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Théorie générale du voilement des plaques rectangulaires orthotropes,
encastrées ou appuyées sur leur contour, munies de raidisseurs paralléles
aux bords a grandes rigidités flexionnelle et torsionnelle

Allgemeine Theorie des Ausbeulens von eingespannten oder einfach gelagerten,
rechteckigen orthotropen Platten, die mit zu den Kanten parallelen Aussteifungen
_groper Biegungs- und Torsionssteifigkeit versehen sind

General Theory of the Buckling of Orthotropic, Rectangular Plates, Clamped or
Freely Supported at the Edges, Provided with Stiffeners, Parallel to the Hdges,
Having Considerable Flexural and Torsional Rigidities

CH. MASSONNET G. MAZY A. TANGHE
Professeur ordinaire & Assistant & I’Université Ancien assistant & 1’Uni-
I’Université de Liége de Liége versité de Liége

1. Introduction

Durant les cinquante derniéres années, on a vu se développer, sous 1'im-
pulsion du professeur S. TiMosHENKO, la théorie du voilement des plaques
rectangulaires librement posées sur leur contour, soumises & compression,
flexion et cisaillement dans leur plan, et éventuellement renforcées par des
raidisseurs dont on a généralement négligé la rigidité torsionnelle. L’essentiel
de ces recherches est reproduit dans l'ouvrage de S. TimosHENKO intitulé
«Théorie de la Stabilité KElastiquen.

La condition d’appui simple de la plaque sur son contour a été choisie,
non pas parce qu’elle représente le mieux la réalité, mais bien parce qu’elle
se préte a une analyse mathématique particuliérement simple vu que la
déformée de la plaque peut, dans ce cas, se représenter par une série double
de Fourier de la forme
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Les expériences d’un des auteurs [1,2] ont montré que les tensions cri-
tiques des panneaux d’dme d’une poutre & &me pleine étaient appréciablement
supérieures & celles données par la théorie de TIMOSHENKO.

Par ailleurs, le professeur DORNEN a proposé [3] de constituer les semelles
des grandes poutres soudées & &me pleine de profils tubulaires réalisés par
I’emploi de grandes corniéres, comme l'indique la figure 1.1. Cette disposition
NHUFCPERAK dntéréssantes parce quielle réalise un-encastrement :quasizpartait
de Bmesdesla:peritre.sur sesbords horizontaux.en 1énie-femps i ‘elle réduit

la hauteu;;m > cette.dme. Ilidait en 1e&ultfe,rftgne augmentatlon trés substantielle

B4 ; ES FLXAS

de la stabilité au voilement, surtout si I’on renforce I*ame (ﬁcr 1. 1) par des
raidissenss ulaures obtenus, par soudure .de cornieres, ou de demi-tubes,

Enfin, la technique moderne utilise de plus en plus des ponts mixtes formés
d’une dalle en béton associée & des poutres dissymétriques en double té. Pour
tirer pleinement parti du béton de la dalle, on précontraint le pont par des
cables qui soumettent la poutre mixte 4 des efforts de compression excentrique.
Dans ces conditions, ’ame est sollicitée p: par des tensions de compression dont
le diagramme est-»,rtrapezmdal et l'on est conduit a la_renforcer par un assez
gra,nd nombre deﬂra,ldlsseurb a peu pres eqmdlstantﬁ L etude theouque de la
ind1v1dﬁelle de ces raldlsseurs étant . pr athuement impossible, la
| gplus SImple Ede:\ dlmensmnner au *\'oﬂement des ames raidies de

Rt e

ck 1313 fagon esb, de repart1r lafrlgldlte deb 1“a1d1sqeur~ homzontau\ contmument

N & SRy

des.x, supérieure a la rlgldlte D, dans le sens des y ,
6 de I d{abord d etabhr une methode oenel ale

sensibles. Ensuite, de donner une série de resultatﬁ numeuques obtenu\ en
apphquant cette méthode et-en effectuant: les calculs a l'aide de l'or dinateur
IBM 650 du Centre de Calcul de I'Université de Lidge.
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PREMIERE PARTIE: THEORIE GENERAL

2. Principe de la méthode — neotations

L’étude du voilement des plaques encastrées sur un ou plusieurs bords a
été entreprise par la méthode de Rirz [5,6], la méthode de TrEFFTZ, dite
encore des multiplicateurs de LAGRANGE [7] et le calcul des différences (8).

La méthode de Rirz a été appliquée en adoptant pour le déplacement
normal w d’un point du feuillet moyen de la plaque une série double de la
forme

3 G o @) o @) (2.1)

1n=1

w(z,y) =

st

IcucHI a construit [5] des fonctions f,, (x) et f, (y) satisfaisant aux con-
ditions d’appui simple ou d’encastrement parfait aux extrémités de l’inter-
valle. Malheureusement, ces fonctions ne jouissent d’aucune propriété d’ortho-
gonalité, de sorte que les calculs sont d’une complexité extréme; ils n’ont été
exécutés par IaucHI que dans le cas de la plaque comprimée uniformément.
Un progrés marquant a été réalisé par NOLKE [6], qui a envisagé le probleme
de voilement de la plaque fléchie et adopté pour f,, et f, la suite des déformées
vibratoires propres d’une barre encastrée ou appuyée a ses deux extrémités.

On sait que ces déformées jouissent des propriétés d’orthogonalité suivantes:

z

[ @), @) dz = 0 ff r@)dz =0, sim+n]  ¥2,2)
0

qui ont pour effet de diminuer considérablement le nombre d’intégrales a
calculer.

On peut se demander si les fonctions vibratoires propres sont bien celles
qui sont les plus adéquates pour résoudre le probléme de voilement. A ce
propos, il faut rappeler briévement la méthode énergétique de calcul des ten-
sions critiques de voilement. Cette méthode consiste & exprimer que, & 1’état
critique, 1’équilibre est indifférent.

Désignons par 4 € I’accroissement d’énergie totale de la plaque en équilibre,
pour une déformation virtuelle compatible avec les conditions d’appui; on
sait que

AG =4V —-AT (2,3)

ou 4V est I’énergie potentielle de flexion mise en jeu par la déformation de
voilement et 4 7' le travail des forces extérieures appliquées dans le plan de la
plaque. D’apres le théoréme du minimum de ’énergie totale, 4 € est toujours
moindre pour la déformation réelle de la plaque que pour toute autre défor-
mation virtuelle. D’autre part, pour que 1’équilibre de la plaque soit indiffé-
rent, il faut que 4 € soit nul pour la déformée virtuelle envisagée. On peut



226 CH. MASSONNET - G. MAZY - A. TANGHE

résumer la discussion qui précéde en disant que, au moment du voilement, on a
4 € = minimum = zéro.

En définitive, la méthode de 1’énergie, due a RavLeicH, Ritz et Timo-
SHENKO, consiste & exprimer les conditions de minimum de 4 € sous la forme

o(4€)

oa,,,

=0 quels que soient m et n. (2,4)

Ces conditions représentent des équations linéaires et homogénes par
rapport aux parametres a,,,. Ce systéeme d’équations doit étre compatible, ce
qui exige que le déterminant des coefficients des inconnues a,,, s’annule. Cela
fournit une équation qui permet de calculer la tension critique de voilement.

L’inspection des expressions de 4V et 4 T qui seront étudides en détail
au par. 3 ci-aprés, montre que ces expressions ne contiennent que des carrés
et produits des dérivées partielles premiéres et secondes du déplacement
transversal w, & 1’exclusion de 1’'inconnue w elle-méme.

Par conséquent, la méthode énergétique conduira & un minimum de cal-
culs si les fonctions f,,, f, intervenant dans le développement en série double
(2,1) jouissent de propriétés d’orthogonalité de la forme:

(@i @dz=0;  [fa@/@dz=0, pourm+n  (25)
0 0

de fagon a entrainer ’annulation du maximum de termes rectangles dans
I’évaluation de A Vet 4 7.

Il existe effectivement une suite de fonctions satisfaisant aux deux con-
ditions (2.5); ce sont les fonctions qui représentent les déformées de flambe-
ment successives d’une barre prismatique encastrée ou appuyée a ses deux
extrémités.

En effet, I’'un de nous a démontré par un calcul direct dans un mémoire
antérieur [10] que les fonctions en question satisfaisaient effectivement aux
conditions (2,5). Depuis lors, F. BLEIcH [11] a établi les propriétés (2,5) en
toute généralité.

Si I’on remarque que 1’expression de la fonction f,, (x) ne contient que les
lignes trigonométriques usuelles, on conviendra que le calcul des intégrales
des produits de dérivées de f, n’est en tout cas pas plus compliqué que le
calcul des intégrales analogues relatives aux déformées vibratoires, puisque
les expressions de ces derniéres contiennent & la fois des lignes circulaires et
des lignes hyperboliques.

