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Theorie generale du voilement des plaques rectangulaires orthotropes,
encastrees ou appuyees sur leur contour, munies de raidisseurs paralleles

aux bords ä grandes rigidites flexionnelle et torsionnelle

Allgemeine Theorie des Ausbeulens von eingespannten oder einfach gelagerten,
rechteckigen orthotropen Platten, die mit zu den Kanten parallelen Aussteifungen

großer Biegungs- und Torsionssteifigkeit versehen sind

General Theory of the Bückling of Orthotropic, Rectangular Plates, Clamped or
Freely Supported at the Edges, Provided with Stiffeners, Parallel to the Edges,

Having Considerable Flexural and Torsional Rigidities

CH. MASSOXXET G. MAZY A. TAXGHE
Professeur ordinaire ä Assistant ä l'Universite Ancien assistant ä l'Uni-
FUniversite de Liege de Liege versite de Liege

1. Introduction

Durant les cinquante dernieres annees, on a vu se developper, sous
l'impulsion du professeur S. Timoshenko, la theorie du voilement des plaques
rectangulaires librement posees sur leur contour, soumises a compression,
flexion et cisaillement dans leur plan, et eventuellement renforcees par des
raidisseurs dont on a generalement neglige la rigidite torsionnelle. L'essentiel
de ces recherches est reproduit dans l'ouvrage de S. Timoshenko intitule
«Theorie de la Stabilite Elastique».

La condition d'appui simple de la plaque sur son contour a ete choisie,
non pas parce qu'elle represente le mieux la realite, mais bien parce qu'elle
se prete a une analyse mathematique particulierement simple vu que la
deformee de la plaque peut, dans ce cas, se representer par une serie double
de Fourier de la forme

x
® * m^x mry ,_ 1Sw(x,y)= 2 2 \nsm-r~sinT^ (ljl)
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Les experiences d'un des auteurs [1,2] ont montre que les tenbions cn-

tiques des panneaux d'äme d'une poutre ä äme pleine etaient appreciablement

superieures ä celles donnees par la theorie de Timoshenko.
Par ailleurs, le professeur Dornen a propose [3] de constituer leb semelle-

des grandes poutres soudees ä äme pleine de profils tubulaires leahseb pai
l'emploi de grandes cornieres, comme l'indique la figure 1.1. Cette di&position

B^tffi^fefeÄ^mte^Äö^f ;päT€e qu'elle r^alise un encastrement quast-parfolt

deftlfee.de^kjp^utre 9ur fi§a feorefe h^izontauxri6njmeme temps qu elie ukluit
la hauteuyjle eptte aipe. H dcdten resulter une^augnxejit^tion tres substantielle
de la stabilite au voilement, surtout si Ton renforce l'äme (fig. 1.1) par de&

raidisseurs ,tubu]aires obtenus par soudure de cornieres ou de denn-tube*

cpmn^e,!'^ propose E. W. Bqbsschetxeb [4]. v

Fig. 1.1.

Enfin, la technique moderne utilise de plus en plus des ponts mixtes foimeS

d'une dalle en beton associee ä des poutres dissymetriques en double te. Pom

tirer pleinement parti du beton de la dalle, on precontraint le pont par de-

cäbles qui soumettent la poutre mixte ^ des^efforts de compression excentnque
Dans ces conditions, l'äme est sollicitee* par des tensions de compression dont

le diagramme fest trapezoidal et l'on est conduit ä la renforcer pai un assez

grand nombre de raidisseurs ä peu pres equidistants. L'etude theonque de la

stabilite^ individuelle de ces raidisseurs etant pratiquement mipossible la

maniere la plus simple de dimensionner au voilement des ämes raidies de

cjejbte facon eqt/le repartir la rigidite des raidisseurs horizontaux continüment

si|r toute 1% hantenr de l'äme et de considerer cette derniere comme une

plaque orthogonalement anisotrope possedant une rigidite Dx dans le sen-

d^x? superieure ä la rigidite Dy dans le sens des y.
A

Le but de la presente note est tout d'abord d'etablir une methode geneiale

permettarit de calculer les tensions critiques de voilement d'une plaque lec-

tangulaire orthotrope, encastree ou appuyee sur son contour, renfoicee pai
des raidisseurs possedant ^ä la fois des rigidites flexionnelles et toi-ionnelles

sensibles. Ensuite, de donner une serie de resultats numeiiques obtenu- en

appliquant cette methode et en effectuant les calculb a 1 aide de 1 oidmateui

IBM 650 du Centre de Calcul de TUniversite die Liege.
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PREMIERE PARTIE: THEORIE GEXERAL

2. Principe de la methode — notations

L'etude du voilement des plaques encastrees sur un ou plusieurs bords a
ete entreprise par la methode de Ritz [5, 6], la methode de Trefftz, dite
encore des multiplicateurs de Lagrange [7] et le calcul des differences (8).

La methode de Ritz a ete appliquee en adoptant pour le deplacement
normal w d'un point du feuillet moyen de la plaque une serie double de la
forme

00 00

W(x,y)= 2 Z amnfm(x)fn(y)' (2>l)
m=ln=l

Iguchi a construit [5] des fonctions fm (x) et fn (y) satisfaisant aux
conditions d'appui simple ou d'encastrement parfait aux extremites de l'inter-
valle. Malheureusement, ces fonctions ne jouissent d'aucune propriete d'ortho-
gonalite, de sorte que les calculs sont d'une complexite extreme; ils n'ont ete
executes par Iguchi que dans le cas de la plaque comprimee uniformement.
Un progres marquant a ete realise par Nölke [6], qui a envisage le probleme
de voilement de la plaque flechie et adopte pour fm et fn la suite des deformees
vibratoires propres d'une barre encastree ou appuyee ä ses deux extremites.

On sait que ces deformees jouissent des proprietes d'orthogonalite suivantes:

}fm(*)fn(*)dx 0; jfmWfn W^* °> si™ * n) K2>2)
0 1

qui ont pour effet de diminuer considerablement le nombre d'integrales ä
calculer.

On peut se demander si les fonctions vibratoires propres sont bien celles

qui sont les plus adequates pour resoudre le probleme de voilement. A ce

propos, il faut rappeler brievement la methode energetique de calcul des
tensions critiques de voilement. Cette methode consiste a exprimer que, a l'etat
critique, l'equilibre est indifferent.

Designons par A (S1'accroissement d'energie totale de la plaque en equilibre,
pour une deformation virtuelle compatible avec les conditions d'appui; on
sait que

A®=AV-AT (2,3)

oü A V est l'energie potentielle de flexion mise en jeu par la deformation de
voilement et A T le travail des forces exterieures appliquees dans le plan de la
plaque. D'apres le theoreme du minimum de l'energie totale, A (£ est toujours
moindre pour la deformation reelle de la plaque que pour toute autre
deformation virtuelle. D'autre part, pour que l'equilibre de la plaque soit indifferent,

il faut que A @ soit nul pour la deformee virtuelle envisagee. On peut
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resumer la discussion qui precede en disant que, au moment du voilement, on a

A @ minimum zero.

En definitive, la methode de l'energie, due ä Rayleigh, Ritz et
Timoshenko, consiste ä exprimer les conditions de minimum de A (S sous la forme

— 0 quels que soient m et n. (2A)
oamn

Ces conditions representent des equations lineaires et homogenes par
rapport aux parametres amn. Ce Systeme d'equations doit etre compatible, ce

qui exige que le determinant des coefficients des inconnues amn s'annule. Cela
fournit une equation qui permet de calculer la tension critique de voilement.

L'inspection des expressions de A V et A T qui seront etudiees en detail
au par. 3 ci-apres, montre que ces expressions ne contiennent que des carres
et produits des derivees partielles premieres et secondes du deplacement
transversal w, ä l'exclusion de l'inconnue w elle-meme.

Par consequent, la methode energetique conduira ä un minimum de
calculs si les fonctions fm, fn intervenant dans le developpement en serie double
(2,1) jouissent de proprietes d'orthogonalite de la forme:

i i
Wm(x)fn(x)dx °; Um(x)fn(x)dx 0, pour m * n (2,5)
0 0

de facon ä entrainer l'annulation du maximum de termes rectangles dans
1'evaluation de AV et AT.

II existe effectivement une suite de fonctions satisfaisant aux deux
conditions (2.5); ce sont les fonctions qui representent les deformees de flambement

successives d'une barre prismatique encastree ou appuyee ä ses deux
extremites.

En effet, l'un de nous a demontre par un calcul direct dans un memoire
anterieur [10] que les fonctions en question satisfaisaient effectivement aux
conditions (2,5). Depuis lors, F. Bleich [11] a etabli les proprietes (2,5) en
toute generalite.

Si Ton remarque que l'expression de la fonetion fm (x) ne contient que les

lignes trigonometriques usuelles, on conviendra que le calcul des integrales
des produits de derivees de fm n'est en tout cas pas plus complique que le
calcul des integrales analogues relatives aux deformees vibratoires, puisque
les expressions de ces dernieres contiennent ä la fois des lignes circulaires et
des lignes hyperboliques.

