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Theory of Trusses

Theorie du treillis

Fachwerktheorie

S. O. ASPLUND
Prof. Dr., Gothenburg, Sweden

1. General Considerations

Theoretically, trusses are elastic structures made up of bars that are
connected to each other by end hinges or sockets, forming joints, upon which
the loads are applied. The bar-forces of simple trusses are analyzed by Cul-
mann's or Ritter's Method of Sections and by Maxwell's Force Diagram. The
joint-displacements are analyzed by Williot's Displacement Diagram and by
Mohr's Rotation Diagram. In the analysis of bar-forces in "complex" and in
statically indeterminate trusses, Henneberg's bar exchange method and the
force method for statically indeterminate structures are generally employed.

A matrix treatment of all these methods will be developed here. It will
reveal that Maxwell's force diagram and Williot's displacement diagram, when
properly applied to the same structure, are dual methods. Likewise, the method
of sections for determining the support bar forces and Mohr's rotation diagram
for satisfying the support displacement conditions are dual methods. Finally
a bar exchange method for displacements, dual to Henneberg's bar exchange
method, will be presented.

These duaiities in particular will show up by the fact that the matrices
that govern the corresponding dual force and displacement methods are trans-
poses. The main effort in the application of any of these methods lies in the
inversion of its matrix. If duality is taken advantage of, not more than one
inversion needs to be done for both dual methods. In other words, after the
inverse of the bar-force matrix is calculated, its transpose is applicable as an
inverse of the joint-displacement matrix. Thereby, a large amount of work
may be saved in the displacement calculation.
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The analysis of bar-forces in loaded trusses in space can be generally treated
by the method of writing three equilibrium equations for each Joint. Including
the support bars, a statically determinate truss contains three times as many
bars as joints J. Consequently, for such trusses the number of Joint equilibrium

equations suffices for solving all bar forces. This general method of
Solution requires the inversion of a square matrix of the same order 3 J as the
number of bars in the truss. For a medium or large truss this number is high,
so the method is generally numerically prohibitive to either hand or Computer
calculations. Other methods of solving the problem must be sought along the
lines taken by Maxwell and Williot.

Fortunately, trusses used in structures follow or nearly follow a definite
pattern that permits simple analysis. Such trusses therefore are called "simple".
This pattern is the following: In the plane, from a "base" of two joints 1, 2

with a connecting bar, each additional Joint j is fixed in a bipod manner by
two bars from any two of the previously established joints 1, 2, 3, j — 1, fig. 1.

In space, from a "base" of three joints 1, 2, 3 with three connecting rods,
each additional Joint j is fixed in a tripod manner by three bars from any
three of the previously established joints 1, 2, j — 1.

Under this definition the if-braced truss, fig. 2 a, and the subdivided truss,
fig. 2b, are simple trusses.

Whenever the build-up does not follow such a scheme, the truss is called
complex. A complex truss may often be reduced to a tripod truss by taking
away some bars and inserting the same number of new bars between appropriate

joints. The latter bars are called "exchange bars". The complex structure
may be analyzed by way of the simple structure so formed.

By supporting a free simple space truss or a "tripod truss" by six support

Fig. 1. Free Simple Truss.
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Fig. 2a. K-Braced Truss.
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Fig. 2 b. Subdivided Truss.
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bars, a statically determinate simple structure is obtained. A free "bipod
truss" in the plane must be supported by three support bars to form a statically
determinate simple structure. Otherwise the treatment of plane trusses will
follow the same general methods that will next be developed for trusses in
space.

2 a The Method of Joints

The joints in the free tripod truss are treated in the reverse order of build-up
of the chain, starting with the highest numbered Joint J and working toward
the base. Renumbering, temporarily, this tip by d and the opposite ends of
the connecting bars by a, b, c there will be three bars ad, bd, cd with unknown
forces, fig. 3.

9.3.7
"a c

Fig. 3. The Method of Joints: Solving Forces in Three Bars.