Notations

a largeur de la plaque.
b hauteur de la plaque.
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h épaisseur de la plaque.
E module d’élasticité longitudinale . e

. . du métal utilisé.
) coefficient de Poisson

Eh3 T, . A
D = =) rigidité flexionnelle de la tole.
D, rigidité flexionnelle moyenne dans le sens des « d 'une plaque nervurée!).
D, rigidité flexionnelle moyenne dans le sens des ¥ d’une plaque nervurée.
H=D,+2D,,: rigidité torsionnelle moyenne d’une plaque nervurée.
o) tension de flexion pure au point y =0.
o tension uniforme de compression pure ou tension de flexion pure & un
. 2
niveau quelconque: oc=o0, ( - —bﬂ) :
T tension de cisaillement, supposée uniformément répartie.
al. tension critique dans la sollicitation par flexion pure.
Ter tension critique dans la sollicitation par compression pure.
70 tension critique dans la sollicitation par cisaillement pur.
er q p p

Oer tensions critiques dans la sollicitation simultanée par flexion pure et
cisaillement pur.
w déplacement d’un point du feuillet moyen normalement a ce feuillet.

a,, coefficient intervenant dans I’expression (2,1) de ce déplacement.

v nombre de raidisseurs verticaux.

h nombre de raidisseurs horizontaux.

I, moment d’inertie d’un raidisseur vertical.

I, moment d’inertie d’un raidisseur horizontal.

2, aire de la section d’un raidisseur horizontal.

C,, 0, rigidité torsionnelle d’un raidisseur vertical/horizontal.

¢ abscisse d’un raidisseur vertical.

d ordonnée d’un raidisseur horizontal.

4E  variation de I’énergie totale de la plaque pendant le lambement.
at/Dy At e B R

= 3lp. rapport des cotés généralisé?).

B = %Dy paramétre de torsion de la plaque orthotrope.

o, = zz—l/g%g—y tension critique de référence d’Euler2).

1) Le présent mémoire expose la théorie générale du voilement des plaques ortho-
tropes, mais ne donne des applications numériques de la théorie que dans le cas parti-
culier des plaques isotropes; il est donc inutile d’exposer ici la détermination détaillée
des constantes D,, Dy, H, pour laquelle on renvoie a S. TiMoskENKO, Théorie de la
Stabilité élastique, page 367.

2) Dans le cas d’une plaque isotrope, on a D,=D,=H =D, B=1 et les paramsétres

s . a 72 D . (.
o et o, se réduisent aux valeurs classiques =g et %= utilisées dans la théorie des

. . EI c
plaques isotropes. On a de méme alors: Y=5D et Bzﬁ .
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ErI

bVD, D,

kO’ O-C'T kO‘ €
kg, coefficients de voilement définis par les relations | of, = k, a,.
k
} rigidités flexionnelles relatives d 'un raidisseur 2), définies par y =

section relative d’un raidisseur horizontal définie par 57’;
i, j, m, n, p, q indices sommatoires.
, B, 0, E, F intégrales intervenant dans l’expression: de la variation d’éner-

gie totale de la plaque.

b, =
v = bVD. D e vl . . R .y
o, !y rigidité torsionnelle relative d’un raidisseur2).
0, = ———
h bVD, D,

3. Etablissement de I’équation de I’énergie pour une plaque rectangulaire fixée de
facon quelconque sur ses bords

L’équation de 1’énergie s’écrit:

A @ = Vplaque + Vﬂexion ratdisseurs + Vtorsion raidisseurs ~ T, o comp. plaque
-T T T =0.

oo flex. plaque — + 1 plague — + o raidisseurs horizonlaux

On va examiner successivement les expressions détaillées des divers termes
de cette équation.
L’énergie potentielle de la plaque a pour expression générale [12, 13]:

ab
1 ?w\?2 Pw *w Pw\? 2w \?
Vitaque = §H [Dx(a—x—z) +2Dy o é—y_z—'i'Dy (552‘) +4D,, (m) ]dxdy-
00

Dans le cas particulier de plaques appuyées ou encastrées sur un contour
rigide, on sait par le théoréme de Gauss que

ab
2w 2w 2w \?2
” [3962 oy® (656 8@/) ] dwdy = 0.
00
02

T

0 6
I i ||
I o C 1]
= e :
Hl |

Fig. 3.1.

6o X
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En tenant compte de cette relation et de ce que, par définition, H =D, +
+2D,,, on peut écrire V sous la forme plus simple:

ab
1 02w\?2 2w Pw 2w
Vp,aque=§ff [Dx(%?) +2H’5};§5y—z+p (ﬁy)]dxdy (3,1)
00

Pour un raidisseur horizontal d’ordonnée y =d,, on a

EI, [ (62w\?
Vﬂem‘on = ~2—hf (W)yqz-dx (3>2)
0 ¢ ,

a
Oy [ (o4)\? Ch w )2 ,
et V;orsion - ?f (é}')yzdidx f (ax 3y _didx (3;3)
0 0

en désignant par C, la rigidité torsionnelle du raidisseur horizontal et par

dw -, ) ) ..
W =a—;f I’angle de torsion de la section courante du raidisseur.

Les formules applicables & un raidisseur vertical d’abscisse x =¢; s’écrivent
par analogie

b
El Pw
Vﬂewion = lef (W)x=cidy (3,4)
C,
et Viorsion = f (ax 3?/) d?/' (3,5)
Le travail effectué par les tensmns normales de compression uniforme o
a pour expression
ab
ow\?
00

Le travail effectué par les tensions normales de flexion pure réparties
suivant la loi

représentée a la figure 3.1, a pour expression‘

e[ e

Le travail effectué par les tensions de cisaillement pur = vaut

ab
ow ow
00
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Enfin, le travail de la force de compression £2; [0'0 ( 1-— 2bdi) +0'] =80,0(d;)

appliquée & un raidisseur horizontal d’ordonnée y =d,; s’écrit:

Tarmd@sseur _‘Q U d )f ( ) s dx (3>9)

Comme on I’a déja dit dans l’introduction, on représente dans cette étude
la déformée de la plaque par une série double de la forme

=mi;1 nzlarrmfm (x).fn (y) (3’10)
On a directement
ow S ’
—5; - mél nél Vans fm (x) fn (y)
2_;_;) =m§;1§ L (@) o ()
et de méme ”%g - i i U fon (@) [ (Y) (3,11)
m=1mn=
0w SR ”
T @)
02w ©  © , ,
Enfin, ox 3?/ 21 nZ mnfm (@) f ().

Nous allons étudier ci-apres quelles sont les intégrales qui se présentent
dans le calcul des expressions (3,1) a (3,9).

Commencons par l’expression (3,6); en y remplagant ow par sa valeur

(3,11), elle s’écrit

T, -} f fb(mi;lni;lamnf;n @f, <y>)2dxdy.
00

Dans le développement du carré de la somme double, tous les termes
rectangles par rapport & f’, c’est-a-dire les termes contenant le produit
fif; (i #9) disparaissent en vertu de la relation d’orthogonalité

Q

[fi(@)f;(@)da = 0. (¢ +7) (3,7)

J

St

On peut donc écrire
o- - G i i i {fa ’2(12 dx[amp mqup (y fq (y)dy]} (3:12)
2 mo1p=1d=1 0

L’évaluation de ce terme exige donc le calcul des deux intégrales suivantes:
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L,
A, = -7;2—(!]‘,,3 (x)dz, (3,13)
1!
Emnzjéﬁ'fm(x)fn(x)dx (3’14)
Moyennant les notations 4,, et £,,,, I’expression (3,12) s’écrit:

hb
T = o %%Z“mz)“ a4 E,,. (3,15)

Passons maintenant au terme 7, donné par I’expression (3,7); en y remplagant
Z—:: par sa valeur (3,11) et en tenant compte de la formule (2,5) comme ci-

dessus, on obtient:

T,, = S5 5 S ap a1t @ a2 (1-31) 1, ) 1,012

0

On voit que 1’évaluation de ce terme fait intervenir 1’expression (3,15)
ainsi que 1’expression nouvelle

B, = lf( ) @) o) (3,16)

En introduisant les notations (3,13) et (3,16) dans I’expression de 7
cette derniére devient

Tcro= d4a ZzzamnampAmElp' (3917)
mn P

De méme, en remplagant et G par leurs valeurs (3,11) dans I’expres-
sion (3,8), il vient successwement

b

00 m
(3,18)
= TkZZZZanmn qufp ) fm ( x)dwffn Vo (y)d
m n p
L’évaluation de ce terme exige le calcul de I’intégrale
!
Moyennant cette notation, I’expression (3,18) prend la forme
- Tkzzzza’mnapqopmo (3720)

m n P

Enfin, le terme 7),;4:c00ur norizontar d€Vient, en remplacant w par sa valeur
explicite (3,10) dans I’expression (3,9):
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Toiasors = 5 [0+ 00(1-2%)| 15 B tu i @) @0

=5t oo(1-2) | Z 2 S mntn fa @y @0 1 01

m

Ce terme peut s’écrire, moyennant la notation (3,13)
w2 02,
Traid.hon’z. = ’z—a—z [0+00( )] Z Z Zamn mp.f ( i) fp (dm)Am' (3:21)

m n p
Il ne nécessite pas le calcul d’intégrales nouvelles.
Passons maintenant aux termes représentant les énergies potentielles des
diverses parties du systeme.
Le terme V,;,,,, donné par 1’expression (3,1) s’écrit sous la forme explicite:

a

Vitaque = % | f{D [ZZamn m (&) (¥) ][ZZ% » (@) f ®)]

00

L IE St [ @) )] [ZZaqup YA (3,22)
D15 8t (@)1 9) ][zzamfp @) f2 @}dady.
Or, on sait que ’on a
(@@ =0.  (nn)

En intégrant par parties, on peut encore écrire cette formule sous la forme

l
[ (x)f;(x)li;—offm @) frm (®)d2 =0,
mais le terme intégré est nul, parce qu’on a toujours
fm (0) = fr (@) = 0.

