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Secondary Moments, End Rotations, Inflection Points and Elastic
Buckling Loads of Truss Members

Moments secondaires, angles de rotation, points d’inflexion et charges de flambage
des barres de treillis

Sekunddre Biegespannungen, Stabdrehwinkel, Wendepunkte und Knicklast von
Fachwerkstiben

KUANG-HAN CHU
Assoc. Prof. Civil Eng. Dept,, Illinois Institute of Technology, Chicago. Ill.

Introduction

The buckling loads of members in a truss with rigid joints are not as easily
predictable as those of members in a truss with frictionless pin joints. For the
latter case, each compression member is a simple supported column, for which
the critical buckling load can easily be found and, any combination of loading,
which will cause the stress in any of the compression members to reach its
critical value, will cause failure of the whole truss if statically determinate.
For a rigid jointed truss, because of the secondary moments involved, the
compression members will not act independently. The buckling loads of the
compression members are not reached until the combination of loading on the
truss causes instability of the whole truss. In this study, the word “truss’’ is
to be understood as referring to a statically determinate truss with rigid joints.

The truss buckling problem has been studied by various authors among
them James [1]!), LuxbqQuist [2], Horr [3,4], NiLEs and NEWELL [5],
WEessmMaN and KavanaeH [6]. The basic equations involved can be traced
back to MANDERLA’s paper in 1880 [7,8]. MANDERLA studies the problem of
secondary moments in truss members taking into consideration the effects
of axial forces in members. The relationship between the truss buckling
problem and the secondary moment problem, however, has not been fully
explored. The purposes of this study are (I) to clarify conceptions related to

1) Referring to the number of the reference listed at the end of the paper.
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secondary moments and the buckling phenomenon and (II) to study the
variation of such moments and the physical behavior of truss members under
increasing load up to the point of buckling.

The loads considered in this study are fixed in both direction and in position.
A group of such loads acting on a truss can be represented by their magnitudes,
Py, P,, P, ... etc. Take the magnitude of any load, say P,, as a reference
quantity. This reference load P, shall be referred to as ‘“the load’’ on the truss
considered. An “increase of the load’ P, from a certain initial value P,; to
APy, (A>1) shall be taken to mean the multiplication of the initial values of
all the loads simultaneously by the same A.

The study is based on the following basic assumptions: (I) the truss is
perfectly elastic and (II) the deflections of the members are small (ITI) the
members are initially perfectly straight and without end eccentricities. The
implications of these assumptions are clarified in the following discussions.

The first assumption implies that plastic buckling is not considered.
Although inelastic buckling has been considered by several authors [5, 6]. no
satisfactory solution has been found. Previous studies are generally based on
reduced moduli of elasticity. Such studies are valid only if the compression
member is straight up to the point of buckling. This is not true for truss
members, as they are bent by the secondary moments. The problem has also
been approached from the point of view that the buckling load of a member
can be taken as the load causing yielding stress at any point of the member.
If yielding starts at one end or at both ends, such yielding may cause local
buckling and plastic hinges to form. But it may not cause either the general
buckling of the member or the general buckling of the truss. Therefore, to
give a realistic picture, the member has to be considered as partly elastic and
partly plastic. As a satisfactory solution has not been found for this case, the
present study is limited to the scope of perfect elasticity.

The second assumption involves the governing differential equations which
expresses the relationship between bending moment and deflection. Let us
examine the following expressions:

M dzy
ET ~ ~dz*’ (1)
M dzy/ dy\?]"

BT = " a2 [H(d_az)] ’ (12)

where M = bending moment about a principal axis of a member, / = moment
of inertia about the same axis, £ = modulus of elasticity, y = deflection,
x = length measured along the longitudinal axis of the member from some
reference point on the axis. The more exact relationship is given by eq. (1a).
But eq. (1) is a good approximation if the deflection is small. The second
assumption implies that the eq. (1), not eq. (1a) is used for the analysis.
Theoretically, eq. (1) is invalid for large deflections and it will give a less
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perfect prediction of behavior of an elastic structure than eq. (1a). However,
it can be shown that eq. (1) is sufficient for all practical purposes. For example,
consider a prismatic bar of length L with simply supported ends and subjected

to an axial compressive force P. The critical load or the Euler load of this
baris P,= %I;H Now investigate the case when the bar is given a small lateral
displacement 4 at center of span and is subjected to an axial force P> P,.
Based on eq. (1), the resisting moment (E' 1 dg%;—/) will be smaller than the
bending moment P 4. This means that the deflection would increase indefi-
nitely. Using eq. (1a), however, it can be shown that the bar will be stable in
a bent form. Nevertheless, when P is only 1.59, greater than P,, the bar has
a deflection of 0.11 L at center span and a 20° slope at the ends [9]. No prac-
tical structure can remain useful under such deflection. Therefore, although
eq. (1a) may give theoretically correct results, it is considered as an unnecessary
refinement, and this study is based on eq. (1).

An estimation of the slope at ends of the members and an investigation of
the effect of the differences between arc length and chord length of the members
have been made in the course of this study.

The third assumption that the members are initially straight and without

end eccentricities also limits the scope of the present work.

Basic Equations

The basic equations relating secondary moments, axial load, deflection
curve, and end rotations, based on MANDERLA’s solution, follow [7,8]. These
equations are more or less well known. They are given in order to introduce
the concept, as well as the sign conventions and notations.

1. For Compression Members

M.. M
Y /1
P > \ : z, .+p _i *M)
/ 27/ / .

Vy y 4
\ K4 L Vi +P (Compression)
v
Fig. 1,
Referring to fig. 1,
M=M;+Py-V;e, (2)
BIYY M- M, —Py+V
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P P
and = Z‘ = —IWE, (5)
where A = cross-sectional area and r = radius of gyration of the member.
m?El w*EA
Let P=pA= 75 = T (Euler Load), (6)

then ¢=—271]/—-§ (7)

The solution of (3) with the boundary conditions ¥y =0 when =0 and x =L, is
y_:(th ¢~ Vw 295) 2(]527 M ;; COSQ(bx Mif+ Vijx (8)

P L P P
. _Mij—i-Mji . .
Since V;; == eq. (8) can be reduced to the following form:
. x . X
_ My Sm2¢(l_f)_Mﬁ szd)f_Mﬁ 1-Z +Mﬂx 9)
Yy="p Sin2 4 P “sin2g¢ P 17 A A
. dy _ dy _
Since %] . Tiis E—x_] T Tji (10)
the following expression can be derived
2E1
M’l:j L (2a 7' +bc T]l) (11)
(¢ :
where @ = 1—¢cot¢+00t¢ (12a)
_b (¢
and b, = s \T= g0t 4 cotd|. (12b)

The above expressions are to be used in this paper. But for small values of ¢,
the following expressions may be useful:

_ (2¢4)2 11(2¢)* .
@ =1-—35 25000 (12¢)
_ (2¢)*  13(24)*
and b, =1+ 60 + 25 000 + .- (12d)
limit ¢ =0, a,=b,=1. (12e)

2. For Tension Members

Changing P to — P in eq. (2) and (3), the following solutions can be found

i _z inh 242
_ My s1nh2q$(1 L)+ My sinh = . My - M= .
Y=7TP]  snnh2¢ |P| sinh2¢ ' |P| L)~ TP[ L’
where <f>=§ %IJ, (14)

and |P| = absolute value of P, since it is always taken as positive.
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2F1
M’l:]' L (2at7,”+bt’r ) (15)
where a _¢ ———9—5———+cothq5 (16a)
t7 4 \pcothg—1 ’
_¢(__¢
and bt = B W—Coth¢ . (16b)
The following expressions may be useful for small values of ¢
1. (28 1124
“=1+"30"""35000 * (16¢)
_ (24 13(24)
and b, =1 60 35000 (16d)
limit ¢ = 0, a,=0b=1. (16e)