The direction cosines q a, (abc)1) of the bars ad, bd, cd, are written as
columns of a 3 X 3-matrix q. Joint d with the external load P is at rest when
Pi — EahcqiaNa 0, i l, 2, 3, or in matrix form together with Solution,

P~qN 0, N q~1P, (1)

that solves the bar-forces Na, Nb, Nc. The components q,aNa of the bar force
Na in the bar ad are subtracted from the external load components P at
Joint d and added to the external load components at the Joint a. The components

of the bar forces Nb, Nc, are treated analogously.
Thereafter, the next highest numbered Joint in the truss, d J — 1, will

contain only three unknown bar forces. Now it is possible to treat this Joint
in the same way as Joint J was just treated. The whole tripod truss can be

run through by this method. After all joints of the structure have been treated
accordingly, it is evident that each of the three load components at every
Joint should be reduced to 0. This forms a substantial check upon the whole
calculation as well as upon the calculation in article 3 a of support forces by
the method of sections.

*) The symbol (abc) indicates that three expressions are intended with a, b, c cyclically
permuted.
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2 b. Joint Displacements by Williot's Method

To gain the advantage of using in the deformation analysis the same
matrices as in the analysis of bar-forces, and particularly to gain the advantage
of using their inversion already found, it is most appropriate to undertake
the analysis of displacements in exactly the opposite order of joints as was
used in the bar-force analysis. A simple truss that "cantilevers" from its base

of three joints with zero or known displacements can be first treated by
Williot's method.

The primary analysis of diplacements starts from the three "base" joints,
1, 2, 3, the diplacements of which are known (or eise tentatively assumed)
and it proceeds to find consecutively the displacements of joints 4, 5, etc.

up to the highest numbered Joint J of the truss. Thus, at one instance the
displacement of the joints a, b, c, fig. 6a, is given by vectors u a, (abc), that
have three components each: ula, u2a, u3a. The three joints are connected

by bars to a fourth Joint. The bars ad, fig. 4b, elongate by A La and the dis-
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Fig. 4. Williot's Method, Solving the Displacements of a Joint.

placement of d is sought. The unit vector q a leading from Joint a towards
Joint d is the same as that which was used in the preceding analysis of bar-
forces. The component of ua, fig. 4b, along the bar ad is q*au a where q*a

denotes the transpose of the column vector q a. If the Joint at d is unmade
this is equivalent to a displacement of the bar-end from rf to e. Adding the
bar elongation A La, the bar-end moves to /. The distance df is also the pro-
jection upon q a of the real movement dd' or u d of the Joint d:

q*ud q*ua + ALa Ya. (2)

One such equation for each of the bars, ad, bd, cd, makes it possible to solve
the three components u d of the movement of the Joint d, or in matrices

q*u Y, u g~1* Y. (3)

Since the same joints and bars are used, q* is the exact transpose of the
matrix q of (1). The inverse calculated in (1) can also be used again in (3).

The calculation of joint-displacements in a simple truss that is not canti-



Theory of Trusses 5

levered from its base, as a rule must start by assuming three arbitrary movements

for the three joints at the base end of the free tripod truss. The method
can then be applied successively through to the highest numbered Joint in
the tripod chain. It yields in consecutive order all the Joint displacements.

3 a. The Method of Sections

In case the simple truss is not cantilevered from its base but is statically
determinately supported by six bars connected at three to six arbitrary joints,
the forces upon the truss from these six bars will first have to be determined
and introduced as Joint loads upon the free simple truss. Then the method 2 a
can again be carried through.

