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An Application of Donnell's Theory of Circular Cylindrical Shells to
the Analysis of Curved Edge Disturbances

Application de la theorie de Donnell concernant les voiles cylindriques circulaires
ä Vetude des perturbations marginales sur le bord incurve

Anwendung der Donnellschen Theorie der Kreiszylinderschalen für die Unter¬

suchung von Randstörungen am gekrümmten Rand

IVAR HOLAND
Dr. techn., Technical University of Norway, Trondheim

Introduetion

The growing use of cylindrical shell structures in recent times has made
methods for the design of such structures desirable. Interest has so far been

chiefly centred on the calculation of straight edge disturbances, because of
their great importance to the design of concrete shell roofs.

Proper methods for the analysis of curved edge disturbances were first
given by Miesel [1]. At about the same time Flügge [2] established the three
partial differential equations of the complete theory of cylindrical shells and
developed the corresponding characteristic equation for curved edge
disturbances. The subject was also treated by Aas-Jakobsen [4] and by Olsen [7].
Olsen gave the roots of the characteristic equation of Flügge in closed form
and used his theoretical results particularly to investigate continuous shells.

The papers mentioned so far base the methods of design on the complete
theory. Sjöström [5] neglected relatively ummportant terms in Flügge's
equation. Thereby he arrived at a characteristic equation identical with that
obtained from the Donnell [3] theory. Later on, Hoff [8], Aas-Jakobsen
[10], Schmidt [11], Parme [12] and others have given methods of design
based directly on the Donnell theory.

The complete shell theory applied to the calculation of curved edge
disturbances has also been treated by the author [13]. In that paper the partial
differential equations of Flügge are solved by the aid of a stress function,
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and it is shown how closed expressions for the edge value relations and the
damping relations may be established, when terms of the order of magnitude
h/R are neglected. The final formulas are fairly simple, but the developments
are lengthy and complicated. The expressions found reduce to those pertaining
to the Donnell theory when 1 jwß is neglected compared with unity. Thus the
Donnell theory will in many practical cases be of sufficient accuracy. A
corresponding development based on this theory is given in the present paper.

1. Basic Theory

Fig. 1 shows an element of a shell with radius R and thickness h. The sides

of the element are dx Rd£ and dy Rdcp. On this element are acting the
forces shown in figs. 2, 3 and 4. As edge loads only will be considered, no
surface loads are assumed to act on the element. The displacements of the
middle surface are denoted as shown in fig. 5.

In the Donnell theory the moments and transverse forces are expressed
by the displacement w of the middle surface as known from the theory of
laterally loaded plates

M' °Kw+-w)- Q' s

02W

8V2w
dx '

8V2w

y
(i)

where K

dx dy'
Eh?

12(1—v2)*

v Poissons's ratio,
d2 d2

dx2 dy2
V2 —g + —g Laplace's Operator.

The extensional forces may be expressed by an Airy's stress function 0 as

follows:
d2<P d2& d2<P

iyx dy2> *<p dx2> ^xcp dxdy- w

Hooke's law gives the equations
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Eqs. (2), (3 a) and (3 c) yield

du
_

fd20 d20\ 1d2&\
Vdx2)'dx \dy2 dx2 Eh'

(4)
d2v d r ^^ 1 K }d2&~\ 1

' ' v ' 'dx2\ Ehdx2 dy

Eq. (3b) then gives the differential equation

^^K Ä dx2' K)

where F74^ F2F2d>.

From figs. 2 and 3 the condition of equilibrium normal to the shell surface
is found to be

dy dx R

which gives the differential equation

1 &®

The two equations (5) and (7), which are symmetrically constructed, constitute
the differential equations of the shell. When R increases indefinitely, the right
side terms reduce to zero, and the corresponding equations of the plane plate
result.