Par conséquent, les fonctions f satisfont encore & la relation générale d’ortho-

gonalité
fm (@) frn (@)dz =0 pour m % n. (3,23)
f m p

De plus, si m=mn, on a
[in@ [ @) de = (12 @) dw = =T (3,24)
Si nous développons & présent 1’expression (3,22) de V., donnée ci-dessus,

nous trouvons
a

D
Vplaque=7w% ﬁ%[b"f” x)dxamn mpffn(y)fp(y)dy]

n

+H§§[a12nnffm(x) Zl(x)ffn(y) n () dy]

+

D515 St 01y @] 12 0 01
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En utilisant les notations (3,13) et (3,14) et en posant de plus

_ 2P @ (3,25)

on peut écrire ’expression de V,,,,,, sous la forme condensée suivante:

e b
Vplaque = { a— Z Z Z Drn Tmp np b ; ; a’mn

(3,26)
4D, 5 33 Sty By B

mn p

L’énergie potentielle de flexion d’un raidisseur horizontal s’écrit, en rem-
plagant w par son expression développée (3,10)

a
EL ((*w\ _ EI p
Vflex.raid. h. = '_—QJQJ‘ (W) hf [Z Z amn CE) fn ]2 dx
0 y=d1

= EQIhgn‘JZZamnampfn (dz) fp (dq,)(ff;;lz (SC)(Z(IJ

n P

Grace a la notation (3,25), cela peut s’écrire

E 1
V;flex.’raid.h. id . 32 Zzamn mpfn (d fp (d ) (3:27)
a m n p
Pour un raidisseur vertical, on aurait de méme
‘EI, 1
Vﬂe:c.raid.v. = L 4 b3 Z Z Za’mn nfm (Cz) fp (Ci) Bn (3,28)

man P

On vérifierait aisément que les énergies potentielles de torsion de ces
mémes raidisseurs s’écrivent respectivement:

w2 ( .
?% %%“mn Up f (@) F (i) A (3,29)

Vtorsion raid.h. =

a napnf;n (cq,) fg,o (Ci)An' (3930)

I/;orsion raid.v.
mn p
En résumé, il faut calculer les cinq intégrales sans dimensions 4,,, B,,,
Cons Eny et F,,, définies respectivement par les formules (3,13), (3,25),
(3,19), (3,14) et (3,16).
Parmi ces intégrales, les deux premiéres sont & un seul indice et leurs
valeurs numériques seront données dans des tables & simple entrée. Les trois
derniéres sont & deux indices et nécessiteront des tables & double entrée.
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On remarquera que %,,=%,,. ., F, .. =F, b mais que C,,, +C,, . Moyen-
nant ces notations, le critéere de 1’énergie s’écrit sous la forme:

—’Zzzam ampAm np ThZZZZ“mn pq pmonq
mn p mn p q

hi20. d;
=Y Tt oo (1-25) | S £ S amn s fa @1y )4
mn P
4
+%{a3Dﬂc§;§amn mp-BmE + DyZZZ“mn pn Ep

b%gafnnAmAn} (3,31)

+ Z Wiggh%;gamnampaﬂz (dz)af;, (dz) Am] =0,

4. Détermination des tensions critiques de voilement

En vue de ne travailler que sur des quantités non dimensionnelles, nous
introduirons les symboles sans dimensions ci-apres:

=2VD,D,

TV ey = = % _ T
%= T prp ko o, o, a,’ k
E I Q O a 4 ﬁ
s =2 9 -9 _a%/Dy (4,
= b[/D D bh bl/DmDy w bl/Dx (4,1)
H
B By ——————
VD,D,
Nous multiplierons ensuite tous les termes de 1’expression (3,31) par — Qg bD :
74V Dy y

cette expression prend alors la forme suivante:
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=1 m
1 o« o2
+ [W Z amnaml?BmEnp+”2_ZZZamnapanEmp
mn P mn p
v 4 (472)
B2 %1/ Dy
+§§na’mn‘AmAn +;—2' DyViv;n:;%amna’pnfm(ci)fp(ci)Bn
5 D,
Y .
+;2;}; ‘/D'—:;n:%zp:amnampfn(dz)fp(dz)Bm
2 20 Pes s s Lred L e 4
l=12 Dymnpmnpn mi,ﬂpi n

+
|Inge
[\

Rl\?

-
[
-

ce qui peut s’écrire plus simplement?3)
W =0 (4,2)

en désignant par W la quantité entre accolades.

Notons en passant que la dissymétrie par rapport a o des termes relatifs
aux énergies de flexion et de torsion des raidisseurs provient de la dissymétrie
des notations y et 6 qui contiennent b pour les deux types de raidisseurs.

La condition 6 W =0 ne sera satisfaite que si toutes les dérivées partielles
de W par rapport aux coefficients a,,, sont nulles, c¢’est-a-dire si 1’on a:

ow

0Qpn

= 0, quels que soient m et n. (4,3)

En appliquant ’opération de dérivation & 1’expression entre accolades de
la formule (4,2) on trouve 1’équation fondamentale suivante

(P+n)imp

—kazampAmEnp_kao Z a’mpAm-F?'zp3
g ! (4,4)

4 akT (MmAD)imp (N+Qimp
2 ®pq Opm C
2 q

ng>

8) La barre horizontale reliant deux signes ) signifie que les indices correspondant
a ces sommes doivent toujours étre de parités différentes, car les intégrales F' et C' sont
nulles quand leurs deux indices sont de méme parité.
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| PSS AR TACAY S

D

h
- Z 81. [ko+kao (1 -

i=1
B
+ a;nzamp Enp+o‘2 ana’pn Emp +BAmAna’mn
»

4

+°‘B l/D Z')’wam fp pn>
vi=l p (4.4)

AP 20D L) Ly €0,

y i=1

+i B ]/- Z?’men fp(d mp’

.'L‘?a“

+A VD Zezhz f fp(d)a'mp

xi=1

Remarque au sujet de la dérivation: Lorsqu’on calcule par exemple

)= 25 oy A B

mn p
il importe de tenir compte du fait que, dans la somme sur p, I’'indice p prend
la valeur n.

Les équations (4,4) forment un systéme d’équations linéaires et homogenes
par rapport aux inconnues a,,. Pour qu’il y ait voilement, il faut que la
plaque puisse rester en équilibre dans une forme voilée, c’est-a-dire que le
systéme d’équations (4.4) admette pour les coefficients a,, une solution non
composée de tous zéros. Cela n’aura lieu que si le systéme (4,4) est compatible,
ce qui exige que le déterminant 4 des coefficients des inconnues a,,, soit
égal & zéro.

La condition

4=0

fournit 1’équation qui permet de calculer la grandeur des tensions critiques
de voilement.

3. Calcul des intégrales 4, B, C, E, F

Rappelons d’abord que les fonctions f,, (x) choisies dans le développement
en série double représentant w sont les déformées de flambement successives
d’une barre prismatique comprimée suivant son axe.

Dans ce qui suit, nous considérons d’abord les plaques appuyées sur leurs
bords paralleles ou encastrées sur ces bords.

Dans le premier cas, on a 1’expression classique

f, (%) = sin "’;”” (5,1)
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Dans le second cas, on a, d’aprés la théorie du flambement de la barre
biencastrée

f. () = 1—cos (n-l*_ 1)7rx si n est impair, (5,2)
sin kn(-%lE — 1) 2
fo(x) = Sk, +1 — sin est pair. (5,3)

Les valeurs de k, intervenant dans ’expression (5,3) sont les racines de
I’équation transcendante k=tgk.