3. Members with End Displacements

Let one end of the member be displaced with respect to the other end by
an amount 4 in a direction perpendicular to the length. Fig. 2 shows such a
member with resulting rotation BR=4/L in a positive direction.

y>

+P [ \L 'Q’./

/ V\’r 8 - 2}/ A
J 6 I~ ' 5
W ,43:;.";‘,4:/_/. /M/,' ’
L Vi
yy
Fig. 2,
The resulting equations for the end moment M ; are:
For compression members
2 E 1
M= ——[2a,(0,— B;)+b,(6; — R;;)],
2
= EI[Q 0;+b,0;— (2a,+b,) R;;], (18a)
2 E I
For tension members
2E171
M;; = I (20,0, +b,0,—c, R;;], (18Db)

where ¢, =2a,+b,, ¢ = 2a,+b,. (19a,b)
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It should be noted that eqgs. (18a) and (18b) correspond exactly to ordinary
slope deflection equations for the case ¢ =0. To find the secondary moments
in a given truss, we may first write down eqs. (18a,b) for every member. The
R values are known, as they can be found by drawing a Williot Diagram or
by other means (see later example). Since the joints are rigid, each joint has
only one rotation angle §. We may then set > M =0 at each joint of the truss.
For a truss of » joints, this results in » equations with » values of § as unknowns.
The equations are of the following form:

g1101+ 91202+ 91305+ ... = hy,
(20a)
Jo1 01+ 92000+ Go3 05+ . .. = hy,

where
1y =1,2,3... ete.,
g;; are numerical coefficients of 0;,
h; are constants equal to X ¢ R at joint 7+ where ¢=c, or ¢.

In matrix notation, eq. (20b) becomes
Go=H. (20¢)

From Maxwell’s reciprocal theorem, the following relationship exists
between the g values
9, =9; Wwhen ¢ 7. (21)

The secondary moments are found by solving for the 8 values from eq. (20)
and substituting these back into eq. (18) for the moments.

It should be noted that although R values are proportional to the external
loading (if we neglect the differences between arc length and chord length of
members), the values a,, b, c,, a;, b;, ¢, are not directly proportional to the
loading (i.e., the relationship between loading and these coefficients is not
linear). Thus the values of the g’s and A’s are not directly proportional to
loading. Therefore, there is no linear relationship between the loading and
the secondary moments.

The Condition of Instability and Stiffness Coefficients

Since matrix H will not be equal to zero, the set of simultaneous eqs. (20)
will have a unique set of solutions for § if the determinant of the coefficients
g;; of 6 is not equal to zero. If the determinant is equal to zero, then all §’s
become infinity and the whole system becomes unstable. Thus the condition
of instability (or the buckling condition) is the following familiar equation in
elastic stability:

Determinant G = |g,;| = 0. (22)
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Fig. 3. Stiffness Coefficients a., b;, a;: and b;.



24 Kuang-Han Chu

The value of g,; depends on the coefficients a,, b,, and a,, b, which are
referred to as the stiffness coefficients. These coefficients can be computed
from formulas (12) and (16) or from given tables or diagrams [2,5]. These
tables and diagrams are not entirely satisfactory, however. The coefficients
are given as stiffness and carry over factors. Due to the fact that at ¢ ~2.25,
a,=0, b,+0, the carry over factor b,/a, becomes infinite at this point. Thus
computations making use of these published coefficients would not give
accurate results in the neighborhood of ¢ =2.25.

Due to the above considerations, the writer prefers the direct use of the
coefficients a,, b,, a, and b,. The values of these coefficients have been plotted
in the diagram as shown in fig. 3. This diagram, besides giving a general
picture of the variation of these coefficients, could be read to 2 decimal points
and is found to be sufficiently accurate for slide rule computations.

. . L./ |P

Noting that since ¢ == %,

following observations can be made:

¢ increases as P increases. From fig. 3 the

I. As the axial compression P increases, the stiffness coefficient a,, decreases
continuously from +1 at ¢=0, becomes negative and equal to —oco when
¢ =m. Meanwhile, the stiffness coefficient b, increases continuously from +1
at ¢ =0 and becomes + co when ¢ =m.

II. As the axial tension P increases, the stiffness coefficient a, increases
continuously from +1 at ¢=0 and approaches ¢/2 for large values of ¢.
Meanwhile the stiffness coefficient b, decreases continuously from +1 at ¢=0
and approaches the value 1 asymptotically as ¢ approaches infinity.

III. The meaning of the stiffness coefficients, a,, b,, @, and b, can be best

understood by the following facts: For a compression member #j, the moment

at one end, say ¢, due to angular rotation 0; at the same end is equal to —‘l—g—{ac 0;;

meanwhile, the moment at the end 7, due to angular rotation 6; at the other
end is equal to %%1{ b.0;. If the member ¢j is in tension instead of compression,

we use a, instead of a, and b, instead of b,.

IV. It should be noted that no compression member in a truss could carry
an axial load more than P =4 P, (4 times the Euler buckling load of a simply
supported column) which is the buckling load of a column with fully fixed
2l P,

ends. Thus for any compression member in a truss, ¢= could never

exceed 7. (It is noted that at ¢ ==, a,= — 00 and b, = + o0).

An Illustrative Example

The above discussion of fundamental concepts may be familiar to those
who have been interested in stability problems. However, the main interest
of the writer is to demonstrate by an illustrative example, the relationship
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between secondary moments and buckling load, and the variation of these
moments as well as end rotations and inflection points in truss members under
increasing load. The example is chosen so that it requires rather simple com-
putations, yet it involves two members in compression and two members in
tension, each behaving differently.

B +4 D
(IO Xys5 *My
3 sy *68y
2P " - +Stress in
o @ =5 A &) Compression
@ @ @ A7 a’s = 60°
' 235, 4,=4,, 1,=1,

12 @ 23 202 @ Ay,

£ Ay~ Ag , L=I

1 ~%/2 ¢ %2
L V4 A=A, L= 1
56/ 25 7565/2
Fig. 4.

The truss considered is shown in fig. 4. The members are designated by
end letters and also by numbers. Thus member A4 B is also designated by (1),
its cross sectional area is 4, and its moment of inertia /,. Since the truss is
symmetrical, we have the following correspondence between members: (1)
and (7), (2) and (6), (3) and (5). The corresponding members have the same
area and the same moment of inertia. The interior angles between members
are designated by the members involved, for example «,, is the angle between
the member (1) and (2). The loading and stresses in members are shown in
the diagram with compressive stress as positive.

Table 1 gives the general equations involved. The subscripts 1,2... etec.
of the coefficients a,,, b,, etc. designate the members (1), (2) ... respectively.
The equations are general in a sense that they can be applied to the general
case of A+ A, +A;+A,and I, +1,+1,+1,.

Now let us first study the special case of 4, =A4,=A,=4,, I,=1,=1;=1,,
which is referred to as case I. The member proportions are not realistic. But
this case is chosen for an exhaustive study because the two compression
members involved, as will be shown later, are initially bent into different
elastic curves.

Table 2 shows the computation of R’s for case I. These values are computed
in the following way. First compute the change of an angle «;;, designated by
d a;;, by the following formula. (The sign of the value of & «,; is positive for an
increase in o).

