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On Boundary Conditions in the Bending of Thin Elastic Plates
Sur les conditions aux limites des plaques élastiques minces fléchies

Uber die Randbedingungen beim Biegen von dimnen elastischen Platten

A. WERFEL
Technion, Israel Institute of Technology, Haifa (Israel)

According to the classical theory all components of stress and strain in the
bending of a thin elastic plate can be expressed in terms of the deflection
w=w (z,y) of its middle-surface only. This is due to the omission of the influence
of the shearing forces on the deflection of the plate. The mathematical expres-
sion for this omission is the assumption, that in the first approximation one
may put the strain corresponding to the shearing forces

Yoz = Yae (€, Y, 2) = 0; Yyz = Yyz (x,y4,2) =0 (1)

throughout the region occupied by the plate. The classical theory proved to be
sufficiently exact because in most cases the shearing forces are indeed com-
paratively small and the assumption (1) is justified.

The solution obtained on the basis of the classical theory can be fitted
along each edge only to two boundary conditions: geometrical, statical or
mixed. The two conventional geometrical boundary conditions are (fig. 1a):

W=w(s) and G, =—7- =@, (s). (2)

But in connection with the statical boundary conditions a contradiction
inherent in the classical theory is found because three physical boundary
conditions (fig. 1b):

Vo(s)=Vx(s), H(s)=H*(s) and M,(s) =M (s) (3)

exist along each edge, whereas only two statical boundary conditions can be
taken into consideration. In the conditions (3) the symbols with the asterisks
denote loads (shearing force, twisting moment and bending moment respec-
tively), and the symbols with the bars — inner forces or moments appearing
at the edge.
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Since KIRCHHOFF this contradiction has been eluded, as known well, by
prescribing for each edge instead of the three physical conditions (3) the two
statical boundary conditions:

V. gl’——-Vn"‘—i-a—llr and M, = M¥. (4)
os ‘s

V,+

According to E. RE1SSNER the reduction of the boundary conditions from
three to two in the classical theory is due to the omission of the contribution
of the shearing forces in the expression for the strain energy of the bent plate.
This theory, which considers this contribution, allows for three boundary
conditions (statical, geometrical or mixed) along each edge. REISSNER’s theory
is doubtless more exact where the shearing forces are comparatively large
and their influence on the deflection cannot be neglected. This occurs for
instance in the vicinity of concentrated loads, in the neighbourhood of holes
the diameter of which is of the order of magnitude of the thickness A of the
plate etc. Apart from such special cases the results obtained from the classical
theory may differ from those given by the much more complicated theory of
RE1ssNER only by negligible quantities. In typical cases in which the shearing
forces are comparatively small the reason for the reduction of the boundary
conditions cannot therefore be due to the omission of the strains v,, and v,
corresponding to the shearing forces.

It- will be proved furtheron that a third physical boundary condition
always can be added to the two boundary conditions prescribed according to
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the classical theory by taking into account a perturbation of stress and strain,
which starts from the edge, and vanishes at a short distance from it. This
perturbation does not affect practically the deflection of the middle-surface
of the plate. This is the reason why the classical theory yields good results
though it does not consider this perturbation.

Considering the perturbation, the above mentioned contradiction can be
eliminated, and a new physical interpretation for the first of the conditions (4)
obtained. The interpretation for this boundary condition given hitherto
according to THOMSON (Lord KErLvIN) and TAIT is not entirely correct, as was
shown once upon a time by LovE. LovE himself gave another interpretation
which is however, essentially not different from the one he disproved, and
hence not more correct. The new physical interpretation given hereafter makes
both interpretations unnecessary.

The perturbation can be analysed exactly, and in a simple way in the

case where =const £ 0. This model case gives a sufficient hint for the

W
onos 2w
understanding of the general case, where —~— + const.

2w

In order to find the perturbation of the stresses in the case S const+0, |

the stresses in the rectangular plate 2ax2b (fig. 2) bent to a hyperbolic
paraboloid w= — 60z y, where 6 denotes a constant (the angle of twist), will be
considered.