Consider a stable structure, statically determinately supported by six
support bars with hinged ends. Each support bar, a, (abcdef), fig. 5, is geo-
metrically defined by a radius vector q' a from an origin 0 to the support
Joint and by a direction unit vector q a along the support bar. The loads

(Tension) N-—^y__

Fig. 5. To Calculate Six Support Bar Forces.

upon the truss are reduced to a force vector r and a moment vector r' at the
origin 0 of a coordinate frame 012 3. This load upon the truss induces axial
forces Na in the six support bars. Their reactions upon the truss are included
among the external loads P upon the free structure. Its equilibrium demands
that2)

r-qN 0, r'-q'°qN 0. (4)

Writing

(5)*-£¦]¦ «-W
makes it possible to combine (4) into

R QN, N^Q-iR, (6)

2) The antisymmetric "vector matrix" Q°, contains
the three components of the vector Q in such a way that Q°
the product Q° q becomes the vector product of the vec-
tors Q and q.

[-S
0 -Q3
Q* 0

Q2 Qx
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by which the forces in all six support bars are solved. After this, the support
bar reactions —q.aNa are introduced among the external loads P upon the
free space truss, that is now balanced in equilibrium by the set of given Joint
loads and their support Joint loads.

3 b. Mohr's Rigid Rotation

If a simple truss is not cantilevered from its base, the truss is made free from
its supports. Compatible but otherwise arbitrary displacements of its base

joints are assumed and the displacement u of all joints found by article 2b.
Mohr's rigid rotation, embodied in his plane rotation diagram, is then super-

posed upon the Williot displacements u in order to make a structure satisfy
six displacement conditions at its supports.

This additional general rigid displacement, fig. 6, is a translation v and a

rotation v' about an origin 0.

Fig. 6. Mohr's Rigid Displacement to Satisfy Six Support Conditions.

The support joints are defined by radius vectors q[a, and the direction of
the support bars by the unit vectors q a. The movement of any support Joint
is given by the vector v + v'°q'a, (abcdef). To that is added Williot's
previously found displacement u. The resulting total movement along the bar
must be consistent with the elongation A La of the support bar.

q*(v-q'°v'+u) AL,

[g*, (?>)*] [*,] =AL-q*u Y, [^oJ*P T> V [v]

by (2), assuming the elongation A L of the support bar and u a to be zero.
This holds for six support bars. Then by (2)

Q*V= Y, V Q-^Y. (7)

For the same support bars it is immediately seen that the matrix Q* of
this system of equations is the transpose of the matrix Q of the method of
article 3a. The matrix equation is solved by inversion as indicated in (7).
This inversion was already made under article 3 a from which almost all
numerical computations that are required in the Solution of the problem of
this article thus can be borrowed.

0 i
V+V Qr
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4 a. Henneberg's Bar Exchange Method

The bar-force analysis according to article 3 a, 2 a cannot be carried through
in a complex (non-tripod) truss. For example, Maxwell's force diagram cannot
be drawn past the crown hinge of a three-hinged arch.

As a rule, it is possible by a comparatively small number of exchange
bars, defined under article 1, to transform complex trusses, fig. 7 a, that are
used in structural engineering into tripod trusses. The introduction of each

exchange or "Henneberg" bar implies that one bar i in the given complex
truss is severed, fig. 5b, and that another rigid bar r is introduced between
two appropriate joints.

Given complex truss
Given load P

Auxiliary truss
Given load P Loads Xf 1

; for
W

ö>/>
c^,

ver
;oB2\ NiP

<?h,
<$o

'Vo

«^
ce

a) b) c)

Fig. 7. Henneberg's Method: Solving Bar-Forces in Complex Trusses.

The loads P of the given complex truss are applied to this transformed
simple "auxiliary truss", fig. 7b. Since the auxiliary truss is a tripod truss
and possible of calculation, its bar forces NbP are first calculated. Then the
auxiliary structure is instead loaded by two equal and opposite axial forces
at the ends of the severed bar i, fig. 7 c, and its bar forces Dhi are calculated.
This is repeated for each severed bar i.