S oy = (8;—8y) cot gy + (8; — Sy) cot oy, (23)

where members 1, j, k are 3 sides of a triangle; a;;, o, o, are interior angles
of the triangle between the sides 7 and j, ¢ and k, j and k respectively. S;, S;,
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Table 1. General Equations

By Symmetry 6.=0, 60, =—6g
2FET
Map = (2ac18a+bclsb_'3c1 Rl) T, L
2FE1
Moo = (2ae26a+0—cos Ra) =5 2
2KE1T
Mpya = (2a010b+b019a—001R1) 57 !
2E 1
Mye = (2aes6p+0—ces Bs) =5~
2E1I
Mpa = (2aca—bca) by 7 2
2E1
M = (be3s—ci3 Rg) T 2
2E1
Moo = (braba—cea Ro) 7~
I I L
2[acl+at2f] oa+bclob—[cclRl+ctszf] = sior Mar+Mad) = 0
N I3 I I3
be1a + [2a01+2ac4j‘;+2at31—_1"bc41—1] Oy — [Ccl Ri+ces Rsl—l]
L
= ‘Z—E"I—I(Mba'FMbc'fuMbd) =0

Table 2. Computations for R’s for Case I

Po
Ay=As=A3=A41=A4, Q=—-——
2V3AE
8« in terms of @ R in terms of
S oga =8 aus 4 R4 by Symmetry 0 Rs;= R3+ 8 ass -4
8 a13 = 8 57 2 R3= R4+ 8 oz 4 Re¢= Rs5+ 8 ase -11
S 12 = 6 we7 5 Ri=R3+ 83 6 Ry= Re+ 8 aer -6
& aa3 =38 ase -7 Ra=Ri+ 8 a1z 11 Rs=R7+ 8 as? -4
S ass -8 Rs= Ro+ 8 ass 4 Ri=Rs5+ 3 ass 0
S, are unit stresses in the members ¢, j, k respectively. Thus for angle oy,

opposite to side (5).

O ogy = [

VSAE 2V3AE

£ (B s
4, A5/ V3 E A, Ay V3E’
P, 4 P,

(for A=A4,=4,=4;).
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The R values are determined by assuming R =0 for one member. For any
other member, R is determined from summation of  «’s to reach that member.
Referring to fig. 4, due to symmetry, obviously E of member (4) is zero. Thus
we have

R, = 0
Ry = By +day (24)
R, = B3 +day3

Note that in the above equations, the + sign should be used if an increase in
« (positive & «) results in clockwise rotation (positive E) of the member.

Table 3. Equations for Case I

Ii=Is=I3=14s=1, ac1=0acs, be1=bcs, Cc1=Cecs
L _L}/?O— _ Ly Po ¢
¢—¢1—¢3—¢4—”2_ B’ ‘1’2_? ﬁf-ﬁ
2E1
Moy = (2ac18a+be10p—6ac1 Q)T
Moe = (2&52041—11062@)’2%{
2E1
Mya = (2ac10p+bc18,—6cc1 Q)T
2KET 2E1
My = (2at30b—46t3Q)“—L-a Mya = (2ac1—be1) O L
QBT 2E1
Mep = (bt30a_]-lct3Q)T, Mea = (br2ba—11ct2 Q) L

2(acl+at2) 0a+bc10s = (60c1+ 110;52) Q
be10a+(4aci+2ar3—be1)0p = (6cer+4ct3) Q@

Table 3 shows the equations for case I, which can be obtained directly
from table 1. Table 4 gives the coefficients for equations of case I and table 5
gives § and M values as the results of the solution.

The above computations including those for obtaining the coefficient a,,
b,, etc. were made on a desk calculator. With coefficients obtained from fig. 3,
solutions were carried out by slide rule. It was found that for this particular
problem, the slide rule solution was sufficiently accurate. The errors become
large as ¢ becomes larger. But the maximum error for the case ¢=2.2 is
only 59,.

Table 6 shows the computation of R values for case II, III, and IV. For
all these cases A,=A;=A4,=A4 and A,=A/2. As can be seen, the proportions
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Table 4. Coefficients for Equations of Case I

b Ge1= b G2= | g b Eeg = Oa+gin 0o = hi
¢ Qc1 I PO as2 t2 % amptbes ¢3 t3 2 ayatbis Jia Oatgin 0o Q
0 1 1 3 1 1 3 1 1 3 4 1 51
1 5 30
0.9147 |1.0445| 2.8739 {1.0403]0.9797] 3.0603 {1.0792(0.9613| 3.1197 | 3.9100 | 1.0445 |50.9067
/4 cot ¢=1 $2=0.5554, coth ¢ = 1.5249 1.0445 | 4.7727 [29.7222
coth ¢2 =1.9820
0.6168 {1.2336! 2.4672 |{1.1547/0.9285| 3.2379 [1.2936/0.8744| 3.4616 | 3.5430 | 1.2336 |50.4231
m/2 cot¢=0 $2=1.1109, coth ¢ =1.0904 1.2336 | 3.8208 (28.6526
coth ¢o=1.2432
0.4655 [1.3509| 2.2819 [1.1998(0.9105| 3.3101 [1.3742(0.8473} 3.5957 | 3.3306 | 1.3509 [50.1025
1.80 cot ¢ =-0.2333 do=1.2730, coth ¢ =1.0562 1.3509 | 3.2595 [28.0742
coth ¢ =1.1701
0.18921.6064| 1.9848 11.2651{0.8848| 3.4150 |1.4883/0.8070| 3.7893 | 2.9086 | 1.6064 |49.4738
2.10 cot ¢ =-0.5848 d2=1.4849, coth ¢ =1.0304 1.6064 | 2.1270 |27.0660
coth ¢z =1.1082
0.0648 (1.7310| 1.8606 {1.2886{0.8758| 3.4530 {1.5280/0.8012| 3.8572 | 2.7068 | 1.7310 |49.1466
2.20 cot ¢ =-0.7279 ¢2=1.5559, coth ¢ =1.0249 1.7310 | 1.5842 |126.5964
coth ¢ =1.0933
-0.0062 |1.8086 — 1.3009/0.8725 — 1.5487|0.7958 — 2.5894 | 1.8086
2.251 cot ¢ =-0.8089 ¢$2=1.5918, coth ¢ =1.0225 1.8086 | 1.2640
coth ¢2=1.0864 :
Table 5. 8 and M Values for Case 1
0 in terms of
: 2
¢ o In __Po Moments in terms of 2EIQ: fOI = P_OT
—| terms of |  @=_T=—— L V3AL V3L
7/ Po 2 g T 2V8AE
qS—— —— Tr
2 Pe Pe:’—L'z -
0a ob Mab Mac Mba Mbc Mbd Mcb Mca
0 — 11.8421 3.6316 | +9.316 | -9.316| +1.105| -4.737| +3.632| -8.368|-21.158
/4 0.25 12.0613 3.5879 | +8.569 | -8.569| +1.918| -4.734| +2.816| -9.030|-21.847
/2 1.00 13.0925 3.2719 | +5.381 | -5.381| +5.381| -5.381| O -10.986 |-23.536
1.80 1.31 13.8835 2.8590 | +3.096 | -3.096| +7.725| -6.525| -1.200(-11.960-23.770
2.10 1.79 17.1244 | -0.2081 | -5.763 | +5.763|+15.521|-15.777| +0.256(-15.325|-22.413
2.20 1.96 24.6381 |-10.1352 | -25.514 |+25.514(+30.171 {-46.402 |+16.231 |-23.549 |-16.405
2.251 2.05 + o0 — 0
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of areas of the members are more in accordance with those in an actual
structure. :

The assumptions for case II, in addition to the afore-mentioned ones
(namely, A, =A;=A,=A and A,=A4/2) are I,=I;=1,=1, and I,=1/2. The
solutions for case 11 are given in table 7.

