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The Effects of Edge-Stiffening and Eccentric Transverse Prestress
in Bridges

Influence du renforcement en bordure et de la précontrainte transversale excentrique
dans les ponts

Die Wirkung von Randversteifung und extrentischer Quervorspannung in Briicken.

G. LITTLE R. E. ROWE
M. Sc., London M. A, A.M.1.C. E., London

Introduction

The development of the load distribution analysis for bridge decks sub-
jected to concentrated loads [1, 2] has facilitated the calculation of the effects
of abnormal indivisible loads on uniform bridge structures, i.e. structures
which can be reduced to an equivalent quasi-slab. Often there is a deliberate
reduction in the flexural stiffness at the footpaths either by a reduction in the
structural depth, a change in the method of construction (e.g. unloaded filling
material under the footpath slabs), or by the introduction of service ducts in
the footpaths. Then the effective connexion of a parapet beam to the roadway
is small compared with the connexion between the main road beams, and the
modifying effects of the parapet beams, through their flexural and torsional
stiffness, will not be significant. On the other hand the effective transverse
stiffness of the roadway is sometimes maintained to the parapet beams. Then
the effects of the stiffening beams at the edge should not be ignored. No
theoretical analysis at present available covers this particular aspect of bridge
design, though MassoNNET [3] has extended his distribution analysis [4] to
allow for the effects of edge beams in which no torsional stiffness is present.
This analysis should prove adequate in bridges consisting of longitudinal rolled
steel joists with a reinforced concrete slab, the edge beams also being rolled
steel joists of different section from the main longitudinal joists. However, in
bridges in reinforced or prestressed concrete the torsional stiffness of the edge
or parapet beam may be considerable.
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Therefore an analysis has been obtained which includes the effect of torsion
and, like the load distribution analyses already mentioned, covers the range
from a no-torsion grillage to a full torsion slab. From this analysis it is possible
to assess the effect of torsion in the edge beams at the design stage and hence
it will be for the designer to use his judgment in deciding whether or not to
include the torsional effects. If torsion is neglected the analysis yields results
identical with those obtained by MASSONNET.

A further point of interest is that a part of the analysis presented is directly
applicable to the determination of the effects of eccentric transverse prestress
in prestressed concrete bridges.

Theoretical Analysis

The complete analysis of the effects of edge-stiffening beams is given
elsewhere [5]. Only the basic equations for the various effects are given here,
for it is these that are of interest to the designer.
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Fig. 1. Values of coefficient @o at points across width of a no-torsion grillage for the
deflexions caused by symmetrical edge moments.
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a) Symmetrical Edge Moments

The deflexion of the bridge at any point is given by

M, b2 |
——a s1n-—77xcp, (1)
PE 2a

w1:

where ¢ is a coefficient dependent on 8 (the flexural parameter), « (the torsional
parameter), and the point in the width of the bridge where the deflexion is

T

required; M, sing— is the applied edge moment.

The slope at the edge of the bridge is given by

(@”_1) = _Mebgame, (2)
0Y ] y=b PE 2a

where vy is a coefficient dependent on 6 and «.
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Fig. 2. Values of coefficient ¢; at points across width of a slab for the deflexions caused
by symmetrical edge moments.
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The transverse bending moment M, is given by
. T
Myl = MOSln%lﬁ, (3)

where ¢ is a coefficient dependent on 8, «, and the point in the width of the
bridge at which the moment is required.
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Fig. 3. Values of coefficient giving the slope at y= +b for a no-torsion grillage and a
slab for symmetrical and asymmetrical edge moments. For values of y, for § between
0.1 and 0.4 use linear interpolation between values tabulated below:

0 0.1 l 0.2 0.4

Yo 315.994} 19.734 1.686

Actual values of yg.
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Fig. 4. Values of coefficient i for the transverse moment at points across the width of
a no-torsion grillage, expressed as a percentage of the edge moment, for symmetrical
edge moments.
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Fig. 5. Values of coefficient ; for the transverse moment at points across the width of
a slab, expressed as a percentage of the edge moment, for symmetrical edge moments.
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Fig. 6. Values of coefficient ¢, at points across width of a no-torsion grillage for the
deflexions caused by asymmetrical edge moments. For values of § between 0.1 and 0.4
use linear interpolation between values tabulated below:

0 0.1 0.2 0.4
0 0 0 0
b/4 77.1546 4.7812 0.2702
b/2 154.3308 9.5859 0.5628
3b/4 231.5507 14.4313 0.8974
b 308.8519 19.3342 1.2880

Actual values of gj.
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b) Asymmetrical Edge Moments

This case is similar to (a) and the deflexion, slope, and transverse moment
can be expressed in an identical manner i.e.

Myb? . mx

- _ ino o 4
wy === i T, (4)
(8—”&) = Mobyymz, (5)
oY | y=b PE 2a
. X,
M, = M0s1n—2—d—z/z . (6)

The coefficients ¢, y, ¢, ¢’, v', and ¢’ have been calculated for values of
the torsional parameter « of zero and unity. The notation used to denote the
coefficients for these extreme cases is
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Fig. 7. Values of coefficient @] at points across width of a slab for the deflexions caused
by asymmetrical edge moments.
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Fig. 8. Values of coefficient ¢ for the transverse moment at points across the width
of a no-torsion grillage, expressed as a percentage of the edge moment, for asymmetrical
edge moments.
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Fig. 9. Values of coefficient ; for the transverse moment at points across the width of
a slab, expressed as a percentage of the edge moment, for asymmetrical edge moments.
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@ = value of ¢ when o = 0,
¢, = value of ¢ when a =1

and similarly for the other coefficients.

