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Deformation of Ring Girders Stiffening Thin Shells of Rotation
Déformation des poutres annulaires renforcant des voiles de révolution

Deformation von dimne Rotationsschalen aussteifenden Ringtragern

GUNHARD-AESTIUS ORAVAS

B.S.C.E., M.S.C.E., M.S.E. M., Ph. D. Ass’t. Prof. of Engineering Mechanics, McMaster
University, Hamilton, Ontario, Canada

Synopsis

This paper presents an integrated treatment of ring girders in connection
with the analysis of thin shells of rotation. An example illustrates the analysis
of a ring girder which acts as an edge stiffener to a spherical shell with variable
thickness.

Introduction

A few papers!) have been published on the analysis of rotational thin
shells stiffened by ring girders. Usually the papers dealing with ring girders
introduce certain simplifying assumptions into the analysis which tend to
limit their scope of application to a large radius to width ratio.

An attempt is made here to present the whole subject matter pertaining
to elastic ring girders in a self contained manner and devoid of such restrictions.

Ring girder in a rotationally symmetrical state of stress undergoes a radially
symmetrical rolling around a concentric stationary circular axis and additional
radially symmetrical displacements. These basic components of deformation
of ring girders are treated independently of each other and superimposed
in the analysis to achieve the final configuration of the composite structure.
The assumption is made that the cross section of ring girder undergoes no
change in its plane brought about by radially symmetrical displacements
and radial rolling.

1y See [1], [2], [4] and [5] in Bibliography.
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Rotationally Symmetrical Rolling of Ring Girders

General Theory for Arbitrary Cross Section

The radius vector of a point “4,” in the cross section of a ring girder (fig. 1)
can be represented by a radius vector

r =%

+7§ = (R, +Lcos )i+ (R,+sing)j.

Y
‘4." N
\\\\\\\\\\ ‘\

- \\‘\\\\\ \\
\\\m\\\ \

/
x)(u) - N\ AN
.\\\\

---- \\ \\\\\

Fig. 1. Ring Girder of Arbitrary Cross Section.

When the ring girder undergoes a finite radial rolling 8 about a concentric
circular axis with radius B = R, ¢ i+ Ryy, then the radius vector of point “4,”’
becomes

r+47r = [R,+cos (¢+B)]i+[R,+sin (¢+pB)]j
Consequently the change in radius vector is
A7 = (7+A7)—7: {[cos¢ (cosB—1) —sinquinB]f+
+{[sin¢ (cosf—1)+cos$sinP]j.

The change in radius vector 7 consists of two orthogonal finite displace-
ments
A7 = (w)i+ ()],
where
u = x(cosB—1)—y(sinp),
v =z (sinB)+y (cosf—1).

For rotationally symmetrical stress-strain state the circumferential strain
is given by
u _ x(cosf—1)—y(sinp)
r R, +x

and the circumferential stress by

o= Eeg— B [x(cosﬂ;gl—)l_—xy (sinﬁ)]

for point “A4,”
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If it is assumed that the initial state of ring girder is stress free, then the
equilibrium of ring girder requires

x
JEegdAzfcgdA=E{fo+ (cosp—1)d 4 — fR (sinpf) dA}-—O
4 4 4

where the integration is carried over the rolled position of the cross section.
This condition is satisfied for all “f”” when

x
f?m+x =0, (2)
A

Y —
JRm‘*"di_O. (b)
A

The circumferential stress couple becomes

My =[oglsin(p+B)dA =[og[ycosf+asinfldA.
A 4

The radial component of the circumferential stress couple is

M|,y =Myd0 = [og[ycosB+asinBld AdS.
4

Equilibrium of stress couples in the radial plane requires
2nt M
27

)d@—Mgd():O

or

M= lMg—lfog[ycosB-i—xsm,B]dA =

ﬁ)

E xy[cos,B cos B — 1) —sin?B] —y2sin B cos B+ 22 [sin B (cos B — 1)]
f R+ -

If the stress couple M is a sum

M= M¢+k§1Vkek+j§1Hjej,

where M is a distributed stress couple per unit length of a circle of radius
rm and V,, V., H,, H, are distributed stress resultants per unit length of
a circle of radius r,, r,, r,, and r,. The lever arms of the force couples are
designated by e,, e, €,, e,. Then the circumferential stress couple acting
© in the ring girder is (fig. 2)

M9 = M¢7‘M+kZI(Vkek)rk+ ‘Zl (Hjej)rf
= i=
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In the structural analysis of shells only very small angle changes “B”
are considered, therefore the stress couple and rotation are simplified in the
following expressions

because

Fig, 2. Ring Girder Subjected to Boundary Forces.