The assumptions for case III are A;=A;=A4,=4, A,=4/2, I,=1,=1,
and I,=1,=1/2. Those for case IV are A, =A;=4,=4, A,=A4/2, I,=1,=1,
I,=1/4, and I,=1/2. The solutions for case III are given in table 8 and
those for case IV in table 9.

The elastic curves of the members at various stages of loading, based on
the results of case I, are shown in sketches in fig. 5. The values of end moments

Table 6. Computations for R’s for Cases 11, 111 and 1V

A Po

A1=Az3=A4=A As=—+ @QQ=—F"——

2 2V3AE

8 « in terms of @ R in terms of @
doza =98 auss 4 R4 by Symmetry 0 Rs= R3+ 8 ass -4
S 13 =10 a7 4 R3=R4s+ 8 asa 4 Re¢= R5+ 8 ase -12
S a12 = & g7 4 Ri=R3+ 6013 8 R;= Rg+ 8 aer -8
80(23230(56 -8 Ro=Ri+ 8612 12 Rs= R7;+ 8 as7 -4
d o35 -8 R3=Rs+ & as3 4 Ri= R5+ 8 auas 0

Table 7. Equations for Case 11 and § and M Values

I L]/P
hi=la=ILi=I, I=g, ¢=bhi=h=h=h=75 E'—I0

Ac1=0qc4, be1=bca, Cc1=Cc4a, ata=as3, bia=bs3, cta=cCs3

(2ac1+a:2)0a+bc10o=(8cc1+6¢t2) @
be10a+ (4ac1+2aia—be1) 0y = (8ce1+4ci2) @

6 in terms of
. 2
¢ Po in P Moments in terms of 2EIQ—_— Pol _ Por
—| terms of Q=——— L V3AL V3L
_m/Pol T gy 2V3AE
=—V = T
2 .Pe Pe=ﬁ
- Oa 0y M ap M qe My My My Mep Mea
0 = 12.43 4.71 +5.6| -5.6| -2.1| -2.6 | +4.7 | -7.31-11.8
0.785 0.25 12.68 4.65 +5.0| -5.0| -1.2 | -24 +3.6 | -8.0]|-12.6
1.57 1.00 13.91 4.30 +2.7 -2.7 +2.7 -2.7 0 -10.0 | -14.7
1.80 1.31 15.03 3.78 +0.9| -0.9| +5.5| -4.0 -1.5 | -11.2 | -15.1
2.00 1.62 17.77 1.90 -3.5| +3.5|+11.1| -94 -1.7 | -13.3 | -15.0
2.10 1.79 23.07 | -2.84 | -11.7 | +11.7 | +20.2 | -23.7 +3.5 |-17.4|-15.4
2.18 1.93 +00 -0
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and end rotations are also shown on the sketches. These sketches are made in
the following way. First, the original shape of the truss as shown in light solid
lines is drawn. Then the primary deflected shape of the truss may be drawn,
as shown in light dotted lines, considering only the lengthening and shortening
of members. This primary deflected shape is highly exaggerated but it gives
the R values of members in proper proportion to their actual values. Then
from the joints at the primary deflected position, short solid lines are drawn
making an angle equal to known values of 6 with respect to the original direc-
tion of the member. (See fig. 2 for reference.) The angles 6 are exaggerated in
the same scale as the R’s. The afore-mentioned short lines represent the
tangents to the elastic curves at ends of members. With the direction of the
end moments also known, the elastic curves can be sketched properly without
difficulty.

The locations of the inflection points as shown on the sketches are deter-
mined by the following equations. These equations are obtained by putting

%:0 using y from eq. (9) and (13).
. 2¢x sin 2 ¢
For compression members tan L ~ Btoos2g (25a)
2 inh 2
For tension members tanh pz _ _sinh2¢ (25b)

L B+cosh2é’
For ¢ — 0, the above equations reduce to

2¢x _ 24 z_ 1 (25¢)

L ~p+1 T Tayp

Table 8. Equations for Case 111 and 0 Values

ILi=14=1, Io=13=1/2, ac1=0ac4, be1="bc4, 6 in terms of @
Ce1=Ceca ¢ Py
I S S _L]/ Po —_1/9 0 0y
d1=do=cda=¢, ¢3—E EI/2_V2¢
(2@c1+ar2)8a+be18p = (8cc1+6cr2) @ 0 — | 12.55 | 4.36
2.05 |1.70 P, +© ~00

bcloa+(4acl+at3—bcl)9b = (80c1+2063) Q

Table 9. Equations for Case IV and 0 Values

Li=1=1, I2_=I/4, I3=1/2, pr=¢s=4, 0 in terms of @
be=¢a=124 ¢ Py

Ac1=0c4, be1=bca, Cc1=Cca, At2=at3, bra=1bys, o )
Ct2=0Ct3

(2aci+3at2)0a+be10p = (8ce1+3ci2) @ 0 T 11,53 4.66

ber b+ (4 a1 +arz —ber) 5 = (8 cer+2cr3) Q 1.99 11.60P,| 40 | -
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where x is measured from the end with the larger end moment, and B is the
ratio of the smaller end moment to the larger end moment of a member. (The
moment is considered as + when rotating clockwise.)

Sketches such as those shown in fig. 5 for case I can be drawn for all other

cases. The significance of these sketches will be discussed in detail in the next
section.

Q.\s"\’ 0m3L grpuL  0M3L

+16.2
~46.4
\Y
25507 y
=

+25.5 \\\ \\ 2
~ =
8;= 1712 4 ~alyy

6y =-0.21 -7, 4\

F-22 ¢

; V7. . P 2
8 in terms of 52br 5 Minterms of S5, oll Valves based on Toble 5
Fig. 5. Elastic Curves, End Moments and End Rotations for Case I.
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Discussions of Results

Let us start the discussion by referring to fig. 5 which shows the results
for case I.

1. The phase of $=0. The secondary moments and angular rotations
obtained in this phase are the same as those in ordinary structural analysis
and will be referred to as initial secondary moments and initial angular rota-

tions, respectively. Although ¢ =2V P,/P,, the condition ¢ =0 does not mean
p Yy g 5 ' Lo/ Le

that Py;=0, in which case there will be no axial stress and no secondary
moment. It only means that the axial load P, in the members A B and BD
is rather small in comparison with P, which is the Euler buckling load of
these members acting as simply supported columns.

It should be noted that in this initial case the two compression members
are being bent into elastic curves of different shape. A B is being bent into
an S-shaped curve while BD into one of single curvature. Both tension
members are being bent into S-shaped curves. The locations of inflection
points are also the same as those obtained by the ordinary structural analysis,
as both methods employ the same formula, eq. (25¢).

2. The phase of ¢ =m/4. In this phase (I) the angular rotation 6, becomes
larger and 6, becomes smaller than their respective initial values. (II) The
inflection point in member BC moves toward C and that in AC toward A.
The amounts of both shifts, however, are negligible. (II1) The inflection point
in A B is shifting toward the center of the member. (IV) The secondary moments
at joints A and C do not differ very much from their initial moments. But
the moments M,, and M, at joint B differ from their initial values by appre-
ciable amounts; M,, increases by 729, and M,; decreases by 229%,.