These coefficients are presented graphically in figs. 1 to 9 for ¢4, ¢;, ¥,
o> P15 Po> P1, Yo, and Py respectively. For intermediate values of « an inter-
polation formula has been verified which is of the same form for each of the
above coefficients. It is

Y, =Y+ (Y- Y,) Ve, (7)

where Y is representative of ¢, y, or .

¢) Deflexion at the Edge of an Anisotropic Bridge Caused by Loads Applied
Perpendicularly to the Bridge Surface ‘

The deflexion at the edge of an anisotropic bridge due to applied loading
can be determined from the normal load distribution analysis [1]. The deflexion
is given by

{16 at H
w, =

e psnT (Kyor Ky) (8)

K, and K_, are dependent on 6§, «, and the disposition of the loads across the
transverse width of bridge. The normal 1nterp01at10n used in the distribution
analysis applies, i.e.

K, = Ky+ (K, —K,) Va.

d) Slope at the Edge of an Anisotropic Bridge Caused by Loads Applied
Perpendicularly to the Bridge Surface

The slope is given by

(%) - BTk (9)
oY ] y=b PE 2a

where K’ is a coefficient dependent on 6, «, and the disposition of the applied
loads across the transverse width of the bridge.

The coefficient K’ has been calculated for various values of § and for a
number of values of «; figs. 10 and 11 give the values of K’ for «=0 and «=1
respectively. For intermediate values of « the interpolation formula used is

K} = Ko+ (K{— K{) Va. (10)

It should be noted that the calculation of the various coefficients for slab
bridges, i.e. a=1, includes the effect of a Poisson’s ratio of 0.15 which is
applicable to reinforced and prestressed concrete. This was necessary as the
effect of Poisson’s ratio may be considerable [6].
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Fig. 10. Values of coefficient K giving the slope at y = + b due to loads applied at points
across the width of a no-tension grillage.

Values of K outside scope of curves

0 0.2 0.25 0.3 0.4 0.5 0.6

b 1.5716 | 1.1488 | 0.8260 | 0.5075 | 0.4297 | 0.4159
3p | 1.1623 | 0.8622 | 0.5620 _ _
16 | 0.7627 | 0.4380 —

—1b | —0.07693| —0.5200 | —0.3680 '
3

-3b | —1.1441 | —0.6500 | —0.5000 —
-b -1.5185 | -1.1142 | —0.7100
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Fig. 11. Values of coefficient K; giving the slope at y= +b due to loads applied at points
in the width of a slab.

e) General Solution for the Effect of Hdge-Stiffening Beams
on an Anisotropic Bridge

Consider the bridge with edge-stiffening beams in fig. 12a. Let the span
of the bridge be 2 a, the width of the uniform section of the bridge (i. e. exclud-
ing width of edge beams) be 25, the stiffness per unit length of the longitudinal
section be pg, the moment of inertia of the edge beams be I, and the torsional
stiffness of the edge beams be Jy. The applied loading is represented by the
four equal loads D.

The edge beams can be isolated from the remainder of the bridge and
edge shear forces and moments introduced as shown in fig. 12b. These shear
forces and edge moments are assumed to be distributed sinusoidally along
the span.

The bridge can now be analysed using the results obtained in sections (a),
(b), (¢), and (d), and the unknown shear forces F; and ¥, and edge moments
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M, and M, determined from the compatibility equations for deflexion and
slope at the edge y= +b.

The shear forces F; and F, can be treated as applied loads on the bridge
and hence the deflexion at the edge y=b due to all the applied loads can be
written:

16at H 16a* . #wx (F| F,
Sy=b=wp 53 o (KbduetoP)——pl—)sm (2bK”+2bK ) (11)
where H, is the amplitude of the first term in the Fourier series for the applied
loads P.
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Fig. 12.

(a) Bridge considered in analysis.
(b) Forces and moments acting on bridge and edge beams.
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Fig. 13. Superposition of symmetrical and asymmetrical edge moments to obtain desired
edge moments.

The edge moments M, and M, can be considered in the form shown in
fig. 13. This method of superposing symmetrical and asymmetrical edge
moments enables the coefficients ¢ to be used. Thus the deflexion at the edge
y=> due to the edge moments can be written:

(MM, b MM, B ) wa _
Oy—p = {——2—“PE<P +_TP_%} no—- (12)
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The total deflexion given by the sum of eqgs. (11) and (12) must equal that
of the edge beam at y =5 under the action of the loading F} s1n . Therefore

for compatibility of deflexion the following equation must be satlsﬁed.