The integration was carried over the stress free position of the cross section.-
Integrals (a) and (b) can now be written

z _ Y _o.
Af dA}_O, (a) Af dA =0. (b)

R, +x R, +x

For sections symmetrical about a normal plane to the axis of rotation
(R,= 0) integral (b) is automatically satisfied.

The location of the circular axis, about which the ring girder rolls, is
determined by integral (a).

Rectangular Cross Section

For a rectangular section (fig. 3)

(ro—Re) d/2
x

+x

d/2 (ro— Rz)

In(R, + x)] =0
—(Rg—1i)

R

X

drdy = y]
—dj2
—(Be—ry)  —dj2

or R, =
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127
Then by (c) EB=—"——-M
@ 1Ln ()
Ti

L)

| //'//;l/
(N 7%,

—IWz
1%

Fig. 3. Ring Girder of Rectangular Cross Section.

Trapezoidal Cross Section

For trapezoidal section (fig. 4) (a) yields

(do—krs) + 5 (ro+ 1)
e
and by (c)
8= [ 247 ]M
(Aot Lin (1) 4 52 (Aot b ry) (5= r3)+ B (dg+ o2 (ro—r )+ (F3=r)
where 2 == ik
To
d-:
do 1
u
b r

o3

Fig. 4. Ring Girder of Trapezoidal Section.

Rotationally Symmetrical Radial Displacement of Ring Girder

Formulation of Differential Hquation for Ring Girder with Constant Thickness

The equilibrium condition of the ring girder against a radially symmetrical

displacement is [5, 6]
dN, N — Ny

dr r
where N, and N, designate the radial and circumferential stress resultants
acting on the ring girder respectively.

=0,
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The radial and ring strains for rotationally symmetrical deformation are

du u
= ar’ 0=y
where ‘““u’’ denotes radial displacement.

Compatlblllty relation is obtainable from the two strain relations in the
form

d€0 €,
=0.
dr + r

Substituting the well known stress resultant-strain relations

1 1
Gr:”E—d[Nr—VNe]: €0=m[N6—V rls
(where v designates Poisson’s ratio and d is the constant thickness of the girder),

in compatibility equation yields the fundamental differential equation [6]

ANy dN,

L yr—L4 (14+¥)[Ny—N,] = 0.

Combining the equilibrium and compatibility equations into a single differen-
tial equation containing one dependent variable gives

N
Introducing N =221 and r=e¢ into this differential equation transforms
it into '
(D+2) N
where D= i
d

Solution of this equation is

N =Ae2: = Az
r
2
Then NT=——2A+B
r
2
and Ng=—5A+B,
r

where 4 and B are integration constants.
Radial strain becomes

u 1 [2(14v)
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Radial Boundary Reaction H,
In this case the boundary conditions are (fig. 5)
at r=r,: N,=H,,
and at r=r;: N,=0.

AN
M

Fig. 5. Ring Girder Subjected to Boundary Reactions.

Then the integration constants become

1 7r3r? 73
mnfef), 3ol

2 __,2 2
(3 —73 To—73

Using these expressions the radial and circumferential stress resultant
distributions are described by

aeml ()] wo= gy ()]

and the circumferential strain at r = r; is

Nr:HO

—E—H 1 (14v)e?2+(1—v)
T Ed (1-o) ’
where oc=rﬁ.
0

Radial Boundary Reaction H;

Under this loading the boundary conditions are (fig. 5)
atr=r;: N,=H,
and atr=r,: N,=0.

Integration constants are given for this case by

22 2
A= H{_l_rz_} B- Hi{_ __2!‘___}

2 r2—r? (r2 —r2)

Then radial and circumferential stress resultant distributions are expressed by

sl () el ()
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and the circumferential strain at » = r; is

. =% =H12{_ Eld [(1 +V()1-*-—(:c2—)-V)a2:”'

Formulation of Differential Equation for Reng Girder with Variable Thickness

For ring girder with variable thickness the stress resultants Ny and N,
are also functions of its thickness, hence the stress resultants can be ex-
pressed by [6]

N,=N,(y,r) and N,, = Ny(y,7).

Then the pertinent equilibrium equation takes on the form

rd(lv)+N —Nyg=0

dr
d —
or ;i—(rN)—N(;:O.
Substitution of function = N, into the equilibrium equation gives
dy =
ar =N

The compatibility relation in terms of stress function yields
2 %Y lﬁ di
crr i fa )] -

For a linearly varying girder thickness given by d = D,, r the compatibility
relation is

PP
r2 I (I=v)¢y=0

and for d=D_;r1

AP0 o

Both of these equations are equidimensional. Substituting a new inde-
pendent variable Ln (r) = z into this differential equation transforms it into

The solution of the two differential equations is obviously
= Aem?4 Beme?
or = Arm+ Brme,
where for d=D_,r1
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Then the exponential constant for d =D, , r is given by

my 1 V 1
= ——+)Q .
mz} gt (A+v)+yg

Stress resultants in this case are
N, = Arm-14 Byma-l
and Ny = Amyrm-14 Bmyrme1,
Circumferential strain becomes

u 1 = 3 1
€p 27 = W[NQ—VNT] = W[A (ml—v)rm1_1+B(m2—1)7”7”2—1].