Using the classical theory of plates the following stresses will be found:

In the section z = const, including the edges x= +a

6 .2 12(1—
Tee = 0 ’Txy=;b~2H—};= —"—(723—V)D0z=2G02; o,=0 (5a)
and in the section y = const including the edges y= +b.
Tys = 0; Tye = Toy = 2 G 02; o,=0 (6a)

where G =mq+—v) denotes the shear modulus, A the thickness of the plate, and

D the flexural rigidity of the plate.
Using for the same problem (fig. 2) St. Venant’s theory of torsion of a
bar with a rectangular cross-section 2a X k, the stresses

o B T Gt VN T VL
T=0; 7, =260z Gﬁszmzo(2m+l)zcosh ALILLS
2
-cosh( m—l}—bl)wxsin@m—;l)wz; g, =0 (5b)

appear in the sections x = const. which yields for the edges x= +a

Ty = 0; Toy = 0; o, = 0.
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In the sections y = const including the edges y = + b, act

B 8§ 1 (=1)m L@m+)ma . @m4+l)re  (2m41l)mz
Ty = —GOW—? Zom cosh 3 sinh % cos 7 ,

e o)

8 (—1)™ L (2m+1)7a @2m+1)nx
ST PR W Gl? S 1l .
Tw 2G62 77271{_;__10(27”_%_1)2cosh 5 cosh 3 (6b)
. (2m+1)y7mz
-sin-—————
h
o, =0.

Fig. 2.

Comparihg the expressions (5) and (6), it can be stated that the stresses
corresponding to St. Venant’s theory can be obtained from the theory of
plates by adding the perturbations:

oy = e = = G0R ) A= aogpo EMELTE,

*y w? = (2m+1) h
Osh(2m+1)7rxsin(2m+1)7rz’
h h
8 (-1 (2m+1) "
A A - ° - e 1 m 4 770,.
Tys = Toy = Gehw2m20(2m+l)2008h 3
sinh (2m-{}—bl)7rxcos(2m—|}-bl)7rz,

which start at the edges x= +a with the values 7,, (x= ta)=7,, (z= +a)=
=—2G0z and
8 1)m

A A o (— @m+D)ra  (2m+1)mz
Tyz = Tay = — G@h;r—z zom tanh 7 COS A .
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Remembering that for thin plates the ratio a/h is comparatively large it may
be concluded that the perturbation starting at one edge does practically not
interfere with that, starting at the opposite edge. Hence each of the edges
x= ta can be considered independently. Introducing for the edge x=a, the
coordinates n=x—a, s=y, 2=z (fig. 1), and putting

6(1—v)D *w

Goh =— e P it will be obtained from (7)
A . _48(1-w)D 2w « (—1)m G @mt )z (2mtl)an
Tns = Ten TTURRE T Gnas o 2mt 1) R
w (8)

~ . _48(1-»)D ow (—=1y» @m+Dwz  (2m+1)wn
Te T T TR Gnos e Rm ) K OPT R
The stresses 7,, at the edge (n=0) yield the twisting moment

A *w =

H = (1—V)D8n38 =—H. (9)

The variation of the additional stresses with z for n =0 is illustrated in (fig. 3)
in terms of

5 3 B\ _6(1-»D #% _ 6 ,

Ts"’"““’=TS”(n= 0’z=§) = T W omas Rl

o o T 2=0628h
7 QIQ

-7 0696 +

<+

4 0.742 + h
Sl [ @]J 7

7 0696 +
<|s
7 ~ 0 ~ S
Zsn Gz 1z
Fig. 3. Fig. 4.

The width ¢ of the edge strip affected by the perturbation does not exceed
practically twice the thickness of the plate because the extreme values of
Ten and 7., become for n < —2h less than 0,0015 (7?5 ﬁ) The resultant of the
stresses 7,, and 7, appearing in the section s = const can be obtained by
integration. It amounts to

on
onos’
and acts (fig. 4) at the distance ¢=0,628% inwards from the edge. Its sign is
the same as for the shearing force V, acting in the sections s = const.

Wl=H=-H=(1-vD (10)
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It shall be emphasized that the shearing stresses 7,, and their resultant
[V.], which are quite independent from the deflection of the plate, cannot be
identified with those shearing stresses =, which are by means of their resul-
tant i.e. the shearing force V, connected with the deflection of the plate. The
shearing stresses 7., (fig. 3) do not vary with z, according to a parabola of
second degree as assumed for the shearing stresses 7.