16 a4 . mx 16a* . wx(H, F F,
mﬁ’lsm% - pPsm—{z—b— (K, due to P)— K, — 5D ~2K_ } "
b? L
- in——{(M,+M + (M, —M,) pp}.
2pp 20,{( 1 2) @+ (M 2) Pb}
Similarly at y= —b:
16a* . T 16a* . wx(H, I F,
mngln%— = ——WTf;)SIHQa{zb (K—b due to P) sz_b—Q—gKb} (14)
b2 T
— ——sin M, +M —(M,—M,) ;).
205 2a{( 1 2) @p — (M, 2) Po}
For slope compatibility at the edge y=>b, it is found that for the bridge:
(%—Wy—l) = p—sm——{H (Kj due to P)—F, K; —F, K’}
y=b E

b mef(My M () (15)
;;Slnz—a’— ———"—2 Vb —_—“—2 Yo( -

For the torsion of the edge beam subjected to a twisting moment varying
sinusoidally over the span, the angle of twist at any point may be determined
by integrating between the desired limits the product of the moment at any
point and the distance of the point from the origin. Thus the edge beam
rotation at a distance x from the abutment is

z .. T
fMlxsm%dx
0
o (16)
The compatibility equation for slope at y =b is therefore
fM xsm dyc
= Asm— H,(K; due to P)—F, K, —F,K'
GT. o { ) Ky — F, Ky} -
b M, +M, + MI_M2) ’
PES 2a —‘—_2 YT\ ) Ve
and similarly at y= —b
z . T
szxsm%dx
0 - —sin——{H pdue to P)—F, K', —F, K;}

b ma((My+ M, M, M, ,
or 2(1 2 Yo 2 Yb( -
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Egs. (13), (14), (17), and (18) enable the unknown edge effects Fy, F,.
M., and M, to be determined. For this purpose it is sufficient to consider the
mid-span section of the bridge, i.e. x=a. Once these values have been deter-
mined the deflections, the longitudinal and transverse moments at any point
in the bridge, and the bending and torsional moments at any point in the egde
beams may be determined by superposing the various effects.

It will be noted that all the curves given are for the edge ¥ =0. The appro-
priate values for the edge y= —b can be obtained either from these curves
by using the Reciprocal Theorem and taking note of the sign convention
used, or by treating each edge as y=0 in turn, adjusting the load positions
and using the actual values obtained from the curves.

Application of the Theoretical Analysis to Two Types of Model Bridge

To check the validity of the theory, tests were made on two model bridges
subjected to a number of concentrated loads; one of the models was a slab
bridge and one a beam and slab bridge.

a) Slab Bridge with Edge-Stiffening Beams

The Perspex model is shown in fig. 14. The span 2a was 18.90 in., the
width 2b was 22.68 in., the slab thickness A was 0.70 in., and the edge beams
had the dimensions 1.26 < 0.42 in.

The distribution of deflexion due to a scale model of the M. O.T. abnormal
vehicle with its transverse wheel positions as shown in fig. 15 was measured
with and without edge beams and compared with the theoretical results
derived from the analysis given previously.

Fig. 14a. Slab bridge without edge beams.
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Fig. 14b. Slab bridge with edge beams.
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Fig. 15. Transverse position of load on slab bridge and distribution to standard positions.
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£ Yz 7

Fig. 16. Forces acting on slab bridge at mid-span.

The forces and moments acting on the bridge are shown in fig. 16, and the
longitudinal positions of the axles of the abnormal load are as shown in fig. 17.

The appropriate coefficients obtained from figs. 1 to 9 for a value of 4 of
0.6 and all the relevant data needed for the derivation of the compatibility
equations are given in table 1. The values of the normal distribution coefficient
K and the slope coefficient K’ were obtained by replacing the wheel loads by
equivalent loads at the standard positions, as shown in fig. 15, and weighting
the coefficients for these positions accordingly.

The compatibility equations can now be derived:; this derivation for the
mid-span section of the bridge is shown in table 2. For convenience the value
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of 1/E has been omitted from the values for the deflexions and slopes since
it is a common factor. The four compatibility equations are obtained by
equating the deflexions and slopes at the two edges of the slab to the deflexion
and rotation at the edge beams.
Solving these equations the values for the shear forces and edge moments

are found to be

F, =0117P; F, = 0.028,

M;=0.100 P; M, =—0.048.

Fig. 17. Longitudinal position of loads on slab bridge.

Table 1. Slab Bridge — Fundamental Data Required for Derivation
of Compatibility Equations

Eh3

2a = 18.90 in. D= m = 0.0292 £ when v = 0.15
2b = 22.68in. Edge beam: width = 0.42 in., depth = 1.26 in.
h = 0.70in. Torsional stiffness of edge beam = 0.0107 E
Flexural parameter 0= 2—% =0.6
Value at
Coefficient
Edge y= +b Edge y= —b

K (due to loads P) 1.642 0.406

K (due to shears F') 2.531 0.263

@ symmetrical moments 0.111 0.111

¢’ asymmetrical moments 0.13 0.13

K’ (due to loads P) 0.1548 0.0598

K’ (due to shears F) 0.1735 0.0142

y symmetrical moments 0.397 0.397

y’ asymmetrical moments 0.396 0.396

P = wheel load of abnormal vehicle.

Amplitude of 1st term of Fourier series for abnormal load, Hy,
_ 4 P . TUL . mTU2 . U3
Hi = b {sm o) + sin P +sin Qa}

for axle positions as in fig. 17 = 0.8835 P. “Mean’’ deflexion

under abnormal loading, Wi,

_16a*H: . nx _ P . nx
Wi = D 355 g, = 174'0317;’_8“1%
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The above values were checked using six decimal places in the initial
equations; the results obtained from this procedure were:

F, = 0.117890; F, = 0.028782,
M, = 0.100539; M, =—0.048413,

where the shear forces were determined first.

The agreement between the two sets of values is good; this is so only
when great care is taken in deriving values from equations in which only two
decimal points are considered. It is essential that ¥, and ¥, be obtained first
and that subsequent substitutions for M, and M, are carried out in equations
where the coefficients are all small, i.e. approximately unity or less.