3. The phaseof ¢ ==[2(i.e. Py= P,).In this phase (I) 8, continuously becomes
larger and 6, smaller. (II) Significant shifts of inflection points occur in the
tension members: the inflection point in BC is moving toward C and that in
AC toward A, continuing the former trend. (IIT) Member BD is bent into a
single curvature with zero end moments. (IV) Member 4 B is bent into an
antisymmetrical S shape with equal end moments rotating in the same
direction.

It should be noted that at ¢=mn/2(P,=P,), there are only two stable
forms possible for any compression member. Member BD exhibits typically
one of the forms and member 4 B, the other. Theoretical explanations of the
behavior of these two members are given below.

Take the case of member B.D which is bent into single curvature. Suppose
that it is bent by equal but opposite end moments M,;= — M,4,. Then eq. (9)
could be reduced into the following form:
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_ Mpa
Y= PO COSqS (26)
My,
For x=1L/2, Ymaz = —p (secp—1). (26a)
0
(Note that eq. (26a) is the basis of the ordinary ‘‘secant formula’’.)
With ¢=m=/2, sec¢ = oo, then y,,,, = ©© when M,; + 0. (26b)

Therefore, the member is not stable if M, ;0.
Let us examine the case when M,;=0. By differentiating eq. (26), and

putting in the boundary conditions, %:Bh when =0, and %: — 6§, when

x = L, we have

7L ptand. (27)

0b=

For ¢ =7/2 and M,;=0, this is a form of 0 X co. Substituting eq. (27) into
eq. (26), we get

0, L cos¢(l——2£—c)—cos¢
Y=g sin ¢ '
For ¢ =n/2 and x=L/2, ymax=fi;£'

the member is stable when M,;=0.
It might be of interest to obtain the bending moment in such a member:

(28)

which is not equal to co. Therefore,

_ d*y 2E1 ¢ 2z
JII——EI(M2 =—7 Bbsin¢cos¢(l-——f). (29)
2E1
For x=L/2, Mmax—:—‘-L—ebs—i—I%—. (29&)
Eq. (29a) was discussed fully in the paper by PArRCEL and MURER [10].
a B I

For ¢==n/2, M, ... 6, which is also of finite value.

L

The above results with regard to deflections and moments at ¢ =/2 should
not be surprising to those familiar with the derivation of the Euler load. At
the Euler load, a column with simply-supported ends (zero end moments) is
in a state of neutral equilibrium. Thus it can be stable at deflected shapes
consistent with bending moment curves due to the axial load. Only when with
small increase of the axial load beyond the Euler load, if no restraining end
moment developes, then the deflection would increase indefinitely. Fortu-
nately, when P, is greater than P,, restraining moments will develop in truss
members as will be shown in the discussion of the next phase.

Take the case of the member 4 B which is bent into an antisymmetrical
S shape. For M, =M,,. Eq. (9) can be reduced into the following form:
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L S

which is stable at ¢ ==/2.

. . : 2¢x  sin2¢
The formula for inflection points tan L = Brcosdd

¢ =m/2 since B= + 1. Using 1’Hospital’s rule, we get

is of a form 0/0 for

2¢x cos2¢ cosm  +1 2dx wx w
tan—— = — — = =-——=00 =
L sin 2 ¢ sinr 0 L L 2

Hence x = L/2 is the location of the inflection point.

4. The phase ¢=1.8. In this phase, (I) the end rotations and (II) the
inflection point in member B (' continue the same trend as in the phase ¢ =/2.
(I1I) The inflection point in the member 4 B has shifted from the center of
the member toward B. (IV) Two inflection points symmetrical with respect
to the mid-point of the member have appeared for the member BD. The end
moments for this member have not only ceased to be zero but also occur in
directions opposite to the initial moments. These new end moments are the
restraining moments which prevent the member from buckling at P,=P,.

5. The phase ¢=2.1. In this phase (I) the angular rotations 6, and 6,
continue the same trend as before to an increasing degree. §, has increased
at a faster rate; 0, has decreased likewise and becomes negative. (II) The
inflection point in the member BC has shifted more toward C. (III) The
inflection point in the member 4 C' has disappeared and (IV) an extra inflec-
tion point has appeared in member A B near 4. What happened in (III) and
(IV) can be pictured as follows. The inflection point in the member A C has
continued its former trend: it first shifted to A4, then it continued to move
around joint A in the same direction, and finally it appeared as an inflection
point in member 4 B. (V) The original inflection point in member A B has
moved toward B, continuing the former trend. (VI) The end moments at
joint A have reversed in direction from the previous phase. This can be pictured
as a consequence of the shifting of the inflection points described in (ITT) and
(IV), which results in the reverse of the curvatures of the members in the
neighborhood of joint A. (VII) The inflection points of the member B.D have
shifted toward the center. (VIII) At the same time, the moments at the ends
of the member B.D have reserved in direction from the previous phase, and
as a result, the member has been bent into a shape in direct opposition to the
previous phase. What happened in this member can be explained in the
following way.

The end moments M,; and Mg, are given by the equation M,;= — M4, =

=(2a,—b,) Bbzllgl. The moments would change signs if either the coefficient

(2a,—b,) or the angle 6, changed signs. The coefficient (2a,—b,), changes



Elastic Buckling Loads of Truss Members 35

signs at ¢ =7 ( +forg <3, —forg> g) but 6,, though decreasing, remains posi-

tive when ¢ is somewhat greater than =/2. This first change of moment signs
from positive to negative has been noted previously. Now as 6, has conti-
nuously decreased, it has become negative (it would go to — co at the buckling
load) but the sign of (2 a,—b,) remains negative. Thus the end moments change
signs from negative to positive again.

Now the curvature of the member BD in the present phase is extremely
small due to small end rotations and end moments. In fact, as the load gradually
increases from ¢=1.8, the member tends to straighten, becoming perfectly
straight when 6, = —0;=0, then bends into the opposite configuration. Theo-
retically, there are two inflection points in this member even at §,= —0;=0
when the member is perfectly straight. These points must be considered as
limiting positions with respect to the condition that the angular rotation
8, (= —0,) differs from zero by an infinitesimal amount.

6. The phase ¢ =2.2. In this phase (I) 8, and 6, continue their previous
trends but more drastically: 6, has increased and 6, has decreased rather
rapidly. (IT) As before, the inflection point in BC has shifted more toward C.
(III) Continuing the former trend, the inflection points in BD are shifting
towards center, thus narrowing the distance between them. (IV) As before,
both inflection points in 4 B are shifting toward B, but the inflection point
near 4 is moving faster than the one near B. Consequently, the distance
between them also becomes smaller.

7. The phase ¢ =2.251. At this phase, the determinant of the coefficients
(referring to table 4) becomes equal to zero. (Actually, due to rounding off of
the value of ¢, the determinant becomes equal to 0.002). The 6’s then become
infinity and the final buckling condition has been reached. The buckling load
for the compression members A B and BC is given by

P,=2.05P, = 2.05”2;] = "2LE3[,
where L, is the “reduced length’’. In this case, L.=0.70 L.

It might be of interest to compare this length L, with the distances between
inflection points of the members 4 B and BD in the phase of ¢=2.2. In that
phase, the distances between inflection points of A B and BD are both equal
to 0.714 L. It becomes obvious that L, is the limit of distance between inflec-
tion points at the buckling load. (It is not the distance between inflection
points at any load.)

(31)

8. The difference between a compression member with applied end moments or -
constant end eccentricities and one with restraining end moments. At this point it
might be of interest to discuss what is the difference between a compression
member in a truss with secondary end moments and a compression member
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with constant end moments or end eccentricities. For both kinds of members,
the deflection y is given by eq. (9).