Radial Boundary Reaction H,

The boundary conditions for this boundary loading are

and at r =r;: =

Constants of integration satisfying the prescribed boundary conditions are

(mg—my)
A=H0[ o ] B=H0[ - ]

T Ama—1) __ (m1—1) Jmo—m (ma—1) __ p(m1—1) p(mo—m
r{ne ) rgm )T@'Q 1 e ) rg )yiQ 1)

Then the circumferential strain is expressed by

e 1 (m2 —-1) plme—1) _ (ml —v) 7-(im2Aml) pm1-1)
%= H\gq rna =D — ylm =) plma—my) 5
hence at r = r,
en=H 1 (my—1)y—(my—v)rm—m _ g
0 0 Edo Y — 7'%’”"2-’”21) ’ Y T%ml—l) .

Distribution of circumferential stress resultant can be extracted from

Vo H My pime—1) _ rs_:mz_ml) plm1—1) m,
6 0 yg)mz—l) — r%mz —m1) 7'%7"1—1)

Radial Boundary Reaction H,
Boundary conditions for inside boundary loading are

at r =7,: ,

| =
I

0
H,.

=
I

and at r=r;: ,
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Integration constants, corresponding to these boundary conditions, are
given by

7.(0m2—m1) 1
A4=H|- rima=1) — p{ma—m1) pm1-1)| ° B = H; pma=D) _ yplma—m1) plm1—1) | *

Circumferential strain becomes

H 1 (m2 — 1) r(’m2—1) — (ml - V) 7-8712—7"1) r(ml_l)
=i\ Fga p{me—1) — p{ma—m) y(m1—1) )

At r = r; the circumferential strain is

[ L Omy— 1w (my ) )
=i\ Ed, w — rgra=m ’
rg:’m2—1)
where = r—(m .
1

The distribution of circumferential stress resultant over the width of the
ring girder is

JVB _ &, [m2 rme—D — gy pire—my) r(’ml—l):l

y(im2—1) — ﬂ0m2 —m;y) T(iml—l)

Non-Linear Variation of Ring Girder Thickness

For a girder whose depth is given by a function

d=D,r, m=+2+3...),

the exponential constants are

Y (e

ol EEFS (S

€6, %

for negative “n and

€€ .29

for positive “n
Application

As an illustration for the subject matter developed in this paper an ana-
lysis of a ring girder, that supports a superstructure and acts as an edge
stiffener for a central small opening in a hemispherical shell of variable thlck—
ness (fig. 6), is carried out in considerable detail.
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Solution applicable for very thin shells is given in the following parametric
form [3]:

*/a
B = (%) sin“’/ng[(Aoef“p—kBoe"“p) eos,u@-i—(Ble“Mq’-—Alqu’) sin u @],

E (hy)'s (h)s .
s m(aos)inﬂgaq)a [(4,e#®+ B, e#®)cosp @+ (Ager® — Bye#P)sin @] +

cot ¢
asin ¢

(r V),

| s
5 |
2 |

Fig. 6. Central Opening in the Hemispherical Shell of Variable Thickness with an
Exploded Section Showing Stress Resultants, Stress Couples and Applied Forces Acting
between the Shell and the Ring Girder.

where

B — tangential rotation, negative with increasing “¢”°,
H — horizontal reaction,
hy — thickness of shell at some reference section (here ¢ = 0),

o5 Vs

m = l/12 1—2),
E = Young’s modulus.
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Other fundamental quantities are given by the following relations (fig. 7):
where

rvV = ~a2fpvsingbd¢>,

Ny '—d—$(31n<bH)+asin¢pH,
Ny =Hcos¢+singV,
¢ = —sindpH+coseV,
D
My = (di + (v cot: ) B)

My = f(cotg& B+qu$)

1 1 . ,dH
€ =%=—~(N9——vN¢) Eh[( v)cos¢H+s1nqS—d—$——§?"V],

w =J [aanﬁ N¢—vN0)—(acos¢),3]d¢,

Eh
Eh3
where D = (-7’
v — Poisson’s ratio,
'+ — horizontal radius of middle surface of the shell,
and a — radius of the shell’s middle surface.