The forces acting on the slab are, therefore, as shown in fig. 18 where the
edge moments have been separated into their symmetrical and asymmetrical
components.

o0use ( ‘F l l l l *b>a/oap

0.028P 0.117P 1

a.026P 0.026P
My +M,
2
0074 P 0.074P
M —M,

2

Fig. 18. Forces acting at mid-span of slab bridge with edge-stiffening beams.

The above solution is exact in that all the possible forces have been con-
sidered. It is interesting, however, to solve the problem without including the
effects of edge moments. The solution is simplified considerably as there are
then only two unknowns F; and F,. Only deflexion compatibility need be
considered and from table 2 the following compatibility equations are obtained
by omitting the terms in M :

0 = 2865.34 P —23,709.46 F, —518.89 F,,
0 = 713.72 P—-518.89 F',—23,709.46 I,
whence
F, = 0.120P; F, = 0.028 P.

Here again it is necessary to exercise care in determining ¥, and F, if only
two decimal places are considered, as the equations are ill-conditioned.
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From the deduced values of the shearing forces, ¥, and the edge moments,
M, the theoretical deflexion profiles can be obtained.

Table 3 compares the theoretical and experimental deflexions for a value
of P of 1.798 1b. and a measured E of 4.825x 10~% lb./in%. From the table it
will be seen that (a) the effect of the edge moments, M, on the theoretical
values is very small and can well be neglected and (b) the agreement between
the theoretical and experimental values is good especially in the region of the
applied load. The theoretical and experimental ‘“‘mean’’ deflexions checked
well in each case and were 63.62 x 10~%in. and 62.74 x 10—*in. for the unstiffened
bridge and 52.3 X 10~ in. and 53.64x 10~ in. for the stiffened bridge. This
confirms that the “mean’’ effects are proportional to the over-all longitudinal
stiffness of a bridge. ‘

Table 3. Theoretical and Experimental Deflexion Profiles at the Mid-Span Section of Slab
Bridge With and Without Edge-Stiffening Beams

Position Deflexions in 0.0001 in. due to
On, Beekion, P Experimental| P+ F P+F+M |Experimental

b 26.62 28.1 19.09 20.18 14.4
~3b/4 32.34 30.2 25.34 25.89 20.2
“b/2 39.83 37.6 32.96 33.26 27.7
~b/4 49.65 44.1 42.30 43.50 36.8
0 62.67 57.2 54.07 53.85 47.1
b/4 77.57 73.7 66.82 66.90 63.8
b/2 91.63 88.8 77.73 77.61 75.8
3b/4 101.06 100.5 83.00 82.39 81.4
b 106.85 116.5 83.90 82.21 86.3

Because the measured maximum deflexions were greater than the theoreti-
cal values it was decided to investigate the solution further by including.the
effects of Poisson’s ratio, v, in the distribution coefficients K [6]. It has been
found that in the case of concrete for which v has a mean value of 0.15 these
effects are negligible. However, this is not necessarily so for higher values of v,
and since v=0.25 for the Perspex used the point was worth investigating.

The distribution coefficients K were re-calculated for § = 0.6 and for v =0.25;
with these values a new set of compatibility equations was derived assuming
that the edge moments could be ignored. The solution to these equations
yielded

F,=0131 P and F,=0.029P.

From these values table 4 was produced'; it compares theoretical and
experimental deflexions for a value of P of 1.748 lb. and a measured K of
4.825x 10% 1b./in? i. e. it is for the same loading as table 3. A study of tables 3
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and 4 shows that the maximum experimental deflexions lie between the
theoretical values derived by assuming Poisson’s ratio is zero or 0.25. It may
thus be concluded that for concrete it will be sufficient to assume v=0 in
calculation since even for Perspex the error in this assumption was only 59,
and would be less for concrete.

Table 4. Theoretical and Experimental Deflexion Profiles at the Mid-Span Section of Slab
Bridge With and Without Edge-Stiffening Beams when Poisson’s Ratio v=10.25

Position Deflexions in 0.0001 in. due to
on. seetion P Experimental P+ F Experimental

-b 27.07 28.1 17.72 14.4
-3b/4 31.24 30.2 23.05 20.2
-b/2 38.26 37.6 30.44 27.7
-b/4 48.48 44.1 40.13 36.8
0 62.08 57.2 52.18 47.1
b/4 78.29 73.7 65.62 63.8
b/2 94.62 88.8 77.73 75.8
3b/4 108.45 100.5 85.69 81.4
b 121.95 116.5 91.49 86.3

16 a4
7 D2b
in the expression for the ‘“mean’’ deflexion due to live load and edge shearing
4q?

The longitudinal bending moments are found by replacing the factor

795" Thus the mid-span longitudinal moments would be
r D

found by multiplying the results of table 3 by Ta2 :
bridge, once the values of ¥ and F, had been found in terms of P the moments

would be found directly as }%‘% (K., H,—K,, F,—K,, F,) where K,
K,, and K,  are the relevant coefficients K, for each force at the point on
the transverse section under consideration.

Transverse bending moments. The transverse bending moments will also be
modified by the forces induced along the edges of the bridge. The maximum
possible transverse moment on any transverse section occurs at the centre of
the section. The transverse position of the load to cause this moment is shown
in fig. 19. This position does not coincide with the position which has been
considered for the determination of the maximum longitudinal effects and
therefore the values of F; and F, will differ from those obtained before.
However, a completely new set of compatibility equations is not necessary for
the determination of the new values of F; and F, since the only coefficients
to change are those involving P, the terms involving ¥ and M being exactly
as before.

forces by the factor

Naturally, for an actual
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The loads can be distributed to the standard positions and the correspond-
ing distribution coefficient profile can then be deduced. The four compatibility
equations can be derived in exactly the same way as in table 2, the only
values that are different from the values in table 2 being those dependent on
the position of the abnormal load vehicle.

