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Die Berechnung der aus Pfihlen mit krummen Arbeitslinien
bestehenden Roste

Calculation of Groups of Piles with a Non-Linear Relationship Between Force
and Penetration

Calcul des groupes de pieux avec relation effort-pénétration non linéaire

ERNST GRUBER
Dr.-Ing. habil., Oberregierungsbaurat, Hannover

1. Allgemeines

1.1. In der Folge werden mit Hilfe einer rasch konvergierenden Iteration
beliebige Pfahlroste berechnet, bei welchen die elastischen Eindringungen 4,
der einzelnen Pfihle nach krummen Kraft-Setzungslinien zunehmen. In der
Regel wird dieses Anwachsen rascher als linear erfolgen.

1.2. Fiir einen beliebigen Punkt v dieser Arbeitslinien stellt die 1. Ableitung
dP;

G (E)A,:A,-, )

Elastizitdtsmodul E; , dar (Fig. 1).

den zur Pfahlkraft P, , und zur Eindringung 4, , gehérigen
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>

/@‘ 81—l g Lindringung 4;
A/; v

Fig. 1.
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2. Pfihle mit axialer und seitlicher Widerstandsfihigkeit

2.1. Wir betrachten 3 zueinander senkrecht stehende, von einem Punkt ¢
ausgehende Pfahle ¢, ¢; und ¢, mit nur axialer Widerstandsfahigkeit, fiir welche
3 verschiedene Arbeitslinien vorhanden sein sollen (Fig. 2). In ¢ iibertragen
die 3 Pfihle ihre axialen Widerstinde auf den steifen Fundamentkorper.

2.2. Dringt der Punkt ¢ nur in der Richtung eines der 3 Pfihle ein, so
entsteht nur in diesem Pfahl eine axiale Kraft, wihrend die beiden anderen
spannungslos bleiben. Verschiebt sich nun 2 um den zu den 3 Richtungen ¢, ¢,
und 7, geneigten Vektor 1I,, so ergeben sich die Betrige der 3 Pfahlkrifte zu

F,=E4;, B, =FEp;, (La,b)
For=Ei 4y = E; 14,5008, Fro=FE;3d;5=H;34;150080,;,, (2,3)
woraus flir u; ; =p; ,=0 zunichst
Ay =14, 15, Ao =E;,4; 5, (4a,b)
folgt. Daraus erhalten wir weiter

(Ei,lAi,lchSMi,1)2+ (Ei,2Az‘,12003[-’«i,2)2 _
Ei,ldi,12 Ei,ZAi,IZ

Pi1\2  (P.s\?
C08% ;1 +COS2 s 5 = (Zi—l) + (21—2) =1.

£z \ ;2 >[
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Fig. 2.
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Dabei bedeuten im Sinne von (1.2) die E;, E;; und K, , die zu den Verschie-
bungen 4;, 4;, und 4, , gehoérigen Elastizititsmodule. Bewegt sich also die
Spitze des Verschiebungsvektors 4, ;, auf einem Kreis, so wandert die Spitze
des dazugehorigen Kraftvektors P, ,, auf einer Ellipse mit den Hauptachsen
A;,yund 4, ,.

Betrachten wir ¢; und 7, als gedachte Hilfspfihle, so konnen wir auf diese
Weise die Wirkung eines Pfahles ¢ beschreiben, dessen Schaft eine axiale und
dessen Kopf eine seitliche, mit der Richtung stetig verdnderliche Widerstands-
fahigkeit besitzt.

2.3. Ist der seitliche Widerstand nach allen Richtungen gleich grof3, was
fast immer der Fall sein wird, so setzen wir

Ez’,l = Ei,z = Ei,h> Ai,lz = Ai,h’ Pi,lz = Pi,h: (6a,b,c)

wodurch die Ellipse (5) in einen Kreis mit dem Radius K, ; 4, ; iibergeht und
die Richtungen von 4, ; und P, ; fiir jeden Winkel u; zusammenfallen.

2.4. Bei Hinzuziehung der notigen Hilfspfihle kénnen wir also unsere
weiteren Untersuchungen auf Roste beschréanken, die nur aus Pfahlen mit rein
axialer Widerstandsfahigkeit bestehen, ohne dadurch die Allgemeingiiltigkeit
der nun folgenden Methoden zu verschmélern.

3. Die Ermittlung der Pfahlkrifte eines riumlichen Pfahlwerkes

3.1.1. Wir betrachten eine Anzahl beliebig gerichteter Pfihle, welche mit
ihren beliebig liegenden oberen Kopfenden ¢ an einem steifen Fundament-
korper so gelenkig angeschlossen sind, dal sie im Sinne von (2.4) bei einer
Belastung nur mit einer axialen Widerstandsfahigkeit reagieren kénnen. Wird
nun dieses rdumliche Pfahlwerk gleichzeitig von beliebig vielen zueinander
windschiefen Lasten &, ergriffen, so fiihrt es eine elastische rdumliche Be-
wegung aus, welche wegen der hohen Steifigkeit, die wir fiir unsere Bauwerke
fordern miissen, so gering sein wird, dafl wir sie bei Vernachlassigung der
kleinen Groflen 2. und hoéherer Ordnung rechnungsméfig als infinitesimale
Werte behandeln kénnen. Nehmen wir nun noch den die Pfihle verbindenden
Fundamentkorper als unendlich steif an, so wird diese Bewegung durch 2
zueinander windschiefe Drehvektoren ®,=d, b, und D,=d,b,, kurz «Dreh-
kreuz» ®,;D, genannt, beschrieben (Fig. 3). Bekanntlich gibt es hiervon
unendlich viele, die aber alle einander gleichwertig sind.

Dabei bezeichnen wir einen Vektor mit einem groflen gotischen, seinen
zugehorigen KEinheitsvektor mit den gleichnamigen kleinen gotischen, und
seinen absoluten Betrag mit den gleichnamigen kleinen oder groflen lateinischen
Buchstaben, eine Bezeichnungsweise, die wir auch in Hinkunft einhalten wollen.
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3.1.2. Jeder Pfahlkopf verschiebt sich also um einen Vektor 1, der sich
durch geometrische Addition der Drehungen D, und ®, zu

ui = [@v ERv,?}]‘lp'[@p. ER}L,’I:] = dv [bv %v,i]—}'d‘u [bp. ERy.,i] | (7)

ergibt, wobei die mit [ ] bezeichneten vektoriellen Produkte, entsprechend ihrer
Definition, von der Wahl der Bezugspunkte 0, ,, unabhéingig sind. Daraus folgt
die axiale Verschiebung des Pfahlkopfes ¢ als Projektion von U, auf die Pfahl-
richtung p,, so daf sich bei der nunmehr rein axialen Widerstandsfahigkeit
die zugehorige Pfahlkraft zu

PBi=Fp; = E;(0;[R, ; D]+ 9 [Ry: DD by (8)

ergibt, wobei E,; den Elastizitditsmodul des Pfahles 7+ im Sinne von (1.2)
bedeutet.

Ein Drehvektor gilt dann als positiv, wenn ein gegen seine Spitze Blickender
die Drehung im entgegengesetzten Sinne des Uhrzeigers wahrnimmt. Eine
Pfahlkraft hingegen wird als positiv gezdhlt, wenn der Pfahl gegen den Funda-
mentkorper driickt. Beide Vereinbarungen wollen wir auch fiir spater festhalten.

3.1.3. Fiir die folgenden Darlegungen sei auf die allgemein giiltigen Identi-
téaten der Vektoralgebra

[lm] =—[ml]; [[mun] =n[lm]=mnl] (9a,b,c,d)

hingewiesen, von denen die 3 letzteren durch zyklische Vertauschungen
zusammenhéngen.

Das statische Moment von B; um eine beliebige Achse ¢ betrigt nun bei
Bedachtnahme auf (9)

Mo =my 8= (R Bol)r = (Be [ R D e (10)
Summiert man m, ; iiber alle Pfihle 7, so folgt wieder mit (9)

ng,i = 2B [x mg,i] =i b-p;[x éﬁg,i] =
2Bt [ R 0] = 2Bz, (Fig. 3).

Dabei bedeutet nach (10) z; den absoluten Betrag des statischen Momentes
einer im Pfahl ¢ wirkenden Kraft p,=1 um die Achse ¢. Bezieht man z; nicht
auf den Bezugspunkt O,, sondern auf O; (Fig. 3), so folgt

my s—my ;= Bollx Ry - [ERL 1) = B[ Ry~ Rp )] = Belx k)], (12)

woraus sich ergibt, daBl der Wert x; wieder von dem auf der Achse ¢ liegenden
Bezugspunkt O, unabhiingig ist.

Setzt man in den letzten Teil von (11) fir P, den Wert von (8) ein, so
ergibt sich

(11)

2imy =i R, ;D] -2 B+ 2[R, ;D] Ep;. (13)
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3.1.4. Wir nennen nun
W, ;=2 B0, =w, ;9 (14)

das zum Pfahl ¢ und zur Achse g gehorige «Gewicht». Dieses ist ein in der
Pfahlachse 7 wirkender Vektor mit dem absoluten Betrag

wx,i - xiEi. (15)

Es wird also zunéchst aus (13)
2imy g =2 W, [ R, DI+ 20 W, [ Ry Dyl (16)

~E  beliebige Nullachse des
S angreifenden
NIy  Kraftsysfems
~N

= ~
/ , W
/ /?Z’1 / e - h N
o Dy, Du, R, und g
im Raume zuein,
ander windschief

#,;+, wenn der Prahi
auf F drickt

Fig. 3.