Cette équation admet une infinité de racines dont les 16 premieres sont
reproduites ci-apreés:

2 4,4934 18 29,8116
4 7,7253 20 32,9564
6 10,9041 22 36,1006
8 14,0662 24 39,2444
10 17,2208 26 42,3879
12 20,3713 28 46,5311
14 23,5195 30 48,6741
16 26,6661 32 51,8170

Les 4 premieres déformées correspondant aux équations (5.2) et (5.3) sont
représentées a la figure 5.1.

Y Yy Yy

n=1

Fig. 5.1.

On va calculer les valeurs des intégrales 4, B, C, E, F pour les deux com-
binaisons ci-aprés d’appuis d’extrémité

5.1: Appuis simples aux deux extrémités;
5.2: Encastrements aux deux extrémités.

5.1. Appuis simples aux deux extrémités

Toutes les intégrales intervenantes ont été calculées par TiMOSHENKO dans
son livre «Théorie de la Stabilité Elastique». On a:

2
fm (@) = sinm;x, [ (@) = %ﬂcos———mﬂx, (@) =~ (?) sinm————wx,

l l
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1
21 [ m2n2 mmx
A4 =" cos? dx = m?2
m w2 J2 l ’
0

1
28 [ mrat mwx
B, = sin2 dx = m2
m rd & l ’
0

Crin = =Crm Eu 7 sin 7 C0S—
0
0 si (m £ n) est pair,
=1 2mn . . .
pons Spo ML (m +m) est impair,
"’ I
1. max . nax 0 sim=%=n
E, =K,6 6 == = . ’
o nm = 7 | SID———sin— dx 1Y, sim=n,

pour m £ n et (m +n) pair,

mn

1
F,,m=17;mz1 1——39f sin 278 sin P T g
l l [ l
0
0
8 . .
- pour m + n et (m +n) impair,
0

pour m = n.

5.2. Encastrements parfaits aux deux extrémités

Par des calculs laborieux, mais sans difficulté spéciale, on obtient les
expressions ci-apres des intégrales A, B, C, K, F':

2
4, E—Q—lff;f(x)dx=(2—k’—"),
' s
0
l3 ; 4
B, :%ffmx)dh(?—’“m) ,
ar

0 si (m +n) est pair,
2k2 i . . . . .
72 2 si (m +n) est impair et m impair,
= impair — Vpair
-2 klzoair : . : .
5 2 si (m +n) est impair et m pair.
impair kpair
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i
By = B =7 [ In @) o @) 2
0

1/, si m,n sont pairs et différents,
1 si m,n sont impairs et différents,
= ¢ %/¢ si m,n sont pairs et égaux,

8/, si m,n sont impairs et égaux,

0 si (m+m) est impair.

1
By, = szf( @@z
0 si(m+mn) est pair,
- 2 Kimpair I +1 si (m+n) est impair
(kgmpaw kfmw)z kzzmpair 3 p ]

Envisageons maintenant une plaque encastrée sur un bord vertical et
appuyée sur le bord paralléle. On peut toujours considérer une telle plaque
comme la moitié d’une plaque parfaitement encastrée sur ses deux bords
verticaux, possédant la longueur 2a et présentant une ligne nodale verticale
médiane.

Pour réaliser cette ligne nodale, il faut n’adopter dans le développement

du déplacement

que des déformées antimétriques présentant un point d’inflexion en leur milieu.

En remplacant ! par 27 dans I’expression (5,3) de la déformée antimétrique,
on trouve, pour la partie utile de la fonction f,, correspondant & la demi-
plaque de gauche:

sin ke, (7 1)

l
_— 4] —= < pr<
sink,, ! l (O=z=0).

fn (@) =

On constate ainsi que les intégrales relatives & une plaque dont les bords
paralleles, 1’un encastré, 1’autre appuyé, sont les mémes que celles d’une
plaque encastrée sur deux bords paralléles, mais que l’intervalle d’intégration
est moitié moindre. Or, les intégrales 4, B, C, E et F étant sans dimensions,
elles ont méme valeur quelle que soit la longueur ! de 'intervalle. Il résulte
de cette remarque que les valeurs A4, et B,, et celles de £, si m et n sont
pairs et différents ou égaux sont celles indiquées au littera 5.2 ci-dessus.
Par contre, on n’a plus, dans le cas actuel,

C

mn

E

mn

} =0 si(m+mn) est pair,
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car la nullité de ces intégrales provenait uniquement de ce que l'intégration
portait sur un produit de deux fonctions antimétrique dans l'intervalle (0,21).
Il nous faut donc effectuer le calcul de ces deux intégrales, que nous désigne-
rons par les notations C, , et F,, pour rappeler que l'intervalle d’intégration
n’est que la moitié de celui considéré plus haut.

Par des calculs laborieux, mais sans difficulté, on trouve les formules
ci-aprés: pour m pair, » pair,

lsinka—l) " kncosknG—l)
Con=| |——+1—% — —-1lldx=-0C,,
" sink,, l sink,,
_ cosky, —cosk,,, 1 1-cosky, 1 1—cosk,,
"~ 2(cosk,,+cosky,) k%, cosk,, k3, cosky,, ’
1 . x s x
, , 1 922 smkm(j——l) z smkn(—l-—l) .
B =Bn= [ (1) | 13 | 1] 4
0
=_§+2(k§m+2+k§n)sink2msink2n—4k2mk2n__ 2 (1—cosky,,)?
6 (kG — #50)? k3w  sinkyy,
k3, sink,,

'6. Expression explicitée de I’équation aux a,,, dans le cas d’une plaque ayant un
appui simple sur deux bords paralléles ou sur les quatre bords

Vu la forme particuliérement simple que prennent les intégrales définies
A a F dans le cas du double appui simple, il est intéressant de remplacer dans
I’équation générale (4,4), les symboles A a F par leurs valeurs explicites
trouvées au par. 5.1. On obtient ainsi:

6.1. L’équation aux a,,, pour une plaque rectangulaire simplement appuyée sur
tout son contour

k, 8koy \%) m2Znp
'—_2—'m2 mn ,”20; (nz_p2)2amp
16 k., \?) mnpq
Pl L G g g b
h k 2d,; . mnd;, . pwd;
—_ . e " % 2 T i
kUOi;8’(1+kao b)%m sin——sin=—=—a,,

4) La somme s’étend & toutes les combinaisons d’indices n, p pour lesquelles (n+p)
est impair.

5) Les sommes doivent s’étendre & toutes les combinaisons d’indices pour lesquelles
(m+p) et (n+ q) sont impairs.
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1 /m2 2
+ —é(?—l—n%) Ao+ (B—1)m2n2a,,,

M o P

n4 in

LVE S 'nﬂdisiandia (6.1)

b mo

4 4~ Y
D 0, mmc;  pmc,
v 2 i i

+1/~—— E mmn2 ) pcos —eos T —ay,

]/D Z 6,5, m? ancos 'bdi<3osp7l;d"5amO = 0.

.2/‘7«~

Cette équation généralise celle qui a été établie par une autre méthode par

MirosavLiEvITCH [14].

6.2. L’équation aux a,, pour une plaque rectangulaire parfaitement encastrée
sur ses bords horizontaux et simplement appuyée sur ses bords verticaux

_kamzzEn k m?‘z np mp
»
8ak,\ %) \P%) mp
+ ) ; ; mz_pZOnp @ pq

2 k, 2d,
—kcomzi; d; (1 +7cg—0 - “5—) %fn ) o (d) Gy

2
o
Z mp+§Bnamn+Bm2Anamn
v

szwl 3

pe; (6,2)

L w

. mme; .
—I—ocBnl/—i 2 Y 2. sin tsin @
D,;5"% a a ?

4 5

A D, 2 mmwe;  pwe;
+ =2/ =E 0. > mpcos tcos ‘ta

o Dyizzl “’; p a a "

TS LD PSR

x i=1

+m2)/D Zethz f’n fz,J(di)ampzo'

x%—
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7. Remarques sur le fractionnement des équations aux a,,,

7.1. Généralités

Dans son livre sur la stabilité élastique, le professeur TIMOSHENKO a
montré que:

a) Dans le cas d’une plaque simplement appuyée sur son contour et soumise
a flexion pure, les équations aux a,,, se fractionnaient en divers groupes; dans
chacun de ces groupes, I'indice m conserve une valeur fixe. Le groupe d’ordre
m correspond a une déformée de voilement dont une coupe horizontale a pour
équation
mmx

w = K sin

Il suffit donc d’étudier le cas ou m =1 et de ne conserver, dans les équations

\
aux a,,,, que les parametres a,;, a5, ...a;,.

b) Dans le cas d’une plaque simplement appuyée sur son contour et sou-
mise & cisaillement pur, les équations aux a,,, se fractionnent en deux groupes;
le premier contient toutes les inconnues a,,, pour lesquelles (m +n) est pair;
le second, celles pour lesquelles (m + n) est impair.