The forces in the given truss will now be simulated in the auxiliary truss
by loading this with the given loads P and by double axial forces Xi on the
ends of all severed bars, Xi being the axial force in this bar in the given
structure. Under such a-loading, the forces Nr in all the added Henneberg
bars become zero:

Nr NrP + ZI>H^i 0 (8)

ur in matrix form, together with Solution,

NP + DX 0, X ¦D^Ni (9)

After all values of X thus are solved, the force in any bar of the given complex
truss is contained in the formula

Nb NbP + ZDMXt. (10)

The treatment of bar-forces in statically indeterminate trusses will be deferred
until the section 6 of this paper.
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4b. Displacement Exchange Bars

In complex structures, the method of article 2 b, 3 b cannot be continuously
applied through the structure. For example, Williot's displacement diagram
cannot be drawn past the crown hinge in a three-hinged arch. Tu the analysis
of bar forces, the corresponding diffieulty can be overcome by the use of
Henneberg exchange bars. In complete analogy to that method, a dual
method of displacement exchange bars exists.

Given complex truss
with given AL

Auxiliary truss
with elong. AL with only elong. ALr /

eSs G.r.120 f2r
AU ßv/e

inj >B*rJ> ßa/V^.,
"•'•»<

*o 4£*hsu-lJ^ M.i&^ <**...

.620

V3)

Fig. 8. The Method of Displacement Exchange Bars: To solve the Displacements in a

Complex Truss.

if u.i2 \

AL
\il \

-~\V*„ Increase in gap Gt

Fig. 9

The sketch, fig. 8 a, represents some bars in a complex truss. In order to
make it a simple truss, suitable bars i are severed and the same number of
other rigid bars, r, are introduced, fig. 8b. In order to utilize the same matrix
inversion as in article 4, the same bars are again severed and introduced as
there.

This auxiliary truss is now "deformed", fig. 8b, by the same bar elonga-
tions A Lb as in the given truss. All Joint displacements ub0 in the
transformed auxiliary structure are determined by Williot's and Mohr's methods.
It is now possible to determine the increase Gi0 in the gap of every severed
bar, i, by the equation, fig. 9,

Gtio ?.?(w.iao-w.iio)-^i<» (n)
i 1 and i 2 being the end-joints of the bar i.
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Secondly, the auxiliary truss is deformed, fig. 8 c, by a sole bar-elongation
ALr=l. The Joint displacements ubr are first constructed according to
Williot-Mohr, and then the increases in gaps are calculated by the formula

(*ir $.i \U.i2r~M.ilr)*

This is repeated for each displacement exchange bar r.
Note that Maxwell-Mohr's work equation, see article 5, applied to the

two loading and deformation conditions of the identical auxiliary structures,
fig. 5 c and fig. 8 c, gives

-1-Gir + Dri-1 0, G D*. (12)

Thus the matrix G of this problem is the transpose of the matrix D of Henne -

berg's bar exchange method, article 4 a.

Applying, instead of unit elongations, individual elongations Zr to all the
exchange bars, and superposing their corresponding deformation upon that
caused by the given elongations A Lb in the auxiliary structure, the increase
of the gaps in the severed bars are ö^ + Z^r^- Specifically, all U can be
chosen so that all gaps will be increased by zero. This gives the matrix equation

G0 + D*Z 0, Z -D~1*G0 (13)

with the Solution as indicated. Its matrix was already inverted in article 4 a.

The exchange-bar elongations Yr thus found, it is again possible to calculate
the Joint displacements continuously through the truss. Otherwise, the
calculations already made can be used in conjunction with

uJb U.bO + ZU.brZr

to find the displacements of each Joint in the given truss. In the final stage
of the application of this method the severed bars i can be mended again
since their change in gap is zero; and all the introduced bars r can be removed
since their elongations are fully consistent with the displacements of their
end-joints.

5. Formulation of Maxwell-Mohr's Work Equation

A truss, fig. 10a, is loaded by given Joint loads and by their support bar
reactions P. All these loads induce bar-forces N in the truss. Ali loads P and
bar forces N that act upon a Joint will balance. Also, both forces N that act

upon the ends of a bar will balance the bar.
Entirely independent of these loads and forces, the truss is assumed to

undergo a deformation fig. 10b characterized by Joint displacements u' and
consistent bar elongations AU. In this deformation, the independent loads
and forces previously discussed in fig. 10 a will do Virtual work. The work
will be calculated and totaled for two different groupings of the same forces.
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First, all forces and loads acting upon one Joint are grouped together,
fig. 10 a, and moved by the independent displacement u' of that Joint in
fig. 10b. Since the forces are in equilibrium, their total Virtual work will be

zero. The total Virtual work for all other joints will also be zero: There are
no other loads or forces, so the total Virtual work in the truss is zero: V± 0.

