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Die Berechnung der aus Pfählen mit krummen Arbeitslinien
bestehenden Roste

Calculation of Groups of Piles with a Non-Linear Relationship Between Force
and Penetration

Calcul des groupes de pieux avec relation effort-penetration non lineaire

ERNST GRUBER
Dr.-Ing. habil., Oberregierungsbaurat, Hannover

1. Allgemeines

1.1. In der Folge werden mit Hilfe einer rasch konvergierenden Iteration
beliebige Pfahlroste berechnet, bei welchen die elastischen Eindringungen Ai
der einzelnen Pfähle nach krummen Kraft-Setzungslinien zunehmen. In der
Regel wird dieses Anwachsen rascher als linear erfolgen.

1.2. Für einen behebigen Punkt v dieser Arbeitslinien stellt die 1. Ableitung
Ei v (-rr) A

den zur Pfahlkraft Pi v und zur Eindringung At v gehörigen

Elastizitätsmodul Eiv dar (Fig. 1).
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2. Pfähle mit axialer und seitlicher Widerstandsfähigkeit

2.1. Wir betrachten 3 zueinander senkrecht stehende, von einem Punkt i
ausgehende Pfähle i, ix und i2 mit nur axialer Widerstandsfähigkeit, für welche
3 verschiedene Arbeitslinien vorhanden sein sollen (Fig. 2). In i übertragen
die 3 Pfähle ihre axialen Widerstände auf den steifen Fundamentkörper.

2.2. Dringt der Punkt i nur in der Richtung eines der 3 Pfähle ein, so
entsteht nur in diesem Pfahl eine axiale Kraft, während die beiden anderen
spannungslos bleiben. Verschiebt sich nun % um den zu den 3 Richtungen i, i±
und i2 geneigten Vektor Uiy so ergeben sich die Beträge der 3 Pfahlkräfte zu

Pi EiAi, % Pipi, (la,b)
Pitl EitlAitl E^A^cos^, Pi2 Eit2Ai%2 Ei}2AiA2cosHi2, (2,3)

woraus für /x^ x jjl^ 2 0 zunächst

^i,i Ei}1Ail2, Ai2 Ei 2Ail2
folgt. Daraus erhalten wir weiter

(Ei^Aj^cosixjA2 (Ej^Aj^cosiJLi^y

>
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Dabei bedeuten im Sinne von (1.2) die Ei, Ei}1 und Ei>2 die zu den Verschiebungen

Ai, Aifl und Ai2 gehörigen Elastizitätsmodule. Bewegt sich also die
Spitze des Verschiebungsvektors Ai 12 auf einem Kreis, so wandert die Spitze
des dazugehörigen Kraftvektors Pi>12 auf einer Ellipse mit den Hauptachsen
Ai}1undAi2.

Betrachten wir ix und i2 als gedachte Hilfspfähle, so können wir auf diese
Weise die Wirkung eines Pfahles i beschreiben, dessen Schaft eine axiale und
dessen Kopf eine seitliche, mit der Richtung stetig veränderliche Widerstandsfähigkeit

besitzt.

2.3. Ist der seitliche Widerstand nach allen Richtungen gleich groß, was
fast immer der Fall sein wird, so setzen wir

Ei,i Eii2 Eish, Ai>12 Ai>h, Pi>12 Pi>hP (6a,b,c)

wodurch die Ellipse (5) in einen Kreis mit dem Radius EihAi)h übergeht und
die Richtungen von Aih und Pih für jeden Winkel ^ zusammenfallen.

2.4. Bei Hinzuziehung der nötigen Hilfspfähle können wir also unsere
weiteren Untersuchungen auf Roste beschränken, die nur aus Pfählen mit rein
axialer Widerstandsfähigkeit bestehen, ohne dadurch die Allgemeingültigkeit
der nun folgenden Methoden zu verschmälern.

3. Die Ermittlung der Pfahlkräfte eines räumlichen Pfahlwerkes

3.1.1. Wir betrachten eine Anzahl beliebig gerichteter Pfähle, welche mit
ihren behebig liegenden oberen Kopfenden i an einem steifen Fundament-
körper so gelenkig angeschlossen sind, daß sie im Sinne von (2.4) bei einer
Belastung nur mit einer axialen Widerstandsfähigkeit reagieren können. Wird
nun dieses räumliche Pfahlwerk gleichzeitig von beliebig vielen zueinander
windschiefen Lasten $$ ergriffen, so führt es eine elastische räumliche
Bewegung aus, welche wegen der hohen Steifigkeit, die wir für unsere Bauwerke
fordern müssen, so gering sein wird, daß wir sie bei Vernachlässigung der
kleinen Größen 2. und höherer Ordnung rechnungsmäßig als infinitesimale
Werte behandeln können. Nehmen wir nun noch den die Pfähle verbindenden
Fundamentkörper als unendlich steif an, so wird diese Bewegung durch 2

zueinander windschiefe Drehvektoren <&v dvbv und %il d^byi, kurz «Drehkreuz»

S,,;®^ genannt, beschrieben (Fig. 3). Bekanntlich gibt es hiervon
unendlich viele, die aber alle einander gleichwertig sind.

Dabei bezeichnen wir einen Vektor mit einem großen gotischen, seinen
zugehörigen Einheitsvektor mit den gleichnamigen kleinen gotischen, und
seinen absoluten Betrag mit den gleichnamigen kleinen oder großen lateinischen
Buchstaben, eine Bezeichnungsweise, die wir auch in Hinkunft einhalten wollen.
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3.1.2. Jeder Pfahlkopf verschiebt sich also um einen Vektor U^, der sich
durch geometrische Addition der Drehungen ®„ und ®^ zu

Ki [©„ Ki\ +[*V »W dv ^ »v,J + ^ [b^ Sl^J (7)

ergibt, wobei die mit [ ] bezeichneten vektoriellen Produkte, entsprechend ihrer
Definition, von der Wahl der Bezugspunkte 0vfx unabhängig sind. Daraus folgt
die axiale Verschiebung des Pfahlkopfes i als Projektion von 11^ auf die
Pfahlrichtung pt, so daß sich bei der nunmehr rein axialen Widerstandsfähigkeit
die zugehörige Pfahlkraft zu

% Pipi Et (p{ WKi ©J + pt [8tM SV]) pt (8)

ergibt, wobei Ei den Elastizitätsmodul des Pfahles i im Sinne von (1.2)
bedeutet.

Ein Drehvektor gilt dann als positiv, wenn ein gegen seine Spitze Blickender
die Drehung im entgegengesetzten Sinne des Uhrzeigers wahrnimmt. Eine
Pfahlkraft hingegen wird als positiv gezählt, wenn der Pfahl gegen den
Fundamentkörper drückt. Beide Vereinbarungen wollen wir auch für später festhalten.

3.1.3. Für die folgenden Darlegungen sei auf die allgemein gültigen Identitäten

der Vektoralgebra

[Im] -[ml]; l[mn] n[lm] m[nl] (9a,b,c,d)

hingewiesen, von denen die 3 letzteren durch zyklische Vertauschungen
zusammenhängen.

Das statische Moment von ^ um eine beliebige Achse £ beträgt nun bei
Bedachtnahme auf (9)

Summiert man m%si über alle Pfähle i, so folgt wieder mit (9)

Z*3-s[»s,«fc] Z«3-*< (Kg-3).
;

Dabei bedeutet nach (10) xi den absoluten Betrag des statischen Momentes
einer im Pfahl i wirkenden Kraft pi l um die Achse £. Bezieht man xi nicht
auf den Bezugspunkt 0%, sondern auf 0't (Fig. 3), so folgt

«H.<-K* %{&»W - ll9t;.«]} % fc (8ts,<-3t^)] % [j (*S)], (12)

woraus sich ergibt, daß der Wert xi wieder von dem auf der Achse £ liegenden
Bezugspunkt 0£ unabhängig ist.

Setzt man in den letzten Teil von (11) für Pi den Wert von (8) ein, so

ergibt sich
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3.1.4. Wir nennen nun

91

(14)^%ii xiEi^i wt,i^i
das zum Pfahl i und zur Achse £ gehörige «Gewicht». Dieses ist ein in der
Pfahlachse i wirkender Vektor mit dem absoluten Betrag

wt,i xiEi-
Es wird also zunächst aus (13)

(15)

(16)

y^t .beliebige Nullachse des
a.a' angre/Fenden

0% KraFtsysfems

\ .fyi ,4*-i und ¦£
im Räume zue/n,
ander windsehieF

flj + / wenn der PFahl
auF F drückt

9„ d„J.

**

Fundament F

ft;=Pif,I -&p,
9s.=d„it„ +'''zu -yi ~jt -0

PFahl/
«AI,

ßi Pi"F,

UffiXyj+fafy;]

Fig. 3.

Ist die Summe der statischen Momente aller angreifenden Lasten ^ um
die Achse j gleich Null, so nennt man letztere eine «Nullachse» des angreifenden
Lastensystems. Da sich die ^ und die ^ gegenseitig in ihrer Wirkung
aufheben müssen, wird für jede dieser Nullachsen

so daß sich mit (9) aus (16) und (17)

^«M^aW+VZ'M38*«^,*] s °

(17)

(18)

ergibt. Dabei stellen die Faktoren der skalaren Drehwinkel dv bzw. d die
Summe der statischen Momente aller Gewichte 3ßr,- um die Einheitsvektoren
b„ bzw. b^ der Drehachsen %v bzw. % dar.

3.2. Ein räumliches System mit den Einzelkräften S^ läßt sich stets auf
ein aus 2 windschiefen Kräften bestehendes Kraftkreuz zurückführen, und
zwar nicht auf ein bestimmtes, sondern auf unendlich viele, die aber alle
untereinander gleichwertig sind. Von diesen vielen Kraftkreuzen kann man
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aber ein bestimmtes eindeutig festlegen, wenn man verlangt, daß die eine der
beiden Wirkungslinien durch einen Punkt E geht und die andere in einer
Ebene e liegt.