Notations

a largeur de la plaque.
b hauteur de la plaque.
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h epaisseur de la plaque.
E module d'elasticite longitudinale 1

,A J.1.
_ J _ ° } du metal utilise.

7; coemcient de Poisson J

D -r^-rz, ^r rigidite flexionnelle de la töle.
12(1— yf) °

Dx rigidite flexionnelle moyenne dans le sens des x d'une plaque nervuree1).
Dy rigidite flexionnelle moyenne dans le sens des y d'une plaque nervuree.
H D1 + 2Dxy: rigidite torsionnelle moyenne d'une plaque nervuree.
cr0 tension de flexion pure au point y 0.

ct tension uniforme de compression pure ou tension de flexion pure a un
niveau quelconque: a ct0 11 —^A

t tension de cisaillement, supposee uniformement repartie.
CT*?r tension critique dans la sollicitation par flexion pure.
ocr tension critique dans la sollicitation par compression pure.
r%r tension critique dans la sollicitation par cisaillement pur.

tensions critiques dans la sollicitation simultanee par flexion pure et
cisaillement pur.

w deplacement d'un point du feuillet moyen normalement ä ce feuillet.
amn coefficient intervenant dans l'expression (2,1) de ce deplacement.
v nombre de raidisseurs verticaux.
h nombre de raidisseurs horizontaux.
Iv moment d'inertie d'un raidisseur vertical.
Ih moment d'inertie d'un raidisseur horizontal.
Qh aire de la section d'un raidisseur horizontal.
Cv,Ch rigidite torsionnelle d'un raidisseur vertical/horizontal.
c abscisse d'un raidisseur vertical.
d ordonnee d'un raidisseur horizontal.
A © Variation de l'energie totale de la plaque pendant le flambement.

b

4 ITT
y jr raPPort des cötes generalise2).
TT

ß _____ parametre de torsion de la plaque orthotrope.
V Dx Dy

(je= x—y- tension critique de reference d'Euler2).

x) Le present memoire expose la theorie generale du voilement des plaques ortho-
tropes, mais ne donne des applications numeriques de la theorie que dans le cas parti-
culier des plaques isotropes; il est donc inutile d'exposer ici la determination detaillee
des constantes Dx, Dy, H, pour laquelle on renvoie ä S. Timoskenko, Theorie de la
Stabilite elastique, page 367.

2) Dans le cas d'une plaque isotrope, on a Dx Dy H D, ß=l et les parametres

a et are se reduisent aux valeurs classiques a -r et de= utilisees dans la theorie des
0 b*fo

ET C
plaques isotropes. On a de meme alors: y —- et 6 j-j:.
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K
K
K
Yv

7h

orcr kaae.
coefficients de voilement definis par les relations I o% k a(

Tcr ~ Ve*
rigidites flexionnelles relatives d'un raidisseur 2), definies par y -

EI
bVDxDy

section relative d'un raidisseur horizontal definie par ~^.
i, j, m, n, p, q indices sommatoires.
A, B,C, E, F integrales intervenant dans l'expression de la Variation d'ener-

gie totale de la plaque.

ft
bVDxDv

Gh

bVDXDy,

rigidite torsionnelle relative d'un raidisseur2).

3. Etablissement de l'equation de l'energie pour une plaque rectangulaire fixee de

fa^on quelconque sur ses bords

L'equation de l'energie s'ecrit:

A \^ Vplaque "•" * flexion raidisseurs ' 'torsion raidisseurs -*-a comp.plaque
rp __rp _rp _0•*¦ cro flßx. plaque ¦* tplaque -"• a raidisseurs horizontaux v •

On va examiner successivement les expressions detaillees des divers termes
de cette equation.

L'energie potentielle de la plaque a pour expression generale [12,13]:

1 rr f /d2w\2 d2w d2w /d2w\2 l d2w \21
vplaaue -2\] [dx[j^) +*Di-e&0f+D'\WJ +*D™Wej) \dxdy'

00

Dans le cas particuher de plaques appuyees ou encastrees sur un contour
rigide, on sait par le theoreme de Gauss que

ab
rc \d*w d2w / 8*w y\

<T 0 ^ t ie> &o rX
i

i

i

i

di r
1

1" i—C2

y' 1

a

Fig. 3.1.



THEORIE GENERALE DU VOILEMENT DES PLAQUES RECTANGULAIRES 229

En tenant compte de cette relation et de ce que, par definition, H D1 +
+ 2Dxy, on peut ecrire V sous la forme plus simple:

00

Pour un raidisseur horizontal d'ordonnee y di, on a

0

0 0

en designant par Ch la rigidite torsionnelle du raidisseur horizontal et par
i/f =-tt— l'angle de torsion de la section courante du raidisseur.r dy &

Les formules applicables ä un raidisseur vertical d'abscisse x ci s'ecrivent
par analogie

"—-TT8/($„*» <*•«>

a,V^on f\y^)dy. (3,5)
o

Le travail effectue par les tensions normales de compression uniforme a
a pour expression

a b

Ta ahjj(j£)2dxdy. (3,6)
00

Le travail effectue par les tensions normales de flexion pure reparties
suivant la loi

*(*/) <70(l--^)>

representee ä la figure 3.1, a pour expression:
a b

*--¥//('-¥)(£)¦*«*•
00

Le travail effectue par les tensions de cisaillement pur r vaut
a b

dw dwj ON— jjdzdy. (3,8)

00

a o
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Enfin, le travail de la force de compression Qt |o-0(l rA -\-a\ Qia(di)
appliquee ä un raidisseur horizontal d'ordonnee y di s'ecrit:

T Qi°(di)
o raidisseur

f(<^Y dx (3,9)

Comme on l'a dejä dit dans l'introduction, on represente dans cette etude
la deformee de la plaque par une serie double de la forme

On a directement

OO 00

W(xy)= 2 2 amnLWfniy)-
m=ln=l

dw °° °°

-tat Z 2 amnf'm(x)fn(y),

82w °° °°

—:5 _ _ amnfm(x)L(y)

(3,10)

m=ln=l

et de meme

Enfin,

dx2

dw °° °°

-^7=2 2 amnfm(x)fn(y)>
UV m=ln=l
d2w °° °°

^6/ m=ln=l
d2W co oo

ÖTTöT: i 2j amw fm (x) tn (V)'
va vy m=lw=l

(3,11)

Nous allons etudier ci-apres quelles sont les integrales qui se presentent
dans le calcul des expressions (3,1) ä (3,9).

Commencons par l'expression (3,6); en y remplacant -r— par sa valeur

(3,11), eile s'ecrit
a b

Ta ^\\(i: Zamnf'm(x)fn(y)Ydxdy.
z JJ \m=ln=l I

00

Dans le developpement du carre de la somme double, tous les termes
rectangles par rapport ä /', c'est-ä-dire les termes contenant le produit
fifj(i=¥j) disparaissent en vertu de la relation d'orthogonalite

Ui(x)f](x)dx 0. (i*j)
On peut donc ecrire

a fy oo oo oo a b

Ta ^-Z 2 2 iSfm(^)'ix[ampamgifp(y)fq(y)dy]}.
4 TO=lp=l9=l 0 0

(3,7)

(3,12)

L'evaluation de ce terme exige donc le calcul des deux integrales suivantes:
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^m =^Sfm(x)dx, (3,13)
77 o

Emn 7Sfm(X)fn(X)dx. (3,14)
t 0

Moyennant les notations Am et Emn, l'expression (3,12) s'ecrit:

lahb
<y ~ T^ 222 amp amq ^m &pq • (3,15)

m p q

Passons maintenant au terme Tao donne par l'expression (3,7); en y remplacant
-k— par sa valeur (3,11) et en tenant compte de la formule (2,5) comme ci-

dessus, on obtient:

T„o=^ZZZamp*mJfLHx)dx(l-?Afp(y)fq(y)dy.
^ m p q 0 \ ° /

On voit que l'evaluation de ce terme fait intervenir l'expression (3,15)
ainsi que l'expression nouvelle

i

Fmn \^(\-~}fm{x)fn{x)dx. (3,16)
0

En introduisant les notations (3,13) et (3,16) dans l'expression de Tao

cette derniere devient

T CT hb
ao ZT* 2j 2j Zj ^mn ^mp ^m ^np • '^'^')"*^ m n p

De meme, en remplacant ~^~ et -w— par leurs valeurs (3,11) dans l'expression

(3,8), il vient successivement:

fn (V)] [2 2 apq fp (X) fq (2/)] d X d 2/

(3,18)

TT rhfl[ZZamnf'm^)fn(ymZZamfP(x)fq(y)]dxdy
0 0 m n p q

a b

ThZZZZamnapqSfp(X)f'm(X)dxSfn(y)fq(y)dy.
m n p q 0 0

L'evaluation de ce terme exige le calcul de l'integrale
i

Cmn $L(x)f'n(x)dx. (Cmn * Cnm) (3,19)
0

Moyennant cette notation, l'expression (3,18) prend la forme

Tr t h Z 2 2 2 «»• %« Cpm Onq. (3,20)
m n p q

Enfin, le terme Traidisseur horizontal devient, en remplacant w par sa valeur
explicite (3,10) dans l'expression (3,9):
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Traid.horiz. ~f k + ^o^ ^J I J [2 2 «»m/m {x)fn (d^dx

§ ["+°0 (i -^)] 222 «»»«mp fn (di)fP (dt)fa (X)dx.