\AH
a//\^V&

3)

W

Fig. 10. Virtual Work in Truss.

Secondly, the forces N acting upon each end of one bar are grouped
together, making for this bar a Virtual work of —NAL', where AU denotes
the elongation of the bar (that is consistent with its Joint displacements uf).
This work is calculated and totaled for all bars, leaving behind only the
external loads P that are applied at the joints. In their displacements u' these
loads produce the Virtual work P*u'. The total Virtual work in this second

grouping will be V2 -^NAU + J^P*u'.
Arraying all load and displacement components in two corresponding

3 Jx 1-matrices P, u'', and all bar-forces and bar-elongations in two
corresponding JSxl matrices N, AU, and equating the total Virtual work in both
groupings, the equation is obtained V2 0:

P*u' N*AU, Fe=F;. (14)

Equation (5, 3) is the famous work equation of Maxwell-Mohr. It teils
that the total Virtual work Ve of the external loads equals the total Virtual
strain work V* of the internal bar forces.

6. Matrix Analysis of a Statically Indeterminate Truss

Finally, the matrix Solution3) of a statically indeterminate truss by the
force method will be explained.

1. Fig. 11 represents, abstractly, a statically indeterminate truss under
various loads. Fig. IIa shows only two bars, i and b, of the given truss upon

3) S. O. Asplund, Matrix Formulation of Hyperstatic Analysis, Publication in Honour
of Professor Carl Forssell, Stockholm 1956, p. 19.



Theory of Trusses 11

which given external Joint loads P, temperature changes t, and initial strains
e0 are acting.

2. In the given truss, R redundant bars i are severed to obtain an auxiliary
truss, fig. IIb, that is statically determinate or simply calculable. For practical
reasons, such bars are severed that the auxiliary truss will afterwards need
a minimum number of exchange bars to be transformed into a tripod truss.

Given stat. indet. truss
Given loads P, t, eQ

Auxiliary rruss

*)

^
V

Given loads P

^0
MiP

X
Sjo

Auxiliary truss
Loads Xj - / "Load" P, t, e0 X;

*i'
«** o^

cf) e)

Fig. 11. Solution of Statically Indeterminate Truss.

3. This auxiliary truss is now loaded by the given loads P, fig. 11c, and the
bar forces NbP evaluated by the methods given in articles 2 a, 3 a, 4 a. In
doing this, the bar-forces may be evaluated separately for each independent
unit component of the load P and combined into a B xO-matrix A, where C
is the number of independent load components P. It is seen that the column
NP of bar-forces caused by the given loading P is equal to A P.

4. In the gap of a severed bar i, two axial loads Xi 1 are inserted, fig. 11 d.
With no other load on the auxiliary truss, the column Dbi of bar-forces are
calculated. This is repeated for each severed bar i. Aircolumns Dbi can be
combined into a rectangular i?x.ß-matrix D. It is seen that each column
of D is a linear aggregate of four columns of A, except that each element Dii
will be equal to one. (This D is not the same as D in article 4 a but can be
made to include it.)

