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The Design of Frameworks to Give Specific Deflections
Etude d’un treillis a fléches imposées aux noeuds

Konstruktion eines Fachwerkes mit vorgegebenen Durchbiegungen

L. G. JAEGER A. H. CHILVER

M.A., Ph.D., AMICE,, M.A., Ph.D., A.F.R.Ae.S.
(Lecturers in Engineering, University of Cambridge, Great Britain)

The estimation of the deflected form of a loaded frame presents no major
problems to the structural analyst. In the case of a statically-determinate
(iso-static) frame the small extensions or contractions of the members are
found from the internal loads in the members, and the resulting deflections
of the frame are deduced. For a statically-indeterminate (hyperstatic) frame
the internal loads are dependent on the relative stiffnesses of the members,
and the estimation of the deflected form is more complex. In most problems
of this type, the geometrical form of the frame, the stiffnesses of its component
members, the external loading system, and the mode of support are usually
defined completely.

Recently the authors encountered a deflection problem of a different type,
and one which (so far as the authors are aware) has received little, or no, study
in the past. In this problem, the system of external loads on the frame and
the mode of support were defined completely; the general outline of the frame
was also fixed, but within this outline the members were to be arranged, and
given suitable stiffnesses, to ensure that the loaded joints of the frame deflected
by specific amounts. The immediate problem is one of determining whether
the specified deflections are physically attainable within the limitations
imposed on the design of the frame. In general this problem is extremely
complex, and especially so when both the geometrical form of the frame and
the stiffnesses of the component members are adjustable.

The first problem studied is that of designing the component members of
a given frame so that the loaded joints deflect by specific amounts. This
problem is treated mathematically in Part I, and graphically in Part II.

When there is no restriction on the overall shape of the frame, then the
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designer is free to dispose the members, as well as choose suitable stiffnesses,
to give the specified deflections. The designer then becomes involved in fabri-
cating, or ‘“‘synthesising’’, the frame to give specific deflections. The problem
of ““synthesis’’ is discussed in Part III, in relation to a particular problem in
which it was required to design a frame to give equal vertical deflections of

the loaded joints.

Part I. Mathematical Analysis

1. Introduction

We discuss first the mathematical analysis of an iso-static frame which is
to be designed to give specific deflections. We suppose that the relative posi-
tions of the members of the frame are fixed, as well as the external loading
system and the conditions of support. The designer, however, is free to adjust
the stiffnesses of the members to give the specific deflections.

2. Frame Having two Members

The simplest type of problem we can envisage is that of a pin-jointed
frame consisting of two members, 1 and 2, which are attached to a rigid
foundation at X and Y, fig. 1. When an external load P is applied at the
joint A, the tensile loads induced in the members 1 and 2 are 7} and 7},
respectively. If the resulting distortions of the frame are small, 7} and 7,
are linearly related to P, and are determined by the geometry of the frame
and the magnitude and direction of the force P; 7} and 7, are reckoned
positive for members in tension, and negative for members in compression.
Now a tensile member of a frame must extend; so that if we reckon an exten-

unit load

Av
Y,
4

Fig. 1. Pin-Jointed Frame Having Fig. 2. Loads in the Members due to a Unit
Two Members. External Load at 4 in the Direction 4.4°.
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sion of a member to correspond to a positive change of length, then we can
always write the extension, e, of that member in the form

e=AT, ' (1)

where A is positive. For a linear-elastic member A is positive and constant;
more generally, A assumes a positive value which is a function of 7.
Returning to the frame of fig. 1 suppose we wish to find the displacement,
8, of the joint A4 in the direction A 4’. We evaluate first the loads in the mem-
bers 1 and 2 due to a unit external load at 4, in the direction 4 4', fig. 2;
suppose the tensile loads induced in the members are a, and a,, respectively.
Positive values of a, and a, indicate tensile loads, and negative values com-
pressive loads. On applying the principle of virtual work to the frames of
figs. 1 and 2, we have
3 =a,e;+aye,, | (2)

where ¢, and e, are the extensions of the members 1 and 2 due to the external
load P. But if, from eq. (1), we write

where A, and X, are positive, then eq. (2) becomes
8 = (ay T1) Ay + (ap Tp) A, (4)

On studying eq. (4) we can determine whether a specific value of 3 can be
attained in practice by a suitable choice of A; and A,. Suppose first that the
coefficients (a,7}), (a@,7,) are both positive; a negative value of 6 is then
quite impracticable, but to give 8 any positive value we have only to choose
any value of A; within the range

