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An Application of Donnell’s Theory of Circular Cylindrical Shells to
the Analysis of Curved Edge Disturbances

Application de la théorie de Donnell concernant les voiles cylindriques circulaires
a Uétude des perturbations marginales sur le bord incurvé

Anwendung der Donnellschen Theorie der Kreiszylinderschalen fiir die Unter-
suchung von Randstorungen am gekrivmmiten Rand

IVAR HOLAND
Dr. techn., Technical University of Norway, Trondheim

Introduction

The growing use of cylindrical shell structures in recent times has made
methods for the design of such structures desirable. Interest has so far been
chiefly centred on the calculation of straight edge disturbances, because of
their great importance to the design of concrete shell roofs.

Proper methods for the analysis of curved edge disturbances were first
given by MIESEL [1]. At about the same time FLtGaE [2] established the three
partial differential equations of the complete theory of cylindrical shells and
developed the corresponding characteristic equation for curved edge distur-
bances. The subject was also treated by Aas-JAKOBSEN [4] and by OLSEN [7].
OLSEN gave the roots of the characteristic equation of FLUGGE in closed form
and used his theoretical results particularly to investigate continuous shells.

The papers mentioned so far base the methods of design on the complete
theory. S3OosTROM [5] neglected relatively unimportant terms in FLUGGE’s
equation. Thereby he arrived at a characteristic equation identical with that
obtained from the DONNELL [3] theory. Later on, Ho¥F [8], AAS-JAKOBSEN
[10], ScamipT [11], PARME [12] and others have given methods of design
based directly on the DONNELL theory.

The complete shell theory applied to the calculation of curved edge dis-
turbances has also been treated by the author [13]. In that paper the partial
differential equations of FLUGGE are solved by the aid of a stress function,
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and it is shown how closed expressions for the edge value relations and the
damping relations may be established, when terms of the order of magnitude
h|R are neglected. The final formulas are fairly simple, but the developments
are lengthy and complicated. The expressions found reduce to those pertaining
to the DONNELL theory when 1/m? is neglected compared with unity. Thus the
DoNNELL theory will in many practical cases be of sufficient accuracy. A cor-
responding development based on this theory is given in the present paper.

1. Basic Theory

Fig. 1 shows an element of a shell with radius R and thickness . The sides
of the element are do=Rd¢ and dy= Rde. On this element are acting the
forces shown in figs. 2, 3 and 4. As edge loads only will be considered, no
surface loads are assumed to act on the element. The displacements of the
middle surface are denoted as shown in fig. 5.

In the DoONNELL theory the moments and transverse forces are expressed
by the displacement w of the middle surface as known from the theory of
laterally loaded plates

2w  w oVzw
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where sz’
v = Poissons’s ratio,
e L & aplace’ ¢
=W+8—gﬁ=' aplace’s operator.

The extensional forces may be expressed by an Airy’s stress function @ as
follows:

S S R T o
Hooke’s law gives the equations
& == (M= N,) 7
€y _§v+% (N, va)—E—l%, (3a—c)
ym—% %—2(1+V)Nw17717b.
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Eqgs. (2), (3a) and (3¢) yield
ou (62@ 82(D) 1

ox 3y2—vax2 Ew @
g;jg - —a—ay— [!72(15+(1 —'.—1')2—2:'3] Elh
Eq. (3b) then gives the differential equation
Vid = —E%L %, (5)
where Vid =212,

From figs. 2 and 3 the condition of equilibrium normal to the shell surface
is found to be

0 0 N
Q¢+ Qx+ (4

oy ox R 0, (6)
which gives the differential equation
1 2
4 - Lrd
Viw = B 3.2 (7)

The two equations (5) and (7), which are symmetrically constructed, constitute
the differential equations of the shell. When R increases indefinitely, the right
side terms reduce to zero, and the corresponding equations of the plane plate
result.
If @ is eliminated from eqs. (5) and (7), one equation of the eighth order
is obtained:
Eh ¢*w