Ce terme peut s'ecrire, moyennant la notation (3,13)

T-'¦raid.horiz. ^[or + a0(l-^)]22^ (3,21)

II ne necessite pas le calcul d'integrales nouvelles.
Passons maintenant aux termes representant les energies potentielles des

diverses parties du Systeme.
Le terme Vplaque donne par l'expression (3,1) s'ecrit sous la forme explicite:

yplaane iJ/Vx [2 2 «„* f'L («) fn &)] [2 2«„ fP (*) /« (</)J
0 0 m w p q

+ 2ff[22o*,/;(*)/n(y)]EZ«M/,(*)/;W] (3,22)

m n p q

Or, on sait que l'on a

/&(*)/;(*) 0. (m + »)
0

En integrant par parties, on peut encore ecrire cette formule sous la forme

[/m MM*)]WVm (*)&(*)<** 0,
o

mais le terme integre est nul, parce qu'on a toujours

/m(0)=/m(a) 0.

Par consequent, les fonctions / satisfont encore ä la relation generale d'ortho-
gonalite z

$L(x)fn(x)dx ° pour m*n. (3,23)
o

De plus, si m n, on a

a a ,„.2 J ,™

lfm(x)rm{x)dx -lf'^{x)dx -^A (3,24)
0 o ^*

Si nous developpons ä present l'expression (3,22) de Vplaque donnee ci-dessus,
nous trouvons

D a b

Vplaque -^22 2 Üfm (x) dx^mnampS fn (y)fp (y)dy]" m n p 0 0

+#22 i<Jfm (*) /; (*)//» (?/) /; (y)dy]
Tn n 0 0

D a &

^22KnSJ/m(*)M*)<M
m w p 0 0+-/Z22[vsI/»W/i,W^I/;2(i/)^].
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En utilisant les notations (3,13) et (3,14) et en posant de plus

Bm ^JQ{x)dx, (3,25)
77 o

on peut ecrire l'expression de Vplaque sous la forme condensee suivante:

'plaque ~T~ y^x ~I% Zj Zj Zj ®mn ®mp •**'np ~*~ r Zj Zj ®mn ^m ^n* I W m n 7) Wu ?n n

I
(3'26)

+ DyTä 222 amn apn ^n ™mp{ •

u m n p

L'energie potentielle de flexion d'un raidisseur horizontal s'ecrit, en
remplacant w par son expression developpee (3,10)

yflex.raid.h. ^~ \^fi) ~
2 [TiTiamrifm(x)fn(di)]2dx

0

EI
~ 2 2 2 amn amp fn (di) fp (di) J f"m2 (x)dX.

" m n p ' Ö

Gräce ä la notation (3,25), cela peut s'ecrire

4 p r i
Vflex.raid.h. 7 ^222 amn amp fn \di) fp \di) *>m (3,27)

* a m n n

Pour un raidisseur vertical, on aurait de meme

1

6*
tt*EIv 1

Vflex.raid.v. ~ 7 Tä" 2 2 2 amn apn fm \ci) fp \ci) *>n • (3,28)
m n p

On verifierait aisement que les energies potentielles de torsion de ces
memes raidisseurs s'ecrivent respectivement:

2/»
ytorsionraid. h. a 222 amn amp fn \di) fp \di) ^m (3,29)

772 Gv
ytorsionraid.v. a l Zj Zj Zj ®mn ®pn Im \^i) fp \Gif ^n • (o,o\J)

^u m n p

En resume, il faut calculer les cinq integrales sans dimensions Am, Bm,
Cmn, Emn et Fmn, definies respectivement par les formules (3,13), (3,25),
(3,19), (3,14) et (3,16).

Parmi ces integrales, les deux premieres sont a un seul indice et leurs
valeurs numeriques seront donnees dans des tables ä simple entree. Les trois
dernieres sont a deux indices et necessiteront des tables a double entree.
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On remarquera que Emn Enm, Fmn Fnm, mais que Cmn + Cnm. Moyennant

ces notations, le critere de l'energie s'ecrit sous la forme:

L ^^ m n p

,Ä6
Zj Zj Zj ®mn ^mp ^m ^np T "* Zj Zj Zj Zj ^mn ®pq ^pm ^na ^j £-1 £-1 "-mn ^mp ^m ^ np ' ,v Z-j Zj l-i Lj ^mn ™pq ^pm ^ nq^a m n p m n p q

~ £ "^nr |CT+CTo (i - 2 f)l 2 2 2 «m» «mP /»(dt) fP (<*<) Am
£^l ^a L \ u / J m n p

~X~ lr»3 x Zj Zj Zj ®mn ®mp &m -^np* TäT V Zj Zj Zj ®mn ®pn -^n ^np* Xy1 m n p u m n p

+ ~ZT 22 amnAmAn> (3,31)
au m n j

\h TT*Eli
~*~ 2-1 £ A3 222 amw apn /m (Ct) /# (C*) ^n
^j ^V m n p

ETT^EIiAn3 222 amn amp fn \di) fp \di) ™m

i=l a m n p

~*~ Zj 4A3* 222 amn apn ° fm (Ci) ° fp (Ci) ^n
l l ^u m n p

£4^222«m„«mp«/;K)«/;(^)^J o.
l l ^u m n p J

h

+

4. Determination des tensions critiques de voilement

En vue de ne travailler que sur des quantites non dimensionnelles, nous
introduirons les symboles sans dimensions ci-apres:

o*fi

TT2 VD„D„x^V l. _ " T. _ °"0k — —- k — —^ k —
fe2Ä ' a CT/ CT,

3 =rh> e ,/^-^-> a &l/^' (4?1)
bl/DxDy' bhJ b]/DTD

ß

'x-^y
H

Ydxd

Nous multiplierons ensuite tous les termes de l'expression (3,31) par
cette expression prend alors la forme suivante: "" x y

x-^y
2ab



THEORIE GENERALE DU VOILEMENT DES PLAQUES RECTANGULAIRES 235

f fc ]Ca
^ 9~ Zj Zj Zj ^mn ^mp ^m ^np n~ Zj Zj Zj ®mn ®mp *™~m ^np

{ *> m n p " m n p

2 Je oc

~2 Zj Zj Zj Zj ^mn ®pq ^pm^nq
77 m n p q

~ £ T [k° + *"o (l - 2 J)] 2 2 2 «mn S, /n (*i) /p (*<) ^m

r 1 a2
"¦ o 2 Zj Zj Zj ^mn ^wp -**m ^wp ' ~o~ Zj Zj Zj ^mn ^pn *-*n ^mp

L^a m n p " m n p

V A I

+ 922 amn Am An + 7, "9 1/ TT Vi® 222 amn apn fm \ci) fp \Ci) **n^ m n J i=l ¥ V m n p

+ Z-j 9^ ¥ TT 2 2 2 amn amp fn (di) fp (di) Bm
twf & a ' J^x rn n p

/ 1 9~ 1/ TT" 222 amn apn~Z tm \Ci) ~ fp \Ci) ^n
iT\ A \ ny m n p ™ ™

j-ri ZOL 1 Ur m n -n TT TT

(4,2)

+
i=

h

^=1 ****• ' -^x m n p

ce qui peut s'ecrire plus simplement3)
§ W 0 (4,2')

en designant par W la quantite entre aecolades.
Notons en passant que la dissymetrie par rapport ä a des termes relatifs

aux energies de flexion et de torsion des raidisseurs provient de la dissymetrie
des notations y et 9 qui contiennent b pour les deux types de raidisseurs.

La condition 8 W 0 ne sera satisfaite que si toutes les derivees partielles
de W par rapport aux coefficients amn sont nulles, c'est-ä-dire si l'on a:

dW
0, quels que soient m et n. (4,3)

En appliquant l'operation de derivation ä l'expression entre aecolades de
la formule (4,2) on trouve l'equation fundamentale suivante

(p+ri)imp
— k Yn Ä E —Jr y a A F^a L^yA/mp-c^mJ^np ^ao Lj lA/mp-C3-m-Lnpi

(4 4)
AqlIc (m+P)imp (n+q)imP v » '

_ ____! V V a C C
2 Z-J ^-J ^pq^pm^nq^

3) La barre horizontale reliant deux signes 2 signifie que les indices correspondant
ä ces sommes doivent toujours etre de parites differentes, car les integrales F et C sont
nulles quand leurs deux indices sont de meme parite.
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-JU [h + Ko (l ~^)] 2 «mp fn (di) U (d{) Am

+ ~~2~ 2 amp ^np + a BnAjapn^mp~r'PJ^mJ^namn
CC p p

4 FW v

+ «5nl/-ff2yii;E/mfe)/pfe)V'
F -Uyi=l p

"^ Z n\ TT 2 ^2"~/m(Ci)"/p (Ci)apn>
oc \ Uyi=i v TT TT

i FW h
M ~2 Bm V TT .2 Vift 2 /rc W /p (di) amp >

+äJ^ ieihZ^fn(di)^f'P(di)a„

Remarque au sujet de la derivation: Lorsqu'on calcule par exemple

° { ^"222 amn amp ^-m -^np \>
[ * m n p

(4.4)

"mp •

il importe de tenir compte du fait que, dans la somme sur p, l'indice p prend
la valeur n.