If 0 is eliminated from eqs. (5) and (7), one equation of the eighth order
is obtained:

Eh d±w ^

2. The Characteristic Equation

A Solution of eq. (8) is obtained by the Substitution

w 2>m(f)sinra<p, (9)

where | xjR

and m is an arbitrary number. For each of the unknown functions wm (£),

eq. (8) yields the differential equation

^_m2J4M,m(^) + 4c4!!|U|)=0; (10)

where c* =-^|* 3(1 -,¦)*. (11)
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Eq. (10) is solved by substituting

wm{^) Ce^, (12)

which gives the characteristic equation

(A2-m2)4 + 4c4A4 0. (13)

This equation is easily solved explicitly. From (13)

A2±(l±t)cA-m2 0. (14)

This second degree equation gives the eight roots

A= ±(a1±tj81), A= ±(aa±ij8a), (15)

where A is a reduced root
A - (16)
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Fig. 6. Roots of the Characteristic Equation.
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and furthermore

1 +171 + e2)1!* + ei1/*) ß, l (1 4- 171 4- €2W- - el^l
(17)

«i i { 1 + [(1 + e8)*'. + 6]V.}, & * {1 + [(1 + €»)V. - e]'/.}

«2 M-i + [(i+e2),/«+€]%}. & iO-KH-«8)1'-«]''•}.

A diagram of the roots is given in fig. 6.

Eq. (13) was first established by Sjöström [5] by neglecting relatively
unimportant terms in Flügge's equation [2]. Sjöström also gave roots
corresponding to those of eq. (17). The same equation has also been developed
by Aas-Jakobsen [10], Hoff [8], Schmidt [11] and Pabme [12] from the
Donnell theory, in a manner similar to the one used here.

Each of the two groups of roots given in eq. (15) contains one root in each
quadrant. As the prineipal roots are chosen

\ -a1 + iß1, A2 -<x2 + iß2. (19)

The eight roots are then:

Ai? —\, A1? — A1? A2, — A2, A2, — A2,

where z denotes a number conjugate to the complex number z. The prineipal
root is chosen with a negative real part to get the corresponding function ecX%

as a damped wave.
In the further developments, powers of the prineipal roots will occur. It is

more easily seen how these expressions may be simplified, if eq. (17) is written
in a different form. Let

a Ar Sine. (20)

Then

-,+1--<».©. e-a/2 + ißl= 2
"

A'—Hi). _ e-a/2 +1
ß*= 2

e-«/4Cos|^|

era^ Sin
(17a)

3. Characteristic Coefficients (Coefficients to the Constants of Integration)

The Solution of the differential equation (10) is

Cx — Cs are 8 constants of integration to be determined from the edge
conditions. These constants and the exponential functions are complex numbers,
whereas the deflection w is a real number. With new constants C, eq. (21)

may then also be written
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wm{£) B{C1e^( + C2e^ + Cse^i + CAe-^}9 (22)

where R {z} real part of z.

Eqs. (21) and (22) are of the same form as those used by Ltjndgren [6]
for calculating straight edge disturbances.

For each term of the series (9) the Solution of eq. (8) is then

w sinmcp R{Cxex^ + C2eA*f + C3e~x^ + C±e~x^}. (23)

This expression is substituted for w in eq. (5), yielding

& ^^sinmcp Rlc^fa
+ 032^(^-1^

(24)

This formula is most easily simplified when the formulas (17 a) are used for
the roots. Then

V <-«. + («'= 5 + 8in(f)-i[coe(2) + l],

X.»-<-«. + •*)*-|-Sin(|)-i[cos(|)-l],

(v-i)'- *KH+iHSi"(#

(25)

from which

2v(v-|)-2=i, 2v(aV-|)"2= (26)

The formulas (26) are easily seen to agree with eq. (13). Hence, eq. (24) may
be simplified to

0= (^^sinmcp^ (27)

Substitution of the expression (23) for w in eqs. (1), and the expression (27)
for 0 in eqs. (2) and (4), yields similar expressions for all statical quantities.
For an arbitrarily chosen quantity H the expression obtained may be written

H [H]R{C1H1ex^ + C2H2ex^±C3H1e-x^±C^H2e-x^}. (28)

[H] is a multiplier containing the function of 9 (cos m 99 or sin m 99) and factors
A. >s

depending on the dimensions and elastic properties of the shell. H1 and H2
are reduced quantites, which will be named characteristic coefficients. This
term was introduced by Ltjndgren [6] in the theory of edge disturbances
from the straight edge. As to the double signs, -f should be used for even
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quantities, i. e. quantities derived an even number of times with respect to |,
and — should be used for odd quantities. Thus, from eq. (23)

w1 1, w2 1

and from eq. (27)
#! », <Pa -t\ (29)

As eq. (28) contains the undetermined constants of integration, all multi-
pliers may be multiplied by the same factor without changing the result. It is

found convenient to have

[Nx] sin m cp.