Der Einfachheit halber wählen wir für e die horizontale Zeichenebene z

und für E den unendlich fernen Punkt Z, der durch den zu z normalen
Einheitsvektor j bestimmt ist.

In diesem Sinne wollen wir in Hinkunft von «waagrecht» und «lotrecht»
bzw. von «horizontal» und «vertikal» sprechen.

Bestimmen wir den Schnittpunkt Ki [z$£i\, zerlegen ^ in eine durch
Kt gehende Vertikal- und Horizontal-Komponente Ät-

ä
und $^ und ermitteln

die durch Z gehende Resultierende ®8 aller S^ und die in z liegende
Resultierende S^ aller S^, so erhalten wir das gesuchte orthogonale «Kraftkreuz»
®s; ®$.

Diese Reduktion kann man auch auf jedes der oben erwähnten unendlich
vielen einander gleichwertigen «Kraftkreuze» anwenden.

Dabei bedeutet [] das geometrische Gebilde, welches durch Verbindung
der darinstehenden Elemente entsteht, eine Bezeichnung, die wir auch in
Hinkunft beibehalten wollen.

3.3.1. Legt man durch die in z liegende und ^§ schneidende Achse &, eine
lotrechte Ebene ehh und legt in ihr durch X eine gegen ^ um ßl geneigte
Achse £, so ist diese eine Nullachse, da sie ®8 und ^ schneidet. Dreht man

um ®ä von 0 bis tt und verändert /L gleichfalls von 0 bis tt, so erfassen wirC£,S

auf diese Weise sämtliche derartigen Nullachsen (Fig. 4).

<A /
/ Projektion der PFahlriehtung + auFz

Z&teweS V/7a

L< Z&

~J

*v Grundriss

-/—%^

*y>

Fig. 4.
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3.3.2. Um für den in Fig. 4 dargestellten Pfahl i die zu £ gehörigen
«Gewichte» zu ermitteln, müssen wir zunächst nach (3.1.4) in der Pfahlachse i die
Kraft fo=l anbringen, welche wir entsprechend (3.2) zweckmäßigerweise in
die j-Komponente 1 • cos o^ und in die in der Horizontalprojektion f^ der
Pfahlrichtung pt wirkenden {^-Komponente 1 • sin at zerlegen.

Dabei zählt der Winkel ai, unter dem der Pfahl i gegen j geneigt ist,
positiv, wenn 1 • sin cx.i um ®8 im entgegengesetzten Sinne des Uhrzeigers dreht.
Der Pfahl i schneidet z im Punkte V, der im allgemeinen nicht mit dem Pfahlkopf

i identisch ist.

3.3.3. Die Momente dieser Hilfskraft um die beiden aufeinander senkrecht
stehenden Achsen %^ und js lauten nun

ittj,*,* Vt,i0O&0Ci'h und ms,M £s,*sin<VXa> (19,20)

woraus sich weiter das Moment um die allgemeine Achse £ als Summe der
beiden Projektionen von (19) und (20) auf j zu

l%* (^^cosa-cos^ + ^^sina^sin^)^ (21)

ergibt (Fig. 4). Nach (3.1.4) folgt daraus für das zu V und £ gehörige «Gewicht»

2Bi,* E^rj^cosoti'cosßs +fSfismarsin0s)fo, (22)

für dessen durch %' gehende Vertikalkomponente

%8%,?>,i ^i(^fiCOS2ai.cos^ + ^>isinaicosarsin^)af (23)

und für dessen in i)t wirkende Horizontalkomponente

2$s,iM ^(^^cosa^sina^-cos^ + ^^sin^^sin^)^. (24)

3.3.4. Ersetzt man in (22, 23, 24) den Index £ durch a bzw. 6, so erhalten
wir für die zur Achse a bzw. 6 gehörigen «Gewichte» die analogen Ausdrücke
(25,26,27) bzw. (28,29,30), die wir aber der Kürze halber nicht gesondert
anschreiben wollen.

3.3.5. Zwischen den zu den 3 Stellungen £, et, & gehörigen Abständen 77

und £ besteht je eine lineare Abhängigkeit. Mit den in Fig. 4 festgelegten
Vorzeichen folgt zunächst

Va,i aisin I>s+(<* i)1; v*.i aisin \p%+(&i)1; v%,i ai sin/>E •

Ehminiert man daraus at und p%, so ergibt sich schließlich

sin(jb) sin (ja) /olx^ ^<3nTu^"%i3nlSB) Va,A-r)*,i*f (31)

Ebenso folgt aus gewöhnlichen Proportionen die zu (31) duale lineare
Abhängigkeit der | zu
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TT ~Q IT A

Setzt man (31, 32) in (23, 24) ein, so wird

2B&m Ei[(r]aAcos2ccvbl-7]^iQOs2ocvat)cosßl
+ (£a} i sin at cos ocvBt- ^ sin cct co&a^A^) sin ßJ 5,

SS*,*,* Ei l(Va,i cos a* sin *i' h ~ %* COS ai Sin a* * a%) C0S &
+ (^a,i sin2 ar ^ ~ &, * sin* a* * ^j) sin J8?;] f)t •

(33)

(34)

3.3.6. Ersetzt man in (33, 34) j durch t) und X durch Y, so ergeben sich
die zur t)-Achse gehörigen Gewichte.

3.3.7. Wollen wir nur alle in z liegenden und durch S?ä gehenden ^-Achsen
erfassen, so müssen wir in (33,34) ß% 0 setzen. Bilden wir dann die
Resultierende der übrigbleibenden Gewichte SB^^o bzw. äB^^o? so ergibt sich
nach (3.2) das «Kreuz»

wobei die S8a die Resultierenden der in den i' wirkenden und durch Z gehen-
den Kräfte **

% E cog2 (87> 38)

und die fQa die Resultierenden der in den i)t wirkenden und in z liegenden
Kräfte b V

^av0 Eir]a cos o^ sin a* (39, 40)

sind.

3.3.8. Wollen wir uns hingegen nur auf die in der durch ^ gehenden
senkrechten Ebene e^ ä liegenden lotrechten Achsen £ä beschränken, so müssen wir
in (33, 34) ß^=7T/2 setzen. Bilden wir dann analog die Resultierenden der
übrigbleibenden Gewichte 3B£jä^j7r/2 bzw. 28^^/2 > so ergibt sich nach (3.2) das
«Kreuz»

»s,w/2 *«,fJBs-»s,^I, (41)

^.W2 §a,|-ßj-^6,|^j> (42)

wobei die Sßa die Resultierenden der in %' wirkenden und durch Z gehenden
Kräfte *

8a, =tf,fft sin^cos«, (43,44)

und die S)a ln die Resultierenden der in den 11 wirkenden und in z hegenden
Kräffp b

$., /2 .»«&,«in2«i (45,46)

sind.
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3.3.9. Aus Fig. 4 ergibt sich durch zweimalige Anwendung des sin-Lehr-
satzes der Trigonometrie und durch nachherige Division

XB _ sin(jb) sinp^ _ At _ at
XA sin (ja) sin/rg iL b

£

3.3.10. Die linken Seiten der (35,36,41,42) stellen jeweils die Resultierenden

der beiden rechtsstehenden Summanden dar. Bezeichnet man allgemein
VfliV [z SS^J und dreht im Sinne von (3.3.1) die Ebene elth um $ä und bewegt
entsprechend mit ihr ^ bzw. X, so verschiebt sich V% 0 bzw. VVt7T/2 auf der
Punktreihe g0 [Va>r]VdtV] bzw. g7T/2 [Va)iV^], und £Ej0 bzw. #5f7r/2 dreht sich
um den Schnittpunkt £0 [£aj7?£bj7?] bzw. Gw/2 [$a,£&>,f]-

3.3.11. Zieht man neben der ^-Stellung noch eine Q-Stellung in Betracht,
so müssen die statischen Momente der Kräfte fea^b^ und — Jp&j<1?a£ bzw.
S&a^b^ und —S&a^aq um einen beliebigen Punkt der Resultierenden ^ 0 bzw.

^ 0 einander gleich sein. Es folgt daher aus (36), wenn die zu £ und t) gehörigen

Abstände der Momentenpunkte von G0 gleich c sind,

$a,VhCfäli($S,0§a,V) -^M^CSm^^^), (48)

^a,77^Csin(^,0^a,^) -^,vat)CsiTL(^t),0^,V)^ (49)

woraus durch Division das Doppelverhältnis

ftt tt tt tt x _
sin (&s,o §*.v).sin ($M §a,q) _

a^ a^ _
sin (g q) sin (t) q)

_
6, *\ ~ sin(?b):sin(t)b) " (aW* W

folgt, ein Wert, der sich wegen

lim csin(^og)fl?7?) Fg,0Fa>7?

c->oo csin(^0£aj7?) FSf0FB>^

auch aus (35), wegen (47) auch aus (41,42) jeweils durch die zugehörigen
analogen Betrachtungen und aus Fig. 4 auch für die Abstände £ und rj ergibt.
Dementsprechend gelten für die Büschel G0 und 6r7r/2, für die Punktreihen g0
und g^ und für die Abstände rji und ^ die Projektivitäten

(^o,f F6,£ ^,0 ^,o) "Ä (£a,i£f>,i$s,i$\),i) ~* (Va,i Vh,i Vv,i %,i)'

3.3.12. Betrachtet man in (33, 34) die Stellung ^ als konstant, ß% hingegen
als variabel, so folgt mit Hilfe von (35,36,41,42) diesmal das «Kreuz»

85* ^,ocos/3s + 3S£,7r/2sin^; #5 £Mcos^ + ^W2sin^, (52,53)

d.h. SS£ liegt auf der Geraden g^ [V%0V^n/2] und $K geht durch den Punkt

(50)
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Cr£ [^0$>£>7r/2]. Setzen wir das eine Mal ß£ 0 und das andere Mal ßl irj2,
so erhalten wir wieder die %$v>o, $)^0 bzw. die 3S£j77./2J §E,7r/2 der (35,36,41,42),
welche den Projektivitaten (51) als zugeordnete Elemente angehören. Sie hegen
also auf den Punktreihen g0 und g^2 bzw. gehen durch die Buschelzentren
ff0und ÖW2.