5. Superposition upon the auxiliary truss of the given loading P and the
severed bar loads Xt (instead of one), results in bar forces Nb NbP + 2 Dbi Xi,
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or in matrices
N NP + DX AP + DX. (15)

6. The auxiliary truss is now loaded by the given "loads" P, t, e0 and by
the external loads X that are adjusted to make the change ui in gaps of these
bars all zero. Maxwell-Mohr's work equation is applied to the auxiliary structure

loaded as under point 4 and point 6. The work equation 2 P v>' 2 NA U
then becomes 1-0 £DbiA U, or

^Dbi(-WAbNb + ^tbLb + eobLb^ 0. (16)

7. Arraying Lb\EAb, tb, Lb, eob into diagonal matrices F, t, L, €0 this
last equation becomes

D*(FAP + FDX + ootL + €0L) 0. (17)

Premultiplication by (D* FD)-1 C solves X:

X= -CD*(FAP + wtL + €0L). (18)

This value is again inserted in the above expression for N, resulting in a final
closed matrix expression for all bar forces in the structure, as a linear aggregate
in the given loading P and the given temperature changes and initial strains.
In this equation all reference to the redundants X is eliminated:

N ={I-DCD*F)AP-DCD*{a>t + eQ)L. (19)

For an example of the application to hand calculation of this method
for calculating statically indeterminate trusses, the reader is referred to a
previous publication by the writer3). The method is practically applicable
to the Computer calculation of indeterminate trusses, either in conjunction
with the methods given here for solving statically determinate trusses or not.

Summary

A free simple truss is defined as a succession of tripods, each fixing a new
Joint by three bars from three previously fixed joints. The joints are numbered
in order of definition. The "base" joints 1, 2, 3 (1, 2 in the plane) are connected
by "base" bars. Six support bars, connecting "support joints" to foundation
hinges, make this free simple truss a statically determinate "simple" truss.
Any statically determinate (B — 3J 0) truss that is not simple is called
"complex". By adding bars to a complex truss any general statically indeterminate

truss may be obtained.
In the simple truss a 6 X 6-matrix Q of support bar geometrical elements

is established. It performs the counterpart in space to Ritter-Culmann's
method of sections. Q* also performs the counterpart to Mohr's method of
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rigid displacement. For each tripod a geometric 3 x 3-matrix q expresses the
counterparts of the main Operations in Maxwell's force diagram and in Williot's
displacement diagram.

In a loaded simple truss the support bar forces are first found by the
matrix Q~x. The bar forces are added to the support-Joint loads. This makes
a free simple truss in equilibrium under Joint loads. By the use of its matrix
q~1, the load upon the highest numbered Joint is distributed upon its tripod
bars. The components of these bar-forces are added to the load components
of the Joint loads at either ends of the three tripod bars. The next lower -

numbered Joint is treated similarly, etc., down to the base. All these calculations

of support bar and other bar forces are checked by that all Joint load
components are finally reduced to zero.

Base-joint displacements, compatible with the base-bar elongations but
otherwise arbitrary, are assumed. Given elongations of the bars from the base-

joints 1, 2, 3 to Joint 4 permit the calculation of Joint displacement 4 by the
use of the matrix g-1*. This analysis is continued in order of increasing Joint
numbers, 5, 6, etc., up to the highest numbered Joint. The support displacement

conditions are finally satisfied by superimposing Mohr's rigid displacement

of the whole truss, found by application of the matrix Q-1*.
A given statically indeterminate truss is analyzed by severing B — 3J

well chosen bars to obtain a statically determinate truss that is as little
complex as possible. By Henneberg bar exchanges it is further transformed
into a simple truss. The given joint-load components P applied to the simple
truss cause in its bars the forces AP, A being a (geometric) matrix obtained
by the preceeding method. Pairs of unit loads on the ends of each severed

Henneberg bar and on the ends of each severed redundant bar yield all rows
in (geometric) matrices D of bar-forces. Application of Maxwell-Mohr's work
equation combines A, D, P into a matrix expression for the column
matrix N of the forces in all the bars in a given statically indeterminate
truss. This expression gives N in terms of arbitrary joint-loads P, temperature

increases t and initial strains e0.

Resume

Le treillis libre du type le plus simple est defini comme une succession de

trepieds, dans lesquels chaque nouveau nceud resulte de trois noeuds anterieurs.
Les noeuds doivent etre numerotes suivant l'ordre de determination. Les noeuds
de base 1, 2 et 3 (1 et 2 pour treillis plans) sont associes par des barres de base.