8 — -
VPwt e m g

= 0. (8)

2. The Characteristic Equation

A solution of eq. (8) is obtained by the substitution
w = 2wy, (£)sinme, (9)
where ¢E=2/R

and m is an arbitrary number. For each of the unknown functions w,, (¢),
eq. (8) yields the differential equation

2 4 4
(%Z——mz) wm(§)+4c4a—1—gg4—(§):0, (10)
where gt = R2Ek=3(l—v2)—lf. (11)

4 K h?
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Eq. (10) is solved by substituting
w,, (§) = CeX, (12)
which gives the characteristic equation
(A2—m?)t+4ctAt = 0. (13)
This equation is easily solved explicitly. From (13)
A2+ (1+3)cA—m2 =0. (14)
This second degree equation gives the eight roots

A=t(a+iB), A=zt(x2ify), (15)

A
where A is a reduced root
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Fig. 6. Roots of the Characteristic Equation.
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and furthermore

o = 5{ 1+[(I+)rtehy, By = F{1+[(1+e)h—elh,
oap = F{— 1+ [(L+e)htelh, By =3{l—[(1+e)h—eh},

m\? o
622(——) : (18)
C

A diagram of the roots is given in fig. 6.

Eq. (13) was first established by SsosTrROM [5] by neglecting relatively
unimportant terms in FLUGGE’s equation [2]. SJ6STROM also gave roots cor-
responding to those of eq. (17). The same equation has also been developed
by Aas-JaxkoBseEN [10], Horr [8], ScumIDT [11] and PARME [12] from the
DoNNELL theory, in a manner similar to the one used here.

Each of the two groups of roots given in eq. (15) contains one root in each
quadrant. As the principal roots are chosen

A= —a+ify, Ay = —ay+iBs. (19)
The eight roots are then:

=~

’\1’ —Als )‘1’ _Al’ A27 —Az’ /\2: —Ag,
where zZ denotes a number conjugate to the complex number z. The principal

root is chosen with a negative real part to get the corresponding function eoXé
as a damped wave. _

In the further developments, powers of the principal roots will occur. It is
more easily seen how these expressions may be simplified, if eq. (17) is written
in a different form. Let

a = ArSine. (20)
Then

€2+ 1 a e 9241 a
4 = = e?* Cos (Z) ; B, = g = e~ Cos (Z) , e
17a

e¥2 —1 . [(a —e"42 41 a

= = a/4 —_ S —— _a/4 1 — "
o 3 e¥4 Sin ( 4) , Bs 3 e~ Sin ( 4)

3. Characteristic Coefficients (Coefficients to the Constants of Integration)

The solution of the differential equation (10) is
Wi, (‘f) = 01 eMé + 02 eheé + 03 e—Mé + 04 e—22§ + 05 eX1§ +

X X Y 21
+066’\2§+O7e—/\1§+086—)\2§. (21)

(', —Cg are 8 constants of integration to be determined from the edge con-
ditions. These constants and the exponential functions are complex numbers,
whereas the deflection w is a real number. With new constants C, eq. (21)
may then also be written
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Wy (€) = R{C,eME 4+ Cpehf 4 Cye b4 Opef}, (22)
where R {z} = real part of z.

Egs. (21) and (22) are of the same form as those used by LUNDGREN [6]
for calculating straight edge disturbances.
For each term of the series (9) the solution of eq. (8) is then

w = sinme R{C; eMé+Cyet2é+ CyeMé+ O e 28}, (23)
This expression is substituted for w in eq. (5), yielding
A A -2 A A —2
0 =—E2'—}cbé—1—?sinm<p R{012A12(A12—§) e>‘15+022)\22()\22—§) ehaf 4
_ (24)
s ofsa_ €\° M é Y242 62)\5
+C052A ()\1 —3) ™ +C, 2, ()\2 —-5) e~ }

This formula is most easily simplified when the formulas (17a) are used for
the roots. Then