Ist die Summe der statischen Momente aller angreifenden Lasten §&; um
die Achse ¢ gleich Null, so nennt man letztere eine « Nullachse» des angreifenden
Lastensystems. Da sich die ®; und die %, gegenseitig in ihrer Wirkung auf-
heben miissen, wird fiir jede dieser Nullachsen

Zimm- =0, (17)
so daB sich mit (9) aus (16) und (17)
dv'zibv [%g,igﬁv,i]"l'du'zibp [%pz ER,u,z'] =0 (18)

ergibt. Dabei stellen die Faktoren der skalaren Drehwinkel d, bzw. d, die
Summe der statischen Momente aller Gewichte 8, ; um die Einheitsvektoren
b, bzw. b, der Drehachsen D, bzw. D, dar.

3.2. Ein rdumliches System mit den Einzelkriften &; 1Bt sich stets auf
ein aus 2 windschiefen Kriften bestehendes Kraftkreuz zuriickfithren, und
zwar nicht auf ein bestimmtes, sondern auf unendlich viele, die aber alle
untereinander gleichwertig sind. Von diesen vielen Kraftkreuzen kann man
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aber ein bestimmtes eindeutig festlegen, wenn man verlangt, daf3 die eine der
beiden Wirkungslinien durch einen Punkt E geht und die andere in einer
Ebene e liegt.

Der Einfachheit halber wihlen wir fiir e die horizontale Zeichenebene z
und fiir Z den unendlich fernen Punkt Z, der durch den zu z normalen Ein-
heitsvektor 3 bestimmt ist.

In diesem Sinne wollen wir in Hinkunft von «waagrecht» und «lotrecht»
bzw. von «horizontal» und «vertikal» sprechen.

Bestimmen wir den Schnittpunkt K,=[z &,], zerlegen &; in eine durch
K ; gehende Vertikal- und Horizontal-Komponente &; , und &, y und ermitteln
die durch Z gehende Resultierende §, aller §; , und die in z liegende Resul-
tierende &y aller &, 4, so erhalten wir das gesuchte orthogonale «Kraftkreuz»
K, Ky.

Diese Reduktion kann man auch auf jedes der oben erwihnten unendlich
vielen einander gleichwertigen «Kraftkreuze» anwenden.

Dabei bedeutet [] das geometrische Gebilde, welches durch Verbindung
der darinstehenden Elemente entsteht, eine Bezeichnung, die wir auch in
Hinkunft beibehalten wollen.

3.3.1. Legt man durch die in z liegende und &, schneidende Achse gty eine
lotrechte Ebene ¢, , und legt in ihr durch X eine gegen r, um fB, geneigte
Achse g, so ist diese eine Nullachse, da sie f, und § schneidet. Dreht man
€, um ®, von 0 bis 7 und verdndert g8, gleichfalls von 0 bis =, so erfassen wir
auf diese Weise simtliche derartigen Nullachsen (Fig. 4).

Fig. 4.



ROSTE AUS PFAHLEN MIT KRUMMEN ARBEITSLINIEN 93

3.3.2. Um fiir den in Fig. 4 dargestellten Pfahl ¢ die zu ¢ gehorigen «Ge-
wichte» zu ermitteln, miissen wir zunédchst nach (3.1.4) in der Pfahlachse ¢ die
Kraft p,=1 anbringen, welche wir entsprechend (3.2) zweckmé&fBigerweise in
die 3-Komponente 1-cos «; und in die in der Horizontalprojektion ), der Pfahl-
richtung p, wirkenden ¥);-Komponente 1-sin «; zerlegen.

Dabei zéhlt der Winkel «;, unter dem der Pfahl ¢ gegen 3 geneigt ist,
positiv, wenn 1-sin«; um &, im entgegengesetzten Sinne des Uhrzeigers dreht.
Der Pfahl ¢ schneidet z im Punkte ¢/, der im allgemeinen nicht mit dem Pfahl-
kopf ¢ identisch ist.

3.3.3. Die Momente dieser Hilfskraft um die beiden aufeinander senkrecht
stehenden Achsen g, und g, lauten nun
My g = MpC08a; Ly und MMy, ;=& sine; 1, (19, 20)

woraus sich weiter das Moment um die allgemeine Achse ¢ als Summe der
beiden Projektionen von (19) und (20) auf ¢ zu

M, ; = (7,; €080+ cos B, + &, ;sina;-sinf) ¢ (21)
ergibt (Fig. 4). Nach (3.1.4) folgt daraus fiir das zu +" und r gehorige «Gewicht»
W, ;= E;(n, 0080 -cosp, +&, ;sina;-sinB,) p;, (22)

fiir dessen durch 2" gehende Vertikalkomponente

pit

und fiir dessen in Y); wirkende Horizontalkomponente

eui = Bi(ng 00820y cos B + &, ;Sina; cos a;-sin By) 3 (23)

%m,i = Ei (7, COS o; SIN ar; - COS Bg + fw’ sin? e, - sin ,83) b;. (24)

3.3.4. Ersetzt man in (22,23,24) den Index ¢ durch a bzw. b, so erhalten
wir fiir die zur Achse a bzw. b gehorigen «Gewichte» die analogen Ausdriicke
(25,26,27) bzw. (28,29, 30), die wir aber der Kiirze halber nicht gesondert
anschreiben wollen.

3.3.5. Zwischen den zu den 3 Stellungen p, a, b gehorigen Abstinden 7
und ¢ besteht je eine lineare Abhéngigkeit. Mit den in Fig. 4 festgelegten
Vorzeichen folgt zunéchst

Mo = @S [p+(at)]; g =@sinfp+(0F)]; 7y, = a;sinp,.
Eliminiert man daraus e, und p,, so ergibt sich schlieBlich

sin (¢ b) sin (¢ a)

Tei = Toigin (ab) "> sin (aB) Na,s0p — M5, 1 Qg - (31)

Ebenso folgt aus gewohnlichen Proportionen die zu (31) duale lineare Ab-
hingigkeit der £ zu
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XB XA
fz,i = fa,iAB _gﬁ,iAB = ga,iBg_ff),iAg' (32)

Setzt man (31, 32) in (23, 24) ein, so wird

W, . ;= H;[(n,;008%a;-b,— 7 ;c08% ;- a,) cos B,
. ) . (33)
+ (€, i8N0z co8 00+ By — & ;8ine; cosa;- A,)sin 8,13,
W, 5= E;[(n,;c080;8in 0, b, — 7 ;€08 a; 8N ;- @) COS B, (34)
+ (€, i8in% ;- B, — &, ;sin?o;- A,)sin B,11,.

3.3.6. Ersetzt man in (33,34) ¢ durch {) und X durch Y, so ergeben sich
die zur y)-Achse gehorigen Gewichte.

3.3.7. Wollen wir nur alle in z liegenden und durch &, gehenden g;-Achsen
erfassen, so miissen wir in (33, 34) B, =0 setzen. Bilden wir dann die Resul-
tierende der iubrigbleibenden Gewichte 2, ., , bzw. B, ,,, so ergibt sich
nach (3.2) das «Kreuz»

%2,0 = %a,nbg_%ﬁ,na’g) (35)
SQ;,O = ‘ba,n bg—'@ﬁ,n @y (36)
wobei die B, n die Resultierenden der in den ¢" wirkenden und durch Z gehen-
- b’
den Krifte B, o™= E,n, .cos?a«; (37, 38)
B’ s B’ 2

und die H, . die Resultierenden der in den Y, wirkenden und in z liegenden
Krifte ¥ .
@gﬁmﬂ =K, ng,i COS a; Sin o (39, 40)

sind.

3.3.8. Wollen wir uns hingegen nur auf die in der durch §; gehenden senk-
rechten Ebene ¢; ., liegenden lotrechten Achsen y, beschrinken, so miissen wir
in (33, 34) B,_. setzen. Bilden wir dann analog die Resultierenden der {ibrig-
bleibenden Gewichte ¥, . ; .» bzw. W,y ,; », so ergibt sich nach (3.2) das
«Kreuz»

%g,'n/z = %a,fBg_%ﬁ,fAE’ (41)
Osmiz = Da¢ By— D¢ 4y (42)
wobei die %, , die Resultierenden der in ¢" wirkenden und durch Z gehenden
Krifte v 'SB%, L = E ¢ i sin a; COS o; (43, 44)

und die 9, 2 i die Resultierenden der in den ¥, wirkenden und in z liegenden
B s )

Krafte .
@g’g’ﬂ/z = E’l: fg’iSle oci (45, 4:6)

sind.
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3.3.9. Aus Fig. 4 ergibt sich durch zweimalige Anwendung des sin-Lehr-
satzes der Trigonometrie und durch nachherige Division

XB _ sin(b)sinp, A, a (47)
XA sin(ya)sinp, B, b,

3.3.10. Die linken Seiten der (35, 36,41, 42) stellen jeweils die Resultieren-
den der beiden rechtsstehenden Summanden dar. Bezeichnet man allgemein
V,.,=[2%B,,,] und dreht im Sinne von (3.3.1) die Ebene ¢, , um &, und bewegt
entsprechend mit ihr gy bzw. X, so verschiebt sich V, 4 bzw. V, , auf der
Punktreihe go=[V, , Vs ,] bzw. g.n=[V, Vs el, und 9, o bzw. O, ., dreht sich

um den Schnittpunkt Go=[9,, Ds,,] P2W. G 0 =[D ¢ Do ¢l

3.3.11. Zieht man neben der g-Stellung noch eine i)-Stellung in Betracht,
so miissen die statischen Momente der Krifte 9, ,b, und —9;,a, bzw.
Do, nby und — 9, , @, um einen beliebigen Punkt der Resultierenden §, , bzw.
9y,0 einander gleich sein. Es folgt daher aus (36), wenn die zu r und 1) gehori-

gen Abstiande der Momentenpunkte von G, gleich ¢ sind,

‘i’an) bz csin (@2,0 '@a,n) = - @B,nag csin (@g,o ggﬁ,n) ’ (48)
@a,n bt) ¢ Sin (@n,o @a,'r)) = - @B,n at)c Sin ('@t),o @B,n) 2 (49)

woraus durch Division das Doppelverhéltnis

_ sin (@g,() @a,n) . sin (@D,O ‘bay"l) _

(@a,'r) @B,n %2,0 SQD,O) ~ sin (®E;0 ‘bﬁ"ﬂ) "sin (*bt),O @B,n) B
ay ay sin (ra) sin(ya)

b, b, sin(xb) sin(yb)