Les equations (4,4) forment un Systeme d'equations lineaires et homogenes

par rapport aux inconnues amn. Pour qu'il y ait voilement, il faut que la
plaque puisse rester en equilibre dans une forme voilee, c'est-ä-dire que le

Systeme d'equations (4.4) admette pour les coefficients amn une Solution non
composee de tous zeros. Cela n'aura lieu que si le Systeme (4,4) est compatible,
ce qui exige que le determinant A des coefficients des inconnues amn soit
egal ä zero.

La condition
ZI =0

fournit l'equation qui permet de calculer la grandeur des tensions critiques
de voilement.

5. Calcul des integrales A, B, C, JE, F

Rappeions d'abord que les fonctions fm(x) choisies dans le developpement
en serie double representant w sont les deformees de flambement successives
d'une barre prismatique comprimee suivant son axe.

Dans ce qui suit, nous considerons d'abord les plaques appuyees sur leurs
bords paralleles ou encastrees sur ces bords.

Dans le premier cas, on a l'expression classique

UTTX /r, _.fn(x) sm—j—. (5,1)
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Dans le second cas, on a, d'apres la theorie du flambement de la barre
biencastree

* i \ i (n+1)fn(x) 1—cos—-—-77a;

sinkj~-l) 2
fn(X)= ±T ^+1-4^

si n est impair,

sinfe Y sm est pair.

(5,2)

(5,3)

Les valeurs de kn intervenant dans l'expression (5,3) sont les racines de
1 'equation transcendante k tg k.

Cette equation admet une infinite de racines dont les 16 premieres sont
reproduites ci-apres:

n rCn n kn

2 4,4934 18 29,8116
4 7,7253 20 32,9564
6 10,9041 22 36,1006
8 14,0662 24 39,2444

10 17,2208 26 42,3879
12 20,3713 28 46,5311
14 23,5195 30 48,6741
16 26,6661 32 51,8170

Les 4 premieres deformees correspondant aux equations (5.2) et (5.3) sont
representees ä la figure 5.1.

/7=7 n=2 \ n=3

Fig. 5.1.

/\\ 6 V\\
iL \J \ ', X n=4 \f \CF^ ', X

\
r

\/
On va calculer les valeurs des integrales A, B, C, E, F pour les deux com-

binaisons ci-apres d'appuis d'extremite

5.1: Appuis simples aux deux extremites;
5.2: Encastrements aux deux extremites.

5.1. Appuis simples aux deux extremites

Toutes les integrales intervenantes ont ete calculees par Timoshenko dans
son livre «Theorie de la Stabilite Elastique». On a:

fm (x) Sin mTrx
l

m77 m^xL(x) ~rcosnr~' w -(t)' sm-
TYlTTX

l
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Am

i
21 C m2TT2 0mTTX'\ cos* l dx m2,

Bn
2P C m4774 „m-nx_ 2P rm*>,

0

l

sin' l
d x m4,

r —C^mn ^nm
mn m-nx mTrx 7

—y-sm—=—cos—-—dx

0 si (m±n) est pair,
2mn

m2 — n2
si (m ± n) est impair,

„ „ 1 C m^x mrx n
f 0 si m 4= n,

Emn 2^m s T J an-p-Hiii— d* J1/a g. m ^
_ _ 1 f /_ 2a\ ra774, 4 y J 11 —H sm-y-

o

# 7^77^
— sm —=— d x

0 pour m 4= n et (m ± n) pair,
8 mn

-ir i—« t^k pour m ^ n et (m±n) impair,tt* (m2 — n2)2

0 pour m n.

5.2. Encastrements parfaits aux deux extremites

Par des calculs laborieux, mais sans difficulte speciale, on obtient les

expressions ci-apres des integrales A, B, C, E, F:

Am 3£ffc(z)dz=(y±y,
0

^jflHx)dx=(^)\B

^mn ~ ^nm — J fm \x) fn \x) ** x
0

f o si (m±n) est pair,
2 k2

Pa%r,2— si (m±n) est impair et m impair,k2^impair ,vpair

h2 _J~2'"impair ^pair
si (m ± n) est impair et m pair.



THEORIE GENERALE DU VOILEMENT DES PLAQUES RECTANGULAIRES 239

F JP¦^mn -^nm

t

j\fm(x)fn(x)dx
0

1/3 si m,n sont pairs et differents,
1 si m, n sont impairs et differents,

5/6 si m, n sont pairs et egaux,
3/2 si m, n sont impairs et egaux,

0 si (m + n) est impair.

^mn ~ ^nm T I I 1 T~ I fm \x) fn \x) ^ :

0 si (m + n) est pair,
9 k2^ wimpair

(f°in -k2 )2
'"pair/ k2^impair

4- - si (m + n) est impair.
ö

Envisageons maintenant une plaque encastree sur un bord vertical et
appuyee sur le bord parallele. On peut toujours considerer une teile plaque
comme la moitie d'une plaque parfaitement encastree sur ses deux bords
verticaux, possedant la longueur 2 a et presentant une ligne nodale verticale
mediane.

Pour realiser cette ligne nodale, il faut n'adopter dans le developpement
du deplacement

W XI>amnfm(X)fn(y)>

que des deformees antimetriques presentant un point d'inflexion en leur milieu.
En remplacant l par 21 dans l'expression (5,3) de la deformee antimetrique,

on trouve, pour la partie utile de la fonetion fm correspondant ä la demi-
plaque de gauche:

ain&n(y-l)
fn (x)

sinÄA
i x

+1-i (O^xSl).

On constate ainsi que les integrales relatives ä une plaque dont les bords
paralleles, l'un encastre, l'autre appuye, sont les memes que celles d'une
plaque encastree sur deux bords paralleles, mais que l'intervalle d'integration
est moitie moindre. Or, les integrales A, B, C, E et F etant sans dimensions,
elles ont meme valeur quelle que soit la longueur l de l'intervalle. II resulte
de cette remarque que les valeurs Am et Bm et celles de Emn si m et n sont
pairs et differents ou egaux sont celles indiquees au littera 5.2 ci-dessus.

Par contre, on n'a plus, dans le cas actuel,

r̂mn
F̂mn

0 si (m + n) est pair,
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car la nullite de ces integrales provenait uniquement de ce que l'integration
portait sur un produit de deux fonctions antimetrique dans Vintervalle (0,21).
II nous faut donc effectuer le calcul de ces deux integrales, que nous designe-
rons par les notations C'mn et F^n pour rappeler que l'intervalle d'integration
n'est que la moitie de celui considere plus haut.

Par des calculs laborieux, mais sans difficulte, on trouve les formules
ci-apres: pour m pair, n pair,

G'mn=\ -T ^+X-T ^ J—l\dxmn J L *mkm l\ L sinfcn J ĉmn

cosk2n-cosk2m _1_ l-cosfc2n 1_ l-cos&2m
2(cosk2n + cos k2m) k2n cosk2n k2m cos#2m

1

rsin km g- l) n r-sinkn i~ - l)
mn nm } J y } jy SH1 &m l\ [ Slllfc^ l\

0

5
{

^(fc|m + 2 + ^IJsinfc2msinÄ;2n-4Ä;2mÄ:2n 2 (l-cosfc2J2
" \^2m~^2n) ^2m sin^2m

2 (l-cosfc2J^
^2 n sm "^2 n

6. Expression explicitee de l'equation aux amre dans le cas d'une plaque ayant un
appui simple sur deux bords paralleles ou sur les quatre bords

Vu la forme particulierement simple que prennent les integrales definies
A ä F dans le cas du double appui simple, il est interessant de remplacer dans

l'equation generale (4,4), les symboles A ä F par leurs valeurs explicites
trouvees au par. 5.1. On obtient ainsi:

6.1. L'equation aux amn pour une plaque rectangulaire simplement appuyee sur
tout son contour

m a~y.n jr— 7
_

- ~ T^Tn^n2"«™mn ^2 Lj (n2-p2)2 mp
K^2^ ^croV4) rn2np

TT2 Lj
p

7T-5 Z_l Z_l (ml — p2) tn2 — «2) VQL^ £-> (TO2-^2)(n2-g-2)

¦S5«-(,+£-t')5"'-!mTrdi pTrdi
-or0 - / <n ^ O

4) La somme s'etend ä toutes les combinaisons d'indices n, p pour lesquelles (n + p)
est impair.

5) Les sommes doivent s'etendre ä toutes les combinaisons d'indices pour lesquelles
(m + p) et (n + q) sont impairs.
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1 im2 0 \2 ,n ,x+ 2\V+ j a^ + (ß-1)

tlDT V ^ m77Cv P7TCv
+ al/7r 2 ri^42sm-—^sm^-—1a^

1 1/D2/ * d_ mrdi pTrdt

4- \lDX\^ 0iv 9^ miTC; PTTC;1/-FT / —^mn^pcos -cos-—*a„w

/Dy
h

9 ^ 7?,77(L 7)77CL^ 2 ^m2^2^cos—^cos^-^amp 0.
Ux i \ p u u

Cette equation generalise celle qui a ete etablie par une autre methode par
MlLOSAVLJEVITCH [14].