For this particular loading the shear forces, F, and edge moments, M, are
as shown in fig. 20. The distribution of the transverse moments on the central
section can now be found. The moments caused by the abnormal vehicle alone
are calculated by the u-coefficient analysis [5]; the moments due to the shear
forces F; and F, are calculated in a similar manner; the moments due to the
edge moments M, and M, are calculated by using the percentage curves of
figs. 5 and 9. Hence the total moment is found; table 5 gives the individual
transverse moments at points across the width of the central transverse section
caused by the various forces and moments and the total moment at each point.

e
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Fig. 19. Distribution of applied loads to standard positions for investigation of the
maximum transverse moment in slab bridge.
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Fig. 20. Forces acting at mid-span of slab bridge with edge-stiffening beams for investi-
gation of maximum transverse moment.
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Table 5. Mid-Span Transverse Bending Moments for Slab Bridge With and Without
Edge-Stiffening Beams

Transverse moment (x ~1—) due to
Position P
on section p P P M1+ M, M,— M-, Total

2 2 moment

-b 0 0 0 -0.0410 0.0030 -0.0380
-3b/4 -0.0702 0.0089 0.0256 -0.0224 0.0016 -0.0565
-b/2 0.0780 0.0164 0.0330 -0.0125 0.0008 0.1157
-b/4 0.5946 0.0236 0.0306 -0.0075 0.0004 0.6417
0 1.3995 0.0300 0.0256 -0.0060 0 1.4491
b/4 1.0443 0.0357 0.0202 -0.0075 -0.0004 11.0923
b/2 0.2509 0.0386 0.0141 -0.0125 -0.0008 0.2903
3b/4 -0.0150 0.0300 0.0076 -0.0224 -0.0016 -0.0014
b 0 0 0 -0.0410 -0.0030 -0.0440

It is seen that the over-all effect of stiffening the bridge has been to increase
the maximum moment by only 49%,. It may be concluded from this that the
modifying effects of the edge shears and moments can be ignored. Whether
they are ignored in all cases must be left to the designer. The moments caused
by the forces P and F and the moment M will all increase with increase in 6
and, therefore, the percentage increase in moment will not be affected greatly
by variations in plan dimensions. The ratio of the flexural stiffness per inch
width of the edge beam to the flexural resistance per inch run of the slab was
5.7 and the ratio of the torsional stiffness per inch width of the edge beam
to the torsional stiffness of the slab per inch run was about !/,. These ratios
might be some guide in deciding whether it is worth while considering edge
shears and moments in the determination of transverse bending moments. If
the ratios are less than those given above the modifying effect on the maximum
moment should be less than 49,. Further, if the ratios are greater, it will
only be necessary to include the effects of edge moments if the ratio of the
flexural stiffness to the torsional stiffness of the edge beam is less than, say, 5.

b) Beam and Slab Bridge with Kdge-Stiffening Beams

The previous work has considered the effects of edge-stiffening beams on
slab bridges. It is necessary to extend the investigation to include bridges for
which o+ 0 since it is then necessary to make use of interpolation formule of
the type Y,=Y,+ (¥;—Y;) Va. A Perspex model of a beam and slab bridge,
shown in fig. 21, was tested to find the modifying effects of stiffening beams
at. the edges of the structure. The dimensions and properties of the model
are given in table 6.
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Table 6. Properties of Beam and Slab Bridge Model

Span 2a 17.81 in.

Width 2b 12 in.

Thickness of slab 0.187 in.
Thickness of rib 0.167 in.

Depth of rib 1.313 in.
Thickness of diaphragm 0.167 in.

pp per inch 0.05448

pr per inch 0.02923
Young’s modulus # 3.86 % 102 1b./in?
Modulus of rigidity ¢ 1.55 % 105 Ib./in?
Flexural parameter 0 0.3900
Torsional parameter « 0.0177

Depth of edge beam 1.98 in.
Thickness of edge beam 0.257 in.
Flexural stiffness of edge beam 0.1662 I
Torsional stiffness of edge beam | 0.0102 ¢

Fig. 21. Perspex beam and slab model under test.

A single load, P, of 5.51 Ib. was applied at the point 6/6 on the mid-span
transverse section.

The derivation of the coefficients in the compatibility equations is set out
in detail in tables 7 and 8 for deflexion and slope respectively. These tables
illustrate the functioning of the interpolation formula mentioned above.

From these coefficients and the equation given in section 2(c) the four
compatibility equations may be set up. If this is done the solution is found
to be

F, = 0.020 P, F, = 0.009 P,
M,=-0001 P, M,=-0.002P.
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Table 7. Deflexion Coefficients and ‘“Mean’’ Factors for Beam and Slab Bridge

Applied load at +b/6

Position on section

Ko -b -3b/4 | -b/2 -b/4 0 b/4 b/2 | 3b/4 b
0.33x0 0.248 | 0.284 | 0.323 | 0.370 | 0.389 | 0.3700.323|0.284 0.248
0.67 xb/4 0.101 | 0.241 | 0.422 | 0.603 | 0.750 |0.844|0.911 | 0.992 ’j 1.052