A

A2 = (—oay+iBy)? = §+Sin(2) —i [Cos (2) + 1]
A% = (— oy +iBy)? = £ —Sin (%) i [Cos (%) _ 1] ,
O N R
3= oo o]

A A -2 A A —2
2)\12()\12—5) =1, 2,\22()\22_5) = 1. (26)

The formulas (26) are easily seen to agree with eq. (13). Hence, eq. (24) may
be simplified to

(25)

from which

D = (gth) sinmo R{C;ieMé—CyieMd+CyieMé—Cyie Mt} (27)
Substitution of the expression (23) for w in egs. (1), and the expression (27)
for @ in eqs. (2) and (4), yields similar expressions for all statical quantities.
For an arbitrarily chosen quantity H the expression obtained may be written

= [H]R{C, H,eMé+C, Hyehé + Oy H e Mé + Oy Hye o8}, (28)

[H] is a multiplier containing the function of ¢ (cosm ¢ or sinm ¢) and factors

depending on the dimensions and elastic properties of the shell. H and H
are reduced quantites, which will be named characteristic coefficients. This
term was introduced by LuNDGREN [6] in the theory of edge disturbances
from the straight edge. As to the double signs, + should be used for even
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quantities, i.e. quantities derived an even number of times with respect to ¢,
and — should be used for odd quantities. Thus, from eq. (23)

Wy =1, Wy =1
and from eq. (27)
b, =i, Dy=—i. (29)

As eq. (28) contains the undetermined constants of integration, all multi-
pliers may be multiplied by the same factor without changing the result. It is
found convenient to have

[N,] =sinme.

To obtain this, all multipliers obtained by the procedure mentioned above
have been multiplied by the common factor

Furthermore, the notation

= —— (30)

is introduced. The detailed derivations needed to find all multipliers and
characteristic coefficients are omitted here. The result is given in table 1 where
the following quantities needed in the edge disturbance calculations are also
included:

The resulting transverse edge forces, found as in the theory of plates:

_ O My oMy
R, =Q.+ 7y R, = Qp+— (31)
The angles of rotation in the direction of x or ¢ respectively:
ow ow
Ya=Tm Ty (32)

The expressions in table 1 may also be derived from the formulas given
by Horr [8] and by Aas-JAROBSEN [10], when simplifications similar to those
of eqs. (25) and (26) are used. The only difference remaining is that the authors
mentioned give their formulas in real form.

In a previous work [13] the author has given characteristic coefficients
deduced from the theory of FLUGGE [2] by neglecting quantities of the order
of magnitude #/R. These coefficients reduce to those given above when 1/m?
is neglected when compared with 1. Hence, the errors of DONNELL’s theory
are of the order of magnitude k/R and 1/m?2 The errors of the order of magni-
tude h/R are of no importance whatever to the design of thin shells, whereas
a more exact theory may be needed in case of small values of m.



73

Application of Donnell’s Theory of Circular Cylindrical Shells

w Yy )
b w800 — ——
' ! P8 1 ¢
NQ.&+N8| HQH\\+ﬁBI.. ss.ﬁzw%@,m &.%
26 1
1 1 &s::mm&ab@a m
9e
[(% =) § —q e+ D]+ (1§ + %) § [(3g +%°) § +q («+1)]2— (g — %) § - dusoo £ 211 a
19 A
Q(30 4 +10) 2 —2g 4 —1¢f] Qo4 +0)24Tga43g —] &Sﬁmwﬁm@l@@ n
€ A
[(cg —%0) §2— (% +%0) }] (« =) —q(+—1) [(g + 1) §2— (1 =) §] (1 =) +q(+—1) &smoo.\% s
[(2d 4 4+ 1g) Q —20] 2 — (30 a4 — T0) g + 3¢ — ) [(* a42g) g+ 0] 24 (0 4 —20) @+ T¢ &SSwWM&. ryq
(2 —=0) §2— (% +20) § — (tg+ 1) §2— (19 —10) § ssmoo_w %%
(0 —q)2+2d—q (o+q)e+Td+q9— &Sﬁmﬂw )
e 2+ 0 — e+t — ssmoowﬁummm bzpr
(g —e0) §2— (3 +50) § —qla+q— (1 + 1) §o— (1 — ™) §+qla+q— ?%mw “n
(e —o2) §2— (3 +20) §—q (e~ 1) (g +m) 21— (g —®) F+9(«—1) sssmm% 2y
NB@'NQ' .Uow\l_l._m\ &Smooy»”l\\ &SZ
[(og +72) § — g2 — (3§ —5#) § = [(1g = 1%) + )¢+ (16 +70) § burms g ‘N
g
? 79— d w urs TN
74 H zordrmy Lyyuend)