6.2. L'equation aux amn pour une plaque rectangulaire parfaitement encastree

sur ses bords horizontaux et simplement appuyee sur ses bords verticaux

— k^m 2j Enpamp — kaom 2 Fnpamp
p p

8aiTy5)y5)_mp_+ ^ Zj L m2_v2L/npapq
p q

-K^jt^i (l +^- - 2jF) 2/« (di)fP {dt)a„p

771 our
-\ jt- Zj-^np ®mp "t" "77 ^*n ^mw ' P "* -"-n ^m?i

« p ^

„ t/jÖI " _, ra77C, ^77C, (6,2)
+ ocBnVrT 2 r^sm—^sm^-^a^

r 2/ i=l P M u

+ "^1/TT 2 OivZmpcos—--±cos^--±apn
oc f Uy i=i p u a

+ 5" VTT 2 y« 2 fn (di) fp (di) a„
a ' 1Jx i~\ P

!p v*V ™mp

+ m2l/^ 2 dih^rn(di)-f'P(di)amp 0.
' JJX i=l p TT TT
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7. Remarques sur le fractionnement des equations aux amn

7.1. Ceneralites

Dans son livre sur la stabilite elastique, le professeur Timoshenko a
montre que:

a) Dans le cas d'une plaque simplement appuyee sur son contour et soumise
ä flexion pure, les equations aux amn se fractionnaient en divers groupes; dans
chacun de ces groupes, l'indice m conserve une valeur fixe. Le groupe d'ordre
m correspond ä une deformee de voilement dont une coupe horizontale a pour
equation

TT mrrX
w K sin

a

II suffit donc d'etudier le cas oü m 1 et de ne conserver, dans les equations
aux amn, que les parametres a±1,a12,. aln.

b) Dans le cas d'une plaque simplement appuyee sur son contour et
soumise ä cisaillement pur, les equations aux amn se fractionnent en deux groupes;
le premier contient toutes les inconnues amn pour lesquelles (m±n) est pair;
le second, celles pour lesquelles (m ± n) est impair.

II est interessant de chercher la raison profonde de ce fractionnement et
de voir si des proprietes analogues existent dans le cas d'une plaque encastree
sur deux bords paralleles ou bien sur ses quatre bords.

7.2. Fractionnement des equations aux amn en plusieurs groupes ne contenant
chacun que des coefficients amn d'indice m constant

La condition necessaire et süffisante pour qu'un tel fractionnement se

produise est que la deformee de voilement soit de la forme

w(x,y)=f(x)g(y) (7,1)

et possede par consequent des lignes nodales verticales et horizontales
correspondant respectivement aux zeros des fonctions / (x) et g (y).

L'equation aux derivees partielles du voilement des plaques s'ecrit, dans
le cas oü cette plaque est soumise sur ses bords verticaux ä des tensions ax
de flexion composee

^ d*w nTT d*w _ B*w
7

82w „ ,„ ftXD*W + 2H8x-W + D«W*+h(Tx^ 0- (7'2)

La fonetion w doit satisfaire aux conditions d'appui de la plaque sur son
pourtour. De plus, si cette plaque comporte des raidisseurs horizontaux ou
verticaux, w doit satisfaire ä des conditions de continuite le long de chaque
raidisseur.
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En remplacant w par son expression (7,1) dans l'equation (7,2), on trouve
la relation

Dxf^g + 2Hf"g"+Dyfg^ + h<jxf"g 0 (7,3)

oü les primes, secondes, etc. representent des derivees premieres, secondes,
etc...., des fonctions f et g par rapport ä la seule variable dont elles dependent.

Si la plaque est appuyee sur ses bords verticaux, eile admet toujours une
Solution de la forme

m-nx in a\w s\n g(y). (7,4)

En effet, on a alors

4^4m^x m*TT* m7Tii \f(x) sm—--; f (x)= -2-/(^); /IV(*) =—4-/0*0.
a a a

En remplacant dans l'egalite (7,3), on voit que celle-ci est verifiee ä condition
que la fonetion g (y) satisfasse ä l'equation differentielle ordinaire

t^ tt7 ^m2TT2 tt ,1 r^4'""4 m2772 1
/n _Dy9IY~2--2~H9 +[-^4-^ tfrhcr*\9 °> <7'5>

ainsi qu'aux conditions d'appui existant sur les bords horizontaux de la
plaque et aux conditions de continuite le long des raidisseurs eventuels. Les
raidisseurs horizontaux, etant flechis suivant la loi sinusoidale

w(x,yo) 9(yo)^in~-~—^ (7>6)
a

n'apportent aueune entrave ä une deformee de la forme (7,4). Par contre,
des raidisseurs verticaux rendent la Solution (7,4) inapplicable, parce qu'ils
constituent pour une bände horizontale de plaque d'ordonnee y0 des appuis
elastiques supplementaires, et que cette bände ne se deforme plus suivant la
loi simple (7,4).

Si la plaque est encastree sur ses bords verticaux, le fractionnement ne se

produit plus; en effet, si f(x) est une fonetion de flambement, on a bien
f1Y + Kf" 0 comme dans le cas du sinus; mais on n'a plus f" + kf 0, ä cause
des moments d'encastrement, mais bien /" + Kf + Cx + D 0, de sorte que
l'expression (7,1) n'est plus une Solution de l'equation (7,2).

En conclusion de cette discussion, nous pouvons enoncer le theoreme
suivant:

Un fractionnement des equations aux amn en groupes separes correspondant
chacun a une valeur particuliere de Vindice m se produit lorsque la plaque orthotrope

soumise ä la flexion composee sur ses bords verticaux est simplement appuyee
sur ces bords et ne possede que des raidisseurs horizontaux. La plaque peut avoir
un mode d'appui quelconque sur ses deux bords horizontaux.
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7.3 Dans la suite de ce paragraphe, on se limitera aux plaques isotropes

pour lesquelles Dx Dy H D. On peut se demander ä propos de ces plaques
dans quelles circonstances le Systeme d'equations aux amn se separe en deux
systemes distincts, contenant l'un les inconnues amn telles que (m + n) est

pair, et l'autre les inconnues telles que (m + n) est impair.
Pour resoudre ce probleme, il faut tout d'abord remarquer que toute

fonetion
w(x,y) =amnfm(x)gn(y)

represente une deformee de voilement symetrique par rapport aux diagonales du
rectangle si (m + n) est pair et antimetrique par rapport ä ces diagonales si (m + n)
est impair. En effet, les equations des diagonales 0 E et F G sont respectivement

x y x y- f et _ + f l.ab ab
Si (m + n) est pair, m et n sont pairs ensemble ou impairs ensemble, donc les

fonctions fm et gn sont symetriques ensemble ou antimetriques ensemble.

0 F

A^ 'D

C^ *\fl

o

G L

€

o

Y' '

Fig. 7.1.

Les points A, B, C, D de la figure 7.1 ont respectivement pour coordonnees:

a ~— x | x
DA

-x
B

b x
a

C{ r bx
b

a

a — x
b

a
-x

Supposons d'abord fm et gn symetriques ensemble; on a alors

fm(X) fm(a~X) ; 9n I*-) 9n f6""^) '

d'oü w(A)=w(B); w(C)=w(D).

Si fm et gn sont antimetriques ensemble, les antimetries neutralisent leurs
effets, et l'on a encore

w(A) w(B); w(C) =w(D).
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Par des considerations analogues, on peut voir que, lorsque (m + n) est impair,
°na w(A) -w(B)\ w(C) -w(D) c.q.f.d.

Ce point etant etabli, nous allons demontrer que:

Dans le cas d'une plaque isotrope sollicitee au cisaillement pur et en outre ä
des efforts de compression uniforme ax et uy, le Systeme d'equations aux amn se

fractionne en deux systemes independants, quel que soit le mode d'appui de la
plaque sur son contour, pourvu qu'il soit le meme sur les paires de bords paralleles.
Le premier Systeme contient les inconnues amn pour lesquelles (m + n) est pair;
le second, celles pour lesquelles (m + n) est impair.

En effet, on peut decomposer la serie double

OO OU

W{x,y)= 2 2 »mn fm (x) 9n (V) >

ra=ln=l

representant w en ses composantes symetrique ws et antimetrique wa

w ws + wa,

ws est la serie double partielle contenant les termes pour lesquels (m + n) est
pair; de meme, wa est la serie double contenant les termes restants de w, pour
lesquels (m + n) est impair.

Dans le cas particulier de sollicitation par compression sur les quatre cotes
et cisaillement pur, le critere de l'energie s'ecrit:

*,T7 ™ «\d CC[d2w d2w\2J ä rr r idw\2 idw\2

+ 2tJ^A]<*^»I-0-dw dw~\

dx dy

d2w d2w
Or, on a _+=jtl, jw,8 + jM,a.

d'oü A2w A2w„ + A2wn + 2AwqAw„.