(50)

= (ay by Ly D)

folgt, ein Wert, der sich wegen

m csin (9,0 Da,n) _ Ve,0 Vo,
c—o0 €SI (@g,o Li)a,'r]) VE,U Vf’,”l

auch aus (35), wegen (47) auch aus (41,42) jeweils durch die zugehérigen
analogen Betrachtungen und aus Fig. 4 auch fiir die Abstinde ¢ und % ergibt.
Dementsprechend gelten fiir die Biischel G und G, fiir die Punktreihen g,
und g, und fiir die Abstinde »; und §¢; die Projektivititen

('@a,’r] ’@B,'r] Sgg,() 'S:)r),o)x (‘ba,f @B,f Hi)p,o ‘bt),o)—/T (Va,n Vﬁ,n Vz;,() Vn,o)x
(Va,ﬁ Vﬁ,f Vz,o Vx),o) A (5a,i§5,i fg,i ft),i) A0, N6,i Mz, 4 %,i)-

(51)
3.3.12. Betrachtet man in (33, 34) die Stellung g, als konstant, 8, hingegen

als variabel, so folgt mit Hilfe von (35, 36,41, 42) diesmal das «Kreuz»
B, = %2,0 cos B, + B, psinp,; Dy = 91,0008 By + Oy m2sin By, (52, 53)
d.h. B, liegt auf der Geraden g,=[V,,V, ] und §, geht durch den Punkt
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G, =[9y,0 Dy, 2] Setzen wir das eine Mal 8, =0 und das andere Mal B, ==/2,
so erhalten wir wieder die %, ,, 9, o bzw. die B, 1, D, . der (35,36,41,42),
welche den Projektivititen (51) als zugeordnete Elemente angehoren. Sie liegen
also auf den Punktreihen g, und g,, bzw. gehen durch die Biischelzentren
Gy und G .

3.3.13. Nennen wir in Hinkunft g, =[V, .»V,,] die Stellungsgerade und
G, =9y n2 Dy,0) den dazugehorigen Stellungspunkt, so konnen wir aussagen:

«Die Stellungsgeraden g, umhiillen einen Kegelschnitt K, der die beiden
Geraden g, und g, beriihrt, und die Stellungspunkte G, liegen auf einem
Kegelschnitt K, der durch die beiden Punkte G, und G, geht. K, und K,
sind zueinander dual und liegen in z. Die Tangenten g, an K, sind dabei den
Punkten G, des K, ein-eindeutig zugeordnet. g, und g, bzw. G, und G, sind
dabei selbst Stellungsgerade bzw. Stellungspunkte (Fig. 5).»

Wir haben die vorhandenen GesetzméiBigkeiten so weit aufgedeckt, dafl
wir fiir die zu jeder Achse r gehérigen Gewichte (22) das diesen letzteren
gleichwertige auf z und Z bezogenen «Kreuz» B, ; 9, bestimmen konnen.

3.4. Wir wollen nun diejenigen Stellungen der Nullachsen y finden, fiir
welche die «Kreuze» B, ; 9, «Einzelkrifte» R, werden.

Perspeklivitdts-
achse

i 5

Perspeklivitats=, \\ § -
zentrum e %)( P

-

Fig. 5.
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3.4.1. Geht man von (52, 53) aus und verbindet die Punkte V, o, V., V; .
mit ¢, so.erhilt man ein Biischel, welches mit dem schon bestehenden Biischel
Dior Dp> Dy, mie Projektiv ist. Wir legen einen beliebigen durch @, gehenden
Steinerschen Kreis, der die beiden vorherigen Biischel in den wieder zueinander
projektiven Punktreihen 1,2,3 und 1°,2',3’ schneidet. Betrachtet man nun
1 bzw. 1’ als Scheitel der beiden Biischel 13’, 12’ bzw. 1’3, 1’2, so sind diese
zueinander perspektiv, da sie den Strahl 11’ bzw. 1’ 1 miteinander gemeinsam
haben. Sie besitzen eine Perspektivititsachse, die sich aus [[[13"][1’3]]-
-[[1277[1" 2]]] ergibt. Sie schneidet den Steinerschen Kreis in I und II, woraus
sich fiir die beiden auf g, liegenden konlokalen Punktreihen V, und H, die
beiden Doppelpunkte R, ,=[g,[G,1]] und R, ,=[g,[G,11]] ergeben. Durch
die letzteren werden in der durch g, gehenden lotrechten Ebene 2 Nullachsen
1, und g, festgelegt, die sich auf & schneiden und mit &, 2 getrennte Punkte
gemeinsam haben. Die nach (52,53) dazugehorigen %, , und 9, ; bzw. B, ,
und §, , schneiden sich also auf g, in den Doppelpunkten R, , bzw. R, ,. Die
beiden «Kreuze» B, ;; 9,1 und LB, »; 9, , reduzieren sich also auf die beiden
durch R, und R, , gehenden «Einzelkréifte» R, und R, , mit den Vertikal-
komponenten B, ;, B, , und den Horizontalkomponenten 9, 1, 9, .- Die bei-
den letzteren schneiden sich dabei in dem zu g, gehdrigen Stellungspunkt G,
(Fig. 6).

Steinerscher
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3.4.2. Fihrt man diese Betrachtung fiir eine 2. Stellung 1) durch, so ergeben
sich 2 weitere Nullachsen {); und Y, mit den beiden dazugehorigen Einzel-
kriften %, , und R, , (Fig. 4).

3.4.3. Da die geometrische Summe der Momente zweier Ersatzkrifte eines
gegebenen Kriftesystems um eine beliebige Momentenachse gleich ist der geo-
metrischen Summe der Momente der gegebenen Krifte um dieselbe Momenten-
achse, wird (18) dann erfiilllt, wenn z. B. die Richtungslinie einer zu einem
Doppelpunkt %, , im vorhergehenden Sinne gehorigen Einzelkraft 3, , beide
Achsen eines nach (3.1.1) existierenden « Drehkreuzes» ®,; D, schneidet. Dann,
und nur dann, verschwindet ndmlich jeder der beiden Summanden von (18)
voneinander unabhéingig, und zwar fiir jeden absoluten Betrag d, bzw. d, der
Drehvektoren D, bzw. D,,.

3.4.4. Nach (3.4.2) liegen nun die zu den Achsenpaaren y,, 1, bzw. 9, ),
gehorigen Einzelkrifte 9, ;, R, , bzw. R, ;, R, , vor, welche im allgemeinen
zueinander windschief sein werden. Erinnern wir uns daran, dafl es stets 2
windschiefe Gerade b, ; und b, , , gibt, von welchen jede alle der 4 obigen
Resultierenden schneidet, so erkennen wir in den beiden ersteren die Achsen
des (18) im Sinne von (3.4.3) erfiillenden Drehkreuzes ®, 1, D, o-

Es erzeugen namlich z. B. die R, ;, R, 5, R, ; eine Regelfliche 2. Ordnung,
welche dann von R, , in M, bzw. M, geschnitten wird. Legt man durch M,
eine Gerade, welche z. B. R, ; und R, , schneidet, so ergibt sich die Gerade
D,y 1, welche zur Kontrolle auch von 3, ; geschnitten werden mufl. Von M,
ausgehend findet man analog die 2. Achse b, ,, .

Es seien die beiden Geraden m; und my; zu finden, welche von jeder der 4 vorge-
gebenen Geraden a, b, ¢, m geschnitten werden.

Wir legen z. B. durch die Gerade b eine beliebige Ebene 8; und bestimmen die Schnitt-
punkte A;=[B:;a] und C;=[B;c]. Die Verbindungsgerade [4; C;] mull dann auch die
Gerade b im Punkte B; schneiden (Zeichenkontrolle). Drehen wir 8; um b, so erhalten
wir eine die Geraden a, b, ¢ schneidende 1. Geradenschar [4; C;]=4 (¢=a, b,...m).
Wihlen wir aus 41 2 beliebige Gerade [Ar Cx]=4%k1 und [4; C;]=1; und legen die Ebenen
[k1 a], [k1 b], [k1c] und [l1a], [l b], [l c], so entstehen so 2 projektive Ebenenbiischel

mit den Achsen k; und l;, welche eine 2. Geradenschar a1, b1, ¢1 . . . erzeugen. Da &k und [y
ganz beliebig aus der Schar 4; herausgegriffen wurden, schneidet jedes Element n der
Schar a, b, c,... alle Elemente der anderen Schar a;i, b1, ¢1,... und umgekehrt. Sie

bilden eine Regelfliche E. '

Wir bestimmen nun weiter die 3 Schnittpunkte lmy, , 2mx,, 3mx, der 4. der vorge-
gebenen Geraden m mit den 3 Ebenen [k a], [k1 0], [k1 ¢] des Biischels um %; und die
Schnittpunkte 1m; , 2my,, 3my, der 3 Ebenen [I; a], [l1 b], [l1 c¢] des Biischels um /;. Da
die Ebenenbiischel um k; und /1 projektiv sind, bilden diese Schnittpunkte 1.2:3my, und
1,2.3m,;, auf m 2 konlokale projektive Punktreihen mit 2 Doppelpunkten M; und M.,
die wir als Schnittpunkte von m mit der Regelfliche R erkennen, so dal R vom 2. Grade
sein muf3 (hyperbolisches Paraboloid). Die M; und Mz bestimmt man am besten wieder
mit Hilfe des Steinerschen Kreises.