3.3.13. Nennen wir in Hinkunft g^ [V^7r!2V^0] die Stellungsgerade und
^£ [^?£,7r/2§E,o] den dazugehörigen Stellungspunkt, so können wir aussagen*

«Die Stellungsgeraden g% umhüllen einen Kegelschnitt Kv, der die beiden
Geraden g0 und g^2 berührt, und die Stellungspunkte 0% liegen auf einem

Kegelschmtt Kh, der durch die beiden Punkte G0 und G^z geht. Kv und Kh
sind zueinander dual und liegen in z. Die Tangenten gv an Kv sind dabei den
Punkten Gt des Kh ein-eindeutig zugeordnet. g0 und gni2 bzw. G0 und G^2 sind
dabei selbst Stellungsgerade bzw. Stellungspunkte (Fig. 5).»

Wir haben die vorhandenen Gesetzmäßigkeiten so weit aufgedeckt, daß

wir für die zu jeder Achse £ gehörigen Gewichte (22) das diesen letzteren
gleichwertige auf z und Z bezogenen «Kreuz» 33^, £)£ bestimmen können.

3.4. Wir wollen nun diejenigen Stellungen der Nullachsen £ finden, für
welche die «Kreuze» SS£,§£ «Einzelkräfte» 9^ werden.

H ^

Perspektivitats
achse

h*

V°
^r-

d X SO — 7

tt
^tfo

(abxy)A(abxy \ ~"~ ~Kh

Perspektivitats - \j ^^ -

Zentrum ^*&Cp

Fig- 5.
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3.4.1. Geht man von (52,53) aus und verbindet die Punkte Vl0, V%, V%f7T2

mit G%, so.erhalt man ein Büschel, welches mit dem schon bestehenden Büschel
&£,o> &s> ©e,W2 Projektiv ist. Wir legen einen beliebigen durch 0% gehenden
Steinerschen Kreis, der die beiden vorherigen Büschel in den wieder zueinander

projektiven Punktreihen 1,2,3 und 1', 2', 3' schneidet. Betrachtet man nun
1 bzw. 1' als Scheitel der beiden Büschel 13', 12' bzw. 1' 3, 1'2, so sind diese

zueinander perspektiv, da sie den Strahl 11' bzw. 1' 1 miteinander gemeinsam
haben. Sie besitzen eine Perspektivitatsachse, die sich aus [[[13'] [1' 3]]-

[[12'] [1' 2]]] ergibt. Sie schneidet den Steinerschen Kreis in I und II, woraus
sich für die beiden auf g^ liegenden konlokalen Punktreihen Vt und H% die
beiden Doppelpunkte Äs>1 [ör£[GsI]] und R^2 [gv[G^Il]] ergeben. Durch
die letzteren werden in der durch fy gehenden lotrechten Ebene 2 Nullachsen
Ex und £2 festgelegt, die sich auf ^ schneiden und mit ®8 2 getrennte Punkte
gemeinsam haben. Die nach (52,53) dazugehörigen SSSfl und §Jfl bzw. 3S?>2

und Jp 2 schneiden sich also auf gt in den Doppelpunkten R%1 bzw. R%2. Die
beiden «Kreuze» 3SEfi,&Sfi und aSKf2,£Ef2 reduzieren sich also auf die beiden
durch J8 und ü^2 gehenden «Einzelkräfte» 8t£jl und 9t5f2 mit den
Vertikalkomponenten SBSfl, 33^ 2 und den Horizontalkomponenten §Sfl, ipJ>2. Die beiden

letzteren schneiden sich dabei in dem zu gl gehörigen Stellungspunkt G%

(Fig. 6).

Steinerscher
Kreis

*°

Fig 6.
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3.4.2. Fuhrt man diese Betrachtung für eine 2. Stellung t) durch, so ergeben
sich 2 weitere Nullachsen t)1 und t)2 mit den beiden dazugehörigen
Einzelkräften 9?M und 3^2 (Fig. 4).

3.4.3. Da die geometrische Summe der Momente zweier Ersatzkrafte eines

gegebenen Kraftesystems um eine beliebige Momentenachse gleich ist der
geometrischen Summe der Momente der gegebenen Kräfte um dieselbe Momentenachse,

wird (18) dann erfüllt, wenn z.B. die Richtungslinie einer zu einem

Doppelpunkt 9t£ im vorhergehenden Sinne gehörigen Einzelkraft 9t? beide
Achsen eines nach (3.1.1) existierenden «Drehkreuzes» ®v, ©^ schneidet. Dann,
und nur dann, verschwindet nämlich jeder der beiden Summanden von (18)
voneinander unabhängig, und zwar für jeden absoluten Betrag dv bzw. d der
Drehvektoren ®v bzw. ®.

3.4.4. Nach (3.4.2) liegen nun die zu den Achsenpaaren £1? j2 bzw. t)1? t)2

gehörigen Einzelkräfte 3tXjl, 9^}2 bzw. 9^ i, 9^2 vor, welche im allgemeinen
zueinander windschief sein werden. Erinnern wir uns daran, daß es stets 2

windschiefe Gerade bEjt)>1 und bMt2 gibt, von welchen jede alle der 4 obigen
Resultierenden schneidet, so erkennen wir in den beiden ersteren die Achsen
des (18) im Sinne von (3.4.3) erfüllenden Drehkreuzes ®^^i, ®E,tj,2-

Es erzeugen nämlich z.B. die 9tE>i, 9tE2, ^,i eine Regelflache 2. Ordnung,
welche dann von 9^>2 in Mx bzw. M2 geschnitten wird. Legt man durch M1
eine Gerade, welche z.B. 91^ x und 9t?j2 schneidet, so ergibt sich die Gerade

b?jt)jl5 welche zur Kontrolle auch von 9?^ geschnitten werden muß. Von M2
ausgehend findet man analog die 2. Achse b^j2.

Es seien die beiden Geraden m^ und mn zu finden, welche von jeder der 4
vorgegebenen Geraden a, b, c, m geschnitten werden

Wir legen z B. durch die Gerade b eine beliebige Ebene ßt und bestimmen die Schnittpunkte

Al=[ßla] und Ci=[ßlc] Die Verbindungsgerade [Aid] muß dann auch die
Gerade b im Punkte B% schneiden (Zeichenkontrolle). Drehen wir ß% um b, so erhalten
wir eine die Geraden a, 6, c schneidende 1 Geradenschar [A% d] ti (i a, b, m)
Wahlen wir aus i\ 2 beliebige Gerade [Ajc Cjc] ki und [Ai C{] 1\ und legen die Ebenen
[ki a], [k± 6], [k± c] und [ha], [h b], [h c], so entstehen so 2 projektive Ebenenbuschel
mit den Achsen ki und h, welche eine 2 Geradenschar ai, bi, ci erzeugen Da ki und Zi

ganz beliebig aus der Schar %i herausgegriffen wurden, schneidet jedes Element n der
Schar a, b, c, alle Elemente der anderen Schar ai, bi, Ci, und umgekehrt Sie
bilden eine Regelflache R.

Wir bestimmen nun weiter die 3 Schnittpunkte 1mjCl, 2/mjCl, 3mjCl der 4. der
vorgegebenen Geraden m mit den 3 Ebenen [k\ a], [ki 6], [ki c] des Buscheis um ki und die
Schnittpunkte 1mi1, 2mi19 3mi1 der 3 Ebenen [I± a\, [h 6], [h c] des Buscheis um l±. Da
die Ebenenbuschel um ki und h projektiv sind, bilden diese Schnittpunkte 1 2 3mjCl und
1>23/mi1 auf m 2 konlokale projektive Punktreihen mit 2 Doppelpunkten Mi und M2,
die wir als Schnittpunkte von m mit der Regelflache R erkennen, so daß R vom 2. Grade
sein muß (hyperbolisches Paraboloid). Die Mi und M% bestimmt man am besten wieder
mit Hilfe des Steinerschen Kreises.

Die Schnittpunkte 1 2 3mjCl und 1 2 3mi1 findet man am einfachsten, indem man durch
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m eine beliebige Ebene fj. legt und die 3 Schnittlinien l>2 3ski mit fta], [ki 6], \k± c] des
Buscheis um ki bestimmt, welche alle 3 durch den Schnittpunkt [^ &i] gehen müssen
Im Schnittpunkt der 1 2 3sjCl mit m liegen dann * 2 3mÄ:1. Genau so verfahren wir mit
dem Büschel um h.