Six barres qui assemblent les noeuds d'appui avec les articulations d'appui,
fönt de ce treillis libre du type le plus simple un treillis isostatique du type le

plus simple. Tout treillis isostatique (B — 3 J 0) qui n'est pas du type le plus
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simple porte la designation de «complexe». Par addition de barres dans un
treillis complexe, il est possible de le transformer en tout treillis hyperstatique.

Pour ce treillis du type le plus simple, on considere une matrice Q 6 x 6

pour les elements geometriques des barres d'appui. Ceci correspond dans

l'espace ä la methode des coupes virtuelles de Ritter-Culmann. Q* est egalement

la correspondante de la methode de Mohr des deplacements rigides. Pour
chaque trepied, une matrice geometrique 3x3 exprime la correspondante des

Operations principales dans le diagramme d'efforts de Maxwell et dans le plan
deplacement de Williot.

Dans un treillis charge du type le plus simple, les efforts dans les barres
d'appui sont tout d'abord definis par la matrice Q-1. Ces efforts sont addi-
tionnees aux charges des noeuds d'appui. Ceci donne un treillis libre du type
le plus simple en equilibre sous les charges nodales. Lorsque l'on emploie sa

matrice g_1, la charge sur le noeud d'ordre le plus eleve peut etre repartie sur
ses 3 barres formant trepied. Les composantes de ces efforts de barre sont

superposees avec celles des charges des noeuds aux deux extremites des 3

barres. Le noeud d'ordre immediatement inferieur est ensuite traite d'une
maniere analogue et ainsi de suite jusqu'ä la base. Tous ces calculs des efforts
dans les barres d'appui et dans les autres barres sont verifies par la condition
que toutes les charges nodales doivent en fin de compte etre reduites ä 0.

On considere en outre des deplacements des noeuds de base qui sont
arbitraires, sous reserve de compatibilite avec les prolongements des barres de

base. Les prolongements donnes des barres entre les points de base 1, 2 et 3

permettent, ä l'aide de la matrice g-1*, le calcul du deplacement du point 4.

Cette investigation est poursuivie suivant la sequence d'ordre croissant sur 5,
6 et jusqu'ä l'ordre le plus eleve. Les conditions de deplacement des appuis
sont ensuite satisfaites par superposition ä l'aide de la matrice Q"1* du deplacement

rigide de Mohr pour l'ensemble du treillis.
Un treillis hyperstatique donne est transforme en un treillis isostatique

autant que possible moins complexe, par Separation de B — 3J barres oppor-
tunement choisies. La transformation en un treillis du type le plus simple est

poursuivie par la methode de Henneberg de permutation des barres. Les
composantes donnees P des charges nodales appliquees ä ce treillis du type le plus
simple donnent les efforts A P dans les barres, A etant une matrice geometrique
que l'on obtient d'apres la methode precedemment indiquee. Des efforts
doubles aux extremites de chaque barre de Henneberg coupee et aux extremites

de chaque barre surabondante donnent toutes les series dans les matrices
geometriques H et D des efforts dans les barres. Par application de l'equation
de travail de Maxwell-Mohr, A, H et D sont combines sous la forme d'une
expression de matrice, pour la matrice en colonne N pour les efforts dans
toutes les barres du treillis hyperstatique donne. Cette expression fournit N
pour des donnees arbitraires concernant les charges nodales P, l'elevation de

temperature ou l'allongement initial e0.
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Zusammenfassung

Ein freies Fachwerk einfachster Art wird definiert als eine Folge von
Dreifüßen, mit denen jeweils ein neuer Knotenpunkt, ausgehend von drei
schon Gegebenen, bestimmt wird. Die Knotenpunkte sollen in der Reihenfolge
des Aufbaues numeriert werden. Die Basisknotenpunkte 1, 2 und 3 (1 und 2

für ebene Fachwrerke) werden durch Basisstreben verbunden. Sechs Stäbe, die
die Auflagerknotenpunkte mit den Auflagergelenken verbinden, machen aus
diesem freien Fachwerk einfachster Art ein statisch bestimmtes Fachwerk
einfachster Art. Jedes statisch bestimmte (B — 3J 0) Fachwerk, das nicht
einfachster Art ist, wird «komplex» genannt. Durch Addition von Stäben in
einem komplexen Fachwerk kann jedes mögliche, statisch unbestimmte
Fachwerk erhalten werden.