> Ko 0.349 | 0.525 | 0.745 | 0.973 | 1.139 |1.214|1.234|1.276 | 1.300

K
0.33%x0 0.302 | 0.316 | 0.330 | 0.345 | 0.353 | 0.345|0.330| 0.316 | 0.302
0.67 xb/4 0.528 | 0.565 | 0.608 | 0.654 | 0.699 |0.737|0.739|0.727 | 0.717

1Ky 0.830 | 0.881 | 0.938 | 0.999 | 1.052 |1.082|1.069{1.043|1.019
Ko+(Ki1-Ko) V; 0.413 | 0.572 | 0.772 | 0.977 | 1.127 |1.196|1.212|1.245!1.263
|
Edge shear force — Load at +0

Ko -1.650 | -1.080 |-0.540 | 0.130 | 0.735 |1.570 | 2.400; 3.405 | 4.250

K 0.523 | 0.596 | 0.675 | 0.789 | 0.917 |1.071 |1.286|1.532 | 1.826
Kot+(K1-Ko) Vo |-1.361 |-0.857 |-0.378 | 0.218 | 0.759 |1.504 |2.252 | 3.156 | 3.928

Edge moments
Symimetrical -b -3b/4 | -b/2 | -b/4 0 b/4 b/2 | 3b/4 b
®o 3,125 | 1,060 | -390 |-1,255|-1,540|-1,255| -390 | 1,060 | 3,125 x 104
@1 2,190 | 1,050 365 -20| -140; -20| 365 |1,050| 2,190 x 104
@ot+(p1—-@o) Vol 3,001 | 1,059 | -290 |-1,091|-1,354|-1,091| -290 | 1,059 | 3,001 x 104
Asymmetrical
@0 -12,880| -8,974 (-5,628(-2,704| O |2,704 5,628 |8,874 12,8804
@1 ~-3,400| -2,040 |-1,140| -520{ O 520 1,140 | 2,040 3,400
poH(@i-oh) Ve |-11,619 | -8,052 |-5,031|-2,414] 0 |2,414 | 5,031 | 8,052 11,6194
16 a* 16a* bz
onoha 177.44/E; oy 1580.20/ K; P 1231.46/ K
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Table 8. Slope Coefficients and “Mean’’ Factors for Beam and Slab Bridge

Applied load at b/6

Slope at b
Load at

0 b/4 b/6

K} 10 475 +540
AK} 104 ~158 +360 202

K! 104 -40 +150
2K} 108 -13 +100 87

K. 104 = 202 + (87 — 202) Vo = 187

Weighting factor, 2, is 0.33 for load at 0 and 0.67 for load at b/4.

Slope at -b
Load at
0 +b/4 +b/6
Kj 104 -475 -1,310
2Ky 104 -158 -873 -1,031
K 104 -40 -325
AK; 104 -13 -217 -230
K/ 104 = — 1,031 + (— 230+ 1,031) /o« = — 924

Shear force

Slope at b ,

K, =5200x10-4; Kh=1,705%x104; 104K/, = 5,200+ (1,705 —5,200) Vo = 4,735.
Slope at -b

K, =3,440x10; K} =350x104; 104K = 3,440+ (350 — 3,440) //a = 3,029.

Edge moments

Symmetrical
Slope at b

yo= 950x1073; y;= 584%x1073 y = 900x10-3
Slope at -b :

o =-950%x1073;  y1 =-584X1073 y, =-900x10-3
Asymmetrical
Slope at b

y1 = 1,686 X 1073; ;= 648X 1073; 4, = 1,548 1073
Slope at -b

y; = 1,686 X 1073; y; = 648X 1073; 5, = 1,548 x 103
Hia?  _Pa _g9315L, F2 _ 94799 L, b _20524 1 (gc_z)z: 7,916.60.
Vop p& V;)P—PE E Vor pE B PE E C\n
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For these edge shear forces and moments and the applied load the deflexion
profiles are given in table 9 and are compared with the experimental results.
Comparing the theoretical results in which the edge moments are considered
with those in which the edge moments are ignored, it will be seen that, as in
the previous example, the effect of the edge moments is very small and can
be neglected. If this is done the derivation of the compatibility equations
depends only on the normal distribution coefficients K and the solution is
quickly obtained.

Table 9. Theoretical and Experimental Deflexion Profiles for Beam and Slab Bridge With
and Without Edge-Stiffening Beams

Position Deflexions in 0.0001 in. due to
on section pP Experimental P+ F P+ F+ M |Experimental

-b 10.46 10.00 8.15 7.88 6.30
-3b/4 14.49 12.50 11.58 11.40 10.20
-b/2 19.56 17.00 16.45 16.34 15.50
-b/4 24.75 21.70 20.58 20.53 21.50

0 28.55 27.60 23.57 23.57 23.50

b/4 30.30 31.00 23.15 23.20 24.30

b/2 30.71 31.50 21.51 21.62 21.00
3b/4 31.54 29.30 19.35 19.53 19.00

b 32.00 27.80 17.45 17.70 17.40

The agreement between the theoretical and experimental deflexions is very
good and confirms the validity of the analysis when applied to bridges with
a torsional parameter not equal to unity.

The distribution of longitudinal bending moments would be found by

. 16 a4 4a? . . .
replacing the factor T 25 by the factor —9p in the deflexion calculations.

