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Vibrations of Bridges with Continuous Main Girders
Vibrations dans les ponts a poutres principales continues

Schwingungen der Briicken mat durchlaufenden Hawpttrigern

VLADIMIR KOLOUSEK
Prof. Ing. Dr., Praha

Introduction

The problem of forced vibrations of continuous beams acted upon by
moving loads which produce harmonically alternating vertical forces had been
studied by the author of this paper some years ago!). At that time the author
theoretically analysed and numerically calculated the time-variation of the
deflection of the centre of the middle span of a three-span beam, on the
assumption that a two-cylinder, 100-ton locomotive is crossing the structure,
and that the driving axles of the engine produce centrifugal forces P equal to
0.6 N2 (P in tons [metric], if N denotes number of revolutions per second).

It was, however, not possible at that time to check the calculated values
experimentally and only a few years later dynamical measurements on an
actual structure were made possible.

The spans, weight and stiffness of this actual structure as well as the
dynamical effects of the locomotive used for the load test were different from
those on which the above mentioned theoretical analysis had been based. The
numerical example presented in this paper is worked out with assumptions
which correspond to the actual structure and engine used at the mentioned
load test.

1) KoLOUSEK, ‘‘Stavebna dynamika spojitych nosnikél a rémovych soustav’. Prague
1950. German translation ‘“Baudynamik der Durchlauftriger und Rahmen”. Leipzig
1953. Fachbuchverlag. French translation ‘“Calcul des efforts dynamiques dans les
ossatures rigides”. Paris, Dunod, 1959.
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I. Brief review of the theoretical analysis
a) Free vibrations

The natural frequencies and modes of free vibrations of continuous beams
with mass and cross section imiform along the individual spans can be analyscd
by the slope-deflection method. From the equilibrium of moments at any
isolated joint K we have for free oscillations

Mg g1+ Mg g =0, (1)

where My x ,, My k., are end-moments of the bars K, K—1 and K, K +1
respectively.
For the case that the respective bar is continuous on both sides we have

EJ _
MK,K—I = TK&[Fz ()\K,K—1)'}’K+F1 (’\K,K—l)'}’K—l]’ (2)
K,K-1
where the notation is as follows:

E modulus of elasticity,
J moment of inertia of cross-section,

[ length of span,
L o
A= ZVEJ ,

F1 ()‘) = —A

sinhA —sin A
coshAcosA—1"
coshAsin A —sinh A cos A

@) =-2 coshAcosA—1 ’

yx angle of rotation of the joint K.

If the respective span has a hinge at the joint K we have

EJ _
Mg g 1= o g LF, Az, x—1) Y& > (3)
K,K-1
where F () = 2sinh Asin A 2)

coshAsinA —sinhAcosA”

If we write down eq. (1) for all the joints of a given system, we obtain a set
of simultaneous homogenuous linear equations. By setting the determinant
of this set equal to zero we obtain the “frequency equation’’ for calculating
the natural angular frequencies wq), wg), wg ete. of the system. From the

ratios of the subdeterminants we may then calculate the ratios of the rota-

YEK+1

tions of joints — which already determine the shape of the individual

natural modes of vibration.

2) Tables of F' (A)-functions are given in 1).
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The k-th natural mode is given by the formula

X

l

X

LJON (x) = 01 cosh A ]

+C,sinh A +C3cos)\§+04sin)\%, (4)

where v, (x) denotes the vertical deflection in any point x for the k-th natural

mode and
4 g
A= zV%’f& (5)

The constants of integration (' are determined from the conditions at the
ends of the bar.
If the span K —1, K is continuous at both ends we have

; _
01 = “03 = “:2-)\5[1"2 (A)'}’K—1+F1 ()\)?’K]a (6)
l l
C, = Q_AE[—E(A)YK—1+E(A)YK]+ﬂ7K—1’ (7)
l
Cy= “02+X7K—1’ (8)

cosh A —cosA
coshAcosA—1"

sinh Asin A
coshAcosA—1"

where Fy(A) = —A2

F)= X

The formulee (6), (7), and (8) we obtain from eq. (4) considering the con-
ditions at the ends, viz.

d 0 (0) d gy (1)

Dy (0) = vy (1) = 0, Az — VK- A VK-

If the bar K, K —1 is hinged at the point K — 1, the conditions at the ends of
the bar become

d2 v, (0) d v, ()
000 = vy =0,  Tow®_,  dow@_,
and we obtain for the constants of integration
C;= C;3=0, (9)
l sin A
Ce = X coshAsinA—sinhAcosA /X’ (10)
0. — l sinh A 11)

™ T X coshAsinA—sinhAcosA X"
If the bar K —1, K is hinged at the point K the end-conditions are
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and we have C,=-0C;= —QL/\zIf} A)vr_1s (12)
0y = = (5355 W ~5) v, (13)
223 22
Cy= —02“%')’1{—1, (14)
coshAsin A +sinhAcosA

where Fy(A) = —A2

coshAsinA —sinhAcosA
b) Forced vibrations

If the span of the bridge is large and the magnitude of the moving load
is constant, then the dynamical effects produced are small, and the deflections
may be calculated in the same way as for statical load only.