Die Schnittpunkte L.2.3my,, und 1’2’3m11 findet man am einfachsten, indem man durch
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m eine beliebige Ebene p legt und die 3 Schnittlinien .2:3s; mit [k1a], [k1b], [k1 c] des
Biischels um k; bestimmt, welche alle 3 durch den Schnittpunkt [u k1] gehen miissen.
Im Schnittpunkt der !,2:3s;; mit m liegen dann 1.2.3my,. Genau so verfahren wir mit
dem Bischel um /.

Legt man nun durch M; und eine der vorgegebenen Geraden, z. B. a, eine Ebene u;
und bestimmt die Schnittpunkte [uy; 6] und [p; ¢], so miissen diese mit M» in einer Gera-
den m; liegen. Letztere muB auBlerdem noch die Gerade a schneiden. Dadurch haben
wir eine weitere Zeichenkontrolle zur Hand. Zum 2. Doppelpunkt Ms gehért natiirlich
auch eine 2. Gerade myy.

Grundriss

Fig. A.

Man kann die Bestimmung der Doppelpunkte M; und My; auch noch unabhingig
im GrundriB durchfithren, wodurch eine weitere Kontrolle gegeben ist.

Die Konstruktion wurde in Fig. 4 mit einem Zirkel und zwei Zeichendreiecken
tblicher Genauigkeit durchgefiihrt.

3.4.5. Nach den bisherigen Darlegungen sind die Momentensummen aller
Pfahlkrifte B, um jede der 4 Nullachsen 1,, 1,, §);, 1),, von denen sich nur
jeweils 2, und zwar y;, ¢, und p,, 1),, auf & schneiden, gleich Null. Damit sind
von den 6 fir ein riumliches Kriftesystem noétigen Gleichgewichtsbedingungen
bereits 4 erfiillt. Nun bestimmen wir mit Hilfe der beiden vorhin gefundenen
Achsen des Drehkreuzes ®,,;; D, ,, nach (7) die Verschiebungen U, der
Pfahlkopfe ¢+ und daraus nach (8) die Pfahlkrifte 3, als lineare Funktion der

beiden absoluten Betrige d,, ; und d, , , der Drehvektoren ®,, ; und D, , ,.



100 ERNST GRUBER

Projizieren wir die so ausgedriickten ¥, und das angreifende Kraftkreuz
f,; ® auf 2 beliebige Richtungen, z. B. auf b, , ; und b, , , oder auf &, und $&,
selbst, so miissen wegen des vorhandenen Gleichgewichtes diese beiden Pro-
jektionssummen verschwinden. Es ergeben sich auf diese Weise fiir die Be-
stimmung der noch unbekannten absoluten Betrige d,, , und d,, , 2 lineare
Gleichungen (54, 55), so dafl nun 6 von einander unabhingige Gleichgewichts-
bedingungen erfiillt sind. Die beiden letztgenannten Beziehungen schreiben
wir aber der Kiirze halber nicht gesondert an. Die endgiiltigen Werte fiir die
B, ergeben sich schliellich unter Heranziehung der so gefundenen Betrige
dy 1 und dy o 5 aus (7) und (8).

3.4.6. Es sei noch besonders darauf hingewiesen, dafl wir fiir die Bestim-
mung der Richtungslinien d,, ; und b, , » des Drehkreuzes D, , ; D, , , nur die
Richtungslinien ¥, und f; des angreifenden Kraftkreuzes ®,; &, heranziehen
muBten. Die absoluten Werte der beiden Einzelkréifte des letzteren benétigten
wir erst fiir die Berechnung der beiden Betrige d, , ; und d, ,.

3.4.7. Da wir in Fig. 4 die Stellungen ¢ und {) beliebig widhlen konnen,
gehoren zu einem Lastkreuz ®,; & unendlich viele Drehkreuze ®©, , 1; D,y -
Zwischen Dreh- und Kraftvektoren besteht bekanntlich eine vollstdndige
Formal-Analogie, d.h., man kann auf die ersteren (3.2) anwenden. Man be-
stimmt also die beiden Schnittpunkte D, ;=[2D,, ;] und D, ,=[2D, 5],
zerlegt ®,  1; D, o in die Vertikalkomponenten D, , ;.,; Dy ., bzw. in die
Horizontalkomponenten D, 5.7; D,y 2,7 und ermittelt die Resultierende
Dyy:; bzw. D, .y der beiden obigen Vertikal- bzw. Horizontalkomponenten.
Wir erhalten so zunichst zu jedem D, , ; D, , » ein orthogonales Drehkreuz
Dens Dy > Wobei D, . durch Z geht und D, , ¢ in 2 liegt. Da aber aus elasto-
statischen Griinden jedes Lastkreuz ®,; ®; nach (3.1.1) nur ein und dieselbe
infinitesimale Bewegung auslosen kann, sind alle ©, , ;; D, , , einander gleich-
wertig, und alle ®, , .; D, sind mit ein und demselben orthogonalen Dreh-
kreuz D, ; Dy identisch. Daraus folgt, daf alle Verbindungslinien [D, , 1 D, y ,]
sich im Schnittpunkt D, =[zD,] schneiden und alle Schnittpunkte
(D 5,1, Dp,p,2:5] auf der in z liegenden Drehachse Dy liegen miissen. Dadurch
ist auch der Zusammenhang der einander gleichwertigen Drehkreuze ®, , ;;
D1, 2 gekennzeichnet.

3.4.8. Wendet man (3.4.5) und (3.4.6) auf das nun eindeutig festgelegte
orthogonale Drehkreuz D, ; ®, an, so kann man zunichst aussagen: «Zu einem
Lastkreuz {,; ®; gehort also nur ein einziges auf z und Z bezogenes Drehkreuz
D,; Dy. Dabei entsprechen sich die Richtungslinienpaare f,, f; und b,, by
einander eindeutig. Zwischen den Drehwinkeln d,, dy und den absoluten
GroBen k,, ky der Lasten §, und Ry bestehen daneben wieder 2 lineare, den
(54, 55) analoge Gleichungen.»
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3.4.9. Bestimmen wir aus einem zu 2 beliebigen Achsenpaaren 1, 1, und
D1, Yy gehorigen windschiefen Drehkreuz ®, , ,; D, , , nach (7,8) die Pfahl-
krifte %, und projizieren im Sinne von (3.4.5) diese und das Lastkreuz &,;
auf eine zu &, und &, normale Achse ny, so folgt

dz,n,l%n,l+dx,h,2%,n,2 =0,

wobei a, , ; und a, , , nur von der Richtung der ng, den E; und der geometri-
schen Anordnung des Pfahlwerkes abhingen. Das Verhiltnis der beiden

Drehwinkel
Ay1ilyye=—0y2 01

ist also unabhéngig von der Wahl der beiden Absolutbetrige k, und k, da die
dazugehdrigen Richtungslinien f, und f; senkrecht auf ng stehen. Ist D, ,
bzw. ®, , » gegen z unter den Winkeln «,, ; bzw. o, , , geneigt, so betragen
die Vertikal- bzw. Horizontalkomponenten von ®,,; und ®,, ,

Diy 10 = Ay p18i0agy 1°3; Dy 2:0 = Ay p28iDagy o3
bzw.

Dpn1in =y, 10080 115 Dymain =y g asiNog oo-hyy s,

wenn f), , ; und §), , , die Einheitsvektoren der durch die FuBpunkte D, , ; und
D, , gehenden Vertikalprojektionen von b,,, und b,, , bedeuten. Durch
Division der beiden obigen Gleichungspaare folgt, dall auch die Verhiltnisse
der Vertikal- und Horizontalkomponenten von den beiden Absolutbetrigen
k, und k, unabhingig sind, womit in Verbindung mit (3.4.7) nun auch der
2. Teil des in (3.4.8) ausgedriickten Lehrsatzes direkt bewiesen ist.

3.5. Um die in (3.4.4) angedeutete allgemeine Konstruktion der Drehachsen
Dy 1> Dy y 2 ZU umgehen, wird man bestrebt sein, 4 Nullachsen mit den dazu-
gehorigen 4 Resultierenden zu finden, welche paarweise in 2 Ebenen o und w
liegen, so daB} sich dann auch die in den letzteren liegenden Resultierenden
jeweils in den Punkten S und W schneiden. Die Achsen des gesamten Dreh-
kreuzes ergeben sich in diesem Falle sehr einfach zu [oc w]; [S W].

3.5.1. Wihlt man in der Zeichenebene z einen beliebigen Punkt O, ; und
legt von diesem die beiden moglichen Tangenten g, , und g, , an den Kegel-
schnitt K, so sind diese nach 3.3.13 Stellungsgerade (Fig. 7). Auf ihnen liegen
die nach (3.4.1) bestimmten Doppelpunkte. Diese bilden das vollstindige
Vierseit R, 1,1, B, 1,0, B, 5.1 B, 5.2, P,1, P, 5, 0,1, dessen Gegenseiten nach
dem griechischen Geometer Pappus, der im 3. Jahrhundert n. Chr. in Alexandria
lebte, von jeder Geraden in 3 Punktepaaren geschnitten werden, die einer
Involution angehéren. Wenden wir diesen Lehrsatz auf die Gerade P, , 0,
an, so sind O, ; und P, , Doppelpunkte und 1, 1*" ein entsprechendes Punkte-

paar. Projizieren wir diese Verwandtschaft von P,, aus auf eine beliebige
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durch O, ; gehende Gerade n, so erhalten wir schliellich eine Involution J,
mit O, ; bzw. O, , als Doppelpunkte und 1,1} bzw. 2,2* als 2 entsprechende
Punktepaare. Verschieben wir den vorgewihlten Punkt O, ; auf » und bilden
wieder im obigen Sinne die dazugehorigen Vierseite, so kénnen die entsprechen-
den Punkte 1, und 1;f und damit auch die beiden Doppelpunkte R, ;.,, R, 5.,
reell nur beide auf einmal mit O, ; zusammenfallen. Damit gleichzeitig treffen
sich auch die Punkte 2,, 2% O,,, P,, im Schnittpunkt der Geraden
[R, 1.1 R, .11 mit n. Da sowohl O, ; als auch n ganz beliebig gewihlt werden
konnen, gilt diese Betrachtung ganz allgemein, und es entstehen die in Fig. 7
rechts dargestellten Lageverhiltnisse, aus denen sich ergibt, daff alle nach
(3.4.1) gefundenen Doppelpunkte auf einem reellen Kegelschnitt K, liegen, da
ein solcher von jeder Geraden, die von einem auf ihm liegenden Punkt aus
gelegt wird, nur in einem 2. Punkt geschnitten wird.