P sin2¢ P sin2é P L) P L’

. x . 2¢x
B Mi]' Sln2¢)(l—'f) M]..Sln—z——— M’L](l—x)+MJ’L x
However, except for this similarity, the actions of these two kinds of members
differ widely.

For members with constant end eccentricity or constant end moments
M;; and M, with the exception of cases in which M,;= —M;;=0 and M;;=
=M,;;+0, y becomes infinity at ¢==/2 (i.e. P=P,) since sin2¢=0. The
members with M;;= —M,;;=0 also have impending instability when P=F,.
Thus all such members, except the case in which M ;=M +0, would buckle
at P=P,.

For compression members in a truss, the end moments M;; and M;; vary
with the load in such a way that these members will not buckle at ¢=m=/2,
since at this instant, the end moments in all compression members become
either M;;= —M;;=0 or M;;=M,;+0. The members with M ;= — M;,=0 are
stable in this case because restraining moments appear at the ends as P
increases.

9. The effect of changing areas and moments of inertia in members. The pro-
portions of members in case 11 (4,=A4;=A4,=4, A,=A4)2, I,=1,=1,=1,
I,=1/2) are more in accordance with those in actual structures than in case I
(Ay=A,=A4;=A,=A, I,=1,=1,=1,=1). The results of computations for
case II are shown in table 7. It can be observed that the results for this case,
with few exceptions, are rather similar to the previous case. Note the following:

I. In this case, the two compression members, 4 B and B D, both are being
bent initially into single curvature, since at ¢ =0, M, and M, , are of opposite
signs and M,; and M, are of opposite signs. This is different from case I
where the member 4 B is initially bent into S shape while B.D is bent into
a single curvature. The same conclusion can be drawn for ¢ ==/4.

II. The changes of end moments and end rotations occurring when ¢ =x/2
and ¢ = 1.8 are rather similar to those that occurred at corresponding ¢ values
in case I.

ITI. At ¢=2.0, the signs of the moments M ,, and M ,, have been changed
from those at ¢ =1.8, while the signs of M,; and M ; have not been changed.
In case I, all these moments change signs almost at the same time as shown
in the phase ¢ =2.1.

IV. At ¢=2.1, the changes in § and M occurring in the present case are
rather similar to those in case I between ¢ =2.1 and ¢ =2.2.

The results of case III (4, =A4,=A4,=4, A,=A|2, I,=1,=1, I,=1,=1/2)
and case IV (4,=A;=A4,=4,4,=4|2,1,=1,=1,1,=1[4, I,=1/2)are shown
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in tables 8 and 9, respectively. From these results, it can be deduced that the
shapes of elastic curves are rather similar to those for case II.

A comparison of results from cases I to IV are shown in table 10. In this
table, 6,, and 6,, are initial end rotations (for ¢ =0); ¢, and P, are values of
¢ and P, respectively, at the point of buckling.

Table 10. Comparison of Results for Cases I, I1, III and IV

= L
Case | Cross-sectional Areas | Moments of Inertia | 6.0/@ | 6p0/Q W(};;CP_J Py /Pl % 17_1
21 P, VPer [P,
I | Ai=As=A3=A4=A| Ii=I,=1I3=1,=1 |11.84 3.63 2.25 2.05 | 100 0.70 L
II | Ai=As=A3=A, Li=1I3=14=1, 12.43 | 4.71 2.18 1.93 94 0.72 L
As=A/2 I,=1/2
IITI | A1=A2=As3=4, nLi=1,=1, 12.55 | 4.36 2.05 1.70 83 0.77 L
As=A/2 Io=15=1/2
IV | Ai=A:=A43=A4, Ii=14=1,1,=1/4,11.33| 4.66 1.99 1.60 78 0.79 L
As=A4/2 Is=1/2

Apparently, the values of 6,, and 6,, depend on the relative stiffnesses of
members meeting at a joint and relative lengthening and shortening of members
in the truss. However, no definite trend can be seen from the results of various
cases.

Nevertheless, a definite trend can be seen for the values of ¢,., P, and the
reduced length L,. As the stiffness in any member of a truss decreases, the
buckling load P, decreases accordingly. As P, decreases, ¢, decreases and
L, incereases. It should be noted that the AASHO?2) specification of L,=0.75 L
for riveted members appears to lie between cases 11 and II1.

10. The variation of angular rotations. The variation of angular rotations
with respect to ¢ has been discussed previously. However, this variation can be
shown more clearly by the curves of fig. 6. Fig. 6a shows the variation of 6
with respect to ¢ and fig. 6b shows the variation of 6 with respect to P, (in
terms of P,). Let 6 =u P, where u is a coefficient. It can be seen that, for the
example studied, p remains practically constant up to Py=509, P,., which
corresponds to ¢="719%, ¢,.. At P,=0.5 P,, p differs from its initial value
(say po) by about 109,. At P,=1759%, P,,, corresponding to ¢ =879, ¢,., the
difference is about 259%,. The value of u increases and decreases very rapidly
when P,> 759, P,,.

It should be noted, however, that one should not draw the conclusion that
p always increases or decreases monotonically. Fig. 7 shows the variation of 6

2) American Association of State Highway Officials.
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Fig. 6. 8 Variations for the Example Shown on Fig. 4.
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with respect to ¢ and P, for the example as shown in fig. 8. In this case, u
decreases slightly at first then increases to +co. At Py=509, P, , u differs
less than 59, from p,; and at Py=1759%, P,,, the difference is less than 109,.

But p increases very rapidly when P,> 75%, P,,.

11. The maximum moment in a compression member. Once the end moments
of a member have been determined, the moment at any point of the member

can be found by using the equation M = — £ 1 g—zg . By differentiating y given

by eq. (9) twice, and by substituting (%Lé)z = E%’ we have

Table 11. Equations for the Example in fig. 8

1 1 V3P,

Py
— = +<P0_P0)m— T SAR’

Po) v5im
2 ") V3aE
Rs=0, Ri=—-802=—R3=R, 6,=0

8a12=3a23=(—

P
Saiz= + ng%j'

2E1
Mab = (2acﬂa—CcR)——L—-
2EI
Mac = (2(1;—1),5)0,1 L
2EI
Mba, = (bcea—CcR)—E—‘

L
[2ac+ (2a:—b¢)]0a—cc B = Q—E,—I—(Mab+Mac)=O

L/ Py _ =/ Po
2V EI — 21 P,
L./ Py &

For a. and b, ¢1 =

212ET " y3

Also cc=2a.+b.