If an harmonically alternating force Psin{2¢ moves along the bridge at
constant speed c, forced vibrations of the structure are excited, and in this
case the dynamical effects may be investigated by resolving the vibration
into a series of natural modes?®). The differential equation for the vertical
vibrations in this case becomes

v (x,t) ov(z,t) v (x,t)

ap TERe g tES i =), (15)
where the notations are as follows:
7 is the uniformly distributed mass per unit of length.
x is the abscissa of the point in question if the origin is at the left

end of each span.

¢ is the time in seconds.
v (x,t) is the vertical deflection of the point x at the time ¢.
wy, is the damping factor (dimension the same as frequency).

p(x,t) is the load per unit length variable with x and ¢. If the bar is loaded
only by an alternating force Psinf2t¢ at the point x=a=ct, it
follows that p (x,t) is equal to zero at all points with the exception
of the point x=a=ct.

P is the amplitude of the harmonically alternating force.
=27 N is the angular frequency of P.
N is the frequency of P, in practice it is the number of revolutions

p- sec. of the driving axles.

We now solve eq. (15) by resolving the vibration into a series of natural
modes, and we put

v(@,0) = 3 9 (1) (x), (16)

3) The method is described in detail in 1).
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élﬂﬂm ) Vg (%) 5 (17)
4
2 p (1) by (x)da
Pao (1) = — : (18)
Zg,ub(zk)(x)dx

where

vy (1) is the generalised co-ordinate of the deflection, as a time function.
P () is the generalised co-ordinate of the load.

The summation 2 is to be extended over all the spans of the system.

On inserting from eqs. (16) to (18) into eq. (15) and considering that

d‘*b(k)( )

EJ—""==pwd) g (x) for any k we obtain

d2 vy, (¢ dvg,(t
d(’;;( 2w, &k;( )+w<2k)”(k) (£) = Pgy (2).- (19)

If the force Psinf2¢ is acting at the point x=a=ct we have acc. to (4) and
(18):

Py () = — L sin2t (C; coshwt+ Cysinhwt + C3coswt + Oy sinwt), (20)

Z({pb(zk)(x)dx

where w="°, and the constants C are determined by eqgs. (6) to (14).

Insertinlg for pgy,(¢) from (20) into (19) we obtain a differential equation,
the particular integral of which can be expressed in the form
vy (1) = € sinQtcoshwt+C,sinQ¢sinhwit+ €, cosQ¢coshwi+
+@,cosQtsinhwt+C,sinQtcoswi+EysinQtsinwt+ (21)
+C3cosRtcoswi+C,coslisinwt.
Substituting for v, (t) from eq. (21) into eq. (19) and rearranging we have
(€, (w2 —22)—2C,wR+2C,ww,—2C, 2w, +C, wdy]sinQtcosh wi+
+[C, (w?—02)—2 @—3w9+2_@10)0)1,——2@49(»,)-{-@2(»(2@] sin Q¢ sinh wi+
+ € (w2 —22) 4+ 26, 0w+ 26, w wy + 2 €, 2wy + 4 wdy]cosRtcosh wt +
+1C, (w2 —22)+ 26, wR+2C;ww, +2E, R w, +C, wdy]cosQt sinh wit +
=G (0?2 =023 —2C,wR+2C 0w, —2C;Rw, + €, wd,] sin Récoswi +
+[—Cy(0?—2%)+2C,wR-2C ww, —2C, R w, + C, wdy] sin Riésin wi+ (22)
+[-C(w?—2%)+2C,w R+ 26, ww,+2C, R wy+ C3wd,] cosRicoswit+
+[-Cy (w2 —22) 26, w2 -2C;ww, +2C,Q wy + €y wdylcosRisinwi=
P

=
Zg#b(zk) (xr)dx

+C,ysin2tsinwt].

[C1sinQtcoshwit+CysinQ¢sinhwi+ CysinQtcoswit+



116 Vladimir Kolousek

The constants € and € are determined from the condition that the coeffi-
cients of identical products (sin2¢cosh wt, etc.) have to be equal?).