3.5.2. Fiir die konstruktive Auswertung dieser Erkenntnisse wahlt man
eine beliebige Stellungsgerade, z. B. g, und bestimmt nach (3.4.1) die Doppel-
elemente R, ,, R, ,. Legt man z. B. durch R, ; die 2. Tangente an K, so ergibt
sich eine weitere Stellungsgerade g, mit den Doppelpunkten R, ;, und R, ,,
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wobei R, ; mit R, , in R, auf g, zusammenfillt, wo sich auch die dazugehdri-
gen Resultierenden R, ; und 3R, ; schneiden. Legt man auch noch von R, , die
2. Tangente an K, so ergibt sich die 3. Stellungsgerade g, mit den Doppel-
punkten R, ,, R, ,, wobei wieder R, , mit R, ; in R,, auf g, zusammenfillt.
Dort schneiden sich auch die dazugehdrigen Resultierenden 3, ,, R, ;, so daB
fiir die R, 1, R, 1, R, 5, R, die in (3.5) dargelegten einfachen Lageverhiltnisse
geschaffen sind (Fig. 8).

3.5.3. Will man von einem Punkte ¢ an K die beiden mdéglichen Tangenten
legen, ohne ihn zu zeichnen, so verbindet man ¢ mit der Punktreihe g, bzw.
9.2 und bringt diese Strahlen mit der Punktreihe g_, bzw. g, zum Schnitt.
Dadurch entstehen auf der letzteren 2 konlokale projektive Punktreihen,
durch deren Doppelpunkte die beiden Tangenten gehen miissen.

3.5.4. Kennt man von 2 konlokalen projektiven Punktreihen schon einen
der beiden Doppelpunkte, so sei im Zusammenhang mit (3.5.3) erinnert, dal3
man dann den 2. derselben auf lineare Weise finden kann. Man wéhlt auf einer
durch den bereits bekannten Doppelpunkt gehenden Geraden die beiden
Punkte V und H als Scheitel zweier projektiver Strahlenbiischel und erhalt
die dazugehorige Perspektivitatsachse aus

[[[V Vy,ol- [H Hy o]1-[[V Vy o] - [H Hy o]1]-

Sie schneidet die Gerade g, in dem 2. Doppelpunkt R, ,. In x=[V V,]-[H H,]
haben wir eine scharfe Zeichenkontrolle in der Hand (Fig. 6).

3.5.5. Es gibt auch Sonderlagen, fiir welche Stellungspunkt und -gerade
aufeinander fallen. Da aber dazu keine sich schneidenden Resultierenden 9,
gehdren, lohnt es sich nicht, diese Fille weiter zu verfolgen.

3.6. Wir finden also das orthogonale Drehkreuz ®,; ®; (3.4.8) einfach
folgendermaflen:

1. Ersatz der angreifenden Krifte &, durch das auf z und Z bezogene Last-
kreuz &,; &y (3.2).

2. Bestimmung der zu den in 2z liegenden und {, schneidenden waagrechten
Achsen a; und b, gehorigen Gewichte (37,38, 39,40) bzw. der zu den in
¢, liegenden und durch 4 und B gehenden lotrechten Achsen a, und b,
gehorigen Gewichte (43, 44, 45, 46).

3. Ermittlung der 4 lotrechten Resultierenden B, , 8, , derin den Punkten ¢’
oM

’f

b

wirkenden lotrechten Gewichte (37), (38), (43), (44) nach den Regeln

paralleler Krifte bzw. der 4 waagrechten Resultierenden $, , 9, : der in
p " B’

den Projektionen j; wirkenden waagrechten Gewichte (39), (40), (45), (46)
nach den Regeln fiir ebene Kriftesysteme.
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4. Dadurch sind die durch (35) und (41) gekennzeichneten projektiven Punkt-
reihen g, und g,, bzw. die durch (36) und (42) gekennzeichneten projek-
tiven Biischel um ¢/, und G, festgelegt.

5. Bestimmung der auf g, bzw. g,, liegenden Fullpunkte V, , bzw. V, .»
nach (35) bzw. (41) und der durch G, bzw. G, gehenden Strahlen 9, ,
bzw. 9, . nach (36) bzw. (42). Es ergibt sich daraus die Stellungsgerade
9. =V 0V, ne]l bzw. der Stellungspunkt G,=[9, o9, 2], Wodurch die
Punktreihe (52) und das Biischel (53) festgelegt werden, so dafl die

6. Konstruktion der Doppelpunkte R, ,, R, , und der dazugehorigen Einzel-
krifte R, ;, R, , nach (3.4.1) vorgenommen werden kann.

7. Wir kénnen nun nach (3.5.2) unter Benutzung von (3.5.3), (3.5.4) und (3.5)
ein Drehkreuz ®,;®, finden, fiir welches die in z liegende Stellungsgerade
g, bereits eine Achse b, ist, withrend die andere Achse b, als Schnittlinie
der beiden Ebenen [}, %, ,] und [N, R, ;] dazu windschief liegt. Wir
zerlegen nun diese Drehachse ®,=d, b, in eine lotrechte bzw. waagrechte
Komponente D, ,=d, sink,-3 bzw. D, y=d,cosx, b, 5, wobei d, den zu D,
gehorigen Drehwinkel, «, den Neigungswinkel der Richtung b, gegen z und
der Einheitsvektor b, ; die Projektion von b, auf z darstellt.

8. Driicken wir nun die Verschiebung 1, der Pfahlkopfe ¢ durch die beiden
waagrechten Drehungen ©,=d,b,, D, ¢=d, cosk, D, und durch die lot-
rechte Drehung ®, . =d, sink, -3 mittelst (7) aus, bestimmen daraus ent-
sprechend (8) die dazugehdrigen Pfahlkriafte B, und projizieren die letz-
teren und das angreifende Lastkreuz ®,; &, auf die beiden Richtungen b,
und 3, so ergeben sich fiir die Bestimmung der beiden dazugehorigen unbe-
kannten Drehwinkel d, und d, 2 lineare Gleichungen, womit wir die Drehun-
gen ®,=d, b, und D, =d, b, angeben konnen. Zerlegen wir letztere in eine
lotrechte Komponente D, , =D, und in eine waagrechte Komponente 9D, 4
und bilden D=9, (+D,, so erhalten wir endlich das orthogonale Dreh-
kreuz ®,; Dy, aus dem wir.wieder nach (8) die Pfahlkrifte ‘§; berechnen
konnen.

Diese 8 Abschnitte konnen der Reihe nach in sich abgeschlossen und einzeln
voneinander unabhéngig tiberpriift werden.

Sie stellen kurze Losungsvorgénge der elementaren Statik, der Kinematik
und der Geometrie der Lage dar. Man kann sie zeichnerisch mit alleiniger
Benutzung von Lineal und Zirkel durchfiihren.

Zu den 6 Freiheitsgraden des Problems gehoren bekanntlich auch 6 Elastizi-
tatsgleichungen, deren Aufstellung allein schon einen betrichtlichen Zeitauf-
wand erfordert. Da sie auflerdem im allgemeinen sehr stark zusammenhéngen,
sind sie einer Iteration sehr schwer zugénglich. Thre Auflosung ist daher sehr
zeitraubend, da, um die Losung verliBlich zu erhalten, die Ziffernrechnung
sehr genau durchgefiihrt werden mu8.

Nach unserem Wissen gibt es bis jetzt noch kein einfaches Verfahren, nach
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welchem ganz allgemein rdumliche Pfahlroste ohne Benutzung dieser zeitrau-
benden 6 Elastizitatsbedingungen berechnet werden koénnen.

Als durchgreifende Kontrolle k6nnen in allen Fillen 6 von einander unab-
hiangige Gleichgewichtsbedingungen des aus Pfahlkriften und Lasten beste-
henden Kriftesystems benutzt werden.

Dieses Verfahren eignet sich dann besonders, wenn fiir ein und denselben
Kraftangriff ein Pfahlrost fiir verschiedene Elastizitdtsmodule mehrfach
durchgerechnet werden soll.

3.6.1. Nach (3.3.13) kann es nie vorkommen, daf3 die zu 2 verschiedenen
Stellungsgeraden ¢, und g, gehdrigen Stellungspunkte &, und G, in einem
Doppelpunkt &, , zusammenfallen. Dies wire aber unbedingt erforderlich,
wenn es gelingen soll, nach (3.4.1) 4 Resultierende zu finden, fiir welche die
nach (3.4.4) zu bestimmenden Drehachsen schon die Achsen b, und b, des zum
Lastkreuz K,; Ry gehorigen orthogonalen Drehkreuzes ®,; Dy sein wiirden.
Das heif3t, wir konnen auf dem bisher gezeigten Wege das letztere nicht direkt,
sondern nur auf dem Umweg iiber die schiefen Drehkreuze ®,; ®, finden,
auBer wir erfiilllen (18) durch Aufstellung der endlichen Momente der «Ge-
wichte» um die Achsen d, und by des dann noch zu suchenden orthogonalen
Drehkreuzes. Die Entwicklung, die zu 6 linearen Gleichungen fithrt, wollen
wir aber nicht im einzelnen durchfithren, da wir ja letztere vermeiden wollen.