For ag and bt, (}52 = — 2at—b¢=¢2coth¢2

Table 12. Solutions for the Equations in Table 11

; : 2
¢ | Poin Coefficients in the Equations of Table 11 fa 10 | 3rin terms of V8 Por
terms terms L
¢l; of P= $a= i | g St 5 of R=
T 0 cO ai— Q¢ et
V|22 a bl T | e | 2ach L\ M | Mae | M
€ 12 VE 2 t c t—U¢ 24A F
0 — 1 1 1 3 3 1.000 | -1 +1 -2
#/4 | 0.25 | 0.9147| 1.0445]0.5554(1.9820/1.1008/2.8739| 2.9302 | 0.9808 |-1.0796|+1.0796 |-1.8495
#/2 | 1.00 | 0.6169| 1.2337(1.1107|1.2433(1.3809(2.4675| 2.6147 | 0.9437 |-1.3032|+1.3032|-1.3032
3w/4| 2.25 | 0.1755| 2.0051(1.6610(1.0749(1.7854/2.3561| 2.1364 | 1.1028 |-1.9690 |+1.9690 -0.1449
2.50 | 2.53 {-0.4733| 2.3923(1.7678(1.0600/1.8739(1.4377| 0.9273 | 1.5504 |-2.9053 |+2.9053 |+2.2713

cot ¢1 =-1.3387
2.661| 2.87 —0.9862] 3.1321)1.8816/1.0469/1.9710 ~0 + o0
cot 1 =-1.9182
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Mysin2g(1-2) My sin2E2
M= : S — (32)
sin 2 ¢ sin 2 ¢
. . adM
To get the maximum moment, setting ——=0 we have
x 2
COSZd)(l—-Z)—}-BCOST—O, (33)

Where B =1‘4'.”/1‘4.

i

from the end with M ;.

with the assumption that M;;< M, and z is measured

From eqgs. (32) and (33) we get M, .. as follows:
V1+2Bcos2¢ + B2
Mmaa: - Mij Sin2¢ . (34)

This equation with 8= —1 (i.e. M;; = — M ;) can be reduced to the following

form:
M., = M;secéd for f=—1, (34a)

which is the relationship used in deriving the ordinary ‘‘secant formula’’.
Eq. (33) can be reduced to the following form:

2¢x _ —(B+cos24)
tan T = Sn2gd . (33a)

As B varies from +1 to —1, we can put 8= —cos 2y. By letting 4=y +8 and
assuming 3 to be small, it can be proved that if 8 is negative, eq. (33a) would
give a solution of z/L > 1, which is not possible. Therefore, in order for eq. (33a)
to give valid solutions, 8 must be positive, which establishes the following
condition:

|24 - —fi]/%] > [2y = cos (= B)]. (35)

If eq. (35) is not satisfied then

The egs. (34), (34a), (35), and (36) form the bases of the AASHO 2) column
formulas which are based on a paper by Youna [11]. A summary of their
derivations is given above in order to show the relationship between this
study and the existing column formula.

12. The effect of the differences between arc length and chord length of members.
In the foregoing investigations, no consideration has been given to the effect
of the difference between arc length and chord length of each member. It
remains to be seen whether such a difference would affect the results of the
above computations. Let this difference for member ¢j be 8 L;;. Then a good
approximation of 8 L;; is given by the following formula.
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L du\2
1 y
0

Using y from eqs. (9) and (13), we have the following results:
For compression members

s, — Mo+ M) d3 [ sin2iyc082dy|  (Mij+ M)
“ “Pz? L;;sin?2 451‘1' 2éy; 2 Pz? Ly 38
_ M Myidl; [, sin2y (382)
P Lijcos® ¢y 245 1
For tension members
s, — Mo+ M)} [ sinh24icosh2s] (M + Mj0)*
4= P Lij sinh?2 ¢,; 2 ¢ij 2 Pz? Lij 33b
M-',;j qu; (f)f] [1 _ sinh 2 ‘IS’IJ] ( )
P2 L;;cosh ¢;; 2¢,; |
Using 6 and R as independent variables instead of M;; and M;;, the above
formulas can be changed into the following forms:
For compression members
6 L = %[Ol (0;+0;—2 R;;)>+ Cy (6, —6;)]. (39a)
For tension members
6 Ly = lLé] [C5(0;+0;,—2 Ry;)*+Cy (6, —6,)]. (39b)
In the eqgs. (39),
C, = Pi; 08¢ i + i cOb i — 2. c, = Pl 05¢* i — i cob iy
(L — ¢y cot by;)? b3 (40)
0. - $2; csch? ¢y; + dyj coth gy — 2 0 - dij coth s; — 2 csch? dy;
° (¢ij coth ;; — 1) ’ ! % '
_¢ B _ . B _ . B
Let Bi = E’iﬁ, 03 = gjﬁ, and 'R’U = fRZ—E—, (41)

where £;, £; and {5 are coefficients; P, is the reference load, and A is the cross-
sectional area of a reference member.

Ly Py 1 (Lu‘) Py

2 VEI; ~ 2 EA,

1

Since bij
Ty

we have the following identity:

R (P(,Az-,-y 143
= Y, 42
P;A (Lij/ 7"«cj)z (42)

AE
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Let the change in length of the member ¢j caused by axial stress only be
ALi.e.

Py Ly
ALy=50 (43)

r\ 8Ly _ (RAz® ¢4 [y _ 2 Cope sl
then 7 Ly (Pi:iA ) 4( Ly rs;)* [03 (€& 2¢) +04 (&4 J . (44

In the above equation, we use the coefficients C,; and C, only for compres-
sion members and the coefficients Cy and C, only for tension members.

The values of C,, C,, (5, and C, for ¢ from 0 to 7 are given by the diagram
shown in fig. 9.

3.5 [
3.0 /

2.5 /

2.0 1
/
15 r/
C..| /1
y
10
2.67 ] N e
os — =] C,.
- ——1 %
" 040 C
1 Jl
0 04 08 12 Z 20 24 28 7«
2

Flg 9. Values of 01, 02, 03 and 04.

From fig. 9 it can be seen that the values of Cj is in general smaller than
(,, and C, is much smaller than C,. Therefore, for a member subjected to an
axial force P, § L for P in tension will be smaller than § L for P in compression.
Also C, is much larger than C;. Therefore, a compression member with 6 at
two ends rotating in opposite direction will have a larger difference between
arc length and chord length than the same with ¢ at both ends rotating in the
same direction.

Some idea of the magnitudes of the values of 6 and % can be obtained
from the example shown in fig. 5. In this example, 1;0;42?= 1 for the compres-

sion members 4 B and BD. For both members take L/r =100 which is practi-
cally the minimum slenderness ration for the elastic analysis to be valid.
Consider the case of ¢ =2.2. We have 4 ¢2/(L/r)2=4x2.22/(100)2=19.36 X 104,
also C,=0.56, C,=1.86.
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For member BD
10.14

= ——— = — 2,93, .= +2.93, =0,
fz 2V3 f] §R
o oL
0, = —0.325°, —A—L—=O.77 % -
For member 4 B
24.64 +6
(i =+— =+7.12, ;= —2.93, =—— = +1.73,
‘ 213 ) ér 2V/3
o oL
0,': = +O.790 . 'A—L = 2.28 %.

It should be noted that the load corresponding to ¢=2.2 is very close to
the buckling load corresponding to ¢=2.251. Yet at this load, the error in
using 4 L instead of (4 L+6 L) for computing the axial deformation of a
member is rather small. Therefore, neglecting the differences between chord
length and arc length of a member would hardly affect the 6 and M values in
the above computations.

In fact, the axial stresses in bars in a statically determinate truss are
independent with respect to the change in length in members (4 L+8 L), if
one neglects the following effects: (I) the change in axial forces due to the
shears in members caused by the secondary moments and (II) the change in
geometry of the deflected structure. Since the axial stresses in members
remains the same whether or not the effect of 4 L+ 8 L is taken into considera-
tion, the values of a,, b,, @, and b, remain unchanged. Thus the values of g;;
in eq. (22) remain unchanged and, therefore, the buckling load for a statically
determinate truss remains the same.