The calculation is simplified in the case that the frequency of the moving
force is in resonance with the frequency of the first natural mode. In this
case it is sufficient to take into account only the first terms in the series as
expressed by egs. (16) and (17). In addition we may in almost all cases suppose
the values of w, and w to be small in comparison with 2. Making these assump-
tions we obtain (for k=1):

@1 %@2 %@—1 E@z =0,

@3-—-6(0 w—C3w,),
Ci=e(-Ch0—-C ), (23)
€; =¢(Crap,—Chw),
€y =é(Chw,—Cw),
where €= Pl )
20 (w?+wf) T [ p 0fy (@) dae
0 (24)
P

€ = 1 '5)

20 (w? ~ of) 3 [ u by (@) da

Eq. (21) is only a particular integral of (19) and it does not satisfy the
initial time-conditions of the movement. To satisfy these conditions we have
to add another term which expresses the natural damped vibrations of the
system oscillating in the k-th natural mode (usually we consider only k=1).
If the damping is slight the term which has to be added is given by the

formula
Voo () = Cge=®0t(cos gy sin wy,yt + sin ¢y cos wyyt), (25)

where by €, and ¢, we denoted the constants of integration. The final value
of the generalised co-ordinate of the deflection is thus

Ve (B rin = Yy (8) + Vo (8) - (26)

. 5 " . dvw) (0)fin
If the initial conditions of the movement are given by vy, (0);;, and —2-="",

we obtain for ¢ =0 from eqgs. (25), (26) and (21)

Cosing, = _@3_63"‘”%) (0)sin (27)
d 0)s4 1
Cycosgp, = v(kc)l(t Jpin i (28)
W)

4) The calculation is given in 1), chap. VIII, 2 and 3.
5) It is obvious that this simplification would not be possible for @ = wy. In practical
cases, however, we almost always have w> wp.
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The expression for v, (),;, appears thus in the form

Vi) ()50 = 00882t [C3coswt+ Eysinw i+ €, coshwt+E,sinh wt] - (29)
— e““’”{[(@g +€;3) — 4y (0) 4] cOS Q1 —% m{}—(})—»'ﬁ sin.Qt} ;

We have now to determine the integrals in the denominators of the formulse (24).
If the bar K, K +1 is continuous at both ends, the constants of integration
in eq. (4) are given by egs. (6), (7) and (8) and we have¢)

EJ[y%+v3 2
oy (@) dar = o= [YK P, () VE KR, <A>], (30)
where the functions @ are defined as follows
D, (A) = B W) E Q) - F(A) - F V)], (31)
Dy (A) = L[F2(A) —F, (N)]. (32)

If the bar K, K +1 is hinged at the end K we make use of eqs. (4), (9),
(10) and (11) and obtain

EJ v}
Juvlo(@)da = = TR0 ), (33)

where D, (\) = 3[—F, )+ F2 () + 25, (V)]. (39)

If the hinge is at the point K + 1 we put in eq. (33) simply y insted of yx ;.

In the analysis as described above we have neglected the fact, that simul-
taneously with the pulsating force also the mass of the locomotive is moving
along the bridge, and that the vibrations are thus affected by inertia forces
of the mass of the engine. We can approximately account for this?) if we
assume the inertial mass m; of the locomotive to be steadily placed in the
point x =s where we expect the largest deflection to occur. The inertial force

of the mass m L=% is given by the formula

d?v (s,t)
Lode

This force may be also expanded in a series acc. to eq. (17). Considering only
the first term in the series we obtain ace. to eqgs. (16) and (18) a substitute
load-function 8):

Pog(t)  pdy @)

h(x,t) =_mL dtz 1
Zof/ub?l)(x)dx

6) See ref. 1); eqgs. (83) to (86).

7) A similar method has been used by IngLis for simply supported beams. (INGLIS,
“A Mathematical Treatise on Vibrations in Railway Bridges”, Cambridge 1934.)

8) See ref. 1), egs. (240) to (243).
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This load-function represents the inertia force of uniformly distributed mass

0d) (s
g — o)
ZJF’D(%) (z) dx
The system is in this case oscillating as if it were loaded by the mass
2
A=u [1 +mp—— v (5) ] . (35)
Z(.)““ g (x) dz

II. Application of the theoretical solution to the experimentally
tested actual structure

The main girders of the tested bridge are continuous over three spans of
60.8, 77.4, and 60.8m, respectively. The girders are open-web parallel-boom
trusses with simple triangle bracing. Along the individual spans the cross

sections of the trusses are variable.

An exact solution of such a type of structure would present unusual diffi-
culties. For dynamical analysis, therefore, the two main girders have been
replaced by a substitute single continuous truss with cross sections constant
within the individual spans. The moments of inertia for this substitute system
have been determined in such a manner, that both the actual and the substitute
systems have the same maximum deflections v, and v, if loaded as shown
in fig. 1. The values of the moments of inertia thus obtained are 2,08 m* and
3,14 m? for the end and middle spans respectively.

It/m

IS (T T

LN

T

Nt/m

o

1¢/m

S’!

l01°608m| lLr=774m

l”;a: =[0”

Fig. 1. Equivalent Load for the Substitute Beam.

§¢ 20

The influence line for the deflection at the centre “‘s’’ of the middle span
(fig. 2) has been taken to be the same as resultated from the statical analysis,

the ordinates have been, however, corrected
at the load test, so that the line does not
specified substitute truss.

according to the results obtained
exactly correspond to the above
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The weight of the bridge is 5.5 t per linear meter.
The basic values are thus given as follows:

loy =60,8m, J,, =2,08m?% p,, =55/9,81 =0,560¢{m2s2

ly y =77,4m, J; , = 3,14m?, , = 5,5/9,81 = 0,5660fm—28s2,
1,1 1,1 H1,1

005

U,hmn/t

los 17 lro

Fig. 2. Influence Line for Deflection at Middle-Span Centre.