11 est intéressant de chercher la raison profonde de ce fractionnement et
de voir si des propriétés analogues existent dans le cas d’une plaque encastrée
sur deux bords paralléles ou bien sur ses quatre bords.

7.2. Fractionnement des équations aux a,, en plusieurs groupes ne contenant
chacun que des coefficients a,,, d’indice m constant

La condition nécessaire et suffisante pour qu’un tel fractionnement se
produise est que la déformée de voilement soit de la forme

w(x,y) =f(x)g () (7,1)

et posséde par conséquent des lignes nodales verticales et horizontales cor-
respondant respectivement aux zéros des fonctions f (x) et g (y).

L’équation aux dérivées partielles du voilement des plaques s’écrit, dans
le cas ol cette plaque est soumise sur ses bords verticaux a des tensions o,
de flexion composée

tw *w Aw 2w

“gan T garayt Dugy T

D = 0. (7,2)

La fonction w doit satisfaire aux conditions d’appui de la plaque sur son
pourtour. De plus, si cette plaque comporte des raidisseurs horizontaux ou
verticaux, w doit satisfaire & des conditions de continuité le long de chaque
raidisseur.
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En remplacant w par son expression (7,1) dans 1’équation (7,2), on trouve

la relation
' Dxflvg‘*'2Hf”9”+Dyf9W+h%f”g =0 (7,3)

ou les primes, secondes, etc. représentent des dérivées premieres, secondes,
etc. ..., des fonctions f et g par rapport & la seule variable dont elles dépendent.

Si la plaque est appuyée sur ses bords verticaux, elle admet toujours une
solution de la forme

g (y)- (7,4)

En effet, on a alors

j@) = sin 78 ey = Py @) =T

/().

En remplagant dans 1’égalité (7,3), on voit que celle-ci est vérifiée & condition
que la fonction ¢ (y) satisfasse a 1’équation différentielle ordinaire

2 2 4,4 2 2

mem m=ar me T
IV __

D,g 201,

3 Hgll+l:—aT~Dx’———(;rhO'm:|g=O, (7,5)

ainsi qu’aux conditions d’appui existant sur les bords horizontaux de la
plaque et aux conditions de continuité le long des raidisseurs éventuels. Les
raidisseurs horizontaux, étant fléchis suivant la loi sinusoidale

. Mmmx
w (2, Yo) = g (¥o) sin ;T , (7,6)

n’apportent aucune entrave a une déformée de la forme (7,4). Par contre,
des raidisseurs verticaux rendent la solution (7,4) inapplicable, parce qu’ils
constituent pour une bande horizontale de plaque d’ordonnée y, des appuis
élastiques supplémentaires, et que cette bande ne se déforme plus suivant la
loi simple (7,4). ‘

Si la plaque est encastrée sur ses bords verticaux, le fractionnement ne se
produit plus; en effet, si f(x) est une fonction de flambement, on a bien
fV+ K f"=0 comme dans le cas du sinus; mais on n’a plus f"+kf=0, & cause
des moments d’encastrement, mais bien f"+ Kf+Cx+ D=0, de sorte que
I’expression (7,1) n’est plus une solution de 1’équation (7,2).

En conclusion de cette discussion, nous pouvons énoncer le théoréme
suivant:

Un fractionnement des équations aux a,,, en groupes séparés correspondant
chacun a une valeur particuliére de I’indice m se produsit lorsque la plaque ortho-
trope soumase a la flexion composée sur ses bords verticaux est simplement appuyée
sur ces bords et me possede que des raidisseurs horizontaux. La plaque peut avoir
un mode d’appui quelconque sur ses deux bords horizontauzx.
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7.3 Dans la suite de ce paragraphe, on se limitera aux plaques isotropes
pour lesquelles D,=D,=H=D. On peut se demander & propos de ces plaques
dans quelles circonstances le systeme d’équations aux a,,, se sépare en deux
systémes distincts, contenant 1’'un les inconnues a,,, telles que (m+n) est
pair, et I’autre les inconnues telles que (m +n) est impair.

Pour résoudre ce probleme, il faut tout d’abord remarquer que toute
fonction

représente une déformée de voilement symétrique par rapport aux diagonales du
rectangle st (m+mn) est pair et antimétrique par rapport a ces diagonales st (m +mn)
est impair. En effet, les équations des diagonales O E et I G sont respectivement
r_ Y x Y
—_— = — t s - = ]_ .
a b % + b
Si (m+n) est pair, m et n» sont pairs ensemble ou impairs ensemble, donc les
fonctions f,, et g, sont symétriques ensemble ou antimétriques ensemble.

o F X
AT "TTTTTT oA D
H |
] 1
: i 0
: i
1] ]
C -/ TTTTTTTTTTTTT 8
G
£
‘ a
yY
Fig. 7.1.

Les points 4, B, C, D de la figure 7.1 ont respectivement pour coordonnées:

% a—x % a—2x

Ay b B b ; C bx ; D{b
—x b——x _— —x
a a a a

Supposons d’abord f,, et g, symétriques ensemble; on a alors

fn @) = fula=2); g (v) =, (6=27).
d’ou w(d) =w(B); w(C) =w (D).

Si f,, et g, sont antimétriques ensemble, les antimétries neutralisent leurs

effets, et 1’on a encore
w(Ad) =w(B); w(C) =w(D).
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Par des considérations analogues, on peut voir que, lorsque (m +n) est impair,
on & w(d) = —w(B); w(C)=-wD) cqfd
Ce point étant établi, nous allons démontrer que:

Dans le cas d’une plaque isotrope sollicitée au cisaillement pur et en outre a
des efforts de compression uniforme o, et o,, le systeme d’équations aux a,,, se
fractionne en deux systémes indépendants, quel que soit le mode d’appui de la
plaque sur son contour, pourvu qu’il soit le méme sur les paires de bords paralléles.
Le premier systéeme contient les inconnues a,,, pour lesquelles (m+n) est pair;
le second, celles pour lesquelles (m+n) est impair.

En effet, on peut décomposer la série double

w(x,y)=mi; 2 o, i (X) G (Y) 5

représentant w en ses composantes symétrique w, et antimétrique w,
W= W+ W,,

w, est la série double partielle contenant les termes pour lesquels (m +n) est
pair; de méme, w, est la série double contenant les termes restants de w, pour
lesquels (m +n) est impair.

Dans le cas particulier de sollicitation par compression sur les quatre c6tés
et cisaillement pur, le critére de 1’énergie s’écrit:

R R

(7,7)
ow 8w
2 B
Or, on a M_{_B =dw=Adw,+4dw,.
ox?  0y?
d’ou Aw=Lw,+A2w,+24dw,dw,.
A Jw\?  [(dw,)\? 8wa)2 owg 0w,
De mems (ax) “(ax) +(ax, 257 oz
(@)2 _ (Bws 2+ ow,\2 23@08 ow,
oy) — \ oy oy oy oy’
En remplagant dans le critére de 1’énergie (7,7), il vient
S(V-T) =S{VS—!—Va—i—DHAwsAwadxdy-Ts—Ta
(7,8)

ow, 0w ow, 0w, ow, 0w ow, ow
k S a[ S a a S .
ff [0”"' ox ox |V oy dy T(&x oy Ly 8y)]dxdy} 0
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Or, les dérivées premiéres de fonctions symétriques sont antimétriques et
vice-versa; comme o,, o, et 7 sont constants par hypothese, la derniére inté-
grale double de I’équation (7,8) s’applique & des produits de fonctions symé-
triques par des fonctions antimétriques et est par conséquent nulle. Quant
au Laplacien 4 w, il représente physiquement la courbure moyenne (jglf + 7%1—)

2
de la plaque déformée et il a les mémes propriétés de symétrie que w, d’ou il
résulte que [[4dw,dw,dxdy=0. En définitive, le critere de 1’énergie s’écrit:
5V +V,— T, —T,} = 0.

On ipeut toujours poser o,=ko,q, o,=ko,y, T=k7y, d’ol le critére de I’éner-
gie s’écrit

S{V,+V,—k(t,+1¢,)} = 0.
L’intensité critique du coefficient de voilement & est donc donnée par

T,

- . 7,9
oy (7,9)

Si ’'on avait adopté pour w une déformée symétrique w,, on aurait trouvé

v
k=Fk,=-_*2.
a ta
La formule (7,9) peut s’écrire
Va ts Va ts ts kll
v1vv, Lt T, ta | s
k= e L = =k,
s 142 = +1 =+ 1

Silon a k,>k,, k>k, et k, est la valeur minimum de k qu’il faut adopter; la
déformée de voilement est alors symétrique par rapport aux deux diagonales
de la plaque. "
Si, au contraire, on a k, <k,, on voit facilement que
k,<k=<k,,

k, est alors la valeur minimum de k et la déformée de voilement est anti-
métrique.