By superposition of the perturbation on the stresses correspondlng to the
classical theory of plates the outer twisting moment H*=H +H H-H
vanishes. This is accompanied by the appearing of the force [VS] according
to (10) and fig. 4, and by the appearing along the edge and in its nearest

< +0, according to (8),

’Tsz

neighbourhood of the shearing strain y,=9,(z)=

but in contrariety to (1). The deflection w of the m1dd1e surface is, as seen,
not affected at all by the vanishing of the twisting moment along the edge,
and the shearing strain 9, is not due to shearing forces.

Along each edge of the plate, bent to a hyperbolic paraboloid the extreme
conditions: y,, =y, (2)=0 or H*=0, can therefore be prescribed alternatively.
The first of these conditions means that there is no perturbation at this edge
because the distortion in the (s —z)-plane of the filaments which are initially
straight and normal to the surface is prevented by the external twisting

moment H*=H=—(1 —v)D———=( v)D 0. The second alternative i.e.

H* =0, states that along the edge the perturbation with all its consequences
exists.

If for the edge x=a (fig. 2) e.g. H*=0 will be prescribed whereas along
the other edges the y,, equals zero, the latter edges will be subjected to twisting
moments H*=(1—»)D0@. Due to the perturbation startmg along the edge
x=a at the edges y = + b, in addition to H* the forces [VS] =—H=—-(1-v)D§
act at the points x =a — 0,628 A. The edge ¥ =a will be then free from stresses.
In the case where H* vanishes along all edges (ﬁg 2), two forces [17] act
near each corner which yield resultants A=+ 2[V]—- F2(1-=v)D@ at the
points z= + (¢ — 0,314 4), y= + (b—0,3144).

A triangular part of the plate bounded by two edges meeting at a corner,
and by an arbitrary section has to satisfy the conditions of equilibrium.
Regarding forces acting in the z-direction equilibrium exists between the force
A and the resultants of the shearing stresses, which appear in the section near
both edges due to the perturbations. Whithout taking into consideration of
these shearing stresses it is impossible to satisfy this condition of equilibrium
because in the particular case w= —fxy (fig. 2), the shearing forces defined
by the theory of bending of plates equal zero in all sections.

NADAT who examined this case experimentally applied the forces 4 exactly
at the corners of the plate as stipulated by the interpretation of THOMsON
and Tarr. This is the main reason why the deflections measured by him are
a little too large in comparison with the theoretical values.
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Apart from the two extreme cases, namely complete constraint (i. e. y,,=0)
and no constraint (i.e. H*=0), there are edges which are partly constrained
as regards the shearing strain f/szz%. In such cases only a suitable part of
the perturbation (8) shall be used.

So far only the particular case 6_8_7:20—3

the exact solution for the perturbation found. Now the general case where
8 ~

=const £+ 0 has been considered, and

555 T const along the edge will be analyzed. The statement y,,=0 for an
edge means, as before, that the elements of the edge strip are in identical
conditions as the elements inside the plate. Accordmgly, if > a 5755+ 0 the
S 18 due to act

external twisting moment H* =H = — (1 —v) D
Innumerable experlments and measurements of the deformation of plates

in cases where +const, and no external twisting moments acting along

2w

ands
the edges prove that the classical theory is sufficiently exact. This means,
that the vanishing of the external twisting moment must be accompanied by

a perturbation starting at the edge along which 6—82—;% #+0, and vanishing near

it, and that this perturbation does not practically affect the deflection of the
middle-surface. Hence the perturbation in the general case must be similar
to the one described previously. It cannot be identical with the perturbation
defined by eq. (8), because among other reasons St. Venant’s theory of torsion
does not hold any more for a varying angle of twist.

The boundary conditions for thin plates can be established without the
knowledge of the laws according to which 7,, and 7, vary since for this
purpose it is sufficient to examine the conditions of equilibrium of the element
hxcxds (fig. 5) of the edge strip.

In connection with this, only the stresses due to the perturbation will be
considered, assuming that their resultant [173] acts at a not exactly known yet

n
\ z

Fig. 5.
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short distance e from the edge, and that the section n = —c is free from stresses.
From the condition concerning the rotation about the n-axis it follows:
[V.]ds—Hds=0, and hence

0% w
onos’

Wl=H(s)=~H(s)=(1—v)D (11)
Accordingly there acts in the section s=const the force [173], and in the
section (s +ds) the force [V.]+d[V,].
The condition concerning the displacement in the z-direction stipulates
the action of a line load Q (fig. 5): Qds+d [V.]=0, and hence

vy  df  dH & W
ds =~ " ds ~ds - U Pggs

Q=0 =- (12)

o2 w

EP P %+ const
and the cases %=const. respectively. Accordingly when 582—3 #+const and
H*=0, the transversal line load R* (fig. 6a) has to be the resultant of
the external shearing force V¥*=V = —D (8 w —832), and the line load

ond = On 0s?
acting at a distance e from the edge.