A1 1 ll 1'4 JO 1
== I/ = = 1,150.
Ai loa ¥y
The natural frequency of symmetrical vibrations is calculated ace. to
eq. (1)?®), with respect to egs. (2) and (3):

J Jy 4
'Llﬂ ()\0,1) = *L—I[F1 ()‘1,1') —Fz()‘l,r)]-

l(),l ll,l’

Further we have

(36)

The lowest values for which eq. (36) holds true are

Ao’l = 2,93, Al,l' — 3,37.

The fundamental natural angular frequency is given by the formula

X, [EJ,, 3,37 [21.10°-3,14
= 1 V X 2 % 90,551
OB N Ty | T4 0,560 B

so that for the frequency of the load-free bridge we obtain

20,5
ne) = 2—;‘_— = 3,26 g1,

If we assume for the amplitudes y,= —y;, =1 we obtain from equations

(30) to (34)

9) See ref. 1), chap. II, eq. (52).
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: {QJO L[ =F, (A1) +F2(Ag 1) +2F, (X )]+

w(l)

T 00,0~ B O ) = B O 1) B Oy 1) + B O ) + By (Al,rn} -

lO,l
2J, 4
Ly
21-106[ 2,08 (
20,52 | 60,82
3,14
77,4-2

—1,035+1,0352+2-5,5636) +

(3,2742 — 2,409 — 3,274-2,409 + 11,621 + 3,274)] ~ 25200 t ms2.

The first natural mode is then expressed by eq. (4). With respect to
vy, = —v1-=1 we obtain now for the first span the constants of integration ace.

to egs. (9), (10), and (11).

01 — 03 = 0,

b1 sinlg 4 60 8 O 210

= : : L = e 0,393,
i 4

0, = — Iy 1 . s1nh)«0',1 _ 60,8934 _17.45.
Ao,1 cosh}y ;sinA, ; —sinh ], ;cosy 4 2,93 11,10

. x ) x
Thus 0 () = 0,393 sinh 2,937— 17,45 sin 2,937. (37)

For the second span we have, acc. to egs. (6), (7) and (8):

L 77,4
Cl = —03 = 2A2 [F ( ) 'Fvl(Al,l’)] = —W(2,409—3,274) == 2,94,
by 1p oy )+ F it
Cz= 2)\3 [ (11)+ (11)]‘[‘2)‘1’1’ =
77,4 774
= -5 3373(2 461 +11,621) + 573,37 = —2,87,
_ liv 77,4
c,=-0, +)\11 287+m 25,83,

by () = 2,94 cosh 3,379—;—2,87 sinh 3,37%—2,9400.% 3,37%3+25,83 sin 3,37’-;.

(( b

For the centre of the middle span we obtain

l
b(l)( ) ) = 2,94 cosh 1,685 —2,87sinh 1,685 — 2,94 cos 1,685 +

+25,835in 1,685 = 26,69,
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For the third span we determine the constants of integration acc. to egs. (12),
(13), and (14) as follows

lO,l 60,8 _

01 = —03 = Q—A%TF:, (AO,I) = m1,035 = 3,67,

lo.1 l, _ 608 60,8
Go=gn =gy | = 550387530 ~grg 95 = 7 30%

lo 1 60,8
C, = _Cz_xoj = 3,68 55 = ~ 17,04,
so that we have
x . x
b (x) = 3,67 cosh 2,937— 3,68 sinh 2,937 -
(39)
x ) x
—3,670082,937 17,04 5in 2,93 7.

The first natural mode of vibration as expressed by eq. (39) is shown in
fig. 3a.
The “angular frequency’’ of the damping has been estimated to be w, = 0,381,
At the load test the bridge has been moved upon by a two-cylinder, 97-ton
locomotive, with five coupled driving axles, the centrifugal forces produced

g) & o 7 0

o

<) \/

las Iy lro

Fig. 3.

a) First Natural Mode of Vibration.
b) Second Natural Mode of Vibration.
¢) Third Natural Mode of Vibration.
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having the value of 0.3 N2 (in tons, if N denotes the number of revolutions
per second). The circumference of the driving wheels was 3.96 m.

The dynamical effects produced by the locomotive we shall now investigate
in the manner described in Part I of this paper. We assume the inertial mass
of the engine to be constantly placed at the centre of the middle span, i.e. we
neglect the movement of the inertial mass and take into consideration only
the movement of the weight W, and of the centrifugal forces of the engine
along the bridge.

The effect produced by the movement of the weight along the bridge is
expressed with sufficient accuracy by the statical effects only.

