn(2ne),
n (12a,b)
F:r(RJ(P) = Z BnSin (Qn(p)

In order to simplify calculations we shall further assume that the distribu-
tion of the stress function F and its normal derivative at the boundary is
described with sufficient accuracy by retaining only the terms corresponding
to n=1 in the Fourier series which appear in Eq. (12). Hence,

F(R,p) = Asin(2¢); and F,,(R,¢)= Bsin(2¢) (13a,b)
and by direct differentiation, we obtain

F,, (R,p) = 2Acos(2¢),
F ,,(R,¢) =—4A4sin (2¢), (14a,b,c)
F,m(R,go) = 2Bcos(2¢).
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By substituting Eqgs. (13) and (14) into the governing differential Eq. (2), we
obtain 4
Rsin(2¢) F,, (R, ¢) =2kpR—4 (B—E) cos? (2¢)

4\ (19)
+ (B—4—E sin? (2 ),

from which using Eq. (3b), we can obtain directly the tangential stress-resul-
tant N .
By applying Egs. (3a) and (3c¢), and again using Eqs. (13) and (14), the
stress-resultants &, and N,, along the boundary are obtained. These are
1 A\ .
N,(B.g) = (B-4g)sin@e), .
N,, (R )——~2— —B—}—é (25 s b
rq,( ,qo—-R Rcos ®).
Substituting expressions (13) into (11) and carrying out the indicated
integration we obtain the expression for the stress function sought:

F(r,p) = pkrisinpcose

N [ kR2 A BR . r . Y
—p ‘2— s ? e —4:—‘ arc cos ﬁ OS(P — are sin f sin (¢4
[ R2 34 BR|[r . r (17)
— SIS B B Yoy s
-+ ] pk 5+ i ][RsmcpS, +Rcos<pC’r ]
B R 5, . 3 )
+ —2———-A] [ngsm:"cpSrlz-i—%Ecos%pOﬂ],
r2 r?
where S, =1——sin?p, C,=1-—;cos?p (18a,b)

R? R2
and the expressions for stress-resultants follow by applying Egs. (3). Thus
N,(r,p) =—2pksingpcose

1 . .
+3 [pk B A] [— —T~Sln2<pCOS(pC;‘s/=—%SIIl(p0082<p S;"/z]

21”7 2R Rj| R
+ % [—pk-}-% - %] [— %Sin(p cos?p S;‘/z——;%sin%)cos%) S,
- —:%r sin? g cos @ C;': — —g; sin? ¢ cos? 0;%]
+ [QER — —%] [—3% sin?g cos @ C,'l: —%;sin%o cos3 @ O,/ (19a)

re . 6r . .
~ 5 sin? ¢ cos® ¢ C; 7 + & sine cos?p 8,2
773 rd

~ B sin3 ¢ cos?p S;: — 53 sin® g cos? @ S;S/z] ,
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N,(r,p) = 2pksingcos¢

1 B 4 r s o, T oss s,
+§[]0k—§—1—3—ﬁ] [——Ecos e C; 7 sin e S;

1 B 3A 3r . gy o, 5
[ pk— Y R2] [—fsm%pS; /2—Fs1n5cpS, /2

° 1
_%0083?’ 0?1/2——12—3cos5<p0;’/2] (19b)
5
i [5%_%] [Eliircosgqpo /Z"ZRCOOSE'?? 0"/2—Fcos7<p C;l:
& #5
-+ %Sin3¢srl/z_% Sln5¢ S—- /2_FSIH7‘P S_ /2]
N,,(r,p) = —pkcos2g
i % [pk_% a %] [_ %Sin‘?’cosz‘PC?s/’+%—sin2<peos<p ST—%]
3
+ ;[ pk—'_:f’Rf 2BR] [%Sin2¢COS¢S‘ +_R_§Sln4(pcos(p ‘51;3/z
r3
-—%Sin¢cos¢0"/*—ﬁgsmqacos40 /2]
6 . 7 3 .
N [:‘ZER _%] [ﬂRfsm‘l’COSz‘P Orl/z—?zsmqmos‘lqg o (19¢)

o, 6 (s, OT . o "
— pssingcos o C; *— g sin pcose S,/

3

Tr rs s
+ Fsmﬁp cos g S, +“E5‘SIHG¢COS @S, /2] .

On the boundary these equations reduce, as they should, to the correspond-
ing Eqgs. (16).