For a hemi-spherical shell with the following properties
b =hyedt = (1)e044L ft,

a =44 ft.,

é =10deg.,
P 10

i

Fig. 7. Meridional Section of the Differential Element of Rotational Shell.
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the circumferential strain and meridional rotation are

9.56
E

€gs = (0.0153) By+(0.0161) B, +
and B, = (—0.118) B, +(0.0279) B, .

In these relations only that part of the solution was used which contains
the negative exponential function. This is permissible for thin shells because
the effect of their boundary disturbance decays rapidly with the distance
from the shell’s edge and for an apex opening that part of the solution which
decreases with increasing ‘““¢”’ is appropriate.

Finally the shells meridional stress couple is

D 8 o oot & —bsinpd
d’*-a—l/singbe {By[(@+vcotd)cos u® —bsin u®]+
+ B, [beosu® + (& +vcot ¢)sin ud]},
cotp 5 ma
§ = — z o LK [ dad
where a ( 3 +48+e 2h0)’
b = _*8¢ M
b=e Sy
A central ring girder has the following dimensions:
b = 1.67 ft.,
d = 6in. = 0.5 ft.,
e = 0.125 ft.,
7‘,,; == 6 ft.,
ro = 7.67 ft.

The total load of superstructure and ring girder is
P = 10 kips.
Then R, = 6.8 ft.,
EBre = (3080) M 4 — (385) H,— (2560) 7,
E egre = —(385) M 4 +(56.3) ,+(319) V,
where M¢ =M=M¢—H6——V§.

The following boundary conditions have to be satisfied at ¢ =d:

Statical ; Geometrical :
[H =ﬁ0, {BS =Bra>
I V = f}, ef?S :€BRG'

M 4= M .
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Substituting M4 = E (107){(0.723) B, — (0.965) B},

H = —E(10-3){(1.120) B, + (0.265) By} —1.174
and M =M¢~He—-V§b
into the ring girder relations yields
Bre = [(0.325) B,— (0.134) B1]+~Ef;—'2,
e = —[(0.091) By + (0.026) B,] ——7%.

The geometrical boundary conditions yield two equations

823 1833
The solution for the two unknown coefficients is

1.25 1.06
= -~ 3 = — 3
By=———(10%), B, =—%-(10%.

With these coefficients the redundants are

H = —0.79 k./ft.,
My = —0.19 ft. k./ft.

Then the ring girder radial rolling moment is expressed by
M = 0.094 ft. k./ft.

along the circular rolling axis measured by R,

~0.4

~ -0.3
x
&
-0.2 &
S
X
&
-0.1 §
S
9
o ¢
5

1 + 0.7

3o 25 2o 15
Meridional Length in degrees i

Fig. 8. Distribution of Stress Couple M é along the Meridian.
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and the total circumferential stress couple by

[Mydr = MR, = 0.004 x 6.80 = 0.639 ft. k.
ri

Total circumferential stress resultant is
To
r:

Distribution of the circumferential stress resultant over the width of the
ring girder is described by

r.\2
Ny=—2.04 [1 + (7“) ] k./ft.

Finally the meridional stress couple My acting in the shell is illustrated
in fig. 8. The rapidly decreasing nature of M, with meridional distance from
the ring girder is plainly evident.
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Summary

In this short presentation the ring girder analysis is applied to the elasto-
static calculation of stiffened thin shells of rotation.

Ring girders with rectangular and trapezoidal cross sections are investigated
~in detail and formulas have been worked out for their immediate application
in thin shell analysis.

An illustrative example is finally given for a ring girder acting as an edge
stiffener for a small central opening of a thin spherical shell with variable
thickness.

Résumé

Dans cette courte étude, I’auteur applique 1’analyse de la poutre annulaire
au calcul élasto-statique des voiles de révolution renforcés.



272 Gunhard-Aestius Oravas

Il étudie en outre d’une maniére détaillée les poutres annulaires de section
rectangulaire et de section trapézoidale; il établit des formules pour I'appli-
cation directe a 1’étude des voiles.

Enfin, il donne un exemple d’application & une poutre annulaire jouant
le role de renforcement de bordure pour une petite ouverture centrale dans
un voile sphérique d’épaisseur variable.

Zusammenfassung

In dieser kurzen Abhandlung wird die Analyse des Ringtragers bei der
elasto-statischen Berechnung von diinnen, ausgesteiften Rotationsschalen
verwendet.

Weiterhin werden Ringtrager mit Rechteck- und Trapezquerschnitt im
Detail untersucht, und es werden Formeln abgeleitet fiir die direkte Anwen-
dung bei der Untersuchung von dinnen Schalen.

Zuletzt ist noch ein Anwendungsbeispiel mit einem Ringtrager gegeben,
der als Randversteifung bei einer kleinen, zentralliegenden Offnung einer
diinnen, sphéarischen Schale mit variabler Starke, wirkt.
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