In fig. 2 the influence line for the deflection of the point “s’’ at the centre
of the middle span is shown. Evaluating the line using the axle-loads of the
engine we obtain the curve of variation for the deflection of the point “‘s”,
produced by the locomotive crossing the bridge at practically any speed, but
on the assumption that the centrifugal forces of the driving axles are non-
acting. Thus we obtain the curve shown in fig. 4a.

When calculating the effects of the moving periodical forces of the driving
axles we shall consider only the case when N =7%,,, where 7, denotes the first
natural frequency of the loaded bridge. The angular frequency of the loaded
bridge is -

a %o / r Zo
5

VA rens o
aTESE

A AA M A AN
LYYV

o WA AN ) s amananas

YUVV\/\A/\\N\/\A/\/\,\[\N\/UUUV" MAAAAAAAS

lor Ly lo

Fig. 4.
a) Statical Deflection of Centre of Middle Span Produced by a 97-t Locomotive.

b) Dynamical Deflection Produced by a Moving Alternating Force, the Frequency

of which is in Resonance with the First Natural Frequency of the System. (Dotted Line

is the Envelope Curve of the Amplitudes for the Case that the Force is Moving only
"+ along the Middle Span.)

¢) Theoretical Curve for Dynamical Deflection of Centre of Middle Span.
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where, according to eq. (35)
myog)(s) |, 97-26,69

i
Z=1 = — =] 28,
B ToT 798125200 ~
Z(.)f.“« b, (x) da
20,52
Thus we have o= 1/7 éS = 18,1s7!
18,1
and g = 27,7 = 2,88s71,

The critical speed is
c=2,88-3,96 =11,4ms 1~ 4l kmp.h.
and the corresponding centrifugal force

P =0,3-2,88 = 249t%.
We have also

@y = Wy = — 0,23551
7

!
and D favd)(x)dez = 1,28-25200 = 32300 t ms2.
0

Further calculation is carried out as described in Part I of this paper 19).
For the span 0,1 we have

Ao.gC  2,93-114

= = = 0,549s1
A 60,8 S
and, acc. to eqs. (23) and (24)
P 2,49

= = : = 0,598-10-°
© T g (@l S [k (@) de 2. 18,1(0,549240,235%) 32300 _ 000 107
C;= eC,w =-—0,598-10"5-17,45-0,549 = —5,74-1075,
C,=-eCyo,= 0,5698-1075.17,45-0,235 = 2,45-1075,
F P 2,49 = 0,865- 103,

T 2@y (wP—@f) > [ avgy(@)dz  2-18,1 (0,549%—0,2352%) 32300
€y=—¢eCyw = —0,865-1073-0,393-0,549 = —0,1865-10-5,
C,= éC,@,= 0,865-1075-0,393-0,235 = 0,0798-10-5.

When the harmonically varying force is moving along the span 0,1 we obtain
the curve of variation for the deflection of the point “s’’ at the centre of the
middle span acc. to egs. (29) and (16). Considering only the first term in the
series we have

10) For more extensive information see ref. 1), numerical example 22.



124 Vladimir Kolousek

v (l—lzl, t) = coswyt- A (1), (40)
where A (2) = v (ﬁé—l—) [C5(coswt—e !y + @, sinwt+
(41)

+ @, (coshwt —e—9t) + §, sinh w £]

denotes the envelope of the deflections of the point “s’’. Formula (40) holds
true in the case that at the moment of entering the bridge the centrifugal
force is acting vertically downwards. In a general case we have

v = (l—lzl, t) = cos (wyt+¢,) A ().

The envelope curve A (t) is, however, the same for any value of the phase
difference ¢, of the exciting force. On introducing numerical values into
eq. (41) we obtain

A (t) = 26,69-1075[ — 5,74 (c0s 0,549t — e—0:235t) 4 2 458in 0,549 ¢ —

—0,1865 (cosh 0,549t —e—0-235¢) 40,0798 sinh 0,5491]. (424)
Putting ¢t = %— , wt= Ao,l—glf and rearranging we have
B . x
A (x) = [ —153 (cos 2,93 7= 6‘1’252“’/’) +65,48in 2,93 7=
(42b)

— 4,97 (cosh 2,93% - e—l,%zxﬂ) +2,1sinh 2,93”-;] 10-5.

For x=1, ; we obtain
A(ly.,) = 180-10-5,

When the harmonically varying force moves along the middle span we
obtain in a similar manner

3,37-11.,4
_ 2 o+ —1
w ——————77’4 0,496s1,
_ 2,49
~ 2.18,1(0,4962 +0,2352) 32300 _
C=¢ (Chw—Cym)=0,707-10"5(25,83-0,496 +2,94.0,235) = 9,54-10-5,

€, =e(—Cyw—C,a,) = 0,707-1075(2,94- 0,496 — 25,83- 0,235) = — 3,26-10-5,

€

= 0,707-10-5,

~ 2,49
~ 2-18,1(0,496% - 0,235?) 32300

€y = é(0y@y—Cyw) =1,115-10-5 (2,940,235 +2,87-0,496) = 2,36-10-5,
€, = é(Cy@y—Cyw) = 1,115-10-5(—2,87-0,235 — 2,04.0,496) = — 2,38 105,