Corollaire: Si les tensions de cisaillement considérées dans la démonstration
ci-dessus s’annulent, la plaque est soumise & compression simple dans les
directions x et y.

o . ow ow

Les produits —— ——

z 3y intervenant dans les formules (7,7) et (7,8) dis-
paraissent. ~
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Dans ces conditions, on peut d’abord fractionner w en w, et w, comme
indiqué ci-dessus, puis ensuite fractionner chacune de ces deux déformées en
leurs composantes w; et wyy respectivement symétrique et antimétrique par
rapport & la médiane verticale du panneau.

On obtient ainsi au total quatre types de déformées, caractérisés respec-
tivement par les relations:

1. wy=wg=wo=w s N (1 :
47 TBTCT D symétriques par rapport & la médiane verticale
2. wy=—wWp= —We=Wp
3. Wy =Wp= —Wg= —W \ (3 .
4778 ¢ D L antimétriques par rapport & la médiane verticale
4. wy = —Wp=Wg= —Wp

A ce fractionnement des formes de voilement correspond le fractionnement
de I’expression

en quatre expressions w,, w,, w;, W, correspondant respectivement aux
restrictions suivantes sur les indices m, n :

1. m et n pairs.

2. m pair, n impair.

3. m impair, n impair.
4. m impair, n pair.

Il en résulte également que la matrice des coefficients numériques des
inconnues se fractionne en quatre sous-matrices qu’il faut étudier séparément.

DEUXIEME PARTIE: APPLICATIONS NUMERIQUES DE LA THEORIE

8. Plaques non raidies sollicitées en compression pure, en flexion
ou en cisaillement pur

8.1. Compression pure dans le sens des x (o), les quatre bords étant encastrés

Le systéme général d’équations aux a,,, (4.4) prend ici la forme

1
_kozampAmEnp"'&éBmZa’mp Enp
» D

8,1
+o? B, Y a,, B, +A4,4,0,,=0. (8,1)
Vg
Rappelons que, par suite du corollaire du par. 7.3, 1’équation (8,1) se
fractionne en quatre systémes indépendants. Appelons 1, 2, 3 et 4 chacun de
ceux-ci. La déformée qui se produira réellement sous 1’action de o, est celle
qui est associée & la plus petite valeur de k, .
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Les systemes d’équations homogénes peuvent s’écrire sous forme matri-

(4)k,+(B) = 0,

cielle

la matrice (4) provenant du travail des forces de compression et la matrice

(B) de I’énergie de flexion de la plaque.

Pour obtenir la plus petite valeur du coefficient %

CH. MASSONNET - G. MAZY - A. TANGHE

(o 2

nous multiplions la

Tableau 1
a ko1 k oo k o3 k o4
0,3 47,20 93,10 100,80 56,40
0,5 19,45 35,40 44,00 32,65
0,6 15,00 26,80 34,95 30,05
0,8 11,20 — — —
1 10,20 11,70 25,30 26,70
1,35 — 8,90 — —
1,65 8,40 8,35 21,90 24,60
2 7,95 — 23,50 27,60
3 8,45 7,50 — —
s
L\
0 “\\
. \-/\._'ké-“\‘
797 ----- | Py e S e ]
5
L—/\ A
4 Frmm e e ST T 3
o 1 2 3
Fig. 8.1. A: Plaque appuyée.
B: Plaque appuyée et encastrée sur les bords non sollicités.
C': Plaque encastrée.
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relation (8,2) par la matrice inverse de (B) ce qui donne
(Bt (4) = -,
o

Les valeurs propres de (B)~1(4) sont alors les inverses de k, que nous
voulons déterminer.

Nous calculons les valeurs propres al’aide du programme I.B.M.: (V+ VP)M
n® 5.2.5. B qui donne la plus grande valeur propre de n’importe quelle matrice
carrée et par conséquent le plus petit k, que nous recherchons. Ces calculs
ont été effectués pour différentes valeurs de « avec 4 composantes en m et
4 composantes en n de 1’équation (8,1).

On en trouve les résultats dans le tableau I ci-avant, traduit graphiquement
a la figure 8.1.

On constate que la précision des courbes 1 et 2 est bonne jusqu’a «=2;
passé cette limite, elles amorcent une remontée qui n’est due qu’a la limitation
a 4 du nombre des composantes f,, (x) de la déformée.

Pour les courbes 3 et 4, on ne peut se fier & leurs résultats que pour « plus
petit que 1,5. Leur intérét étant assez limité, nous n’avons pas cherché a
augmenter leur précision.

8.2. Flexion pure et flexion composée de plaques encastrées sur les quatre bords

L’équation de I’énergie qui régit le phénomeéne de voilement se déduit de
I’équation générale (4,4) et s’écrit
(n+D)impair 1
—k,, X Cpp Ay B -l—cx—2 B, Zp} Ay By

p
+a®B, > a,, B, +A,4,0,,=0. (8.3)
Yy

nmn

En flexion pure comme en flexion composée, on ne bénéficie plus d’aucune
séparation du systeme d’équations. Aussi est-on obligé dans ce cas de se limiter
aux 4 premieéres composantes de la déformée m,n=1,2,3,4, car méme ainsi
on doit manipuler des matrices de 16 X 16 éléments.

Notons qu’un changement de signe des sollicitations n’affecte pas la
stabilité de la plaque. Tout k, est alors accompagné d’une valeur égale mais
de signe contraire.

Dans ce cas, la recherche des valeurs propres de (B)~'(4) par approxi-
mations successives n’est plus applicable; c’est pourquoi, nous les avons
élevées au carré.

Les matrices résultantes ont alors pour valeurs propres les carrés de celles
de (B)™1(4). La valeur que nous cherchons est & présent une racine double,
ce qui n’entraine aucune complication pour la résolution.

Pour les plaques soumises & flexion composée, nous devons ajouter a
I’équation (8,3), le terme —k,) a,,A4, E,, du travail des forces de com-
pression pure. B
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Posons o, =09 +0 et o,=0—0y; la flexion composée peut étre alors

e . . (e — O¢
caractérisée univoquement par le coefficient s=-""—F

pure).
Nous convenons de prendre comme tension de référence la plus grande
des deux valeurs o, ou .
Ce sera donc o, , si s est plus petit que 2 et o, si s est plus grand que deux.
Les valeurs propres de (B)~'(4) n’étant plus cette fois égales et de signes
opposés, nous ne devons plus élever la matrice au carré.
Les valeurs calculées sont indiquées au tableau II et sont traduites par
les courbes de la figure 8.2. On trouve au par. 9 des courbes similaires pour les
plaques encastrées-appuyées.

(s=2 en flexion

CGcomp

Tableaw 11
s=2/3 s=1 s=4/3 §=2
[+
ka ka ko’ kao
0,3 64,85 74,95 78,45 118,00
0,5 28,25 34,90 41,45 70,65
0,8 16,60 21,40 28,55 61,75
1,2 14,35 18,45 24,70 52,65
1,65 12,45 16,10 22,25 46,20
2 11,90 15,45 21,25 44,80
ke
L
T
25 ™ 5:47/3
88
s
104
A

Q
n
w

Fig. 8.2.
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8.3. Cisanllement pur

L’équation qui régit le phénoméne de voilement par cisaillement pur se
déduit de la relation générale (4,4) et s’écrit
4 o (M~ DYimpair (n+@impair

_k— Z Z a, Opmonq+ Bmzla’mpEnp
vy

D q

4
+06an2“ E,,+A,4,a,,=0. (8,4)

En vertu de la démonstration du par. 7.3, le systéeme d’équations aux a,,,
se subdivise en deux systémes partiels. Le premier caractérisant les déformées
symétriques par rapport au centre de la plaque et I'autre les déformées anti-
métriques par rapport a ce point.

Les résultats ont été obtenus par une méthode identique & celle de la

Tableaw I11

Plaques encastrées Plaques enc. et app.
o
k‘l's kra kTS kTa
0,3 112,50 114,50 66,65 62,25
0,45 51,25 49,95 32,40 32,70
0,7 24,15 25,45 18,50 21,50
1 14,90 17,20 12,70 14,30

75

” \

A
" N\
N%—
e
o
0 05 p 5

Fig. 8.3.
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flexion pure, pour des plaques encastrées sur leur pourtour ou bien appuyées
sur les bords verticaux et encastrées sur les bords horizontaux.
Ils sont consignés au tableau III et traduits par les courbes de la figure 8.3.