v

SIUPY [20]) 01ISULIIDIDY) PUD SUYAIYNTT ‘T 219D,




74 Ivar Holand

4. Edge Value Relations and Damping Relations in Closed Form

When eq. (28) and the characteristic coefficients of table 1 are used, rela-
tively simple expressions are obtained for all statical quantities. These expres-
sions contain 4 complex constants of integration, that is 8 real ones, which
must be determined from the edge conditions.

At each edge there are 8 quantities which may occur in the edge conditions,
namely:

the forces N, N, and R, ;
the flexural moment M, ;

the displacements u, v and w;
the angle of rotation &,.

Only 4 of these quantities are independent of each other. When any 4 of
them are given, the rest are determined by the equations of equilibrium and
compatibility. For each edge 4 equations of continuity may be established to
determine the constants of integration. When the characteristic coefficients
are known, these equations may be formed and solved numerically. However,
it is advantageous to proceed in a different manner. The first two exponential
functions in eq. (28) are found to represent waves damping out with increasing
values of £, whereas the last two functions represent waves increasing with
increasing values of £. The latter group of waves may be considered to originate
from the opposite edge. They are in many cases of little importance at the
edge considered and may at a preliminary stage be neglected. If necessary,
they are taken into account afterwards by superposition. Hence, eq. (28) may
be replaced by

H

(g7 = RAC Hyehé+ Oy Hy o8}, (33)

A=

The reduced value of H at the edge £ =0 is then
H,=R{C,H,+C,H,}. (34)

The quantities N,, N,,, ¢, and w are now assumed to be given at the edge.
The constants of integration may then be expressed by these edge quantities.
The edge quantities mentioned are chosen because they give the most simple
expressions. Eq. (34) yields

a (35)

R{Olﬁx1+02Nx2}=Nx0’ R{Olﬁxq)1+ozﬁx¢2}=ﬁwtp0>
R{C, ¢,,+C, gm} = {9\1:0 R{C; %, + Cyivy} = g

Let
01 - A1+iB1, (36)
Cy=Ay+iB,.
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When the expressions of table 1 are used, eqs. (35) are then transformed
into the following equations

B, - B, = -vao:
:31A1 — % Bl ‘"lngz +°‘2B = lfrxq;o: (37)
—aqd, —pB;, —ady, —BBy =y,
A, + A, = Wy
or, in matrix notation
0 1 0 —-17][4,] _J\Afgc(,{T
Bi —q —B: B, _ {\?xq)o . (37a)
—a; —By —ay — P, A, U0 ’E
| 1 0 1 0 _| LB,_| K2
The solution of eq. (37a) is easily found to be
_A1T B (o2 +Bs) 1 -1 —(“2_/32)_ —Na:o ]
By | _ 1] —(xg—By) —1 =1 —(g+py) ‘Zj\rxq)o . (38)
A, —(ay =By —1 1 (o +B1) z0
| B, _ _—(q+B) =1 =1 —(q—By)_| L _|

When these constants of integration are used in eq. (33), the values of the
reduced quantities

A

N

X

N

J 19 and @

are found at an arbitrary section expressed by the values of the same quan-
tities at the edge. The expressions obtained are of the form