=1,115-10-5,
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For the deflection of the point “s’’ we have

A(t) = 26,69-10-5[9,54 (cos 0,496 { — e~%235t) — 3 26,5in 0,496 ¢ +

+2,36 (cosh 0,496 ¢ — ¢=0235) — 2 38 5inh 0,496 ¢] + A (I, ;) %235, (43a)
A (x) = |255|cos 3 37§-e—1’595w/’ —87,05in3,37% +
b l b bl l (43b)

+63,0 (cosh 3,37-923 — e—1=595w/l) — 63,45inh 3,37 -"Zf +180 ¢-159 wﬂ] 10-5.

The last term in eqs. (43) denotes residual oscillation which remains after the
moving force had passed the span 0,1. Putting =1, ;, we obtain
A(ly ) = —298-1075,

Finally when the force is crossing the span 1’,0” we have1l):

w = 0,549571,

e = 0,598-10-% (as in the span 0,1),
€ =c¢ (Caw—Cyd,) = 0,598-10-5(—17,04-0,549 + 3,67-0,235) =—0,508-10-5,
€, =e(-Cyw-C,®,) = 0,5698-10-5 (3,67-0,549+17,04-0,235) = 3,60-10-5,

& = 0,865-10-5,

€, = ¢(C,@,—Csw) = 0,865-10-5 (3,67-0,235+3,68-0,549) = 2,49.10-5,
€, = é(Cyy—Cyw) = 0,865-10~5(—3,68-0,235—3,67-0,549) = — 2,49-10-5,
A(t) = 26,69-10-5[ —5,08 (cos 0,549 ——0235!) + 3 60sin 0,549¢ +

+2,49 (cosh 0,549 — e~0%5%) — 2,49 5inh 0,549 ¢] + A4 (4, 1/) €2, i)
_|_ T 125240 i z
A (x) [ 135,5 (cos 2,937 ¢ +96,05in2,93 5 + (44b)

+ 66,5 (cosh 2,037 — o 1252 wﬂ) — 66,5sinh 2,037 — 298¢ 122 wﬂ] 10-5.

The deflection as expressed by eqs. (42b) to (44b) is graphically represented
in fig. 4b. If we superimpose the curve of fig. 4b upon the curve of fig. 4a, we
obtain the curve given in fig. 4c, which shows the variation of the deflection
of the point ““s’’ if the locomotive crosses the bridge at critical speed.

The theoretical analysis given above is only approximate, as it is impos-
sible for the state of resonance to last for the full time interval of the loco-
motive crossing the bridge. The natural frequency of the loaded bridge being
dependent on the position of the mass of the locomotive, it varies within

11) In numerical example 22, chap. VIII/3 of the book!) it has been incorrectly
assumed that the constants for the span 0,1 are the same as for the span 1/, 0’. This faulty
assumption affects, however, the results only slightly.
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rather wide limits. If the state of resonance were to last for the full time
interval of the engine crossing the bridge, the speed of the movement would
have to vary. These considerations give rise to the question if the residual
vibration which remains after the engine had passed the end span has to be
considered at all.

The numerical example had therefore been re-calculated, again approxi-
mately, on the assumption that resonance lasts only for the full time interval
of the engine crossing the middle span, and the dynamical effects produced
while crossing the end span were neglected altogether. This assumption results
again in eq. (43), where, however, the last term is missing. Graphical repre-
sentation for this case is given in fig. 5.
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Fig. 5. Theoretical Curve for Dynamical Deflection for the Case that the Alternating
Forces of Axles are Acting only when Moving along the Middle-Span.

IIl. Results of Load-Tests

The 97-ton locomotive used for the tests had been driven across the bridge
at various speeds. The produced dynamical effects have been measured at
different points of the structure by means of strain-gages and deflection meters.
In figs. 6 to 12 we give the diagrams obtained with the deflection meters

Fig. 6. Deflection of Centre of Middle-Span Recorded by the Geiger-Instrument during
the Crossing of a Two-Cylinder Locomotive, Driving at 31 km p. h.
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Fig. 7. Recorded Deflection of the Centre of Middle-Span, Locomotive Driving at
49.5 kmp. h.
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applied at the centre of the middle span, i.e. at the point which had been
also theoretically investigated.

Figs. 6 to 11 show that the dynamical effects produced by the moving
periodical forces are distinctly dependent on the velocity of the movement.
For 31 km p. h. (fig. 6) the effects are hardly perceivable, but for 37 km p. h.
(fig. 8) the effects attain already considerable values. Pronounced resonance
effects are to be distinguished still for the speed of 44 km p.h. (fig. 10), and
only for 49 km p. h. (fig. 7) the effects are diminished.