Für dasjenige einfachster Art wird eine 6 x 6-Matrix Q für die geometrischen
Elemente der Stützstreben aufgestellt. Dies entspricht im Räume der
Schnittmethode von Ritter-Culmann. Q* ist ebenso das Entsprechende zur Mohrschen
Methode der starren Verschiebungen. Für jeden Dreifuß drückt eine
geometrische 3 X 3-Matrix das Entsprechende der Hauptoperationen im Max-
wellschen Kräftediagramm und im Williotschen Verschiebungsplan aus.

In einem belasteten Fachwerk einfachster Art werden die Auflagerstabkräfte
zuerst mit der Matrix Q~1 bestimmt. Diese Stabkräfte werden zu den Auflager-
knotenlasten gezählt. Dies ergibt ein freies Fachwerk einfachster Art im
Gleichgewicht unter Knotenlasten. Mit der Verwendung seiner Matrix q~1

kann die Last auf den Knoten mit der höchsten Ordnungszahl auf seine 3

Dreifußstreben verteilt werden. Die Komponenten dieser Stabkräfte werden
mit denjenigen der Knotenlasten an beiden Enden der 3 Stäbe superponiert.
Dann wird der Knoten mit der nächst kleineren Ordnungszahl analog behandelt

usw., bis zur Basis. Alle diese Berechnungen der Auflagerstabkräfte und
anderen Stabkräfte werden durch die Bedingung, daß sämtliche Knotenlasten

endlich auf 0 reduziert werden müssen, kontrolliert.
Es werden weiterhin BasisknotenVerschiebungen, nur verträglich mit den

Verlängerungen der Basisstreben, sonst aber beliebig, angenommen. Gegebene
StabVerlängerungen zwischen den Basispunkten 1, 2 und 3 gestatten mit Hilfe
der Matrix g_1 * die Berechnung der Verschiebung des Punktes 4. Diese
Untersuchung wird in der Reihenfolge der steigenden Ordnungszahlen 5, 6 bis zur
höchsten durchgeführt. Die Auflagerverschiebungsbedingungen werden dann
erfüllt durch Superposition mit Hilfe der Matrix Q"1 * von Mohrs starrer
Verschiebung des ganzen Fachwerks.

Ein gegebenes, statisch unbestimmtes Fachwerk wird durch Auftrennung
von B — 3J geschickt gewählten Stäben in ein möglichst wenig komplexes,
statisch bestimmtes Fachwerk umgewandelt. Durch Hennebergs Stab
vertauschungen wird die Transformation in ein Fachwerk einfachster Art
weitergeführt. Die gegebenen Knotenlastkomponenten P an diesem Fachwerk ein-
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fachster Art angesetzt, ergeben die Stabkräfte AP, wo A eine geometrische
Matrix, die nach der vorangegangenen Methode erhalten wird, bedeutet.

Doppelkräfte an den Enden jedes geschnittenen Henneberg-Stabes und an
den Enden jedes überzähligen Stabes ergeben alle Reihen in den geometrischen
Matrizen D der Stabkräfte. Durch Anwendung der Maxwell-Mohrschen
Arbeitsgleichung werden A und D zu einem Matrizenausdruck für die Kolonnenmatrix

N für die Kräfte in allen Stäben des gegebenen, statisch unbestimmten
Fachwerkes kombiniert. Dieser Ausdruck ergibt N für beliebig gegebene
Knotenlasten P, Temperatursteigerung t oder Initialdehnung e0.


	Theory of trusses