Legt man nun durch Mi und eine der vorgegebenen Geraden, z B. a, eine Ebene /xj
und bestimmt die Schnittpunkte [/u,j b] und [^j c], so müssen diese mit M2 in einer Geraden

mj liegen. Letztere muß außerdem noch die Gerade a schneiden. Dadurch haben
wir eine weitere Zeichenkontrolle zur Hand Zum 2 Doppelpunkt M2 gehört natürlich
auch eine 2 Gerade mn.

iuAJ

py

-^>

<a X

AuFr

^

Grundriss

Fig A

Man kann die Bestimmung der Doppelpunkte M1 und Mn auch noch unabhängig
im Grundnß durchfuhren, wodurch eine weitere Kontrolle gegeben ist

Die Konstruktion wurde in Fig. A mit einem Zirkel und zwei Zeichendreiecken
üblicher Genauigkeit durchgeführt

3.4.5. Nach den bisherigen Darlegungen sind die Momentensummen aller
Pfahlkrafte % um jede der 4 Nullachsen j1? j2, t)l5 t)2, von denen sich nur
jeweils 2, und zwar £l5 £2 und t)1,t)2, auf ^ schneiden, gleich Null. Damit sind
von den 6 für ein raumliches Kraftesystem notigen Gleichgewichtsbedingungen
bereits 4 erfüllt. Nun bestimmen wir mit Hilfe der beiden vorhin gefundenen
Achsen des Drehkreuzes ®5fl,fl, 2)Efij,2 nach (7) die Verschiebungen Ut der
Pfahlkopfe i und daraus nach (8) die Pfahlkrafte ^ als lineare Funktion der
beiden absoluten Betrage dMtl und d%tt)t2 der Drehvektoren ®Mfl und ©Sf^2.
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Projizieren wir die so ausgedrückten ^ und das angreifende Kraftkreuz
®ä; ^ auf 2 beliebige Richtungen, z. B. auf bEjt)jl und b£>^2 oder auf Ää und ^
selbst, so müssen wegen des vorhandenen Gleichgewichtes diese beiden
Projektionssummen verschwinden. Es ergeben sich auf diese Weise für die
Bestimmung der noch unbekannten absoluten Beträge d^x und dMt2 2 lineare
Gleichungen (54, 55), so daß nun 6 von einander unabhängige Gleichgewichts-
bedingungen erfüllt sind. Die beiden letztgenannten Beziehungen schreiben
wir aber der Kürze halber nicht gesondert an. Die endgültigen Werte für die

^ ergeben sich schließlich unter Heranziehung der so gefundenen Beträge
dMil und dMt2 aus (7) und (8).

3.4.6. Es sei noch besonders darauf hingewiesen, daß wir für die Bestimmung

der Richtungslinien bMtl und bVtt)t2 des Drehkreuzes ®E)l5>i; ®E,^,2 nur die

Richtungslinien lh und 1^ des angreifenden Kraftkreuzes Ss; ^ heranziehen
mußten. Die absoluten Werte der beiden Einzelkräfte des letzteren benötigten
wir erst für die Berechnung der beiden Beträge dMtl und dlttjt2.

3.4.7. Da wir in Fig. 4 die Stellungen £ und t) beliebig wählen können,
gehören zu einem Lastkreuz ®8; ^ unendlich viele Drehkreuze ®j>t),iA ®£,t),2-
Zwischen Dreh- und Kraftvektoren besteht bekanntlich eine vollständige
Formal-Analogie, d.h., man kann auf die ersteren (3.2) anwenden. Man
bestimmt also die beiden Schnittpunkte B% ^ x [z ®? jt) x] und D£ t) 2 [2 ®£ ^ 2],

zerlegt ®^t),i' ®r,t),2 in die Vertikalkomponenten ®E,tjfi;v; ®£,t,,2;t7 bzw. in die

Horizontalkomponenten ®£j^2;ä5 ®s,$,2;fc und ermittelt die Resultierende
®E>tj;ä bzw. ®£,t);t) der beiden obigen Vertikal- bzw. Horizontalkomponenten.
Wir erhalten so zunächst zu jedem ®Sj^i; ®£s^2 ein orthogonales Drehkreuz
®&*).s ; ®5fJ),5, wobei ®Ef^ durch Z geht und ®£,^^ in z liegt. Da aber aus elasto-
statischen Gründen jedes Lastkreuz $ä; Äj, nach (3.1.1) nur ein und dieselbe
infinitesimale Bewegung auslösen kann, sind alle ®£}t),i; ®E,^,2 einander
gleichwertig, und alle ®£jiu; ®e,jj,^ sind m^ ein und demselben orthogonalen Drehkreuz

®ä; ®j, identisch. Daraus folgt, daß alle Verbindungslinien [i\ ^ 1 J\ t), 2]

sich im Schnittpunkt D% [z ®£] schneiden und alle Schnittpunkte
[®s,M;fj®s,M;fj] au^ der *n 2 liegenden Drehachse ®^ liegen müssen. Dadurch
ist auch der Zusammenhang der einander gleichwertigen Drehkreuze ®E>tjfi;

®s,t},2 gekennzeichnet.

3.4.8. Wendet man (3.4.5) und (3.4.6) auf das nun eindeutig festgelegte
orthogonale Drehkreuz <J)5; ©^ an, so kann man zunächst aussagen: «Zueinem
Lastkreuz Ää; $£$ gehört also nur ein einziges auf z und Z bezogenes Drehkreuz

S^;®^. Dabei entsprechen sich die Richtungslinienpaare lh, \ und bä, bj,

einander eindeutig. Zwischen den Drehwinkeln dh, d^ und den absoluten
Größen hh, fy der Lasten ®d und ^ bestehen daneben wieder 2 lineare, den

(54,55) analoge Gleichungen.»
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3.4.9. Bestimmen wir aus einem zu 2 beliebigen Achsenpaaren £1? £2 und
t)1? t)2 gehörigen windschiefen Drehkreuz ®Ejt)si; ®£ji),2 nach (7,8) die Pfahlkrafte

tyt und projizieren im Sinne von (3.4.5) diese und das Lastkreuz $ ; ^
auf eine zu ^ und Ää normale Achse ttj,, so folgt

^,t),la£,t),l + ^,^,2aj,t),2 ^?

wobei a^tu und a^ ^ 2 nur von der Richtung der n^, den Ei und der geometrischen

Anordnung des Pfahlwerkes abhängen. Das Verhältnis der beiden
Drehwinkel

^£,i),l :Ö%i),2 "~^,t),2 :<2X,t),l

ist also unabhängig von der Wahl der beiden Absolutbeträge kh und fy, da die
dazugehörigen Richtungslinien lä und l^ senkrecht auf n§ stehen. Ist ®£j^i
bzw. ®Sjt,j2 gegen 2 unter den Winkeln a£^fl bzw. 0^2 geneigt, so betragen
die Vertikal- bzw. Horizontalkomponenten von ®Es^fi und ®Ej^2

®£,t) l;ü ^£,t), 1 S111 a£,t), 1
* 3 J ®j,t),2,l? ^,t},2Sinaj,t),2'5

bzw.

®E,t),l;ft ^,t),lCOSaj,t),l'^,t),l' ®E,t),2;Ä ^,t),2Sina^t),2*%,t),2'

wenn f)Est)ji und f)Eji)j2 die Einheitsvektoren der durch die Fußpunkte i\t),i und
D? ^ 2 gehenden Vertikalprojektionen von b^^ und b^j2 bedeuten. Durch
Division der beiden obigen Gleichungspaare folgt, daß auch die Verhältnisse
der Vertikal- und Horizontalkomponenten von den beiden Absolutbeträgen
fy und fy unabhängig sind, womit in Verbindung mit (3.4.7) nun auch der
2. Teil des in (3.4.8) ausgedrückten Lehrsatzes direkt bewiesen ist.

3.5. Um die in (3.4.4) angedeutete allgemeine Konstruktion der Drehachsen
b?jt)jl, bJjt)j2 zu umgehen, wird man bestrebt sein, 4 Nullachsen mit den
dazugehörigen 4 Resultierenden zu finden, welche paarweise in 2 Ebenen a und co

liegen, so daß sich dann auch die in den letzteren liegenden Resultierenden
jeweils in den Punkten S und W schneiden. Die Achsen des gesamten
Drehkreuzes ergeben sich in diesem Falle sehr einfach zu [ar a>]; [S W].

3.5.1. Wählt man in der Zeichenebene z einen beliebigen Punkt Ov x und
legt von diesem die beiden möglichen Tangenten gvl und gv 2 an den
Kegelschnitt Kv, so sind diese nach 3.3.13 Stellungsgerade (Fig. 7). Auf ihnen liegen
die nach (3.4.1) bestimmten Doppelpunkte. Diese bilden das vollständige
Vierseit RVtl;1, RVil;2, Rv,2;i, Bv 2;2, Pvl, Pv 2, 0vl, dessen Gegenseiten nach
dem griechischen Geometer Pappus, der im 3. Jahrhundert n. Chr. in Alexandria
lebte, von jeder Geraden in 3 Punktepaaren geschnitten werden, die einer
Involution angehören. Wenden wir diesen Lehrsatz auf die Gerade Pv>2Ovl
an, so sind Ov 2 und Pv 2 Doppelpunkte und l'v 1*' ein entsprechendes Punktepaar.

Projizieren wir diese Verwandtschaft von P x aus auf eine beliebige
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durch Ovl gehende Gerade n, so erhalten wir schließlich eine Involution Jv

mit Ovl bzw. Ov2 als Doppelpunkte und lv 1 * bzw. 2y2* als 2 entsprechende
Punktepaare. Verschieben wir den vorgewählten Punkt Ovl auf n und bilden
wieder im obigen Sinne die dazugehörigen Vierseite, so können die entsprechenden

Punkte lv und 1* und damit auch die beiden Doppelpunkte Rvl2, Rv 2>2

reell nur beide auf einmal mit 0 1 zusammenfallen. Damit gleichzeitig treffen
sich auch die Punkte 2V, 2*, Ov2, Pv2 im Schnittpunkt der Geraden

[RvllRV)2iymit n. Da sowohl Ovl als auch n ganz beliebig gewählt werden
können, gilt diese Betrachtung ganz allgemein, und es entstehen die in Fig. 7

rechts dargestellten LageVerhältnisse, aus denen sich ergibt, daß alle nach
(3.4.1) gefundenen Doppelpunkte auf einem reellen Kegelschnitt KD liegen, da
ein solcher von jeder Geraden, die von einem auf ihm liegenden Punkt aus
gelegt wird, nur in einem 2. Punkt geschnitten wird.