The transverse bending moments would be found in the same way as in
the previous example but this time using the interpolation equation

Mya = Myo+ (My1 _'Myo) V;

The ratio of the flexural stiffness per inch width of the edge beam to the
flexural stiffness per inch run of the slab was 11.9 and the ratio of the torsional
stiffness per inch width of the edge beam to the torsional stiffness of the slab
per inch run was 19.6. The last ratio is much greater than the ratio of 0.5 for
the slab bridge but the ratio of the flexural to the torsional stiffness of the
edge beam is 41 which is also considerably greater than the limiting value of 5
mentioned previously, indicating that the edge moments can be ignored.
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Eccentric Transverse Prestress in Bridges

An analysis of the transverse bending moments in a bridge shows that the
value of the maximum possible sagging moment on any transverse section
considerably exceeds the maximum possible hogging moment, the one being
only about 109, of the other. This being so, there can be no economy in
applying a uniform transverse prestress to resist these moments as the applied
force must be sufficient to induce a stress equal to the maximum sagging
stress at all points on the cross-section of the cross-connexion which often
necessitates close spacing of the transverse prestressing tendons. The situation
can be relieved by placing the tendons eccentrically so that the maximum
possible compressive stress is induced in the bottom face of the cross-connexion
without causing unnecessarily high stresses elsewhere on the section. Thus, the
required prestressing force is reduced and an increase in the spacing of the
prestressing tendons is possible. The maximum allowable eccentricity of the
tendons should be such that no tensile stresses are caused in the upper face
of the cross-connexion. Then the tensile stresses induced by the live load
hogging moments will not exceed 100 lb./in* and will normally be less.

The practical difficulties which exist in placing a transverse cable with a
curved profile will always make a straight cable more economical. Therefore,
in considering the effects of eccentric transverse prestress a straight cable of
constant eccentricity e, will be assumed without exception.

Since a straight cable induces no vertical reactions anywhere along its
length a transversely prestressed bridge can be assumed to be acted upon by

T

equal moments M, sing— along each edge where the value of M, depends

upon the longitudinal disposition of the prestressing force and upon its eccen-
tricity. To the stresses caused by these bending moments must be added the

normal stresses Af’ P being the value of the prestressing force.

The effect of the edge moment M,sin

ZTE
2a
section can be directly assessed as shown in section 2 (a) by using the curves

given in figs. 4 and 5, and the interpolation formula quoted. Thus for any
bridge the transverse moment due to eccentric prestress may be expressed
in the form

at points across the transverse

M,=4M, singg,
where i is a coefficient dependent on 6, «, and the point in the transverse
section at which the moment is required.

The value of M, the effective sinusoidal edge moment, depends on the
disposition of the transverse cables. The expressions for M, for a number of
common dispositions of edge moments, i.e. spacing of transverse cables for a
constant prestressing force and eccentricity, are given in fig. 22. It is sufficiently
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accurate to take only the first term of these series into consideration. The

moments caused by edge moments are then equal to ¢, M, sing—z and M, is

defined in terms of the actual applied moment per unit length, M. The actual
transverse moments caused by live loading will have been determined by
means of the u-coefficient analysis (2) and the stresses due to these moments

can be equated to the stresses due to the moments ¢, M, sing—s plus the uni-

P
form stress due to prestress T

M, per unit length

l 25 J
f *
3)
4 M, nw 4 M,
Mo, = sy & Moy = =2
!
!
M, per ulnl‘f length
A : A
L ¢ N ¢
! |
2)
4M1 .. nm . Nwce . 4M1 . mweC
MO,‘ = ppe SIII?SIII'E;, . e M01 = - Sln'2—a
|
M, per unit length M, per U/ll/'//) length M, per unit length
I
e J o |
¢
4 naw nwc nw
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M,, nw[(Ml M) sin g Sin—5— + M3 8in 2]
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_4

1
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Fig. 22. Expressions for M, for various longitudinal dispositions of transverse prestress.

Conclusions

It has been shown that the theoretical determination of the effects of
edge-stiffening beams gives values which agree with experimental results.

It appears that the effects of the edge moments can be ignored in relation
to the effects of edge shear if the ratio of the flexural to the torsional stiffness
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of the edge beams is greater than 5, provided that the flexural stiffness per
inch width of the edge beam is not considerably greater than the flexural
stiffness per inch run of the deck. In the first case examined the ratio of the
flexural stiffness per inch width of the edge beam to that of the deck was 6;
in the second it was 12; and by studying the magnitude of the effects of the
edge moments in these cases a basis is obtained for assessing their possible
importance in other bridges. The two structures investigated had quite diffe-
rent values of the parameter « and, therefore, a large range of bridge construc-
tion has been covered. The two values of § were also appreciably different.

The modifying effects of edge shear and edge moments have been found
to be less for transverse moments than for the longitudinal effects. For the
slab bridge a reduction of 23%, was noted in the maximum longitudinal
moment with an increase of less than 49, in the maximum transverse moment.

It is often possible therefore, to ignore the modifying effects of the edge
forces on the maximum transverse moments. A study of the stiffness ratios
given in the text and the accompanying modifying effects will give a basis
for deciding whether the inclusion of the edge effects are necessary in the
calculation of transverse moments in other bridges.

It should generally be permissible to ignore the effects of edge moment in
calculation and the calculation with edge shear alone is almost as simple as
the calculation of the load distribution in a uniform bridge. Having once
established the equations for the compatibility of edge deflexion for one posi-
tion of the applied load the equations for other positions follow easily since
only the terms involving the applied loads are changed. For all transverse
positions of the load the “mean’’ effects also remain unchanged.

It is, of course, possible in practice to have edge-stiffening beams for
which the torsional stiffness is comparable with the flexural stiffness. It is
then advisable to include the effects of edge moments. The comprehensive
nature of the analysis described still makes the solution possible.