In figs. 8, 9, and 10 we present the diagrams obtained with the Geiger-
instruments (top) and those obtained with the Stoppani-instruments (bottom).
It is apparent that both the general shape of the curves and the frequency of
vibration as obtained with the two instruments are in good accordance. The
magnitude of the amplitudes show, however, distinctly differing values. While
the Geiger-instruments registered amplitudes of about 289, of the statical

a) s=90m
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Fig. 8. Deflection of Centre of Middle-Span Recorded when the Locomotive is Driving
at 37 ki p. h. a) Geiger-Instrument; b) Stoppani-Instrument.
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Fig. 9. Diagram Recorded at the Speed of Two-Cylinder Locomotive 42.5 km p. h.
a) Geiger-Instrument; b) Stoppani-Instrument.
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Fig. 10. Diagram Recorded at the Speed of Two-Cylinder Locomotive 44 km p. h.
a) Geiger-Instrument on Cantilever;
b) Geiger-Instrument with Wire-Connection to Fixed Point at River Bottom;
c¢) Stoppani-Instrument.
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Fig. 11. Record of Geiger-Instrument at Centre of Middle-Span for Speed of Two-Cylinder
Locomotive. a) Speed 40 km p. h.; b) Speed 42 km p. h.
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Fig. 12. Recorded Deflection at Centre of Middle Span, Three-Cylinder Locomotive Driving
at a) Speed 22.5 km p. h.; b) Speed 61 km p. h.
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deflection, the Stoppani-instruments registered much larger values, viz. about
409, of the statical deflection. The author is of the opinion, that the registra-
tions of the Geiger-instruments were distorted by the friction between the
needle and registration paper, which resulted in diminishing the registered
magnitudes of the amplitudes.

The Geiger- and Stoppani-instruments have been screwed onto the girders
of the bridge and connected to a fix point at the bottom of the river by means
of a 10-m long steel wire. The described arrangement has been much com-
mented upon, the main objection being that the obtained results are affected
by the vibration of the wire connection. Check-tests have therefore been
carried out, having the registering Geiger-instrument fixed to a cantilever of
the tested bridge, while the fixed point was situated on a cantilever of the
adjoining bridge which carried the parallel second track. Each bridge
having separated under-structure it could be assumed that the second-track
bridge was practically at rest during the experiment. The results of these
check-tests are given in fig. 10a. Fig. 10b shows the corresponding record of
the second Geiger-instrument, which had the wire-connection mentioned above,
and fig. 10c shows the record of the Stoppani deflection-meter. It is apparent,
that the records of the two Geiger-instruments differ only very slightly (the
second diagram is twice enlarged).

In fig. 12 the record is given, obtained while a three-cylinder express
locomotive was crossing the bridge. No resonance vibration corresponding to
the first natural frequency could be observed.

IV. Comparison of the Theoretical and Experimental Results

The theoretical analysis had to be considerably simplified and some factors
could not be taken into account at all, so that we cannot expect the theoretical
results to be in full accordance with results obtained experimentally. The
theoretically obtained curves as shown in figs. 4c and 5 may, however, be
regarded as well representing the nature of the vibration of continuous beams,
if the structure is crossed by a two-cylinder locomotive. The differences
between the theoretical and measured values show the extent to which the
neglected factors affect the accuracy of the analysis.

The first factor which has been neglected in the above given solution is
that the analysis had been carried out by expanding the vibration into the
series of natural modes and considering only the first term of the series, i.e.
negletting all higher modes. It is obvious, that if we considered also the higher
modes, we might obtain larger amplitudes. The author had pointed out the
possibilities in this respect in his previous paper !2), where he gave the analysis

12) KOLOUSEK, “Schwingungen der Briicken aus Stahl und Stahlbeton”. Mémoires
de PAIPC T. XVI. Zurich 1956.
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of an arch bridge continuous over 15 spans. In what follows we shall try to
give a rough estimate of the influence of the higher modes. For that reason
we shall compute the second and third natural frequencies and the correspond-
ing natural modes.

The second natural mode is anti-symmetrical and for the second natural
frequency the following equation has to hold true:

J; Jy v
’Z‘ME (’\0,1) = 7‘1-1 [—F (A1,1') —F, ()\1,1')]-
0,1 1,1
The equation holds true for
>\0’1 = 3,58, Al,l’ == 4:,12’

so that the second natural frequency is
Mgy = 4,89 571,

The constants of integration in eq. (4) are determined similarly as for the first
natural mode. Assuming y; =y,.=1 we obtain for the end span

b (x) = — 0,835 sinh 3,58%— 35,4 sin 3,58%
and for the second span

“
!

X

l

X

V) () = — 12,0 cosh 4,12 :

+12,4sinh 4,122 +12,0c084,12% + 6,4 sin 4,12%.
The second natural mode is shown in fig. 3b.
The third natural mode is again symmetrical, and the third natural fre-

quency is given by eq. (36). We obtain
Ao,1 = 3,99, Ay = 4,59,
N = 6,08s7L,
For the span 0,1 we have

§+ 17,47 sin 3,99

V) () = 4,82sinh 3,99 ]

and for the span 1,1’
x

7 —112,5 cos 4,59 +

b (%) = 112,5cosh 4,59 — 110,2sinh 4,59 :

l

. x

+127,15in 4,59 7.
The third natural mode is shown in fig. 3c.