3.5.2. Für die konstruktive Auswertung dieser Erkenntnisse wählt man
eine beliebige Stellungsgerade, z.B. g% und bestimmt nach (3.4.1) die
Doppelelemente Rhl, Bl2. Legt man z.B. durch R%1 die 2. Tangente ani^ so ergibt
sich eine weitere Stellungsgerade g^ mit den Doppelpunkten R^x und i?^,

pLRv 11

*T«vi 2*

Rv 1 2 ^V2 2 0»t 'V hI / ß,,0v,2vl.

*Pvi

Fig 7.

s/n

cosar..J.

Fig. 8.
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wobei R%1 mit R^x in R%>t) auf g% zusammenfällt, wo sich auch die dazugehörigen

Resultierenden 9t£jl und 9^ schneiden. Legt man auch noch von R^2 die
2. Tangente an Kv, so ergibt sich die 3. Stellungsgerade gn mit den
Doppelpunkten Rü>1, Ru>2, wobei wieder jß 2 mit 9tUjl in R^u auf g% zusammenfällt.
Dort schneiden sich auch die dazugehörigen Resultierenden 9t 2, 9tu, i > so daß
für die 9t£jl, St^i, dt^2, 9tul die in (3.5) dargelegten einfachen LageVerhältnisse
geschaffen sind (Fig. 8).

3.5.3. Will man von einem Punkte Q an Kv die beiden möglichen Tangenten
legen, ohne ihn zu zeichnen, so verbindet man Q mit der Punktreihe g0 bzw.
g^/2 und bringt diese Strahlen mit der Punktreihe g^2 bzw. g0 zum Schnitt.
Dadurch entstehen auf der letzteren 2 konlokale projektive Punktreihen,
durch deren Doppelpunkte die beiden Tangenten gehen müssen.

3.5.4. Kennt man von 2 konlokalen projektiven Punktreihen schon einen
der beiden Doppelpunkte, so sei im Zusammenhang mit (3.5.3) erinnert, daß
man dann den 2. derselben auf lineare Weise finden kann. Man wählt auf einer
durch den bereits bekannten Doppelpunkt gehenden Geraden die beiden
Punkte V und H als Scheitel zweier projektiver Strahlenbüschel und erhält
die dazugehörige Perspektivitätsachse aus

[[[V Fs>0] • [fli?ti0]] • [[V V^] ¦ [H tf$>wa]]].

Sie schneidet die Gerade g% in dem 2. Doppelpunkt R^v. In £ [VV^\• [HH^\
haben wir eine scharfe Zeichenkontrolle in der Hand (Fig. 6).

3.5.5. Es gibt auch Sonderlagen, für welche Stellungspunkt und -gerade
aufeinander fallen. Da aber dazu keine sich schneidenden Resultierenden 9tv

gehören, lohnt es sich nicht, diese Fälle weiter zu verfolgen.

3.6. Wir finden also das orthogonale Drehkreuz ®6; ®^ (3.4.8) einfach
folgendermaßen:

1. Ersatz der angreifenden Kräfte $^ durch das auf z und Z bezogene Lastkreuz

Ä8; Ä$ (3.2).
2. Bestimmung der zu den in z liegenden und ®s schneidenden waagrechten

Achsen q^ und b^ gehörigen Gewichte (37, 38, 39, 40) bzw. der zu den in
€jjth liegenden und durch A und B gehenden lotrechten Achsen q, und bä

gehörigen Gewichte (43, 44, 45, 46).
3. Ermittlung der 4 lotrechten Resultierenden 33a 33a der in den Punkten %'

wirkenden lotrechten Gewichte (37), (38), (43), (44) nach den Regeln
paralleler Kräfte bzw. der 4 waagrechten Resultierenden §a $$a der in

den Projektionen {^ wirkenden waagrechten Gewichte (39), (40), (45), (46)
nach den Regeln für ebene Kräftesysteme.
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4. Dadurch sind die durch (35) und (41) gekennzeichneten projektiven Punktreihen

g0 und g^2 bzw. die durch (36) und (42) gekennzeichneten projektiven

Büschel um G0 und G^2 festgelegt.
5. Bestimmung der auf g0 bzw. g^ liegenden Fußpunkte V^0 bzw. V%t7Tf2

nach (35) bzw. (41) und der durch G0 bzw. Gn/2 gehenden Strahlen §£ 0

bzw. 5>£>77/2 nach (36) bzw. (42). Es ergibt sich daraus die Stellungsgerade

ai \Vi, 0^,77/2] bzw. der Stellungspunkt G% [§£j 0 $$^ ^/J, wodurch die
Punktreihe (52) und das Büschel (53) festgelegt werden, so daß die

6. Konstruktion der Doppelpunkte R^tl, Rl2 und der dazugehörigen Einzel¬
kräfte 9t5fi, 9ij2 nach (3.4.1) vorgenommen werden kann.

7. Wir können nun nach (3.5.2) unter Benutzung von (3.5.3), (3.5.4) und (3.5)
ein Drehkreuz ®Ä; ®v finden, für welches die in z liegende Stellungsgerade
g% bereits eine Achse bz ist, während die andere Achse bv als Schnittlinie
der beiden Ebenen [9t?jl9l^1] und [^g^J dazu windschief liegt. Wir
zerlegen nun diese Drehachse %v dvbv in eine lotrechte bzw. waagrechte
Komponente e£)Vth dvsmKv-$ bzw. ®y ^ dvcosKv-bv^, wobei dv den zu ®y
gehörigen Drehwinkel, kv den Neigungswinkel der Richtung bv gegen z und
der Einheitsvektor bv^ die Projektion von bv auf z darstellt.

8. Drücken wir nun die Verschiebung U^ der Pfahlköpfe i durch die beiden
waagrechten Drehungen (S)e dzbz, ^v^ dvcosKv'bv^ und durch die
lotrechte Drehung ®v

g
dv sin kv • 5 mittelst (7) aus, bestimmen daraus

entsprechend (8) die dazugehörigen Pfahlkräfte ^ und projizieren die
letzteren und das angreifende Lastkreuz ® ; ^ auf die beiden Richtungen bz

und 5, so ergeben sich für die Bestimmung der beiden dazugehörigen
unbekannten Drehwinkel dz und dv 2 lineare Gleichungen, womit wir die Drehungen

(£)z dzbz und (£)v dvbv angeben können. Zerlegen wir letztere in eine
lotrechte Komponente ®vä ®a und in eine waagrechte Komponente ®v^
und bilden ®tj ®Vf$ + ®Ä, so erhalten wir endlich das orthogonale Drehkreuz

S^;®^, aus dem wir.wieder nach (8) die Pfahlkräfte ^ berechnen
können.

Diese 8 Abschnitte können der Reihe nach in sich abgeschlossen und einzeln
voneinander unabhängig überprüft werden.

Sie stellen kurze Lösungsvorgänge der elementaren Statik, der Kinematik
und der Geometrie der Lage dar. Man kann sie zeichnerisch mit alleiniger
Benutzung von Lineal und Zirkel durchführen.

Zu den 6 Freiheitsgraden des Problems gehören bekanntlich auch 6 Elastizität

sgleichungen, deren Aufstellung allein schon einen beträchtlichen Zeitaufwand

erfordert. Da sie außerdem im allgemeinen sehr stark zusammenhängen,
sind sie einer Iteration sehr schwer zugänglich. Ihre Auflösung ist daher sehr
zeitraubend, da, um die Lösung verläßlich zu erhalten, die Ziffernrechnung
sehr genau durchgeführt werden muß.

Nach unserem Wissen gibt es bis jetzt noch kein einfaches Verfahren, nach
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welchem ganz allgemein räumhche Pfahlroste ohne Benutzung dieser zeitraubenden

6 Elastizitätsbedingungen berechnet werden können.
Als durchgreifende Kontrolle können in allen Fällen 6 von einander

unabhängige Gleichgewichtsbedingungen des aus Pfahlkräften und Lasten
bestehenden Kräftesystems benutzt werden.

Dieses Verfahren eignet sich dann besonders, wenn für ein und denselben

Kraftangriff ein Pfahlrost für verschiedene Elastizitätsmodule mehrfach
durchgerechnet werden soll.

3.6.1. Nach (3.3.13) kann es nie vorkommen, daß die zu 2 verschiedenen
Stellungsgeraden gv und g^ gehörigen Stellungspunkte Gv und G^ in einem
Doppelpunkt Gv zusammenfallen. Dies wäre aber unbedingt erforderlich,
wenn es gelingen soll, nach (3.4.1) 4 Resultierende zu finden, für welche die
nach (3.4.4) zu bestimmenden Drehachsen schon die Achsen bä und bf, des zum
Lastkreuz $ ; ^ gehörigen orthogonalen Drehkreuzes ®g; ®^ sein würden.
Das heißt, wir können auf dem bisher gezeigten Wege das letztere nicht direkt,
sondern nur auf dem Umweg über die schiefen Drehkreuze (&z; ®v finden,
außer wir erfüllen (18) durch Aufstellung der endlichen Momente der
«Gewichte» um die Achsen bä und b§ des dann noch zu suchenden orthogonalen
Drehkreuzes. Die Entwicklung, die zu 6 linearen Gleichungen führt, wollen
wir aber nicht im einzelnen durchführen, da wir ja letztere vermeiden wollen.