3.7. Betrachten wir g, als Stellungsgerade und G, als zugehorigen Stellungs-
punkt, so erhalten wir nach (3.4.1) auf g, die beiden Doppelpunkte B, ,, R, ,
mit dem durch diese gehenden Einzelkrifte i, ;, Ry .. Mit den von g, und G,
ebenfalls nach (3.4.1) herriihrenden Einzelkraften R, ;, R, , verfiigen wir liber
4 Richtungslinien, aus denen wir nach (3.4.4) das Drehkreuz ®, ¢ 1 =d; ¢,1D;,0,1;
D,.0.2=0;,0,2Dy0,2 bestimmen konnen. Drehen wir in Fig. 4 den Kraftvek-
tor & um X, so wird die Lage der beiden Achsen b, ,; und b, ,, nicht
verdndert. Stellen wir nun die beiden am Schlull von (3.4.5) beschriebenen
Projektionsgleichungen (54, 55) auf, so gehort zu jedem Lastkreuz {,; &, fir
welches &, durch X geht, ein und dieselben Drehkreuzachsen b, o 15D, ,2-
Setzen wir demnach |®;|=0 und projizieren im Sinne von (3.4.9), so erhalten
wir nur die Wirkung von &, allein. Benutzen wir diesmal die zu g, und G,
gehorigen R_j, 1, R,y » und die aus g, und G, gefundenen R, ,, R, ,, so erhalten
wir wieder aus diesen 4 Richtungslinien das Drehkreuz D, .5 1=d; 12,10y m2,15
Dy mi2,2 =y nj2,2Dp, o, Verschieben wir den FuBpunkt von &, auf g beliebig,
so wird die Lage der beiden Achsen b, ,,; und d, ., , nicht verindert. Stellen
wir wieder fiir die beiden Projektionsgleichungen (54, 55) die analogen Betrach-
tungen wie vorhin an, so erkennen wir, dafl zu jedem Lastkreuz &,; &, fiir
welches der FuBpunkt von &, auf ¢, liegt, ein und dieselben Drehkreuzachsen
Dy miz,15 Dy, miz,2 gehoren. Setzen wir demnach || =0 und verfahren analog wie
vorhin, so erhalten wir dann auch nur die Wirkung von f allein. Damit ist
auch die Erledigung von angreifenden Einzelkriften und Drehmomenten geklart.
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4. Sonderfille

Das in (3.) abgeleitete Verfahren gilt ganz allgemein fiir jeden beliebigen
riumlichen Pfahlrost. In der Folge werden daraus einige besonders wichtige
Sonderfille entwickelt, bei welchen ganz bedeutende Vereinfachungen ein-
treten.

4.1. Liegen alle Pfahlkopfe in einer Ebene, so dall jeweils ¢ mit ¢’ zusammen-
fallt, so wahlen wir diese als Zeichenebene z. Es ergeben sich dadurch aber
nur einige rechnerische Vereinfachungen bei der Bestimmung der Verschie-
bungen 1, nach (7) und bei der Aufstellung der Projektionsgleichungen (54, 55).

4.2. Handelt es sich um zu einander parallele Pfihle ¢, von denen jeder
einen nach 2 zu einander senkrecht stehenden Richtungen verschiedenen seit-
lichen Widerstand besitzt (2.2), so wihlen wir eine zu den Parallelpfihlen
normal stehende Ebene als Zeichenebene z. Es wird dann fiir die parallelen
Pfahle «; =0, E; und fiir die Hilfspfahle «;==/2, K, ;, E; ,. Setzt man dies in
(37—40,43—46) ein, bestimmt entsprechend (3.3.7-8) nach den Regeln fiir
parallele Kréfte die Lage der Resultierenden

B, ; B

=0
5’7] g:f ’

ermittelt weiter nach den Regeln fiir ebene Kriftesysteme die Resultierenden

‘b%’n = O; @g,fa
so wird fiir die parallelen Pfihle nach (35, 36)
G'Bg,o = [bg Z’ Ez Na,i — Ay Zt Ei 775,71]6; "’i)g,o =0 (56, 57)

und fiir die Hilfspfihle nach (41, 42)
Qgg,-n'/z = O; @g,m’z = Bng Eifa,if)i_Ag; Z@Enpgﬁzbu (587 59)

wobei fiir &; die Werte E,, und E,, einzusetzen sind. Wird in diesen Be-
ziehungen nacheinander a,,b,, 4,, B, = 0 gesetzt, so erhalten wir die zu den
Achsen ag, by, a,, b, gehorigen Resultierenden

%a,n = I'ZiEz‘ Na,i> %b,n = I‘ZiEi Np, 1>
@a,f = 1'ZiEi§a,if)i’ Sé’ﬁ,f = IZ’E@'fB,zf)z

schon als Einzelkrifte. Die Richtungslinien b, ; by des orthogonalen Drehkreu-
zes D, ; Dy ergeben sich nach (3.5) unmittelbar im Schnittpunkt [H, ¢ 9y ¢] und
in der Verbindungsgeraden [8,,%8; ], da dann b, und by von jeder der 4
Resultierenden B, ., By, Do ¢ Dp ¢ geschnitten wird. Die Absolutbetrige
d,, dy der Drehungen um die Achsen ®,, Dy ergeben sich wie immer aus den
Projektionsgleichungen (54, 55). Dabei ist die Wirkung der parallelen Pfihle
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vollstandig unabhingig von den in der Zeichenebene z liegenden Hilfspfiahlen.
Dies geht auch schon daraus hervor, dafl eine Einsenkung der Pfahlképfe in
Richtung der parallelen Ptahle die Hilfspfiahle nicht in Spannung versetzt und
umgekehrt eine Verschiebung der Pfahlkopfe in der Zeichenebene die parallelen
Pfahle unberiihrt 143t.

4.3. Sind je 2 aufeinander senkrecht stehende Pfahle P, , und P, , alle zu
einer Ebene z parallel und beziiglich ihrer Tragfihigkeit auf die Fundament-
lange gleichmiBig verteilt und sind auBerdem fiir alle zu z senkrecht stehenden
Pfahle P, die Elastizitdtsmodule E, gleich Null, so wihlen wir wieder z als
Zeichenebene. Wir haben dann einen sogenannten ebenen Rost vor uns, bei
welchem die Pfihle P, , nur in der Ebene z einen durch P, zum Ausdruck
gebrachten seitlichen Widerstand besitzen, da je £, =0 sein soll. Wir haben
im Gegensatz zu (2.) statt der 2. Zeiger 1 und 2 die Zeiger » und A gewéhlt,
weil wir die Tragpfiahle ¢, v von den Hilfspfihlen ¢, 2 deutlicher unterscheiden
wollen. Da die seitlichen normal zu z wirkenden Widerstinde der Pfahlkopfe
fehlen, muf} zunédchst &, = 0 sein. §; = R wird auf die Fundamentlinge bezogen.
Da fir alle Pfihle o, =m/2 ist, werden alle bisherigen Ausdriicke, die den
Faktor cos«; enthalten, gleich Null. Es verbleiben also nur nach (45,46) die
in z liegenden Resultierenden

o Eifa,ibi = Dot 2 Eifh,if)i = Dp,¢- (60,61)
Mit diesen Werten wird (41) Null, und (42) nimmt den Wert an
Ormz = By ZiETié:a,ibi_Ag ik, &,:9:> (62)

wobei wie in (4.2) wieder fiir B; die Elastizitdtsmodule E; , und E, ; zu setzen
sind. Wird nun in (62) erst 4,=0 und dann B,=0, so ergeben sich fiir die
Gewichte, die zu den zur Zeichenebene senkrechten und fy, = R schneidenden
Achsen a, und b, gehoren, die Resultierenden 9, und $; ¢, in deren Schnitt-
punkt die gesuchte Drehachse ©, liegt (Fig. 10 u. 11).

Da alle «Gewichte» in z liegen, haben die Komponenten um die Achse g
an der Momentenbildung um die Achse ¢ keinerlei Anteil. Sie werden Null,
und es geniigt, wenn man iiberhaupt nur die Momente um die lotrechte Achse
t, bildet, das heilt, man kann in allen Betrachtungen dieser Abteilung von
Haus aus f,=/2 setzen.

4.4. Besitzen entgegen (4.3) die Pfahlkopfe in Richtung senkrecht zur
Zeichenebene z einen seitlichen Widerstand, so ergibt sich eine Rostform, die
dann am Platze ist, wenn die Hauptlasten, die aber diesmal nicht iiber die
Fundamentlinge gleichméBig verteilt sein sollen, durch einen sogenannten
ebenen Pfahlrost leicht aufgenommen werden kénnen, fiir die lateralen Lasten
aber die seitlichen Widerstinde der Pfahlkopfe herangezogen werden miissen.
Wir haben dann einen echten riaumlichen Pfahlrost vor uns, der nach (3.)
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berechnet werden muf}. Die dabei auftretenden Vereinfachungen gegeniiber
einem ganz allgemeinen Rost sind nicht sehr grofl. Wir iiberlassen sie wegen
Raummangel dem Leser.