Note that Eqs. (19) contain two free constants A and B which can be
adjusted to satisfy boundary conditions. This is done by substituting Eqgs. (16)
into the expressions for the appropriate boundary conditions discussed pre-
viously. Thus, using Eqs. (6a) and (6b); (7a) and (7¢); (8a) and (8c); and (9¢),
for the four cases considered, we obtain the following results:

] a) Free Edge
A =0; B=0. (20a,b)

b) Edge Supported by Wall _

A=+§pkR% B=+%pkR. (21a,b)
c) Suspended Edge

A=+}pkR? B=+1pkR. (22a,b)
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d) Fixed Edge

15— " . 22—,1. . .
A~+g pk R?, B—+3———1_‘uka. (23a,b)

L—u

To determine the membrane stresses N,, N,, and N,, corresponding to
the various boundary conditions the above constants of integration must be
substituted into Eqs. (19a,b, ¢). The results of evaluating such equations for
p=0°,221/,° and 45° are plotted in Figs. 3 through 6. One may note that in
all cases along ¢=0° N, = —kp, a constant. In all cases, at ¢ =0°, r= R this
function exhibits a discontinuity.

Appendix A. Nomenclature

A, A,, B, B, constants of integration.

2
C’,=1—j%cos2<p.

E elastic modulus.

F.F stress function

h shell thickness.

k shell raise constant.

n integer.

N,,N,,,N, stress-resultants.

P distributed load

P total load

r radius vector.

R radius at boundary.
S,= 1-——;_2251112(;9.

u radial displacement.

v tangential displacement.
w transverse displacement.

x,Y,2 co-ordinate axes.

€€, strain in radial and tangential
directions, respectively.

Yro shearing strain.

7 Poisson ratio.

@ coordinate angle.

Note: Comma in subscript denotes differentiation. Functional notation is
frequently used, for example, F (R, p) means the function of F at r=R and
any value of ¢.
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o

Summary

In this paper membrane stresses in shallow hyperbolic paraboloid shells
circular in plan are considered. The membrane state of stress is formulated in
terms of AIRY’s stress function following the procedure first used by PucHER.
The governing differential equation applicable for shallow shells is written in
the plane polar coordinate system. The RIEMANN method of integrating the
differential equation is employed to obtain the solution of the problem.

Four different boundary conditions-free edge, edge supported by wall,
suspended edge, and fixed edge, are formulated. For these boundary conditions
the problem is solved for an uniformly distributed load acting on the shell.
Several graphs are prepared to indicate the resulting stress distribution. The
membrane solutions found exhibit a discontinuity at ¢ =0°, r= R.

Résumé

Les auteurs étudient le régime des contraintes de membrane dans les
paraboloides hyperboliques minces de faible hauteur, établis sur plan circu-
laire. Ce régime est exprimé & 1’aide de la fonction de tension d’AIRy, suivant
le procédé qui a été employé pour la premiére fois par PucHERr. L’équation
différentielle qui le contrdle et qui peut étre appliquée aux voiles minces de
faible hauteur est indiquée dans le systéme plan de coordonnées polaires.
Pour obtenir la solution du probléme, les auteurs appliquent la méthode de
RI1EMANN & D’intégration de I’équation différentielle.
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Quatre conditions marginales différentes sont retenues: bords libres, bords
avec appui mural, bords suspendus et bords encastrés. Pour ces conditions
marginales, le probleme est résolu pour une charge répartie uniformément sur
le voile. Diverses courbes ont été rassemblées pour mettre en lumiére la répar-
tition des contraintes. La solution de membrane trouvée présente une dis-
continuité pour ¢ =0.

Zusammenfassung

In dieser Abhandlung wird der Membranspannungszustand in niedrigen
hyperbolischen Paraboloidschalen mit kreisformigem Grundri betrachtet.
Der Membranspannungszustand wird mit der Airyschen Spannungsfunktion
ausgedriickt, dem Verfahren folgend, das zum ersten Male von PucHER ver-
wendet wurde. Die beherrschende Differentialgleichung, die fiir niedrige
Schalen verwendet werden kann, wird im ebenen Polarkoordinatensystem
angegeben. Um die Losung des Problems zu erhalten, wird die RiemaNNsche
Methode der Integration der Differentialgleichung angewendet.

Vier verschiedene Randbedingungen werden festgehalten: freier Rand,
Rand mit Wandunterstiitzung, aufgehéingter und eingespannter Rand. Fiir
diese Randbedingungen wird das Problem fiir eine auf die Schale wirkende
gleichméflig verteilte Last gelost. Verschiedene Kurven wurden zusammen-
gestellt zur Veranschaulichung der resultierenden Spannungsverteilung. Die
gefundene Membranlosung zeigt bei ¢ =0 eine Diskontinuitit.
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