3.7. Betrachten wir g0 als Stellungsgerade und G0 als zugehörigen Stellungs-
punkt, so erhalten wir nach (3.4.1) auf g0 die beiden Doppelpunkte R01i R0f2

mit dem durch diese gehenden Einzelkräfte 9t0j 1, 9t0,2 • Mit den von g^ und 6r£

ebenfalls nach (3.4.1) herrührenden Einzelkräften 9^1? 9tE>2 verfügen wir über
4 Richtungslinien, aus denen wir nach (3.4.4) das Drehkreuz ®j,o,i ^e, 0,1^,0,1 '>

®jjo,2==^e,o,2^j,o,2 bestimmen können. Drehen wir in Fig. 4 den Kraftvektor

^ um X, so wird die Lage der beiden Achsen bEj0,i und bVi0t2 nicht
verändert. Stellen wir nun die beiden am Schluß von (3.4.5) beschriebenen
Projektionsgleichungen (54, 55) auf, so gehört zu jedem Lastkreuz ®g; ffi^? für
welches $^ durch X geht, ein und dieselben Drehkreuzachsen b£j0>1;b^0j2.
Setzen wir demnach |®J 0 und projizieren im Sinne von (3.4.9), so erhalten
wir nur die Wirkung von ® allein. Benutzen wir diesmal die zu g^2 und G^2
gehörigen 9l77/2j x, 9t77/2j 2 und die aus g% und G% gefundenen 9?^ x, 9^ 2, so erhalten
wir wieder aus diesen 4 Richtungslinien das Drehkreuz ®Ej7r/2,i ^,W2,i b^)7T/2}1',

®e, tt/2, 2 6^, 71/2,2^,77/2,2- Verschieben wir den Fußpunkt von ®g auf fy beliebig,
so wird die Lage der beiden Achsen bSj7r/2jl und b^ „j2f2 nicht verändert. Stellen
wir wieder für die beiden Projektionsgleichungen (54, 55) die analogen Betrachtungen

wie vorhin an, so erkennen wir, daß zu jedem Lastkreuz $s; ^, für
welches der Fußpunkt von ®8 auf fy liegt, ein und dieselben Drehkreuzachsen
bz,7T/2,i'> ^£,7r/2,2 gehören. Setzen wir demnach |^|=0 und verfahren analog wie
vorhin, so erhalten wir dann auch nur die Wirkung von ^ allein. Damit ist
auch dieErledigung von angreifendenEinzelkräften und Drehmomenten geklärt.
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4. Sonderfälle

Das in (3.) abgeleitete Verfahren gilt ganz allgemein für jeden behebigen
räumlichen Pfahlrost. In der Folge werden daraus einige besonders wichtige
Sonderfälle entwickelt, bei welchen ganz bedeutende Vereinfachungen
eintreten.

4.1. Liegen alle Pfahlköpfe in einer Ebene, so daß jeweils i mit i' zusammenfällt,

so wählen wir diese als Zeichenebene z. Es ergeben sich dadurch aber

nur einige rechnerische Vereinfachungen bei der Bestimmung der Verschiebungen

Vii nach (7) und bei der Aufstellung der Projektionsgleichungen (54, 55).

4.2. Handelt es sich um zu einander parallele Pfähle i, von denen jeder
einen nach 2 zu einander senkrecht stehenden Richtungen verschiedenen
seitlichen Widerstand besitzt (2.2), so wählen wir eine zu den Parallelpfählen
normal stehende Ebene als Zeichenebene z. Es wird dann für die parallelen
Pfähle o^ 0, Ei und für die Hilfspfähle 0^ 77-/2, Eil, Ei2. Setzt man dies in
(37—40,43—46) ein, bestimmt entsprechend (3.3.7-8) nach den Regeln für
parallele Kräfte die Lage der Resultierenden

SR • $R =0
V71 b'*

ermittelt weiter nach den Regeln für ebene Kräftesysteme die Resultierenden

b>7? b'£

so wird für die parallelen Pfähle nach (35, 36)

»5.0 lb^iEiVa,-a^iEi^,i1i'^ #s.o ° (56>57)

und für die Hilfspfähle nach (41, 42)

wobei für Ei die Werte Eix und Ei>2 einzusetzen sind. Wird in diesen
Beziehungen nacheinander a^,b^,A^, B% 0 gesetzt, so erhalten wir die zu den
Achsen q^, Bf,, ah, Bä gehörigen Resultierenden

$«.f 1 ' 2*^Mi > $« 1 * 2> Ei kih
schon als Einzelkräfte. Die Richtungslinien bä; b^ des orthogonalen Drehkreuzes

®ä; %^ ergeben sich nach (3.5) unmittelbar im Schnittpunkt [Jpa>f &&,f] und
in der Verbindungsgeraden [33^33^], da dann bä und b^ von jeder der 4

Resultierenden 33aj7?, 336j7?, £)a,|, £Bj£ geschnitten wird. Die Absolutbeträge
d%, d^ der Drehungen um die Achsen ®ä, ®^ ergeben sich wie immer aus den

Projektionsgleichungen (54, 55). Dabei ist die Wirkung der parallelen Pfähle
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vollständig unabhängig von den in der Zeichenebene z liegenden Hilfspfählen.
Dies geht auch schon daraus hervor, daß eine Einsenkung der Pfahlköpfe in
Richtung der parallelen Pfähle die Hilfspfähle nicht in Spannung versetzt und
umgekehrt eine Verschiebung der Pfahlköpfe in der Zeichenebene die parallelen
Pfähle unberührt läßt.

4.3. Sind je 2 aufeinander senkrecht stehende Pfähle P und P h alle zu
einer Ebene z parallel und bezüglich ihrer Tragfähigkeit auf die Fundament-
länge gleichmäßig verteilt und sind außerdem für alle zu z senkrecht stehenden
Pfähle Pn die Elastizitätsmodule En gleich Null, so wählen wir wieder z als
Zeichenebene. Wir haben dann einen sogenannten ebenen Rost vor uns, bei
welchem die Pfähle PitV nur in der Ebene z einen durch PiU zum Ausdruck
gebrachten seitlichen Widerstand besitzen, da je En 0 sein soll. Wir haben
im Gegensatz zu (2.) statt der 2. Zeiger 1 und 2 die Zeiger n und h gewählt,
weil wir die Tragpfähle i, v von den Hilfspfählen i, h deutlicher unterscheiden
wollen. Da die seitlichen normal zu z wirkenden Widerstände der Pfahlköpfe
fehlen, muß zunächst Ää 0 sein. £^ R wird auf die Fundamentlänge bezogen.
Da für alle Pfähle oq 7r/2 ist, werden alle bisherigen Ausdrücke, die den
Faktor cos o^ enthalten, gleich Null. Es verbleiben also nur nach (45, 46) die
in z liegenden Resultierenden

Z*^M$i &o,f. M&A &>.*• (60,61)

Mit diesen Werten wird (41) Null, und (42) nimmt den Wert an

$S,W2 B^iE^^-A^Ed^i, (62)

wobei wie in (4.2) wieder für Ei die Elastizitätsmodule Ei>v und Eih zu setzen
sind. Wird nun in (62) erst -4^ 0 und dann B^ 0, so ergeben sich für die
Gewichte, die zu den zur Zeichenebene senkrechten und ^ R schneidenden
Achsen ah und bä gehören, die Resultierenden $$a^ und fQ^g, in deren Schnittpunkt

die gesuchte Drehachse ®g liegt (Fig. 10 u. 11).
Da alle «Gewichte» in z liegen, haben die Komponenten um die Achse fy

an der Momentenbildung um die Achse £ keinerlei Anteil. Sie werden Null,
und es genügt, wenn man überhaupt nur die Momente um die lotrechte Achse

fy bildet, das heißt, man kann in allen Betrachtungen dieser Abteilung von
Haus aus ß% 7rj2 setzen.

4.4. Besitzen entgegen (4.3) die Pfahlköpfe in Richtung senkrecht zur
Zeichenebene z einen seitlichen Widerstand, so ergibt sich eine Rostform, die
dann am Platze ist, wenn die Hauptlasten, die aber diesmal nicht über die
Fundamentlänge gleichmäßig verteilt sein sollen, durch einen sogenannten
ebenen Pfahlrost leicht aufgenommen werden können, für die lateralen Lasten
aber die seitlichen Widerstände der Pfahlköpfe herangezogen werden müssen.
Wir haben dann einen echten räumlichen Pfahlrost vor uns, der nach (3.)
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berechnet werden muß. Die dabei auftretenden Vereinfachungen gegenüber
einem ganz allgemeinen Rost sind nicht sehr groß. Wir überlassen sie wegen
Raummangel dem Leser.