It is obvious, that the second natural mode does not affect (because of its

anti-symmetry) the deflection of the point ““s’’. The third natural frequency
reaching almost twice the value of the first one, the neglection of the third



Vibrations of Bridges with Continuous Main Girders 131

mode seems for the first critical speed to be fully entitled. In practical cases,
however, we cannot exclude the possibility of the second or even the third
critical speed to be attained.

We have already mentioned the second inaccuracy introduced into the theo-
retical analysis by neglecting the movement of the inertial mass along the struc-
ture. If the mass of the locomotive is presumed to be steadily placed at the
centre of the middle span, we obtain a lower natural frequency than if the
mass be placed in the first span. This fact is obvious also from fig. 8, where we
present the record obtained with deflection meters applied for the locomotive
driving at 37 km p.h. The diagram shows, that maximum vibration effects
take place when the engine is crossing the middle span. The experimentally
obtained curve of fig. 8 is similar to the theoretical curve of fig. 5. If the speed
is higher, vibration of the whole structure is excited by the engine crossing
any of the spans. For still higher speeds the vibration of the bridge is excited
mainly when the engine is crossing the end spans. This is apparent also from
fig. 10, where the respective speed is 44 km p. h.

The variability of the natural frequency results in diminishing the ampli-
tudes and so it has a similar effect as damping. Thus better accuracy of the
analysis is obtained if we assume a higher damping factor for the calculations.

Summary

This paper gives theoretical and experimental analysis of the dynamical
effects of a two-cylinder locomotive with unbalanced driving axles crossing a
bridge continuous over three spans.

The theoretical analysis has been carried out by expanding the vibrations
into the series of natural modes. The actual structure has been for analytical
purposes replaced by a substitute three-span truss, with cross-section constant
within the individual spans. The natural frequencies and modes may thus be
analysed with the aid of the tables of F (A)-functions13). The movement of the
inertial mass of the engine along the bridge has been neglected, as the mass is
small in comparison to the mass of the bridge.

The theoretical analysis is, because of these assumptions, not exact, but
a comparison of the theoretical and experimentally obtained results shows,
that the presented analysis approximates the actual dynamical behaviour of
the structure with sufficient accuracy for practical purposes.

Résumé

L’auteur étudie théoriquement et expérimentalement les influences dyna-
miques qui se manifestent au cours du passage d’une locomotive a deux

13) See e. g. ref. 1).
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cylindres, & essieux moteurs non équilibrés, sur un pont & poutres continues
a trois travées.

L’étude théorique a été effectuée par développement des vibrations en
séries de vibrations propres. Pour simplifier le calcul, le systéme porteur effec-
tif a été remplacé par une poutre en treillis & trois travées avec section cons-
tante dans chaque travée. Les fréquences et vibrations propres peuvent ainsi
étre étudiées a 1’aide des tableaux relatifs aux fonctions #(A). Le mouvement
de la masse d’inertie de la locomotive sur le pont a été négligé, car cette masse
est faible par rapport & celle du pont.

Sur la base des hypotheéses ci-dessus, I’étude théorique n’est pas rigou-
reusement exacte; néanmoins, la comparaison entre les résultats théoriques
et les résultats expérimentaux montre que cette méthode d’investigation du
comportement dynamique de la construction fournit une approximation suf-
fisante pour les besoins de la pratique. '

Zusammenfassung

Dieser Aufsatz beschreibt die theoretische und experimentelle Untersuchung
der dynamischen Wirkungen bei der Fahrt einer Zweizylinder-Lokomotive
mit nicht ausgewuchteten Triebachsen iiber eine dreifeldrige Durchlauftrager-
briicke.

Die theoretische Untersuchung wurde ausgefiihrt durch Entwicklung der
Schwingungen in Reihen nach Eigenschwingungsformen. Das effektive Trag-
werk wurde zur Rechnungsvereinfachung durch einen dreifeldrigen Trager
mit feldweise konstantem Querschnitt ersetzt. Die Eigenfrequenzen und
-schwingungen kénnen so mit Hilfe der Tabellen fiir # (A)-Funktionen unter-
sucht werden. Die Bewegung der Trigheitsmasse der Lokomotive iiber die
Briicke wurde vernachléssigt, da diese Masse klein ist im Vergleich mit der-
jenigen der Briicke. .

Auf Grund dieser Annahmen ist die theoretische Untersuchung nicht
genau, aber der Vergleich von theoretisch und versuchstechnisch erhaltenen
Resultaten zeigt, dafl die dargelegte Untersuchung eine fiir praktische Zwecke
geniigende Naherung an das effektive, dynamische Verhalten des Tragwerks
gibt.
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