De meme
/dw\2

_ (dw\2 (dwa\2 dwsdwa
\dx / \dx / \ dx I dx dx '

/dwy (dWsV IdjWaY ,2^H\dy) \8y) \8y) zy Zy'
En remplacant dans le critere de l'energie (7,7), il vient

8(V-T) 8^Vs + Va + D^AwsAwadxdy-Ts-Ta
CC f dwsdwa dw„ dw„ idw^dw,. dw„ dwX\ 1-h ax—-^—^ + ay~^-—^ + r l^—" + —«—* \\dxdy \ 0.

JJ l dx dx y dy dy \dx dy dx dy)\ *)

(7,8)
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Or, les derivees premieres de fonctions symetriques sont antimetriques et
vice-versa; comme ax, oy et r sont constants par hypothese, la derniere
integrale double de l'equation (7,8) s'applique ä des produits de fonctions
symetriques par des fonctions antimetriques et est par consequent nulle. Quant

au Laplacien A w, il represente physiquement la courbure moyenne /-=- 4- -p-1

de la plaque deformee et il a les memes proprietes de symetrie que w, d'oü il
resulte que $$A wsAwadxdy 0. En definitive, le critere de l'energie s'ecrit:

8{VS + Va-Ts-Ta} 0.

On peut toujours poser ax kax0, ay kay0, r kr0, d'oü le critere de l'energie

s'ecrit
8{Vs + Va-k(ts + ta)} 0.

L'intensite critique du coefficient de voilement k est donc donnee par

V +V

Si l'on avait adopte pour w une deformee symetrique ws, on aurait trouve

Vs
k ks —.

ls

De meme, si on avait adopte une deformee antimetrique wa, on aurait trouve

* K f

La formule (7,9) peut s'ecrire

-1 ya ts ya *s ts fco,

V i+ir T + T~l^~ T + ~k~
T, * S V S Ty. a a * S Ty. a h/S

— A 7— — fCs 7 — /C8—

t$ la va

Si l'on a ka>ks, k>ks et ks est la valeur minimum de k qu'il faut adopter; la
deformee de voilement est alors symetrique par rapport aux deux diagonales
de la plaque.

Si, au contraire, on & ka<ks, on voit facilement que

ka ^ k ^ ks,

ka est alors la valeur minimum de k et la deformee de voilement est
antimetrique.

Corollaire: Si les tensions de cisaillement considerees dans la demonstration
ci-dessus s'annulent, la plaque est soumise ä compression simple dans les
directions x et y.

Les produits Yx~d~ intervenan^ dans les formules (7,7) et (7,8) dis-
paraissent.
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Dans ces conditions, on peut d'abord fractionner w en ws et wa comme
indique ci-dessus, puis ensuite fractionner chacune de ces deux deformees en
leurs composantes w± et wu respectivement symetrique et antimetrique par
rapport ä la mediane verticale du panneau.

On obtient ainsi au total quatre types de deformees, caracterises
respectivement par les relations:

1. wA wB wc wD
2. wA= —wB= —wc wD

3. wA wB= —wc= —wD
4. wA= —wB wc= —wD

symetriques par rapport ä la mediane verticale

antimetriques par rapport ä la mediane verticale

A ce fractionnement des formes de voilement correspond le fractionnement
de l'expression

W (X> y) 2 2 amn fm (X) 9n (y)
m n

en quatre expressions wx, w2, w3, w±, correspondant respectivement aux
restrictions suivantes sur les indices m, n:

1. m et n pairs.
2. m pair, n impair.
3. m impair, n impair.
4. m impair, n pair.

II en resulte egalement que la matrice des coefficients numeriques des
inconnues se fractionne en quatre sous-matrices qu'il faut etudier separement.

DEUXIEME PARTIE: APPLICATIONS NUMERIQUES DE LA THEORIE

8. Plaques non raidies sollicitees en compression pure, en flexion
ou en cisaillement pur

8.1. Compression pure dans le sens des x(ax), les quatre bords etant encastres

Le Systeme general d'equations aux amn (4.4) prend ici la forme

"'ct Zj ^mp ^m *^np "¦" ~2 m Zj ^mp ^np
V V

(8,1)
+ ^BnlLapn^mp + AmAnamn 0.

p

Rappeions que, par suite du corollaire du par. 7.3, l'equation (8,1) se
fractionne en quatre systemes independants. Appelons 1, 2, 3 et 4 chacun de
ceux-ci. La deformee qui se produira reellement sous l'action de ax est celle
qui est associee ä la plus petite valeur de ka.
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Les systemes d'equations homogenes peuvent s'ecrire sous forme matri-

(A)ka + (B) 0, (8,2)

la matrice (A) provenant du travail des forces de compression et la matrice
(B) de l'energie de flexion de la plaque.

Pour obtenir la plus petite valeur du coefficient ka, nous multiplions la

Tableau I

OL k ai k CT2 k (73 k CT4

0,3 47,20 93,10 100,80 56,40
0,5 19,45 35,40 44,00 32,65
0,6 15,00 26,80 34,95 30,05
0,8 11,20 — — —
1 10,20 11,70 25,30 26,70
1,35 — 8,90 — —
1,65 8,40 8,35 21,90 24,60
2 7,95 — 23,50 27,60
3 8,45 7,50 — —

197

Fig. 8.1. A: Plaque appuyee.
B: Plaque appuyee et encastree sur les bords non sollicites.
C: Plaque encastree.
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relation (8,2) par la matrice inverse de (B) ce qui donne

(5)-!^)=-^.
Les valeurs propres de (B)~1(A) sont alors les inverses de ka que nous

voulons determiner.
Nous calculons les valeurs propres ä l'aide du programme I.B.M.: (V + VP)M

n° 5.2.5. B qui donne la plus grande valeur propre de n'importe quelle matrice
carree et par consequent le plus petit ka que nous recherchons. Ces calculs
ont ete effectues pour differentes valeurs de oc avec 4 composantes en m et
4 composantes en n de l'equation (8,1).

On en trouve les resultats dans le tableau I ci-avant, traduit graphiquement
ä la figure 8.1.

On constate que la precision des courbes 1 et 2 est bonne jusqu'ä a 2;
passe cette limite, elles amorcent une remontee qui n'est due qu'ä la limitation
ä 4 du nombre des composantes fm (x) de la deformee.

Pour les courbes 3 et 4, on ne peut se fier ä leurs resultats que pour a plus
petit que 1,5. Leur interet etant assez limite, nous n'avons pas eherche ä

augmenter leur precision.

8.2. Flexion pure et flexion composee de plaques encastrees sur les quatre bords

L'equation de l'energie qui regit le phenomene de voilement se deduit de

l'equation generale (4,4) et s'ecrit
(n+p)impair \

^cto Zj ™mp ^-m ^np "¦ 2 m Zj ^mp ^np
P OC p (8 3)

4- oc Bn Zj apn Emp + Am An amn 0.
p

En flexion pure comme en flexion composee, on ne beneficie plus d'aueune
Separation du Systeme d'equations. Aussi est-onoblige dans ce cas de se limiter
aux 4 premieres composantes de la deformee m,w=l,2,3,4, car meme ainsi
on doit manipuler des matrices de 16 X 16 elements.

Notons qu'un changement de signe des sollicitations n'affecte pas la
stabilite de la plaque. Tout ka est alors aecompagne d'une valeur egale mais
de signe contraire.

Dans ce cas, la recherche des valeurs propres de (B)~1(A) par approximations

successives n'est plus applicable; c'est pourquoi, nous les avons
elevees au carre.

Les matrices resultantes ont alors pour valeurs propres les carres de Celles
de (B)~1(A). La valeur que nous cherchons est ä present une racine double,
ce qui n'entraine aueune complication pour la resolution.

Pour les plaques soumises ä flexion composee, nous devons ajouter ä

l'equation (8,3), le terme — ka £] ampAm Enp du travail des forces de
compression pure. v
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Posons crcomp <j0 + a et otr o — (i0; la flexion composee peut etre alors
Gcomp — ®tr

Ocomp
(s 2 en flexioncaracterisee univoquement par le coefficient s

pure).
Nous convenons de prendre comme tension de reference la plus grande

des deux valeurs acomp ou utr.
Ce sera donc ocomp, si s est plus petit que 2 et at si s est plus grand que deux.
Les valeurs propres de (J5)-1(^4) n'etant plus cette fois egales et de signes

opposes, nous ne devons plus elever la matrice au carre.
Les valeurs calculees sont indiquees au tableau II et sont traduites par

les courbes de la figure 8.2. On trouve au par. 9 des courbes similaires pour les

plaques encastrees-appuyees.

Tableau II

oc

5 2/3 s=l s 4/3 5 2

k k k Ka CT CT oo

0,3 64,85 74,95 78,45 118,00
0,5 28,25 34,90 41,45 70,65
0,8 16,60 21,40 28,55 61,75
1,2 14,35 18,45 24,70 52,65
1,65 12,45 16,10 22,25 46,20
2 11,90 15,45 21,25 44,80

QU oo
39.6

d. : oo

13 55

Fig. 8.2.
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8.3. Cisaillement pur

L'equation qui regit le phenomene de voilement par cisaillement pur se

deduit de la relation generale (4,4) et s'ecrit

A.frim+P)impair (n + Q)impair
~~ t ~Z2 2 2 apq ^pm ^nq + ZÜ ^m 2 amp ^ n

p a

+ oc Bn 2j apn Emp + Am An amn 0.