The existence or vanishing of the line load { implies the case

— oH &% w 3w
* — T = - )
R =Vt 08 D[8n3+(2 ”)anasz]' (13)

Along a free edge the perturbation is due to start and hence the following
boundary conditions shall be prescribed:

R*—V+%£=O, H*=0 and M}=M,=0. (14)

Since @ does not act upon the plane n =0, some secondary stresses (chiefly
bending stresses in the sections n = const) are due to appear.
If the edge is simply supported and z— =I= const, the following conditions

for the extreme two cases can be prescrlbed.

—
s

Fig. 6.
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V=0 and M¥*=M, =0 (15a)

gl

0,
0, H*=0 and M}=M

gl
I

or n=0. (15Db)

The first alternative is realized when the edge is connected with a mem-
brane (fig. 6b), perfectly rigid in its plane, and perfectly flexible transversally.
Due to the rigidity of the membrane in its plane y,=0 results. Hence the
membrane acts on the plate with the shearing force, and V,*=V, , and with
the twisting moment H*=H. This means that in this case no forces 4 will
act near the corners of the plate. On the contrary, if according to (15b) the
external twisting moment H* vanishes, the forces 4 near the corner exist.

Generally an edge as represented in (fig. 6c) is called simply supported.
In this case not only M and H* vanish but also V=0 along the edge. This
induces another perturbation which also affects the width of the edge-strip.

Generally the external tractions induced in the edge vary, as exemplified
in the last instance in a quite different manner than assumed by the theory.
It would therefore be very difficult to assess theoretically which stresses
appear in the edge-strip and how they vary. An exact analysis of the stress
and the strain in the edge-strip due only to the vanishing of the external

twisting moment H* would be therefore of no practical importance.
In the particular case where a—é:%% equals zero along the edge, the following
results simultaneously: 7., =0 and H*=H=0. This is the reason why the

three physical boundary conditions reduce then automatically to two.
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Summary

Using the classical (i. e. KIRcHHOFF’s) theory of bending of thin elastic plates
a third physical boundary condition can always be added to the two boundary
conditions conventionally prescribed along each edge. This third boundary
condition is derived from a perturbation of stress and strain which starts at
the edge and vanishes at a short distance from it. This perturbation has no
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noticeable influence on the deflection of the plate. Taking into consideration
this perturbation the contradiction inherent in the classical theory in con-
nection with the boundary conditions can be eliminated, and a new physical
interpretation for KIRcHHOFF’s boundary condition is obtained.

Résumé

Lorsque I’on utilise la théorie classique (KIRCHHOFF) des plaques élastiques
minces fléchies, il est toujours possible de considérer une troisiéme condition
marginale physique en plus des deux conditions marginales conventionnelles.
Cette condition supplémentaire provient d’une perturbation du régime de
contrainte et de déformation, perturbation qui part du bord et disparait a
une petite distance de lui. Cette perturbation marginal n’exerce aucune in-
fluence notable sur le fléchissement de la dalle. En la faisant intervenir, il
est possible d’éliminer la contradiction, inhérente & la théorie classique, au
sujet des conditions marginales. On peut ainsi obtenir une nouvelle explici-
tation physique pour la condition marginale de KIRCHHOFF.

Zusammenfhssung

Bei Anwendung der klassischen (d.i. der KikcHHOFFschen) Theorie fiir die
Biegung von diinnen elastischen Platten kann immer den zwei konventionellen
Randbedingungen eine dritte physikalische Randbedingung hinzugefiigt wer-
den. Diese zusitzliche Randbedingung stammt von einer Stérung des Span-
nungs- und Forménderungszustandes, die vom Rand ausgeht und in einer
kleinen Entfernung von ihm verschwindet. Die Randstérung hat keinen merk-
lichen Einflul auf die Durchbiegung der Platte. Durch Beachtung dieser
Randstérung kann der der klassischen Theorie inherente und sich auf die
Randbedingungen beziehende Widerspruch beseitigt werden und wird eine neue,
physikalische Erklirung fiir die KircHHOFFsche Randbedingung erhalten.
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