A A A A A
N, =81Nuo+812N 50+ 813050+ S12 Wy
A A A A A
Nop = 821 Nyo+ 822 N yp0+ S23 V0 + S22 Wy » (39)
A A A A A
e = S31 N0t 832 N300+ 833050+ 834 Wy
A A A A A
W =8y Nyo+810 N p0+Ss30,0+ Saa Wy
or, in matrix notation
S = [8;2] 8o (39a)
where the column vector
A A A A
S={N,, N,,, &, w}, (40)

and S is the value of S at the edge. The matrix [s;;], expressing the damping
of the vector S, may be called a damping matrix. Proceeding in the manner
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described, one may find the elements of this matrix to be

[ sy | T — (g —B) (g + Ba2) (g +B1) (21— B1) h
s | 25 —2b —9b _2b f
o | T —2b _2b 25 _2b R
| Sa1_| | (p+B) (xa—B2) —(xq—B1) (q+PB1) | |_1s_|
s | [ =1 1 1 | R I A
Se2 | _ 1 (g +B1) —(g—PBy) —(xa—Bs) —(xx+ps) fa (41D)
832 = —B) —(+ph) (g +B2) —(xa—Po) fs |’
| Sao_| | 1 1 -1 1 1L f4_
S13 - Sa2 S14 - Su1
Ses | | —s s | -s
S el B F s | T s | *1
| 43| 812 S14 S11
where
fr = eefcos By e, fa = e=2°6cos Bycé,
fa = e @Esin B c§, fa=e¢sinBycé. (42)

Eqgs. (41a)—(41d) show that only 6 of the 16 matrix elements, namely
811> Sa1s S12> Sea, S3a and 84, nNeed to be computed as a sum of 4 damped waves.
Then
‘ 891 = —2b 845, 831 =—2bsy (43)

and the remaining elements are numerically equal to those already calculated.
If the distribution of S is wanted with intervals &, along the shell, the
matrix [s;,] needs to be calculated for one interval ¢ only. Then, at {=¢,

Sy = [8;] S,- (44)
The arc at £¢=¢, may now be considered a new edge. Hence, at £=2¢,
Sy = [83] 81 (45)

and so on. This method corresponds to one proposed by Zunz [9] for cal-
culating edge disturbances from the straight edge.

The value of S at an arbitrary arc being known, the other quantities may
be calculated from § by relations independent of £. For £ =0 eq. (34) may be
used to express the remaining quantities by S,. As the origin of ¢ is chosen
arbitrarily, the relations obtained are valid not at £ =0 only, but at an arbitrary
arc. The resulting expressions may be written

@ | [ —(ta)b —(1—w)b 0 (Bi—B)b | [ N, ]

b —(1=)b  —h(u+o) F(B—B) 1 Beo | 46
-M, 0 3(B1—B2) 3(q+oy) (14+v)b Py
| R, L (BB 1 (L+9)b  (q+o)b | L@ |
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th ] b 3 (o + ) —3(B1—B) 0 7
i, 0 —5(B1—Po) —5 (ot  -(1+v)b _
B
ﬁtp 0 ‘“(1—%) (B1—B2) —(1—5) (ory + at5) "4(1_5)(’ Nx
5, |~ 0 0 0 1 A:(p
Q.av (B1—B2)b 1 2b (g + )b ww
Qs 0 —3(B,—Bs) —} (o + ) ~2b -
m,, | L o 0 1 o _
In abbreviated notation eq. (46) may be written
T =[ry] S, (462)

where 7' is the column vector
T={, v, —M,, R} (48)

and [r;;,] is the matrix in eq. (46). The vectors § and 7' contain the 8 quantities
which may occur in the edge conditions. Eq. (46) shows that the matrix [r;,]
is symmetrical. This is a consequence of the theorem of reciprocal work.