"mp -^ np

(8,4)

En vertu de la demonstration du par. 7.3, le Systeme d'equations aux amn
se subdivise en deux systemes partiels. Le premier caracterisant les deformees
symetriques par rapport au centre de la plaque et l'autre les deformees
antimetriques par rapport ä ce point.

Les resultats ont ete obtenus par une methode identique ä celle de la

Tableau III

OL

Plaques encastrees Plaques enc. et app.

Ks Ka Ks Ka

0,3
0,45
0,7
1

112,50
51,25
24,15
14,90

114,50
49,95
25,45
17,20

66,65
32,40
18,50
12,70

62,25
32,70
21,50
14,30

8.98

Fig. 8.3.
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flexion pure, pour des plaques encastrees sur leur pourtour ou bien appuyees
sur les bords verticaux et encastrees sur les bords horizontaux.

Ils sont consignes au tableau III et traduits par les courbes de la figure 8.3.

9. Plaques encastrees sur leurs bords horizontaux et appuyees sur leurs bords

verticaux, munies de raidisseurs horizontaux et sollicitees en flexion pure

9.1. Generalites

L'etude du dimensionnement de l'äme et des raidisseurs d'une poutre ä
äme pleine, dans sa partie sollicitee en flexion pure, a ete entreprise par
Chwalla [15,16] en 1936. L'un de nous a complete cette etude [17] en suppo-
sant que le raidisseur optimum etait place au milieu de la zone comprimee.

Ces resultats ont ete revus par Stüssi, Ch. et P. Dubas [18,19]. Ils sont
arrives ä la conclusion que, dans le cas de plaques rectangulaires appuyees
sur les 4 bords, le raidisseur optimum etait situe au cinquieme superieur de la
plaque.

C 'est en effet ä cet endroit que la deformee de deuxieme ordre de la plaque
presente une ligne nodale et il a ete montre que c'est la position optimum, de

meme que la stabilite optimum de la plaque raidie doit etre prise egale ä celle

correspondant ä la deuxieme forme de voilement de la plaque non raidie, soit
k= 129,4 dans le cas etudie par Stüssi.

Ceradini [20] a complete cette recherche en l'etendant aux plaques
appuyees sur leurs bords sollicites et encastrees sur les autres. On rappellera
ici quelques-uns des resultats qu'il a obtenus.

a) Le kamin de la premiere forme de voilement des plaques encastrees et

appuyees vaut 39,85 (Nölke: 39,61) contre 23,88 pour les plaques appuyees.
Cependant, l'augmentation du ka de la 2e forme de voilement est plus
faible; on ne passe en effet que de 129,4 ä 162.

b) La position optimum du raidisseur est ä present aux 2/9es superieurs.
c) Pour une plaque de rapport a 2/3, Ceradini trouve que le y optimum

vaut 9,45.

Cette valeur de y est pratiquement egale ä la valeur y 9,35 correspondant
ä un raidisseur place au 1/5 sur une plaque appuyee. On voit que l'encastrement
des bords horizontaux et le placement du raidisseur aux 2/9es ont pour effet
de faire passer ka de 129,4 ä 162, c'est-ä-dire d'augmenter la stabilite de
25 pour cent.

9.2. Considerations sur les raidisseurs tubulaires strictement rigides

Aueune des etudes signalees precedemment ne prend en compte la rigidite
torsionnelle des raidisseurs; leurs auteurs ne considerent, en effet, que des

raidisseurs formes de profils ouverts.
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Cependant, des raidisseurs comme ceux de la fig. 1.1 sont loin de rentrer
dans cette categorie, car alors que pour un raidisseur rectangulaire epais
(bjh= 1/5) et symetrique,

- -J-.2~= 0,0625,
y 14-17 oz

on obtient pour un raidisseur forme de deux cornieres

ß_.3Qd?e 3

y=:2Edze 4(1 + 77) '

et pour un raidisseur en forme de tube

»«£££ =10,781.
y 4irEdze 1 + r]

Nous supposons connue la notion de raidisseur strictement rigide carac-
terise par la valeur y* de sa rigidite relative. Lorsqu'un tel raidisseur presente
en outre une rigidite torsionnelle non negligeable, ses proprietes dependent
des deux parametres 0 et y et Bornscheuer [4] a montre que la definition de
0* et y* devient plus complexe.

Ainsi, dans le cas de la flexion pure, on ne peut plus affirmer que la position
optimum du raidisseur est encore fixee par la ligne nodale horizontale de la
deformee du second ordre car, meme s'il est situe ä l'ordonnee correspondante,
il est encore tordu lors du voilement.

Aussi avons-nous adopte comme principe de base que la position ä donner
au raidisseur est teile que, si les panneaux qu'il determine sur la plaque
etaient independants et encastres sur leurs bords horizontaux (les autres etant
appuyes) ils auraient tous deux la meme stabilite. Notons que cette hypothese
est correcte dans le cas d'un raidisseur infiniment rigide, car alors les deux
panneaux partiels se comportent comme s'ils etaient completement independants.

En ce qui concerne le coefficient de voilement k* de la plaque raidie,
nous adoptons la valeur commune des deux panneaux partiels. Nous deter-
minons ensuite le y* du raidisseur caracterise par § et 0/y qui donne ä la
plaque la meme stabilite qu'un raidisseur infiniment rigide. II s'agit ici d'une
rigidite optimum de troisieme espece selon la Classification proposee par
Bornscheuer et Chwalla [4,15]. L'hypothese de calcul ci-dessus s'est revelee
correcte, car nous avons trouve des valeurs finies pour y*.

La recherche du djb optimum a necessite l'obtention prealable de nom-
breuses courbes kff f(oc) relatives ä des plaques encastrees-appuyees soumises
ä flexion composee, le coefficient caracteristique s qui intervient dans la loi de

repartition o- cr* (1 — ^~\ pouvant etre superieur ä 2.

Pour ces calculs, nous avons utilise la technique decrite au par. 8.2 et nous
avons beneficie en outre du theoreme demontre au par. 7.2 qui permet de ne
considerer que les coefficients aln dans le cas de plaques appuyees sur leurs
bords sollicites.
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Tableau IV

<x

di
0 di

~b~ 0,15
di

0,25
di
~b~~ 0,333 ^ 0,5

0

5 0 s 2 s 0,3 s=2,429 s 0,5 5=3 5=0,667 5 4 5=1 5= 00

K K0 K> V K> V V V V V
0,10 1240 oo

0,15 — — — 172 — 303 — 595 00

0,25 18,8 55,95 21,8 101,5 24,4 198,5 — 565 35,6 00

0,35 11,2 43,5 14,0 86,3 14,75 188,5 16,15 715 21,35 oo

0,50 7,75 40,15 9,05 90,1 10,25 225 11,45 875 14,8 00

0,75 7,1 48,85 8,40 126,0 9,40 359 10,60 1580 13,95 00

1,00 8,5 66,9 10,15 186,0 11,50 560 12,90 2560 16,50 00

k̂er min 7 40,05 8,15 85,5 9,3 186 10,4 500 13,55 CO

Pour di/b 0,2, on a encore trouve: ka,min 8,7 et ka^min=112.

13.55

Fig. 9.1.

Nous nous sommes limites aux 6 premieres composantes de la deformee
dans la direction des y et nous avons pu estimer ä environ 1 % l'ecart par
exces entre les valeurs exactes et celles que nous avons calculees.

En flexion pure, par exemple, kOQmin 39,61 pour a 0,47 (6) tandis que
nous trouvons k,

cto min : 40,05 soit un ecart de 1?1 pour 100.
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Notons que, pour 8 composantes, l'ecart vaut encore 0,7 pour 100.

L'erreur etant sensiblement la meme pour tous les points calcules, celle

que nous commettons sur la determination du djb optimum est negligeable.
Rappeions en passant que les valeurs y* de la rigidite optimum s'appli-

quent ä une plaque idealement plane.
Les recherches experimentales d'un des auteurs [1,2 et 21] ont montre

que, pour obtenir, sur les panneaux d'ämes legerement courbes des poutres
industrielles, des raidisseurs restant pratiquement rectilignes jusqu'ä la ruine,
il fallait multiplier y* par un coefficient valant de 3 ä 6. Ce resultat experimental

a ete depuis explique theoriquement par Ceradini [20].
Le tableau IV ci-avant contient les valeurs que nous avons obtenues ou

que nous avons tirees de l'ouvrage de Kollbrunner [22]. Ces resultats sont
traduits par les courbes des figures 9.1 et 9.2.

Nous appelons ka, le coefficient de stabilite du panneau adt et k&> celui
du panneau a(b— d^ (fig. 3.1); le panneau ab est soumis ä flexion pure et les
coefficients ka sont rapportes ä la plus grande tension appliquee au panneau
complet.

300

Fig. 9.2.