9. Plaques encastrées sur leurs bords horizontaux et appuyées sur leurs bords
verticaux, munies de raidisseurs horizontaux et sollicitées en flexion pure

9.1. Généralités

L’étude du dimensionnement de I’dme et des raidisseurs d’une poutre a
ame pleine, dans sa partie sollicitée en flexion pure, a été entreprise par
Chwalla [15,16] en 1936. L’un de nous a complété cette étude [17] en suppo-
sant que le raidisseur optimum était placé au milieu de la zone comprimée.

Ces résultats ont été revus par Sttrssi, CH. et P. DuBas [18,19]. Ils sont
arrivés a la conclusion que, dans le cas de plaques rectangulaires appuyées
sur les 4 bords, le raidisseur optimum était situé au cinquiéme supérieur de la
plaque.

C’est en effet a cet endroit que la déformée de deuxiéme ordre de la plaque
présente une ligne nodale et il a été montré que c’est la position optimum, de
méme que la stabilité optimum de la plaque raidie doit étre prise égale a celle '
correspondant a la deuxiéme forme de voilement de la plaque non raidie, soit
k=129,4 dans le cas étudié par STUssI.

CERADINI [20] a complété cette recherche en l’étendant aux plaques
appuyées sur leurs bords sollicités et encastrées sur les autres. On rappellera
ici quelques-uns des résultats qu’il a obtenus.

a) Le k,,,;, de la premiere forme de voilement des plaques encastrées et
appuyées vaut 39,85 (NOLKE: 39,61) contre 23,88 pour les plaques appuyées.
Cependant, I’augmentation du k, de la 2e forme de voilement est plus
faible; on ne passe en effet que de 129,4 & 162.

b) La position optimum du raidisseur est & présent aux 2/9es supérieurs.

c) Pour une plaque de rapport «=2/3, CERADINI trouve que le y optimum
vaut 9,45.

Cette valeur de y est pratiquement égale a la valeur y =9,35 correspondant
a un raidisseur placé au 1/5 sur une plaque appuyée. On voit que I’encastrement
des bords horizontaux et le placement du raidisseur aux 2/9es ont pour effet
de faire passer k, de 129,4 & 162, c’est-a-dire d’augmenter la stabilité de
25 pour cent.

9.2. Considérations sur les raidisseurs tubulaires strictement rigides

Aucune des études signalées précédemment ne prend en compte la rigidité
torsionnelle des raidisseurs; leurs auteurs ne considérent, en effet, que des
raidisseurs formés de profils ouverts.
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Cependant, des raidisseurs comme ceux de la fig. 1.1 sont loin de rentrer
dans cette catégorie, car alors que pour un raidisseur rectangulaire épais
(b/h=1/5) et symétrique,

O_ 1 51 0,0625,
v 147 52
on obtient pour un raidisseur formé de deux corniéres
0 3Gd%e 3

— = = 0,586
y— 2Ed3e¢ 4(1+n) ’
et pour un raidisseur en forme de tube
3
E%SWGde 1 — 0781,

y = d4nEdPe 1+q

Nous supposons connue la notion de raidisseur strictement rigide carac-
térisé par la valeur y* de sa rigidité relative. Lorsqu’un tel raidisseur présente
en outre une rigidité torsionnelle non négligeable, ses propriétés dépendent
des deux parametres 0 et y et BORNSCHEUER [4] a montré que la définition de
g* et y* devient plus complexe.

Ainsi, dans le cas de la flexion pure, on ne peut plus affirmer que la position
optimum du raidisseur est encore fixée par la ligne nodale horizontale de la
déformée du second ordre car, méme s’il est situé & 1’ordonnée correspondante,
il est encore tordu lors du voilement.

Aussi avons-nous adopté comme principe de base que la position & donner
au raidisseur est telle que, si les panneaux qu’il détermine sur la plaque
étaient indépendants et encastrés sur leurs bords horizontaux (les autres étant
appuyés) ils auraient tous deux la méme stabilité. Notons que cette hypothese
est correcte dans le cas d’un raidisseur infiniment rigide, car alors les deux
panneaux partiels se comportent comme s’ils étaient complétement indépen-
dants. En ce qui concerne le coefficient de voilement k* de la plaque raidie,
nous adoptons la valeur commune des deux panneaux partiels. Nous déter-
minons ensuite le y* du raidisseur caractérisé par 8 et 8/y qui donne & la
plaque la méme stabilité qu’un raidisseur infiniment rigide. Il s’agit ici d’une
rigidité optimum de troisieme espéce selon la classification proposée par
BORNSCHEUER et CHWALLA [4, 15]. L’hypothése de calcul ci-dessus s’est révélée
correcte, car nous avons trouvé des valeurs finies pour y*.

La recherche du d,/b optimum a nécessité ’'obtention préalable de nom-
breuses courbes k,=f(«) relatives & des plaques encastrées-appuyées soumises
a flexion composée, le coefficient caractéristique s qui intervient dans la loi de

’ L S A s 2
répartition o =o* (1 n— —b—y) pouvant étre supérieur a 2.
Pour ces calculs, nous avons utilisé la technique décrite au par. 8.2 et nous
avons bénéficié en outre du théoréme démontré au par. 7.2 qui permet de ne

considérer que les coefficients a,, dans le cas de plaques appuyées sur leurs
bords sollicités.
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Tableauw IV
ds _ d; _ d; _ d; _ d; _
—(—)—_O —b—_O,l5 ?_0,25 %——0,333 ?—0,5
[+ 4
s=0 §=2 | §=0,3 |s=2,429| s=0,56 | s=3 |s=0,667| s=4 | s=1|s=»

k, Icao k. k. kg kg k. ko kg kg

0,10 — S — — — — —_ 1240 - 0
0,15 — —_ — 172 — 303 — 595 — 0
0,25 | 18,8 55,95 | 21,8 101,5 | 24,4 198,5 — 565 |35,6 o0
0,35 | 11,2 43,5 14,0 86,3 | 14,75 | 188,56 | 16,15 715 |21,35| o
0,50 7,75 | 40,15 9,05 90,1 | 10,25 225 11,45 875 | 14,8 o0
0,75 7,1 48,85 8,40 | 126,0 9,40 359 10,60 1580 [13,95| o
1,00 8,5 66,9 10,15 | 186,0 | 11,50 560 12,90 2560 [16,50| oo
kyminl 7 40,05 8,15 85,5 9,3 186 10,4 500 (13,55 oo

Pour d;/b=0,2, on a encore trouvé: k. ., =8,7 et k =112.

g’ min

13554 ..

04 -

93

815 1.

Fig. 9.1.

Nous nous sommes limités aux 6 premiéres composantes de la déformée
dans la direction des y et nous avons pu estimer & environ 19, 1’écart par
exces entre les valeurs exactes et celles que nous avons calculées.

En flexion pure, par exemple, &, ,.;,= 39,61 pour o=0,47 (6) tandis que
nous trouvons k, ., = 40,05 soit un écart de 1,1 pour 100.
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Notons que, pour 8 composantes, 1’écart vaut encore 0,7 pour 100.

L’erreur étant sensiblement la méme pour tous les points calculés, celle
que nous commettons sur la détermination du d,/b optimum est négligeable.

Rappelons en passant que les valeurs y* de la rigidité optimum s’appli-
quent & une plaque idéalement plane.

Les recherches expérimentales d’un des auteurs [1,2 et 21] ont montré
que, pour obtenir, sur les panneaux d’ames légérement courbes des poutres
industrielles, des raidisseurs restant pratiquement rectilignes jusqu’a la ruine,
il fallait multiplier * par un coefficient valant de 3 & 6. Ce résultat expéri-
mental a été depuis expliqué théoriquement par CERADINT [20].

Le tableau IV ci-avant contient les valeurs que nous avons obtenues ou
que nous avons tirées de 1’ouvrage de KoLLBRUNNER [22]. Ces résultats sont
traduits par les courbes des figures 9.1 et 9.2.

Nous appelons %, le coefficient de stabilité du panneau ad; et k,. celui
du panneau a (b —d,) (fig. 3.1); le panneau ab est soumis & flexion pure et les
coefficients k, sont rapportés & la plus grande tension appliquée au panneau
complet.

ks

300 +—4

200 \ A s

112

00 s=17
7

Fig. 9.2.

9.3. Détermination de la position optimum du raidisseur et calcul de y*

w2 D
A Nous prendrons

cette valeur comme tension de référence pour chacun des panneaux partiels
(fig. 3.1)

Rappelons que la tension critique d’Euler s’écrit o, =



256 CH. MASSONNET - G. MAZY - A. TANGHE

_a _e_ b, _
*Tp TG T*a 2T b—d

Les tensions critiques d’Euler des panneaux partiels s’écrivent respective-
ment

_mD  (b)? =D b 2
Tern =gz~ %\d;) 0 Tt T o—dpth” " \b—d;)

1

Appelons k, et k,, les coefficients de stabilité au voilement des panneaux
1 et 2, ces k, étant rapportés a la tension critique d’Euler.