The application of the curves for the coefficient 4 to the determination of
the stresses induced by eccentric transverse prestress in bridges shows that
there is a rapid decrease from the edge of a bridge to the centre of the trans-
verse section. The bending stresses caused by prestress at the centre of the
bridge decrease with increase in the flexural parameter 6. They become zero
at a value of 6 between 1.1 and 1.2 and there is then no advantage in an eccen-
tric prestress over a uniform prestress. For lower and more practical values
of 0 the available bending stresses at the centre of the transverse section are
greater for small values of the torsional parameter «.

The total stress due to eccentric prestress is the sum of the uniform stress
and bending stress produced by edge moments.

As the value of the cable eccentricity is controlled closely by the require-
ment of no tensile stresses at the edge of the bridge its choice is usually obvious
so that the prestressing force P per unit length at various points along the
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span can be obtained directly by equating the stresses due to the prestressing
force to the maximum stresses caused by the live load on the bridge.
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Summary

A method of calculating the effects of edge-stiffening beams on bridge
structures is presented which is used in conjunction with the normal load
distribution theories. The theoretical analysis is given in detail elsewhere [5]
so only the governing equations for the various effects are given.

The method presented is only applicable where the effective depth of the
bridge is constant between the stiffening beams. Where the effective stiffness
is considerably reduced at the footpaths or the structural connexion between
the parapet beams and the roadway is poor, the modifying effects of the
parapet beams will be much less than those given in the paper and can be
ignored.

A full analysis of a slab bridge with edge-stiffening beams is made and
the results obtained from tests on a Perspex model of the bridge are compared
with those derived theoretically. A similar analysis is made for a beam and
slab bridge where the torsional parameter, «, of the unstiffened bridge is less
than unity. The results are again compared with values found experimentally.

The degree of accuracy to be expected from the theoretical analysis and
the percentage changes in the longitudinal and transverse bending moments
due to the effects of edge-stiffening beams are estimated. Part of the analysis
for the above problem is applied to the effect of eccentric transverse prestress
in bridges. This application of the analysis is illustrated.
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Résumé

Pour le calcul des poutres raidisseuses de bordure dans les structures por-
tantes des ponts, les auteurs indiquent une méthode qui est employée con-
jointement avec les méthodes courantes de répartition des charges, L’étude
théorique détaillée a été exposée d’autre part (1), de sorte que seules sont
indiquées ici les équations relatives aux différentes influences.

Cette méthode ne peut étre appliquée que lorsque la hauteur de la struc-
ture portante reste constante entre les poutres raidisseuses. Lorsque la rigidité
est fortement réduite & I’endroit des trottoirs ou lorsque la liaison constructive
entre les poutres de bordure et le tablier est faible, I’influence des poutres de
bordure est beaucoup moins grande qu’il n’est admis ici et elle peut étre
négligée.

Le calcul complet d’un pont dalle avec poutres raidisseuses de bordure
est comparé avec les résultats d'une mesure effectuée sur un modeéle en Perspex.

Une investigation analogue est effectuée pour un pont a dalle raidie dans
lequel le coefficient de torsion « du pont non renforcé est inférieur & I'unité.
Les résultats sont ici aussi comparés avec ceux des mesures.

Les auteurs estiment la précision que 'on peut attendre de 1’étude théo-
rique ainsi que la variation en pourcentage des moments fléchissants longi-
tudinaux et transversaux, du fait de la présence des poutres raidisseuses de
bordure. Une partie de I’étude du probléme ci-dessus est appliquée & I’'influence
d’une précontrainte transversale excentrique. Cette derniére application fait
I’'objet d’illustrations.

Zusammenfassung

Fiir die Berechnung von Randversteifungstrigern bei Briickentragwerken
wird hier.eine Methode angegeben, die in Verbindung mit den iibrigen Last-
verteilungstheorien angewendet wird. Die detaillierte, theoretische Unter-
suchung wurde anderswo (1) entwickelt, so dafl hier nur die Gleichungen fiir
die verschiedenen Wirkungen angegeben werden.

Diese Methode ist nur dort anwendbar, wo die Briickenstéirke zwischen den
aussteifenden Trigern konstant bleibt. Wenn die vorhandene Steifigkeit bei
den Gehsteigen stark reduziert wird oder auch wenn die konstruktive Ver-
bindung zwischen den Randtrigern und der Fahrbahn schwach ist, dann ist
der EinfluB der Randtriger viel kleiner als in dieser Abhandlung angenommen
wurde und kann vernachléssigt werden.

Die komplette Durchrechnung einer Plattenbriicke mit Randversteifungs-
tragern wird mit den Resultaten einer Messung an einem Perspex-Modell ver-
glichen.

Eine ahnliche Untersuchung wird fiir eine Plattenbalkenbriicke durchge-



200 G. Little and R. E. Rowe

fithrt, wo der Verdrehungskoeffizient « der unversteiften Briicke kleiner als 1
ist. Wiederum sind die Ergebnisse mit Messungen verglichen.

Weiterhin wird die Genauigkeit, die von der theoretischen Untersuchung
zu erwarten ist, und die prozentuale Verinderung der Léings- und Quer-
biegungsmomente infolge der Randversteifungstriger abgeschitzt. Kin Teil
der Untersuchung des obigen Problems wird auf die Wirkungen einer ex-
zentrischen Quervorspannung angewendet. Diese letzte Anwendung ist
illustriert.
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