To obtain this, all multipliers obtained by the procedure mentioned above
have been multiplied by the common factor

Furthermore, the notation

2Rc2
Ehm2

-i-£ <*»

is introduced. The detailed derivations needed to find all multipliers and
characteristic coefficients are omitted here. The result is given in table 1 where
the following quantities needed in the edge disturbance calculations are also

included:

The resulting transverse edge forces, found as in the theory of plates:

Rx Qx + 8-^f, Bv=Qq> +8-^. (31)

The angles of rotation in the direction of x or cp respectively:

&* Jx~' &* Jy-' (32)

The expressions in table 1 may also be derived from the formulas given
by Hoff [8] and by Aas-Jakobsen [10], when simplifications similar to those
of eqs. (25) and (26) are used. The only difference remaining is that the authors
mentioned give their formulas in real form.

In a previous work [13] the author has given characteristic coefficients
deduced from the theory of Flügge [2] by neglecting quantities of the order
of magnitude h/R. These coefficients reduce to those given above when 1/m2
is neglected when compared with 1. Hence, the errors of Donnell's theory
are of the order of magnitude hjR and 1/m2. The errors of the order of magnitude

h/R are of no importance whatever to the design of thin shells, whereas

a more exact theory may be needed in case of small values of m.
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4. Edge Value Relations and Damping Relations in Closed Form

When eq. (28) and the characteristic coefficients of table 1 are used,
relatively simple expressions are obtained for all statical quantities. These expressions

contain 4 complex constants of integration, that is 8 real ones, which
must be determined from the edge conditions.

At each edge there are 8 quantities which may occur in the edge conditions,
namely:

the forces Nx, NX(p and Rx;
the flexural moment Mx;
the displacements u, v and w;
the angle of rotation ftx.

Only 4 of these quantities are independent of each other. When any 4 of
them are given, the rest are determined by the equations of equilibrium and
compatibility. For each edge 4 equations of continuity may be established to
determine the constants of integration. When the characteristic coefficients
are known, these equations may be formed and solved numerically. However,
it is advantageous to proceed in a different manner. The first two exponential
functions in eq. (28) are found to represent waves damping out with increasing
values of £, whereas the last two functions represent waves increasing with
increasing values of £. The latter group of waves may be considered to originate
from the opposite edge. They are in many cases of little importance at the
edge considered and may at a preliminary stage be neglected. If necessary,
they are taken into account afterwards by superposition. Hence, eq. (28) may
be replaced by

ä ^ BiC&eM + Ctä^t}. (33)

The reduced value of H at the edge £ 0 is then

^0 Ä{C1Ä1 + Ca^a}. (34)

The quantities Nx, NX(p, &x and w are now assumed to be given at the edge.
The constants of integration may then be expressed by these edge quantities.
The edge quantities mentioned are chosen because they give the most simple
expressions. Eq. (34) yields

RiC.N^ + C.N^} Nx0, B^N^ + C.N^} Nxg>0,

B{GX #X1+C2 &x%) 40 B^w^C^} w0.
(35

Let
Cx Ax + iBx, (36)

C2 A2 + iB2.
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When the expressions of table 1 are used, eqs. (35) are then transformed
into the following equations

(37)

Bi - #2 NxO j

ßlÄ L ~ al Bl — ß2A2 +a2 ^2 -^xipO>

-ccxA L -ßl^l -a2^2 -ß2 ¦"2 ^x0>

A L + A2 w0.

or, in matrix notation

0 1 0 -1
~~

Ax Nx«

ßi -*1 ~^2 a2 Bx
yv l

AT

-*i ~ßl ~a2 -Ä A
1 0 1 0 _ _^2_ _^o _

The Solution of eq. (37 a) is easily found to be

A1 («2 + ft) 1 -1 -(«.-&)" — yv —
^xO

B1 1 -(«2-A) -1 -1 -(« » + Ä)
y\

AT

A2
~ 2 -K-Ä) -1 1 (<xi+A)

yv

&x0

_^2_ _-(«i+Ä) -1 -]L -(«i-/3i)_ J»0 _

(37 a)