9.3. Determination de la position optimum du raidisseur et calcul de y*

rr^D
Rappeions que la tension critique d'Euler s'ecrit cjcr. ^—-. Nous prendrons

cette valeur comme tension de reference pour chacun des panneaux partiels
(fig- 3.1)
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a 6; ai=X a
b_

dr 2 b — di b — d{

Les tensions critiques d'Euler des panneaux partiels s'ecrivent respectivement

==77^D= (by 7T*D / b yacrl ~ d\h " acr\dJ ' °cr2 " (b-d^h " °"cr\6-rf,/ *

Appelons h et ka2 les coefficients de stabilite au voilement des panneaux
1 et 2, ces ka etant rapportes ä la tension critique d'Euler.

Tableau V

di
~b

OL---2 a 0,25

K kn K02 KCT-2

0 OO 40 OO 60

0,15 362 118 376 118

0,2 217,5 175 220 175

0,25 149 330 163 330
0,333 93,5 1125 95,5 1970

0,5 54,2 CO 59,2 CO

*6

\

200 f\/ V
,sA

100
ß^K

^"'"y/^ <<<^^

iL
b

Fig. 9.3.
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K* Kii)2 et K^K"{b^dJ

La valeur optimum du djb sera donc fixee par la relation k k
Nous avons fait ces calculs, soit en adoptant pour k& et k&, leurs valeurs

minima, ce qui correspond ä un a tres grand, soit en prenant les valeurs exactes
de ka, et k&, pour un panneau de a 0,25 (valeur voisine du a donnant le kamin
de la deuxieme forme de voilement).

Les resultats de ces calculs sont consignes dans le tableau V et traduits
par les courbes de la figure 9.3.

On constate que les deux valeurs de a donnent sensiblement la meme
position pour le raidisseur et le meme ka, ä savoir dtjb optimum 0,21, k* 200.

En pratique, les plaques qu'il faut raidir sont souvent en meme temps
cisaillees et flechies. Le raidisseur ä di/b 0,21 n'est plus interessant dans ce

cas; aussi avons-nous envisage des raidisseurs au 1/4 superieur (k* kGl —^. 150)
et au 1/3 superieur (k* ka2 —^. 95).

Pour determiner les courbes y*=/(a), nous utilisons l'equation generale
aux amn (6,2) des plaques encastrees et appuyees.

Cette relation s'ecrit dans notre cas:

1 a2
—22jm -&npamp + m Anamn + — Bnamn
CC p 4

y b2
+ —2X™*fn(di)fp(di)amp + 0Z™2^fn(di)fp(di)amp

a p p rr V^JX/

"~ ^cto 2 m Aip amp
P

-^8(1-^)2»' fn (d{) fp (dt) amp 0.

Notons d'abord que, pour calculer y*, nous pouvons, en accord avec le
theoreme 7.2, ne considerer que m= 1 dans la relation (9,1).

Nous allons voir que la valeur y* peut se determiner directement. En effet,
partons de y 0, donc de la serie des deformees de voilement par flexion pure
de la plaque non raidie; un raidisseur de rigidite croissante fait augmenter
continüment la stabilite de chacune de ces formes, sauf s'il correspond ä une
ligne nodale, auquel cas le ka de cette forme de voilement ne change pas.

Au cours de cette evolution, toutes les valeurs correspondant initialement
ä des ka < k* passent par k* pour une valeur positive de y.

La valeur ä adopter pour y* est donc la plus grande valeur de y qui annule
le determinant deduit des equations (9,1).

Pour le raidisseur situe ä dijb Q,21, on peut obtenir deux valeurs positives
de y pour 0,15 < a < 0,3 car, entre ces deux limites, le ka de la deuxieme forme
de voilement par flexion pure est inferieur ä 200 (Ref. 20).

Les resultats que nous avons obtenus pour 0 0 (raidisseurs ä section
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ouverte) et pour 0/y O,8 (raidisseurs en forme de tube) sont consignes dans
le tableau VI et representes par les courbes des figures 9.4 et 9.5.

Tableau VI

OL

^ 0,25
0

-^ 0,21
b

^ 0,8
y

^ 0,25
b - 0,8

y
^ 0,333
0 - 0,8

y

8 0 0 8 0 8 0,15 8 0 8 0,15 8 0 8 0,15

y y y y y y V

0,3 —. 2,65 —
0,5 3,30 4,76 8,71 — — 1,66 2,78
0,75 6,64 7,3 15,9 3,17 5,97 2,46 5,11
1 9,45 7,65 20,73 5,75 11,94 2,35 7,10
1,25 10,08 5,95 20,07 6,87 17,44 0,33 7,54
1,5 6,50 3,83 15,05 2,20 20,02 0 5,22

On peut interpoler lineairement entre les valeurs relatives äS 0etS 0,15.

L'inspection des resultats precedents conduit aux conclusions suivantes:

V

\c

8 0;

0,25^

0,8

0
B: 8 0,15; -= 0,

r
C: 8 0 0

Fig. 9.4.
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L'encastrement sur les bords horizontaux joue un röle important puisque
&* passe de 129 ä 162.
Les raidisseurs tubulaires ont pour effet de relever nettement la stabilite
puisque k™ax passe, pour une plaque encastree-appuyee, de 162 pour 0 0

ä 200 pour 0/y O,8.

La rigidite torsionnelle 0 a, en outre, une grande influence sur les dimensions

du raidisseur puisque, pour 0/y O,8, eile reduit la valeur de y* aux
environs de 60 pour 100 de celle qui etait necessaire pour atteindre la
meme stabilite lorsque 0 eatit nul.
Notons encore que le premier feston de la courbe kO0 f (oc) en flexion pure
est beaucoup moins evase dans le cas oü les bords horizontaux sont encastres

que lorsqu'ils sont appuyes.

V

B

/ / /'
C,

><^^^~~-O

''.''' oi

-=0,8 <

y

A: 8 0; ^ 0,21 B: 8 0,15; ^ 0,21
b b

C: 8 0; ^=0,333 D: 8 0,15; -^ 0,333.
b b

Fig. 9.5.

De ce fait, on passe plus vite de la deformee sans ligne nodale ä celle ä une
ligne nodale verticale et, par consequent, la courbe y*=/(a) passe par un
maximum pour une valeur de a beaucoup plus petite (environ 1) que pour
les plaques appuyees pour lesquelles ce maximum se produit pour a compris
entre 2 et 3.

La valeur maximum de y* est donc plus faible pour les plaques encastrees

— appuyees que pour celles appuyees sur tout leur contour.
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Resume

Les auteurs exposent d'abord une theorie generale du voilement d'une
plaque rectangulaire orthotrope, munie eventuellement de raidisseurs
horizontaux et verticaux possedant des rigidites flexionnelle et torsionnelle
importantes.

La theorie est basee sur le critere de l'energie et la deformee de voilement
est representee par une serie double dont les composantes sont les deformees
de flambement d'une barre prismatique biarticulee ou biencastree.

Dans la deuxieme partie du memoire, cette theorie est appliquee ä l'etude
de plaques isotropes non raidies, ayant deux bords paralleles ou les quatre
bords encastres et soumises ä compression, flexion composee ou cisaillement.
On etudie ensuite des plaques soumises ä flexion pure, encastrees sur les bords
horizontaux et munies d'un raidisseur horizontal ä section tubulaire d'ordonnee
relative x/3, 1/4 ou x/5.

Zusammenfassung

Die Autoren entwickeln zuerst eine allgemeine Theorie des Beulens einer
rechteckigen orthotropen Platte, die mit horizontalen und vertikalen
Aussteifungen mit hoher Biegungs- und Torsionssteifigkeit versehen sein kann.

Die Theorie basiert auf dem Energiekriterium, und die Beulfläche wird
durch eine doppelte Reihe dargestellt, deren Glieder die Ausbiegungen eines

beidseitig gelenkig gelagerten oder beidseitig eingespannten prismatischen
Knickstabes sind.

Im zweiten Teil der Abhandlung wird diese Theorie auf das Studium nicht
ausgesteifter isotroper Platten angewendet, bei denen zwei parallele oder alle
vier Ränder eingespannt sind und die durch Druck, zusammengesetzte Bie-
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gung oder Schub beansprucht werden. Anschließend werden durch einfache
Biegung beanspruchte Platten untersucht, die an den horizontalen Kanten
eingespannt sind und mit einer horizontalen Längsaussteifung mit
Kreisquerschnitt versehen sind, die in 1/3, x/4 oder x/5 der Steghöhe angeordnet sind.

Summary

The authors, first of all, describe a general theory of buckling of an
orthotropic, rectangular plate, which may be provided with horizontal and vertical
stiffeners having considerable flexural and torsional rigidities.

The theory is based on the energy criterion and the deformation due to
the buckling is represented by a double series whose components are the
buckling deformations of a prismatic bar hinged at both ends or fixed at
both ends.

In the second part of the paper this theory is applied to the study of iso-

tropic plates without stiffeners, having two parallel edges, or all four edges,
fixed and subjected to compression, to combined bending and compression or
to shear. A study is then made of plates subjected to pure bending, clamped
at the horizontal edges and provided with a horizontal stiffener having a

tubulär section of relative ordinate 1/3, 1/4 or 1/5.
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