4.5. Desgleichen wollen wir Roste, bei welchen Vereinfachungen durch
Symmetrien eintreten, nicht behandeln.

5. Berechnung der Roste bei krummlinigen Arbeitslinien der Pfähle

Der Rost sei von Lasten angegriffen, welche nach (3.2) mit Hilfe der
Bezugselemente z und Z bereits auf ein Lastkreuz ®ä; ^ reduziert wurden.
Im Regelfall besitzt jeder Pfahl i eine eigene Arbeitslinie, durch welche der
funktionale Zusammenhang zwischen einer Bodeneindringung AitV und einer
Pfahlkraft Piv festgelegt wird. Zunächst ordnet man jedem Pfahl den

konstanten Elastizitätsmodul E-, ft \-nr) zu und bestimmt mit diesem nach

(3.) die zum Lastkreuz Sä; S^ gehörigen Eindringungen Aix und die Pfahlkrafte

Pii\ + APitl (Fig. 1), welche natürlich dem obigen angreifenden
Lastkreuz gleichwertig sein müssen. Nach den gekrümmten Arbeitslinien
entspricht aber der Eindringung Aix nicht die Pfahlkraft Pitl + APitl, sondern

nur die Pfahlkraft Ptl. Reduziert man nun diese Pix wieder nach (3.2) auf
ein Kreuz ®äjl; ^>l5 so verbleibt das Zusatzkreuz (^5~^i); (Ä^ — S^i),
welches durch vektorielle Subtraktion von ®ä; ^ und Ää>1; S^i entsteht.
Belastet man weiter wieder nach (3.) den Rost mit diesem Zusatzkreuz und
ordnet den einzelnen Pfählen diesmal die konstanten Elastizitätsmodule

Eir=(-~-) zu, so ergeben sich die Eindringungen Ai2 und die Pfahl-

kräfte Pi}2 + A Pit 2, welche analog dem Zusatzkreuz (®s — ®s> i); (^ — ^i)
gleichwertig sein müssen. Nach den krummen Arbeitslinien entspricht aber
die weitere Eindringung Ai2 nicht den weiteren Pfahlkräften Pi2 + APi2,
sondern nur den Pi2. Reduziert man die Pi2 nach (3.2) auf das Kreuz $h2:
®M> so verbleibt das Zusatzkreuz (Ääjl — $£h2)l (3\i —^,2)? welches wieder
durch vektorielle Subtraktion von ®hl; S\i und &it2; ^i2) entsteht. Fährt
man in diesem Sinne fort, bis das Zusatzkreuz verschwindet, so haben wir
unsere Iteration beendet. Die endgültigen Eindringungen bzw. Pfahlkräfte
betragen

p=oo p=oo

4= Z4.p bzw. Pi= £ Piyp.
p=l p=l

Man kann aber auch, wie es in (6.) durchgeführt wird, diese Summen sofort
naqh jedem Schritt bilden, aus den Arbeitslinien die dazugehörigen Pfahlkräfte
berechnen und alle Zusatzkreuze auf das Anfangslastkreuz ®a; ^ beziehen.

Wir benutzen also für jeden Pfahl i beim v-ten Iterationsschritt des Rostes
jeweils die aus dem Kurvenstück ovi und der anschließenden Tangente EisV
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bestehende Arbeitslinie, die sich immer mehr und mehr der gegebenen Arbeitslinie

des Pfahles i anschmiegt (Fig. 1).

Diese endgültigen Pfahlkräfte müssen dann mit den angreifenden Lasten
im Gleichgewicht stehen, die endgültigen Eindringungen müssen den
geometrisch möglichen Bewegungen des als starr angenommenen Fundamentkörpers

entsprechen, und beide müssen den durch die Arbeitshnien der
einzelnen Pfähle festgelegten funktionellen Zusammenhang aufweisen.

6. Praktische Anwendung

Es soll nun der in Fig. 11 dargestellte sogenannte ebene Rost für eine Last
R 247,16 t berechnet werden. Jeder der in einer Ebene liegenden Pfahlköpfe
besitzt einen axialen und einen seitlichen Widerstand, so daß wir für jeden
Tragpfahl Piv einen Hilfspfahl Pi)h benötigen (2.). Alle Pfahlköpfe zeigen
dasselbe elastische Verhalten. Die Arbeitslinien der Pv-Pfähle und der Ph-

Pfähle sind zueinander affin. Die analytischen Gleichungen für beide sind in
Fig. 9 angegeben. Wir legen durch jeden Pfahlkopf i ein Koordinatenkreuz

xi,yi, in welchem die xrAchse mit dem Hilfspfahl Pih und die yrAchse mit
dem Tragpfahl Piv zusammenfällt. Nach (4.3) wählen wir auf R einen beliebigen

Punkt A [a^^], legen für jeden Pfahlkopf die dazugehörigen
«Gewichte »

"i,v ~ Xi -^v ' Wi}h -yiEh (Fig. 10) (63,64)

fest und bestimmen deren Resultierende §At£. Führen wir das Gleiche für

pjon

A'f^OOOOSP^ +002PV

Pvh"= -f25+yi250A/l5625'

Hk-F !250
dAv Lr 2fP+t25)

00bPh

90.. Ä'
I AteAJ,

w7^_

so.. §
W— ^1

OOOWPu

20 — I
dph
dAh

W+A
10200Z5657 27380

13037
53237

---W

-l25+Y625Ah + t562S'

¦F - 625
AA 2(P+12S)

cm

Fig. 9.
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einen 2. auf R liegenden Punkt B durch, so erhalten wir im Schnittpunkt
[fQA,g>$B,g\ die Drehachse 0 des zum Lastkreuz gehörigen orthogonalen
Drehkreuzes. Die Lage der anderen Achse ist bedeutungslos, da der zugehörige
Drehwinkel verschwindet.

Die Rechnung wird in der Folge zahlenmäßig durchgeführt. Die Kolonnen
der mit 1., 2. und 3. Schritt bezeichneten Tafeln 1, 2 und 3 kennzeichnen wir
dabei mit [ ] und deren Zeilen mit Wir wählen wieder auf R einen beliebigen
Punkt A und bestimmen für jeden Pfahlkopf die Ordinaten xi,yi [1,2], welche
mit Ev 50 t/cm und Eh 25 t/cm multipliziert die «Gewichte» WVtA, Wh>A

ergeben [3,4]. Für einen 2. ebenfalls auf R liegenden Punkt B führen wir
dieselbe Rechnung durch [5, 6, 7, 8]. Es werden nach

Ya£a-XaVa=Ma, Yb£b-XbVb Mb (65,66)

die Richtungslinien der beiden Resultierenden $&Atg bzw. $>B,£ der WA bzw.
WB ermittelt, wobei die YA, XA bzw. YB, XB die rechtwinkeligen in z liegenden

Komponenten der <QAtg bzw. $$Big und die MA bzw. MB die Momente der
WA bzw. WB um A bzw. B sind (7). Zwischen den beiden Punkten A und B
bestehen außerdem 2 Lagenbeziehungen (8). Lösen wir diese 4 linearen
Gleichungen nach den £AB und rjA B auf, so ergibt sich die Lage des Drehpunktes
P (9). Wir ermitteln nun die Ordinaten ^ und rji dieses Punktes P für die zu
jedem Pfahlkopf gehörigen Koordinatenkreuze xi,yi [9,10] und drücken die
Pfahlkräfte Sv und 8h durch den Drehwinkel 99 auf lineare Weise aus [11, 12].
Ermitteln wir hierfür noch die rechtwinkeligen Komponenten ebenfalls als
lineare Funktion von cp, so ergibt sich der Drehwinkel 99 —0,001458, womit
die Pfahlkräfte Sv und Sh [13,14] und die entsprechenden Verschiebungen Av
und Ah folgen [15, 16]. Die Resultierende der Pfahlkräfte [13,14] muß wieder
R 247,16 t betragen. Setzen wir [15,16] in die Arbeitslinien der Fig. 9 ein,
so folgen die /SJ und 81 [17,18] mit den auf A bezogenen V° =101,87t,
H°= -77,69t, |22°| 128,11t und M°= -115,86tm als Resultierende. Wir
bestimmen noch auf analytischem Wege die Koordinaten aA 419,6 cm und
bA — 699,4 cm des Schnittpunktes Ax von R und R°. Bestimmen wir noch
durch Differenzenbildung die Zusatzkraft zu

mzus 49,52 t, Wzus - 110,04 t und I^J 120,67 t,
so haben wir den 1. Schritt des Rechnungsganges erledigt.

Wir berechnen nun für jeden Pfahlkopf die Elastizitätsmodule 1EV und
1Eh, indem wir die Av und Ah [15,16] des 1. Schrittes in die diesbezüglichen
analytischen Formeln der Fig. 9 einsetzen [1,2]. Hernach belasten wir den
Rost mit der im 1. Schritt berechneten Zusatzkraft 1RZUS. Dazu wählen wir
wieder 2 auf 1RZUS liegende Punkte Ax bzw. B± (Fig. 11), bestimmen die
dazugehörigen Gewichte WVtAl, Wh>Al [5,6], bzw. WVtBl, Wh>Bl [9,10] mit ihren
beiden Resultierenden !QAltg bzw. $frBltg und erhalten so wie im 1. Schritt im
Schnittpunkt [^Alf^Bl^] den Drehpol Px mit den auf B1 bezogenen Koordi-
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naten 1£Bl= —482,1 cm und 1rjBl= —787,9 cm (9). Nun bestimmen wir die
Koordinaten x£ und 1r) dieser Punkte auf die Systeme xi,yi[\l,\2'\ und drücken
die Pfahlkräfte XSV und 1Sh auf lineare Weise durch den Drehwinkel cpx aus.
Wir erhalten so cp± —0,002987. Damit ergeben sich schließlich die Pfahlkräfte
1SV und 18h [15, 16], welche als Resultierende ^it^l 120,87 t haben müssen.
Wir berechnen weiter die zu ^i^l gehörigen Verschiebungen 1AV und 1Ah und

1

addieren sie zu den Av und Ah des 1. Schrittes. Es ergeben sich die ^] [19, 20],
aus welchen mit Hilfe der in Fig. 9 angegebenen analytischen Formeln die
Pfahlkräfte 1S^ und 1S% folgen [21,22], deren Resultierende 1F°= 185,172t,
iH°= -121,981t, l1^0! 221,74t und 1M°= -5939,3tm beträgt. Wir bestimmen

wieder wie vorhin auf analytischem Wege die Koordinaten 1aA 327,7 cm
und 1bA —546,1 cm des Schnittpunktes A2 von R mit 1R°. Ermitteln wir
nun noch durch Differenzenbildung zwischen \R\ 247,16t und ^R0] 221,74t
die Zusatzkraft |2i^s| zu \2HZUS\ 5,23t und 2VZUS= -26,74t mit |2i^s|

27,25 t, so haben wir auch den 2. Schritt zu Ende geführt.
Es wurde noch ein 3. Schritt ausgeführt. Der Rechnungsgang ist genau

derselbe wie beim 2. Schritt. Die Zusatzkraft wird dabei auf |3i^ws| 1,97 t
gesenkt. Mit dieser Genauigkeit wollen wir uns begnügen.