(38)

When these constants of integration are used in eq. (33), the values of the
reduced quantities

$x> Nxcp> K and ™

are found at an arbitrary section expressed by the values of the same quantities

at the edge. The expressions obtained are of the form

Nx SllNxQ+H2Nx<p<> + SlzK<> + Sl±Wo>
yv yv yv yv

^ar<p S21^xO~^~S22^'x(pO~^S23'^x 0 + ^24^0 >

yv yv yv yv

*Ac «31^#0 + «32^x<p0 + «33 AzO^^^O'
™ «41 ^0 + «42 ^0 + «43 Ko + «44^0

or, in matrix notation

where the column vector

S {NX, NX(p, 3X, w},

(39)

(39a)

(40)

and S0 is the value of 8 at the edge. The matrix [sik], expressing the damping
of the vector 8, may be called a damping matrix. Proceeding in the manner
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described, one may find the elements of this matrix to be

«21

«31

.*41.

«12

«22

«32

S<42

i

*

¦(«2-J8«)
26

-26
(a2+&)

-1
(«i+Ä)

1

-26
-26

(«2-^2)

1

-(«i-A)
-(«i + )3i)

1

(«i+A)
-26

26

-(«i-Ä)
1

~{cc2-ß2)
(«i + ft)

-1

(«1-/S1)'
-26
-26

K+Ä)

7i"
/.
h

1 k
(««+&) h
(«t-ft) h

1 /4_

«13 ~ «42

«23 ~«32

«33 «22

_«43 _ —
«12 _

(41c)

«14 -«41
«24 ~~ «31

«34 «21

_«44_ *11 -

(41a)

(41b)

(41 d)

where
U e-«*ctcosß2c£,

/4 e-**^ sinj8ac£.
(42)

/x e-^^cosjSiCl,
/2 e-ai^sini81c|,

Eqs. (41a)—(41 d) show that only 6 of the 16 matrix elements, namely
«ii? «41? «12? «22? «32 an(l «42 need to be computed as a sum of 4 damped waves.
Then

s21 -2bs12, s31 -2bs4:2 (43)

and the remaining elements are numerically equal to those already calculated.

If the distribution of 8 is wanted with intervals £x along the shell, the
matrix [sik] needs to be calculated for one interval fx only. Then, at £ £x

51 [sik]S0. (44)

The are at € £1 may now be considered a new edge. Hence, at £ 2£x

52 [sik]S1 (45)

and so on. This method corresponds to one proposed by Zunz [9] for
calculating edge disturbances from the straight edge.

The value of S at an arbitrary are being known, the other quantities may
be calculated from 8 by relations independent of £. For £ 0 eq. (34) may be
used to express the remaining quantities by 8Q. As the origin of £ is chosen

arbitrarily, the relations obtained are valid not at | 0 only, but at an arbitrary
are. The resulting expressions may be written

u

v

L- 4_.

-(ai + a2)6 -{\-v)b 0

-(l-v)6 -£K + a?) *(&-&)
0 1(01-0.) l(a1 + a2)

_ (ßx-ß2)b 1 (l+v)6

(ßi-ß,)b ^x
1 #*,

(l+v)6 4
(«1 + «2) &_

— ^ —

(46)
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Rq,

K
Qx

Qv

l_^x„_|

b i («l + «2) -*(j8i-Ä) 0

0 —2^1""^ -^(ai + a2) -(l+v)b

0 -(i-D^-w -(i-!)(«,+«,) -*m<
0 0 0 1

(ßi~ß2)b 1 26 (ax + a2) 6

0 -*(j8i-A) - i K + «2) -26
0 0 1 0

#<p

U>

In abbreviated notation eq. (46) may be written

T [rik]S, (46 a)

where T is the column vector

T {ü, v, -Mx, Rx] (48)

and [rik] is the matrix in eq. (46). The vectors S and T contain the 8 quantities
which may occur in the edge conditions. Eq. (46) shows that the matrix [rik]
is symmetrical. This is a consequence of the theorem of reciprocal work.