4.5. Desgleichen wollen wir Roste, bei welchen Vereinfachungen durch
Symmetrien eintreten, nicht behandeln.

5. Berechnung der Roste bei krummlinigen Arbeitslinien der Pfiihle

Der Rost sei von Lasten angegriffen, welche nach (3.2) mit Hilfe der
Bezugselemente z und Z bereits auf ein Lastkreuz &,; ®; reduziert wurden.
Im Regelfall besitzt jeder Pfahl ¢ eine eigene Arbeitslinie, durch welche der
funktionale Zusammenhang zwischen einer Bodeneindringung 4, , und einer
Pfahlkraft P, , festgelegt wird. Zunichst ordnet man jedem Pfahl den kon-

stanten Elastizitdtsmodul £, , =(%§
(3.) die zum Lastkreuz &,; ®; gehorigen Eindringungen 4,, und die Pfahl-
krifte P, ; +4 F,; (Fig. 1), welche natiirlich dem obigen angreifenden Last-
kreuz gleichwertig sein miissen. Nach den gekriimmten Arbeitslinien ent-
spricht aber der Eindringung 4;; nicht die Pfahlkraft P, ;+4F, ;, sondern
nur die Pfahlkraft P, ;. Reduziert man nun diese P;, wieder nach (3.2) auf
ein Kreuz &, ,; &, so verbleibt das Zusatzkreuz (&,—8,,); (85— R1)
welches durch vektorielle Subtraktion von ®,; &; und &, ,; &, entsteht.
Belastet man weiter wieder nach (3.) den Rost mit diesem Zusatzkreuz und
ordnett den einzelnen Pfihlen diesmal die konstanten Elastizitdtsmodule
B, = (‘i&)
&1 ddi) 4=4; 1

krifte P, ,+A4F,,, welche analog dem Zusatzkreuz (®,—8&,,); (& — 8&,1)
gleichwertig sein miissen. Nach den krummen Arbeitslinien entspricht aber
die weitere Eindringung 4;, nicht den weiteren Pfahlkriften P, ,+4F, ,,
sondern nur den P, ,. Reduziert man die P, , nach (3.2) auf das Kreuz &, ,;
Ry,2, so verbleibt das Zusatzkreuz (8,8, 2); (R 1— &,2), welches wieder
durch vektorielle Subtraktion von &, ,; ® ,; und &, ,; Ry ,) entsteht. Fahrt
man in diesem Sinne fort, bis das Zusatzkreuz verschwindet, so haben wir
unsere Iteration beendet. Die endgiiltigen Eindringungen bzw. Pfahlkrifte

betragen

) 4o ZU und bestimmt mit diesem nach

zu, so ergeben sich die Eindringungen 4;, und die Pfahl-

4,="5 4,, baw. P,= ”zfpi,p.
pe

Man kann aber auch, wie es in (6.) durchgefiihrt wird, diese Summen sofort

nach jedem Schritt bilden, aus den Arbeitslinien die dazugehorigen Pfahlkrafte

berechnen und alle Zusatzkreuze auf das Anfangslastkreuz &,; Ry beziehen.

Wir benutzen also fiir jeden Pfahl ¢ beim v-ten Iterationsschritt des Rostes

jeweils die aus dem Kurvenstiick ov; und der anschliefenden Tangente E, ,
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bestehende Arbeitslinie, die sich immer mehr und mehr der gegebenen Arbeits-
linie des Pfahles 7 anschmiegt (Fig. 1).

Diese endgiiltigen Pfahlkrifte miissen dann mit den angreifenden Lasten
im Gleichgewicht stehen, die endgiiltigen Eindringungen miissen den geo-
metrisch moglichen Bewegungen des als starr angenommenen Fundament-
korpers entsprechen, und beide miissen den durch die Arbeitslinien der ein-
zelnen Pfihle festgelegten funktionellen Zusammenhang aufweisen.

6. Praktische Anwendung

Es soll nun der in Fig. 11 dargestellte sogenannte ebene Rost fiir eine Last
R =247,16t berechnet werden. Jeder der in einer Ebene liegenden Pfahlkopfe
besitzt einen axialen und einen seitlichen Widerstand, so da wir fiir jeden
Tragpfahl P,, einen Hilfspfahl P, ;, bendtigen (2.). Alle Pfahlkopfe zeigen
dasselbe elastische Verhalten. Die Arbeitslinien der P,-Pfihle und der FB;-
Pfihle sind zueinander affin. Die analytischen Gleichungen fiir beide sind in
Fig. 9 angegeben. Wir legen durch jeden Pfahlkopf ¢ ein Koordinatenkreuz
x;, y;, in welchem die x;-Achse mit dem Hilfspfahl P ; und die y;-Achse mit
dem Tragpfahl P, , zusammenfillt. Nach (4.3) wihlen wir auf R einen belie-
bigen Punkt A =[a, 8], legen fiir jeden Pfahlkopf die dazugehorigen «Ge-

wichte»
Wiw =2 By Win = —y: B (Fig. 10) (63, 64)

fest und bestimmen deren Resultierende §, .. Fithren wir das Gleiche fiir
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einen 2. auf R liegenden Punkt B durch, so erhalten wir im Schnittpunkt
[D.4¢ D5 die Drehachse O des zum Lastkreuz gehorigen orthogonalen
Drehkreuzes. Die Lage der anderen Achse ist bedeutungslos, da der zugehorige
Drehwinkel verschwindet.

Die Rechnung wird in der Folge zahlenmé&fBig durchgefiihrt. Die Kolonnen
der mit 1., 2. und 3. Schritt bezeichneten Tafeln 1, 2 und 3 kennzeichnen wir
dabei mit [ ] und deren Zeilen mit (). Wir withlen wieder auf R einen beliebigen
Punkt 4 und bestimmen fiir jeden Pfahlkopf die Ordinaten x;, y; [1, 2], welche
mit F,=50 t/cm und E,=25 t/cm multipliziert die «Gewichte» W, ,, W, 4,
ergeben [3,4]. Fiir einen 2. ebenfalls auf R liegenden Punkt B fithren wir
dieselbe Rechnung durch [5, 6,7, 8]. Es werden nach

YAgA—XAUAzMAa YBfB—XB’?B=MB (65, 66)

die Richtungslinien der beiden Resultierenden $, . bzw. ©p, der W, bzw.
Wy ermittelt, wobei die Y, X , bzw. Y, X 5 die rechtwinkeligen in z liegen-
den Komponenten der $, ; bzw. Hz ¢ und die M 4, bzw. Mz die Momente der
W, bzw. Wy um A bzw. B sind (7). Zwischen den beiden Punkten 4 und B
bestehen auBlerdem 2 Lagenbeziehungen (8). Lisen wir diese 4 linearen Glei-
chungen nach den £, 5 und 74 » auf, so ergibt sich die Lage des Drehpunktes
P (9). Wir ermitteln nun die Ordinaten ¢; und 7, dieses Punktes P fiir die zu
jedem Pfahlkopf gehorigen Koordinatenkreuze z;,y; [9,10] und driicken die
Pfahlkrifte S, und S, durch den Drehwinkel ¢ auf lineare Weise aus [11, 12].
Ermitteln wir hierfiir noch die rechtwinkeligen Komponenten ebenfalls als
lineare Funktion von ¢, so ergibt sich der Drehwinkel ¢ = —0,001458, womit
die Pfahlkriafte S, und S, [13, 14] und die entsprechenden Verschiebungen 4,
und 4, folgen [15,16]. Die Resultierende der Pfahlkriafte [13,14] mull wieder
R=247161t betragen. Setzen wir [15,16] in die Arbeitslinien der Fig. 9 ein,
so folgen die S9 und 89 [17,18] mit den auf A4 bezogenen V°=101,87t,
H°= —77,69t, |R°|=128,11t und M°= —11586tm als Resultierende. Wir
bestimmen noch auf analytischem Wege die Koordinaten a,=419,6 cm und
b,=—699,4 cm des Schnittpunktes 4; von R und R°. Bestimmen wir noch
durch Differenzenbildung die Zusatzkraft zu

1H,. =4952t, 1V, =—110,04t und ['R,,| = 120,67t,

z2us

so haben wir den 1. Schritt des Rechnungsganges erledigt.

Wir berechnen nun fiir jeden Pfahlkopf die Elastizitdtsmodule £, und
1K, , indem wir die 4, und 4, [15,16] des 1. Schrittes in die diesbeziiglichen
analytischen Formeln der Fig. 9 einsetzen [1,2]. Hernach belasten wir den
Rost mit der im 1. Schritt berechneten Zusatzkraft 'R, . Dazu wéhlen wir
wieder 2 auf 1R, liegende Punkte 4, bzw. B, (Fig. 11), bestimmen die dazu-
gehorigen Gewichte W, ., W, 4 [5,6], bzw. W, 5, W, 5 [9,10] mit ihren
beiden Resultierenden 9, ¢ bzw. $p, ¢ und erhalten so wie im 1. Schritt im
Schnittpunkt [ 4, 95, ¢] den Drehpol P, mit den auf B, bezogenen Koordi-
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naten ¢z = —482,1 cm und 79z = —787,9 cm (9). Nun bestimmen wir die
Koordinaten ¢ und 7 dieser Punkte auf die Systeme z;, ¥, [11, 12] und driicken
die Pfahlkriafte 18, und 18, auf lineare Weise durch den Drehwinkel ¢, aus.
‘'Wir erhalten so ¢; = —0,002987. Damit ergeben sich schlieBlich die Pfahlkrifte
1S, und 1§, [15, 16], welche als Resultierende 'R, |=120,87 t haben miissen.

2us
Wir berechnen weiter die zu 'R, | gehdrigen Verschiebungen '4, und 4, und

2us l

1
addieren sie zu den 4, und 4, des 1. Schrittes. Es ergeben sich die Z [19,20],
aus welchen mit Hilfe der in Fig. 9 angegebenen analytischen Formeln die
Pfahlkrifte 189 und 189 folgen [21,22], deren Resultierende 1V0=185172t,
THO= —121,981t, ['R°|=221,74t und *M°= —5939,3 tm betrigt. Wir bestim-
men wieder wie vorhin auf analytischem Wege die Koordinaten 'a , =327,7 cm
und b ,= —546,1 cm des Schnittpunktes A4, von R mit 1R°. Ermitteln wir
nun noch durch Differenzenbildung zwischen |R|=247,16t und [*R°|=221,74¢
die Zusatzkraft >R, zu 2H,|=5,23t und 2V, = —26,74t mit |?R,,|=
=27,25t, so haben wir auch den 2. Schritt zu Ende gefiihrt.