In the case of interaction between two edges, the relation between the
vector 7' at an arbitrary generator and the vector § =8, at the edge is needed.
This relation is found from eqgs. (39a) and (46a) to be

T = [racd [8r] So = [t So> (49)
where the new notation
tie = (7] [Six] (50)
is introduced.
The proceeding of a shell design if one edge only is taken into account,
will then be as follows:

1. The actual edge conditions are used to form 4 equations between the edge
quantities S, and 7T'.

2. The matrix [r;] (see eqs. (46) and (46a) is evaluated numerically, and the
quantities 7'; in the equations are expressed by S,.

3. The resulting 4 equations with 4 unknowns are solved, giving the quanti-
ties S,. Most frequently the equations are easily solved by iteration.

4. The damping matrix [s,;,] (see eqs. (39)—(41) is evaluated for a chosen
interval ¢, and the vector § is calculated with intervals &, as far away
from the edge as may be found necessary.

5. The remaining quantities wanted are found from S by using eqgs. (46)
and (47).

If edge disturbances from two edges interfere, the total influence is found
by superimposing the influences from both edges. Then 8 equations with 8

. (47)
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unknowns result. In this case too, the equations are often easily solved by
iteration.

Notations
R shell radius
h shell thickness
x,y, E=x/R, p=y/R coordinates
M, M, bending moments
M., M,, torsional moments
Qs @y transverse forces
R, R, resulting transverse edge forces
N,, N, normal forces
N, Ny, shear forces
€2> €p> Vap unit deformations
w, v, w displacements
?,, &, angles of rotation
E modulus of elasticity
v Poisson’s ratio
K=_ZW flexural rigidity
12(1—2)

D stress function
V2= ;;2 + % Laplace’s operator
m arbitrary number
A root, of the characteristic equatios
a, real and imaginary parts of A
e=2 (%L)Z dimensionless constant
a=ArSine dimensionless constant

== % (%)z dimensionless constant

Ré/o—r . .

c =]/% V3 (1 —1?) dimensionless constant
H arbitrary statical quantity
[H] “multiplier of H
A reduced value of H
H, edge value of H
A, B, C constants of integration
f15 fas 3 fa damped trigonometric functions (see eq. (42))
S={N,, N @ 3, , W} column vector of statical quantities
T={a,v, —M,, R} column vector of statical quantities
[(7ir] matrix defined by 7' = [r,,]1 S
(S5 matrix defined by S = [s,;,] 8,

2 matrix defined by 7' = [¢,,] S,
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Summary

The relations between forces and displacements in the DONNELL theory are
given, and the differential equations of the shell are deduced. This theory is
used for a Fourier analysis of edge disturbances from the curved edge. By a
further analytical treatment of the solution all statical quantities are ex-
pressed in closed form by the edge quantities at one disturbing edge. Edge
disturbances from two edges may be treated by superposition. Matrix notation
is used to simplify the formulas.

Résumé

A partir des relations indiquées dans la théorie de Donnell entre les efforts
et les déformations, 'auteur établit les équations différentielles du voile. Cette
théorie est appliquée & ’analyse par la méthode de Fourier des perturbations
qui se produisent sur le bord incurvé. Une autre transformation analytique
de la solution permet d’exprimer toutes les grandeurs statiques sous forme
finie, par l'intermédiaire des valeurs marginales d’un bord perturbé. Les
perturbations marginales de deux bords peuvent étre traitées par superposi-
tion. L’écriture matricielle est employée pour simplifier les formules.
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- Zusammenfassung

Aus den angegebenen Beziehungen zwischen Kriften und Deformationen
der Donnellschen Theorie werden die Differentialgleichungen der Schale ab-
geleitet. Diese Theorie wird fiir eine Fourier-Analyse von Stérungen am ge-
kriimmten Rande verwendet. Durch eine weitere analytische Umformung
der Losung werden alle statischen Groflen in geschlossener Form durch - die
Randwerte des einen gestorten Randes ausgedriickt. Randstorungen von
beiden Réandern kénnen durch Superposition behandelt werden. Die Matrizen-
Schreibweise wird zur Vereinfachung der Formeln angewendet.
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