In the case of interaction between two edges, the relation between the
vector T at an arbitrary generator and the vector 8 80 at the edge is needed.
This relation is found from eqs. (39 a) and (46 a) to be

T [rik][sik]S0 [ta]S0, (49)

where the new notation
tik [rik][sik] (50)

is introduced.
The proceeding of a shell design if one edge only is taken into account,

will then be as follows:

1. The actual edge conditions are used to form 4 equations between the edge
quantities 80 and TQ.

2. The matrix [rik] (see eqs. (46) and (46a) is evaluated numerically, and the
quantities T0 in the equations are expressed by S0.

3. The resulting 4 equations with 4 unknowns are solved, giving the quantities

S0. Most frequently the equations are easily solved by iteration.
4. The damping matrix [sik] (see eqs. (39)—(41) is evaluated for a chosen

interval £l3 and the vector S is calculated with intervals fx as far away
from the edge as may be found necessary.

5. The remaining quantities wanted are found from S by using eqs. (46)
and (47).

If edge disturbances from two edges interfere, the total influence is found
by superimposing the influences from both edges. Then 8 equations with 8

(47)
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unknowns result. In this case too, the equations are often easily solved by
iteration.

Notations

R shell radius
h shell thickness

x, y, g xlR, <p yjR coordinates

MX,MV bending moments
MX<P,MVX torsional moments
QX,QV transverse forces

RX, By resulting transverse edge forces

NX,NV normal forces

-^ xq)' ^ cpx
shear forces

Ac ' €<p ' Yxqp unit deformations
u, V, w displacements
&x> &cp angles of rotation
E modulus of elasticity
V Poisson's ratio
K Eh*

12(l-y2)
flexural rigidity

0 stress function

dx2 ^ dy2
Laplace's Operator

m arbitrary number
X root of the characteristic equatioj
oc,ß real and imaginary parts of A

¦-»(?)• dimensionless constant

a Ar Sin e dimensionless constant
e l/ra\26 4=2lT) dimensionless constant

^=/|V3(l-^) dimensionless constant

H arbitrary statical quantity
[H] multiplier of H
H reduced value of H
H0 edge value of H
A,B,C constants of integration
/l> /2' /3? /4 damped trigonometric functions (i

8 {Nx, Nxq), &x, w) column vector of statical quantities
T {ü, v, — Mx, Rx} column vector of statical quantities
[rik] matrix defined by T [rik] S

[sik] matrix defined by S [sik] S0

[tik] matrix defined by T [tik] S0
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Summary

The relations between forces and displacements in the Donnell theory are
given, and the differential equations of the shell are deduced. This theory is
used for a Fourier analysis of edge disturbances from the curved edge. By a
further analytical treatment of the Solution all statical quantities are
expressed in closed form by the edge quantities at one disturbing edge. Edge
disturbances from two edges may be treated by superposition. Matrix notation
is used to simplify the formulas.

Resume

A partir des relations indiquees dans la theorie de Donnell entre les efforts
et les deformations, l'auteur etablit les equations differentielles du voile. Cette
theorie est appliquee ä l'analyse par la methode de Fourier des perturbations
qui se produisent sur le bord ineurve. Une autre transformation analytique
de la Solution permet d'exprimer toutes les grandeurs statiques sous forme
finie, par l'intermediaire des valeurs marginales d'un bord perturbe. Les

perturbations marginales de deux bords peuvent etre traitees par superposition.

L'ecriture matricielle est employee pour simplifier les formules.
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Zusammenfassung

Aus den angegebenen Beziehungen zwischen Kräften und Deformationen
der Donnellschen Theorie werden die Differentialgleichungen der Schale

abgeleitet. Diese Theorie wird für eine Fourier-Analyse von Störungen am
gekrümmten Rande verwendet. Durch eine weitere analytische Umformung
der Lösung werden alle statischen Größen in geschlossener Form durch die
Randwerte des einen gestörten Randes ausgedrückt. Randstörungen von
beiden Rändern können durch Superposition behandelt werden. Die Matrizen-
Schreibweise wird zur Vereinfachung der Formeln angewendet.
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