Es wurde noch ein 3. Schritt ausgefiihrt. Der Rechnungsgang ist genau
derselbe wie beim 2. Schritt. Die Zusatzkraft wird dabei auf 3R, |=1,97t
gesenkt. Mit dieser Genauigkeit wollen wir uns begniigen.

In Fig. 11 sind alle Ergebnisse iibersichtlich zusammengestellt. In [21, 22]
haben wir die Endpfahlkréfte 28° und 2S° nochmals angeschrieben. Vergleicht
man sie mit [13, 14] des 1. Schrittes, bei dem wir nur mit konstanten Elastizi-
tatsmodulen gerechnet haben, so kann man doch Unterschiede bis zu 10 9,
feststellen. Andererseits ist aber das Gesamtpfahlbild viel ausgeglichener.

Tragt man, wie es in Fig. 11 getan wurde, in jedem Pfahlkopf die waag-
rechte und lotrechte Verschiebung auf und fillt auf die resultierenden Ver-
schiebungen je eine Lotrechte, so miissen sich alle diese Lotrechten in einem
Punkte 0 schneiden, welcher den Momentanpol fiir die Fundamentbewegung
bei krummlinigen Arbeitslinien darstellt. AuBlerdem muf3 die Horizontalkom-
ponente der Verschiebung eines jeden Pfahlkopfes einen konstanten Wert
aufweisen. Dieser ist in unserem Falle 1,887 cm. Die verformten Pfahlk&pfe
miissen alle in einer Geraden liegen. Die Drehung um den Momentanpol 0 ist
gleich der Summe von ¢+ ¢; +@,= —0,005592. Dasselbe Ergebnis erhalten
wir richtigerweise auch, indem wir die Differenz der Vertikalverschiebungen
der Pfahle 4 und 1 durch die Fundamentlinge dividieren (Fig. 11).

Aufler diesen Kontrollen gibt es fiir jeden Schritt noch die sogenannten
Richtungskontrollen, die in den Tafeln 1, 2 und 3 auch durchgefithrt wurden.

2us
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Zusammenfassung

Es werden mittelst einer gut konvergierenden Iteration allgemeine Roste
untersucht, bei welchen die elastischen Eindringungen der einzelnen Pfahle
nach krummen Arbeitslinien zunehmen.

Zunéchst wird gezeigt, wie man durch Einfiihrung von gedachten Hilfs-
pfahlen mit nur axialen Reaktionsfahigkeiten auch die seitlichen Widerstande
eines beliebigen Pfahlkopfes erfassen kann, so dall wir unsere Untersuchungen
auf Roste mit nur axialen Widerstdnden beschrinken konnen.

Erfolgen die Bodeneindringungen der Pfihle linear mit der Kraft und ist
der die Pfahlkopfe zusammenfassende Fundamentkorper vollkommen starr,
so fiihrt dieser im Falle einer Belastung eine infinitesimale rdumliche Bewegung
aus, die z.B. durch ein aus 2 zueinander windschief liegenden Drehachsen
bestehendem «Drehkreuz» beschrieben werden kann.

Fiihrt man sogenannte «Gewichte» ein und reduziert simtliche Kraft- und
Drehvektoren auf ein beliebiges Punkt-Ebene-Paar, so kann man

1. durch Bildung der Momentensummen um jeweils 4, nach gewissen Gesichts-
punkten ausgewihlten Achsen, mit Hilfe der projektiven Geometrie die
Richtungslinien b, und b, des obigen Drehkreuzes nur mit Zirkel und
Lineal konstruieren, und

2. durch Aufstellung und Nullsetzung der zu 2 beliebigen Richtungen gehori-
gen orthogonalen Projektionssummen samtlicher Krifte fiir die Bestim-
mung der Drehwinkel d, und d,, 2 lineare algebraische Gleichungen gewinnen.

Ein rdumlicher Pfahlrost besitzt 6 Freiheitsgrade, aus welchen jeweils 6
lineare Bedingungsgleichungen gefolgert werden kénnen.

Das oben geschilderte Verfahren entspricht analytisch der Spaltung dieser
6-gliedrigen Gleichungsgruppe in eine 4-gliedrige, die zeichnerisch, und eine
2-gliedrige, die algebraisch aufgelost wird.

Erfolgen die Bodeneindringungen nicht mehr linear mit der Kraft, so
benutzen wir fiir jeden Pfahl beim v-ten Iterationsschritt des Rostes jeweils die
aus dem Kurvenstiick Ov und der anschlieBenden Tangente E;, bestehende
Arbeitslinie, die sich immer mehr und mehr der vorgegebenen Arbeitslinie
des Pfahles anschmiegt (Fig. 1).

Dieses allgemeine Verfahren vereinfacht sich fiir gewisse Sonderfille ganz
bedeutend. Einer von diesen ist der sog. ebene Pfahlrost, der bereits vom
Verfasser im Aufsatz der Schweizerischen Bauzeitung vom 11. Mai 1935,
Seite 214, behandelt wurde.
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Summary

The author studies in a general manner, by a definitely convergent iteration,
groups of piles for which the elastic penetrations of the various piles do not
increase linearly with the corresponding forces.

He demonstrates first of all that by the introduction of hypothetical
auxiliary piles, exhibiting only an axial reactional capacity, it is also possible
to study the lateral resistances of any given pile head; investigations may
thus be confined to piles which only exhibit axial resistances.

If the penetrations of the piles into the soil take place linearly as a function
of the forces exerted and if the foundation system which joins the heads of
the piles is perfectly rigid, then in the event of the application of a load, this
system performs an infinitesimal movement in space which may, for example,
be represented by a ‘‘cross of rotation’’ formed from two axes of rotation,
one of which is bent in relation to the other. »

If “weights’” are introduced and all the force and rotation vectors are
reduced to an arbitrary point-plane couple, it is possible:

1. To construct only with the compass and the ruler the lines of orientation
b, and b, of the above “cross of rotation’” by means of projective geometry,
by establishing the sums of the moments with reference to four axes selected
in accordance with certain considerations.

To obtain two linear algebraic equations for the determination of the
angles of rotation d, and d,, by establishing and cancelling out the sums
of the orthogonal projections corresponding to two arbitrary directions of
all the forces.

o

A three-dimensional group of piles exhibits six degrees of freedom, from
which it is possible to derive six linear equations expressing the conditions
to be fulfilled. ,

The procedure described above corresponds analytically to the dividing-up
of this set of equations with six components into a set with four components
which can be solved graphically and a set with two components which can be
solved algebraically.

If the penetrations into the soil do not take place linearly as a function
of the forces, then it is necessary to employ, for each pile, for the stage of
iteration of order v of the group, the force-penetration curve formed by the
portion of curve Ov and by the tangent E,, joined to it, a curve which agrees
increasingly closely with the force-penetration curve provided for the pile
(Fig. 1).

This general procedure is simplified to a considerable extent for certain
special cases. One of these cases is that of the so-called two-dimensional group,
which has already been discussed by the author in the “Schweizerische Bau-
zeitung’’ of 11th May 1935, page 214.
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Résumé

L’auteur étudie d’une maniere générale, par une itération nettement con-
vergente, les groupes de pieux pour lesquels les pénétrations élastiques des
différents pieux n’augmentent pas linéairement avec les efforts correspondants.

Il montre tout d’abord comment, en introduisant des pieux auxiliaires
hypothétiques ne présentant qu’une aptitude réactionnelle axiale, il est pos-
sible d’étudier également les résistances latérales d’une téte de pieu quel-
conque; les investigations peuvent ainsi étre limitées & des pieux ne présentant
que des résistances axiales.

Si les pénétrations des pieux dans le sol se produisent linéairement en
fonction des efforts exercés et si le systéme de fondation qui réunit les tétes
des pieux est parfaitement rigide, ce systéme effectue, dans le cas de 1’appli-
cation d’une charge, un mouvement infinitésimal dans I’espace, qui peut par
exemple étre représenté par une «croix de rotation» formée a partir de
deux axes de rotation déjetés 1'un par rapport a 1’autre.

Si I’on introduit des «poids» et si ’on réduit tous les vecteurs d’effort et
de rotation & un couple arbitraire point-plan, il est possible:

1. De construire seulment avec le compas et la régle les lignes d’orientation
b, et b, de la croix de rotation ci-dessus, a l’aide de la géométrie pro-
jective, en formant les sommes des moments par rapport & quatre axes
choisis suivant certaines considérations. '

2. d’obtenir deux équations algébriques linéaires pour la détermination des
angles de rotation d, et d,, en etablissant et en annulant les sommes des
projections orthogonales correspondant & deux directions arbitraires de
tous les efforts.

Un groupe de pieux tridimensionnel présente six degrés de liberté, & partir
desquels il est possible d’obtenir six équations linéaires exprimant les con-
ditions & remplir.

Le procédé ci-dessus indiqué correspond analytiquement au fractionne-
ment de ce groupe d’équations & six éléments en un groupe & quatre éléments
qui peut étre résolu graphiquement et un groupe & deux éléments qui peut
étre résolu algébraiquement.

Si les pénétrations dans le sol ne se produisent plus linéairement en fonc-
tion des efforts, il y a lieu d’utiliser pour chaque pieu, pour 1’échelon d’ité-
ration d’ordre v du groupe, la courbe effort-pénétration constituée par le
fragment de courbe Ov et par la tangente E,, qui s’y raccorde, courbe qui
concorde de plus en plus étroitement avec la courbe effort-pénétration prévue
pour le pieu (fig. 1).

Ce procédé général se simplifie dans une trés large mesure pour certains
cas particuliers. L’un d’eux est celui du groupe dit bidimensionnel, qui a déja
été traité par 1’auteur dans la Schweizerische Bauzeitung du 11 mai 1935,
page 214.
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