The above conclusion, however, does not apply to statically indeterminate
trusses. For these trusses, one must take into consideration the effect of
(4 L+38 L). Consider the case of a redundant compression member in a stati-
cally indeterminate truss subjected to a certain initial loading. Now increase
the loading by proportional increments. Considering only the effect of 4 L
and neglecting the effect of 8 L, this member will always carry the same pro-
portional amount of a reference load at any instant. If, due to 8 L, the axial
deformation in this member is increasing at a greater rate than those in the
other members meeting at a common joint, then this redundant member will
carry proportionally less load and the other members will carry proportionally
more load. Thus it can be seen that in a statically indeterminate truss, not
only the effect of 4 L, but also the effect of 5 L should be considered. Since
the axial stress in every member depends on its (4 L+3 L), the values of
., b, a;, b and g;; depend on the same. Hence the buckling load depends on the
same. The effect of 6 L on buckling load in statically indeterminate trusses
has been investigated by MAsUR [12].
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Conclusions

From the above studies, the following conclusions might be drawn. Most
of the conclusions have been derived from the general principles. The few
exceptions which are derived from the specific examples discussed are stated
as such.

1. The secondary moments in truss members do not remain constant. As
the load increases, they change not only in magnitude but also in sign.

Note that in a general case, “the load’’ refers to the magnitude of a reference
load while all other loads on a truss can be represented by their respective
proportional constants times the reference load. The load considered are fixed
both in direction and in magnitude. An ‘“‘increase of the load’’ by a certain
proportion means the increase of all the loads simultaneously by the same
proportion.

2. When the axial load in a compression member in a rigid jointed truss
is equal to P, (Euler buckling load for the member as if it were simply supported
at ends), the member either bends in single curvature with zero end moments
or in antisymmetrical double curvature (S shape) with equal end moments
rotating in the same direction. Note that in a rigid jointed truss, P, is always
less than the actual buckling load, P,,, for the member.

3. The buckling load of a truss is reached when the determinant of the
coefficients in the set of simultaneous equations for angular rotations becomes
zero. This condition implies that under critical load all angular rotations
become infinity.

4. The curvatures of the members under increasing loads, as a consequence
of changes in secondary moments, change not only in magnitude but also in
direction. The initial deflection curve of a member, as determined by the
ordinary method of secondary moment computations, may be of single cur-
vature or of double curvature (S shape). But at and near the critical buckling
load, P,, the compression members will all bend into a type of curve as
shown by members 4 B and BD in fig. 5 with two inflection points.

5. The inflection points in members under increasing load, as a conse-
quence of change in curvature, change not only in location but also in number.
Initially, a compression member may have either zero or one inflection point.
But, as noted before, at and near the critical load, any compression member
will have two inflection points.

6. The reduced length L, of a compression member is the distance between
the two inflection points at the critical load (not at any other load). The
portion of the member between the inflection points acts like a column with

simply supported ends and the critical load of the member P, is given by
mEI
Lz -

7. The main difference between secondary moments in truss members and

applied end moments or end eccentricities is that the secondary moments

the formula P, =
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arise from restraints to the deflection of the member, while applied end
moments or end eccentricities in general exaggerate the deflection.

8. The difference between a compression member in rigid-jointed trusses
and a compression member subjected to constant eccentricities or moments
can also be seen from the fact that the former would not buckle at an axial
load equal to P, under any condition, while the latter will buckle unless the
end moments are equal and rotating in the same direction.

9. The effect of reducing stiffness in any member of a truss is to lower the
critical buckling load of the whole truss.

10. The relationship between the angular rotation 6 and the axial load P
in a member may be expressed by the formula § = P where u is a coefficient.
From the examples studied, it appears that p remains practically constant
up to P=0.5 P, but it increases or decreases very rapidly when P> 0.75 P,
where P,, is the critical buckling load of the member.

11. In computing the values of angular rotations and secondary moments,
the differences between arc length and chord length in members have been
neglected. It has been shown that the effect of these differences is rather
small. Also if one neglects the effects of shear in members and of the change
in geometry of the undeflected structure, these differences in length would
not affect the buckling load of a statically determinate truss. They should be
considered, however, in finding the buckling load of a statically inderterminate
truss.

12. The above conclusions are based on the assumption of perfect elasticity
and small deflection theory. It might be useful in predicting the behavior of
building or aircraft truss members of large L/r ratio. The problem of predicting
the real behavior of most of the truss members in buildings and bridges,
however, can only be solved after full development of the theory governing
the elasto-plastic behavior of members. The main purpose of this paper is to
furnish some insight into the behavior of statically determinate truss members
under the conditions prescribed by the above assumptions.

Acknowledgement

The writer wishes to express his appreciation to Prof. E. I. Fiesenheiser,
for his critical review of the manuscript.

References

1. B. W. James, ‘“‘Principal Effects of Axial Load on Moment Distribution Analysis
of Rigid Structures.”” N. A. C. A. Technical Notes No. 534, 1935.

2. E. E. Lu~npquist and W. D. KrorL, ‘“Tables of Stiffness and Carryover Factors
for Structural Member under Axial Load.” N. A. C. A. Technical Notes, No. 652,
1938.

3. N. J. Horr, ‘“Stable and Unstable Equilibrium of Plane Frameworks.” Journal of
the Aeronautical Science, January 1941.



46 Kuang-Han Chu

4. N.J. Horr, B. H. Boley, S. V. Narpo and S. KaurMaN, “Buckling of Rigid Jointed
Plane Trusses.”” ASCE Transactions 1951.
5. N. S. N1Les and J. S. NEWELL, “Airplane Structures.”” Vol. IL. John Wiley & Sons.
6. H. E. WrssmaN and T. C. KavanxacH, “End Restraints on Truss Members.” ASCE
Transactions 1950.
H. ManDERLA, “Die Berechnung der Sekundirspannungen, welche im einfachen
Fachwerk infolge starrer Knotenverbindungen auftreten.” Allgemeine Bauzeitung
1880.
8. Johnson, Bryan and Turneaure, ‘“Modern Framed Structures.”” Part II. John Wiley
& Sons.
9. C. T. Waxg, “Applied Elasticity.”” McGraw Book Company.
10. J.I. Parcel and E. B. MURER, “Effect of Secondary Stress Upon Ultimate Strength.”’
ASCE Transactions 1936.
11. D. H. Youxc, “Rational Design of Steel Columns.”” ASCE Transactions 1936.
12. E. F. MasUR, ‘“‘Post Buckling Strength of Redundant Trusses.” ASCE Transactions
1954.

~1

Summary

This paper presents a study of (I) the relationship between secondary
moments and truss buckling load and (II) the variation of such moments and
the physical behavior of members (such as end rotations and inflection points)
in statically determinate trusses under increasing load up to the point of
buckling. The study is based on the assumptions that the truss is perfectly
elastic, the deflections are small, and the members are initially straight and
without end eccentricities.

Résumé

L’auteur étudie la relation entre les moments secondaires de flexion et la
charge de flambage d’un treillis, ainsi que la relation entre les variations de
ces moments et les déformations (telles qu’angles de rotation des barres et
points d’inflexion) des barres dans les treillis isostatiques sous une charge
qui croit jusqu’au point d’instabilité.

11 est admis & titre de base que le treillis se comporte purement élastique-
ment, que les flexions restent faibles et que les barres sont initialement droites
et sans excentricité a leurs extrémités.

Zusammenfassung

In dieser Arbeit wird die Beziehung zwischen den sekundéiren Biegungs-
momenten und der Knicklast eines Fachwerks und die Beziehung zwischen
der Variation dieser Momente und den Deformationen (wie Stabdrehwinkel
und Wendepunkte) von Streben in statisch bestimmten Fachwerken unter
einer Last, die bis zum Instabilitatspunkt anwichst, untersucht.

Es wird grundlegend angenommen, dal das Fachwerk rein elastisch wirkt,
daBl die Durchbiegungen klein bleiben und dall die Streben urspriinglich
gerade und ohne Endexzentrizitidten sind. '

.



	Secondary moments, end rotations, inflection points and elastic buckling loads of truss members