In Fig. 11 sind alle Ergebnisse übersichtlich zusammengestellt. In [21,22]
haben wir die Endpfahlkräfte 2S° und 2$° nochmals angeschrieben. Vergleicht
man sie mit [13, 14] des 1. Schrittes, bei dem wir nur mit konstanten
Elastizitätsmodulen gerechnet haben, so kann man doch Unterschiede bis zu 10 %
feststellen. Andererseits ist aber das Gesamtpfahlbild viel ausgeglichener.

Trägt man, wie es in Fig. 11 getan wurde, in jedem Pfahlkopf die
waagrechte und lotrechte Verschiebung auf und fällt auf die resultierenden
Verschiebungen je eine Lotrechte, so müssen sich alle diese Lotrechten in einem
Punkte 0 schneiden, welcher den Momentanpol für die Fundamentbewegung
bei krummlinigen Arbeitslinien darstellt. Außerdem muß die Horizontalkomponente

der Verschiebung eines jeden Pfahlkopfes einen konstanten Wert
aufweisen. Dieser ist in unserem Falle 1,887 cm. Die verformten Pfahlköpfe
müssen alle in einer Geraden liegen. Die Drehung um den Momentanpol 0 ist
gleich der Summe von 99 + <p1 + cp2= —0,005592. Dasselbe Ergebnis erhalten
wir richtigerweise auch, indem wir die Differenz der VertikalVerschiebungen
der Pfähle 4 und 1 durch die Fundamentlänge dividieren (Fig. 11).

Außer diesen Kontrollen gibt es für jeden Schritt noch die sogenannten
Richtungskontrollen, die in den Tafeln 1, 2 und 3 auch durchgeführt wurden.

Schrifttum

Dr. Ing. Ernst Guuber, «Die Ermittlung von Bodenpressungen für Fundamente mit
prismatischer Standfläche». Schweizerische Bauzeitung, 11. Mai 1935, Seite 214.
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Zusammenfassung

Es werden mittelst einer gut konvergierenden Iteration allgemeine Roste
untersucht, bei welchen die elastischen Eindringungen der einzelnen Pfähle
nach krummen Arbeitslinien zunehmen.

Zunächst wird gezeigt, wie man durch Einführung von gedachten Hilfs-
pfählen mit nur axialen Reaktionsfähigkeiten auch die seitlichen Widerstände
eines beliebigen Pfahlkopfes erfassen kann, so daß wir unsere Untersuchungen
auf Roste mit nur axialen Widerständen beschränken können.

Erfolgen die Bodeneindringungen der Pfähle linear mit der Kraft und ist
der die Pfahlköpfe zusammenfassende Fundamentkörper vollkommen starr,
so führt dieser im Falle einer Belastung eine infinitesimale räumliche Bewegung
aus, die z.B. durch ein aus 2 zueinander windschief liegenden Drehachsen
bestehendem «Drehkreuz» beschrieben werden kann.

Führt man sogenannte «Gewichte» ein und reduziert sämtliche Kraft- und
Drehvektoren auf ein beliebiges Punkt-Ebene-Paar, so kann man

1. durch Bildung der Momentensummen um jeweils 4, nach gewissen Gesichtspunkten

ausgewählten Achsen, mit Hilfe der projektiven Geometrie die
Richtungslinien bv und b„ des obigen Drehkreuzes nur mit Zirkel und
Lineal konstruieren, und

2. durch Aufstellung und Nullsetzung der zu 2 beliebigen Richtungen gehörigen

orthogonalen Projektionssummen sämtlicher Kräfte für die Bestimmung

der Drehwinkel dv und d^ 2 lineare algebraische Gleichungen gewinnen.

Ein räumlicher Pfahlrost besitzt 6 Freiheitsgrade, aus welchen jeweils 6

lineare Bedingungsgleichungen gefolgert werden können.
Das oben geschilderte Verfahren entspricht analytisch der Spaltung dieser

6-gliedrigen Gleichungsgruppe in eine 4-gliedrige, die zeichnerisch, und eine
2-gliedrige, die algebraisch aufgelöst wird.

Erfolgen die Bodeneindringungen nicht mehr linear mit der Kraft, so
benutzen wir für jeden Pfahl beim v-ten Iterationsschritt des Rostes jeweils die
aus dem Kurvenstück 0 v und der anschließenden Tangente Ei v bestehende
Arbeitslinie, die sich immer mehr und mehr der vorgegebenen Arbeitslinie
des Pfahles anschmiegt (Fig. 1).

Dieses allgemeine Verfahren vereinfacht sich für gewisse Sonderfälle ganz
bedeutend. Einer von diesen ist der sog. ebene Pfahlrost, der bereits vom
Verfasser im Aufsatz der Schweizerischen Bauzeitung vom 11. Mai 1935,
Seite 214, behandelt wurde.
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Summary

The author studies in a general manner, by a definitely convergent iteration,
groups of piles for which the elastic penetrations of the various piles do not
increase linearly with the corresponding forces.

He demonstrates first of all that by the introduction of hypothetical
auxiliary piles, exhibiting only an axial reactional capacity, it is also possible
to study the lateral resistances of any given pile head; investigations may
thus be confined to piles which only exhibit axial resistances.

If the penetrations of the piles into the soil take place linearly as a function
of the forces exerted and if the foundation system which joins the heads of
the piles is perfectly rigid, then in the event of the application of a load, this
system performs an infinitesimal movement in space which may, for example,
be represented by a "cross of rotation" formed from two axes of rotation,
one of which is bent in relation to the other.

If "weights" are introduced and all the force and rotation vectors are
reduced to an arbitrary point-plane couple, it is possible:

1. To construct only with the compass and the ruler the lines of orientation
bv and b^ of the above "cross of rotation" by means of projective geometry,
by establishing the sums of the moments with reference to four axes selected

in accordance with certain considerations.
2. To obtain two linear algebraic equations for the determination of the

angles of rotation dv and d^, by establishing and cancelling out the sums
of the orthogonal projections corresponding to two arbitrary directions of
all the forces.

A three-dimensional group of piles exhibits six degrees of freedom, from
which it is possible to derive six linear equations expressing the conditions
to be fulfilled.

The procedure described above corresponds analytically to the dividing-up
of this set of equations with six components into a set with four components
which can be solved graphically and a set with two components which can be
solved algebraically.

If the penetrations into the soil do not take place linearly as a function
of the forces, then it is necessary to employ, for each pile, for the stage of
iteration of order v of the group, the force-penetration curve formed by the
portion of curve Ov and by the tangent Eiv joined to it, a curve which agrees
increasingly closely with the force-penetration curve provided for the pile
(Fig. 1).

This general procedure is simplified to a considerable extent for certain
special cases. One of these cases is that of the so-called two-dimensional group,
which has already been discussed by the author in the "Schweizerische
Bauzeitung" of llth May 1935, page 214.
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Resume

L'auteur etudie d'une maniere generale, par une iteration nettement con-
vergente, les groupes de pieux pour lesquels les penetrations elastiques des
differents pieux n'augmentent pas lineairement avec les efforts correspondants.

II montre tout d'abord comment, en introduisant des pieux auxiliaires
hypothetiques ne presentant qu'une aptitude reactionnelle axiale, il est
possible d'etudier egalement les resistances laterales d'une tete de pieu
quelconque; les investigations peuvent ainsi etre limitees ä des pieux ne presentant
que des resistances axiales.

Si les penetrations des pieux dans le sol se produisent lineairement en
fonetion des efforts exerces et si le Systeme de fondation qui reunit les tetes
des pieux est parfaitement rigide, ce Systeme effectue, dans le cas de l'appli-
cation d'une charge, un mouvement infinitesimal dans l'espace, qui peut par
exemple etre represente par une «croix de rotation» formee a partir de
deux axes de rotation dejetes l'un par rapport ä l'autre.

Si l'on introduit des «poids» et si l'on reduit tous les vecteurs d'effort et
de rotation ä un couple arbitraire point-plan, il est possible:
1. De construire seulment avec le compas et la regle les lignes d'orientation

bv et b^ de la croix de rotation ci-dessus, ä l'aide de la geometrie pro-
jeetive, en formant les sommes des moments par rapport ä quatre axes
choisis suivant certaines considerations.

2. d'obtenir deux equations algebriques lineaires pour la determination des

angles de rotation dv et d en etablissant et en annulant les sommes des

projections orthogonales correspondant ä deux directions arbitraires de
tous les efforts.

Un groupe de pieux tridimensionnel presente six degres de liberte, ä partir
desquels il est possible d'obtenir six equations lineaires exprimant les
conditions ä remplir.

Le procede ci-dessus indique correspond analytiquement au fractionne-
ment de ce groupe d'equations ä six elements en un groupe a quatre elements
qui peut etre resolu graphiquement et un groupe ä deux elements qui peut
etre resolu algebraiquement.

Si les penetrations dans le sol ne se produisent plus lineairement en fonetion

des efforts, il y a lieu d'utiliser pour chaque pieu, pour l'echelon
d'iteration d'ordre v du groupe, la courbe effort-penetration constituee par le
fragment de courbe Ov et par la tangente Eiv qui s'y raecorde, courbe qui
concorde de plus en plus etroitement avec la courbe effort-penetration prevue
pour le pieu (fig. 1).

Ce procede general se simplifie dans une tres large mesure pour certains
cas particuhers. L'un d'eux est celui du groupe dit bidimensionnel, qui a dejä
ete traite par l'auteur dans la Schweizerische Bauzeitung du 11 mai 1935,

page 214.
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