Tableau V

d; =2 a«=0,25
b

ko'l kO’l kUQ kUg
0 [e's} 40 o0 60
0,15 362 118 376 . 118
0,2 217,5 175 220 175
0,25 149 330 163 330
0,333 93,5 | 1125 95,5 1970
0,5 542 | 592 | @

|

kg
- f
\
\;
200 L
100
ar
[)
0 0125 ax s 05

Fig. 9.3.
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2 2
o=k (L e b ()

La valeur optimum du d,/b sera donc fixée par la relation k, =k,,.

Nous avons fait ces calculs, soit en adoptant pour k. et k. leurs valeurs
minima, ce qui correspond & un « trés grand, soit en prenant les valeurs exactes
de k, et k . pour un panneau de «=0,25 (valeur voisine du « donnant le &, ,,;,
de la deuxieme forme de voilement).

Les résultats de ces calculs sont consignés dans le tableau V et traduits
par les courbes de la figure 9.3.

On constate que les deux valeurs de o« donnent sensiblement la méme
position pour le raidisseur et le méme k,, & savoir d,/b optimum = 0,21, k} = 200.

En pratique, les plaques qu’il faut raidir sont souvent en méme temps
cisaillées et fléchies. Le raidisseur & d,;/b=0,21 n’est plus intéressant dans ce
cas; aussi avons-nous envisagé des raidisseurs au 1/4 supérieur (k¥ =k, =~ 150)
et au 1/3 supérieur (k¥ =k, ~ 95).

Pour déterminer les courbes y*=f(«x), nous utilisons 1’équation générale
aux a,,, (6,2) des plaques encastrées et appuyées.

Cette relation s’écrit dans notre cas:

1 o2
?%:Wﬂ Enp amp +m2Ana’mn+‘2—Bna’mn

Y 4 . . 2O 0 Vi,
+ azgm fn @)1y (d@)dmp+9§m 3 Fu (d3) [ () @y 9,1)
—kOOZmz S -
Y4

*kaoa (1 —251) %mzfn (dz)fp (di)amp = 0.

Notons d’abord que, pour calculer y*, nous pouvons, en accord avec le
théoréme 7.2, ne considérer que m =1 dans la relation (9,1).

Nous allons voir que la valeur y* peut se déterminer directement. En effet,
partons de y =0, donc de la série des déformées de voilement par flexion pure
de la plaque non raidie; un raidisseur de rigidité croissante fait augmenter
continiment la stabilité de chacune de ces formes, sauf s’il correspond & une
ligne nodale, auquel cas le k, de cette forme de voilement ne change pas.

Au cours de cette évolution, toutes les valeurs correspondant initialement
a des k, <k} passent par k} pour une valeur positive de y.

La valeur & adopter pour y* est donc la plus grande valeur de y qui annule
le déterminant déduit des équations (9,1).

Pour le raidisseur situé a d;/b =0,21, on peut obtenir deux valeurs positives
de y pour 0,15 <o < 0,3 car, entre ces deux limites, le k, de la deuxiéme forme
de voilement par flexion pure est inférieur & 200 (Réf. 20).

Les résultats que nous avons obtenus pour §=0 (raidisseurs a section
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ouverte) et pour 6/y=0,8 (raidisseurs en forme de tube) sont consignés dans
le tableau VI et représentés par les courbes des figures 9.4 et 9.5.

Tableauw VI
di _ di _ 0 _ dz _ 0 _ di _ —
-b—_o,25 ?_0,21, ;_0,8 ?_0,25, ;-_0,8 3_0,333, =0,8
« §=6=0 $=0 $=0,15 §=0 $=0,15 5=0 §=0,15
Y Y Y Y Y Y Y
0,3 — 2,65 — s — . —
0,5 3,30 4,76 8,71 — — 1,66 2,78
0,75 6,64 7,3 15,9 3,17 5,97 2,46 5,11
1 9,45 7,65 20,73 5,75 11,94 2,35 7,10
1,25 | 10,08 5,95 20,07 6,87 17,44 0,33 7,54
1,5 6,50 3,83 15,05 2,20 20,02 0 5,22

On peut interpoler linéairement entre les valeurs relatives 4 8 =0 et 6 =0,15.
L’inspection des résultats précédents conduit aux conclusions suivantes:

d;

|

= 0,25

8.
30
B
20 N e
10
0 ! 2
A: 5§=0; £=0,8
Y
0
B: 6§=0,15; —=0,8
Y
C: 6=60=0
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1. L’encastrement sur les bords horizontaux joue un réle important puisque
k¥* passe de 129 & 162.

2. Les raidisseurs tubulaires ont pour effet de relever nettement la stabilité
puisque k7™e* passe, pour une plaque encastrée-appuyée, de 162 pour 6 =0
a 200 pour 8/y=0,8.

3. La rigidité torsionnelle 8 a, en outre, une grande influence sur les dimen-
sions du raidisseur puisque, pour 6/y=0,8, elle réduit la valeur de y* aux
environs de 60 pour 100 de celle qui était nécessaire pour atteindre la
méme stabilité lorsque 6 éatit nul.

4. Notons encore que le premier feston de la courbe &k, =f(x) en flexion pure
est beaucoup moins évasé dans le cas ou les bords horizontaux sont encas-
trés que lorsqu’ils sont appuyés.

8.

30

20 AN AT ]

0 1 2 3
A: 8=0; ii1'=(),21 B: §=0,15; jd—i=0,21
0 b b
5 o d d
Y C: 8=0; £=0333 D: 5=0]15; —b—i=0,333.

De ce fait, on passe plus vite de la déformée sans ligne nodale & celle & une
ligne nodale verticale et, par conséquent, la courbe y*=f(x) passe par un
maximum pour une valeur de « beaucoup plus petite (environ 1) que pour
les plaques appuyées pour lesquelles ce maximum se produit pour « compris
entre 2 et 3.

La valeur maximum de y* est donc plus faible pour les plaques encastrées
— appuyées que pour celles appuyées sur tout leur contour.
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Résumé

Les auteurs exposent d’abord une théorie générale du voilement d’une
plaque rectangulaire orthotrope, munie éventuellement de raidisseurs hori-
zontaux et verticaux possédant des rigidités flexionnelle et torsionnelle im-
portantes.

La théorie est basée sur le critére de 1’énergie et la déformée de voilement
est représentée par une série double dont les composantes sont les déformées
de flambement d’une barre prismatique biarticulée ou biencastrée.

Dans la deuxiéme partie du mémoire, cette théorie est appliquée a 1’étude
de plaques isotropes non raidies, ayant deux bords paralléles ou les quatre
bords encastrés et soumises & compression, flexion composée ou cisaillement.
On étudie ensuite des plaques soumises & flexion pure, encastrées sur les bords
horizontaux et munies d un raidisseur horizontal & section tubulaire d’ordonnée
relative 1/, 1/, ou 1/;.

Zusammenfassung

Die Autoren entwickeln zuerst eine allgemeine Theorie des Beulens einer
rechteckigen orthotropen Platte, die mit horizontalen und vertikalen Aus-
steifungen mit hoher Biegungs- und Torsionssteifigkeit versehen sein kann.

Die Theorie basiert auf dem Energiekriterium, und die Beulfliche wird
durch eine doppelte Reihe dargestellt, deren Glieder die Ausbiegungen eines
beidseitig gelenkig gelagerten oder beidseitig eingespannten prismatischen
Knickstabes sind.

Im zweiten Teil der Abhandlung wird diese Theorie auf das Studium nicht
ausgesteifter isotroper Platten angewendet, bei denen zwei parallele oder alle
vier Rénder eingespannt sind und die durch Druck, zusammengesetzte Bie-
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gung oder Schub beansprucht werden. Anschliefend werden durch einfache
Biegung beanspruchte Platten untersucht, die an den horizontalen Kanten
eingespannt sind und mit einer horizontalen Léngsaussteifung mit Kreis-
querschnitt versehen sind, die in 1/;, 1/, oder !/, der Steghthe angeordnet sind.

Summary

The authors, first of all, describe a general theory of buckling of an ortho-
tropic, rectangular plate, which may be provided with horizontal and vertical
stiffeners having considerable flexural and torsional rigidities.

The theory is based on the energy criterion and the deformation due to
the buckling is represented by a double series whose components are the
buckling deformations of a prismatic bar hinged at both ends or fixed at
both ends.

In the second part of the paper this theory is applied to the study of iso-
tropic plates without stiffeners, having two parallel edges, or all four edges,
fixed and subjected to compression, to combined bending and compression or
to shear. A study is then made of plates subjected to pure bending, clamped
at the horizontal edges and provided with a horizontal stiffener having a
tubular section of relative ordinate 1/,, 1/, or 1/,.
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