3
0<Ay <—prm o T (5)
and deduce the corresponding value of A, from eq. (4); alternatively, we can
choose any value of A, within the range

8
0 <A, <a2 T (6)
and deduce the corresponding value of A; from eq. (4). If the coefficients
(a,Ty), (ayT3) are both negative, then & must also be negative for a physically
sensible solution of the problem; for this case A; and A, are again defined by
the inequalities (5) and (6).
If one coefficient, (a, 7)) say, in eq. (4) is positive, and the other, (a,7}),
is negative, then for 6 to be positive we must have

a, T\ A > —a, ThA,. (7)
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If we now choose any positive value of A, we can always derive a value of A,
satisfying the inequality (7); in this case, then, we have a wide choice of
values of A; and A,.

3. Frame Having four Members

We consider next a more complicated arrangement in which there are
four members connecting two joints, A and B, to a rigid foundation at X
and Y, fig. 3. We suppose the arrangement of members forms a just-stiff
frame; then for loads P and @ at joints A and B, respectively, fig. 3 (I), the

unit load

Fig. 3. Just-Stiff Frame Having Four Pin-Jointed Members.

frame is iso-static if distortions are small. Suppose the tensile loads in the
members 1, 2, 3, 4, due to the external loads P and @, are T}, T}, T}, T},
respectively; then these internal loads are linearly related to P and Q. We
are interested in studying the deflection 3, at 4, and 65 at B, having the
directions shown in fig. 3 (I); to find &,, we apply a unit load at 4 in the
direction of the displacement & ,, as shown in fig. 3 (II). Suppose a unit load
at A gives rise to tensile loads a,, a,, a5, a,, in the members of the frame.
As before, we may write the extensions of the members of the frame of fig. 3 (I)
in the forms ’

ey =M1y, ey = AT, ez = A T, ey = ATy, (8)

in which A}, Ay, A3, A, are positive constants. Then for the deflection 3 ,, we
have, by the principle of virtual work,

Sy=a,e,+ase,+ase;+a,e,, (9)
or, on substituting for the extensions from eqs. (8),
04 = (@ T A +(as To) Ap + (a3 T3) A3 + (ay Ty) Ay (10)

Similarly, if b,, by, b5, b, are the tensile forces in the members due to a unit
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external load at B, applied in the direction of the displacement & in fig. 3 (I),
then

Op = (by 1) AL+ (by Tp) Ap + (b3 T) Ay + (b, T) A, - (11)

Consider now the design problem in which 6, and 35 are specified; is it
then possible to find positive values of A, Ay, A3, A, to give displacements &,
and 85? We reduce eqs. (10) and (11) to the form

(a1 Ty 0 —0,T110 ) A+ (ax Ty — b, Ty 8 4) Ay

12
(a5 T, 85—y Ty 8.0) A+ (g Ty 85— by Ty 8 1) Ay = 0. (12)

If, in eq. (12), at least one of the coefficients of the A’s is non-zero and positive,
and at least one other is non-zero and negative, then positive values of A,, A,,
A3, A, can always be chosen to satisfy eq. (12). If all the coefficients of the A’s
are of the same sign (positive or negative) at least one A must be negative,
which is physically inadmissible. When positive values of the A’s are possible,
there is usually an infinite number of such solutions; this gives the range, or
ranges, of values of the A’s within which the frame can be designed to give
the specific deflections 8, and 6. As an example of the application of the
analysis developed so far, consider the simple framework of fig. 4; the whole
system is symmetrical about a vertical centre-line. The frame is pinned to a
rigid foundation at X, and supported on a roller at Y. From the conditions of
symmetry there are only four relevant A’s, for the members 1, 2, 3, 4 indicated
in fig. 4. (Members A B and BC are unloaded.) The specified design condition
is that the joints A, B and C should deflect vertically by equal amounts &.

fe—7 — 1 — e | — e —>
7 4 [ 7 2 7
A i lﬁ \ (S . AY 3 lﬁ l_C_
‘.,_d, .:'._: d‘_,.-';_ d\:_ ----- v. :-.d.
& 2
@ %
4 [4
° | |
|4
X 3 Y_ , y_
¢ | A X T
2 7 2 2 2
Fig. 4. Design of a Frame to Give Fig. 5. Frame in Which Specific
Equal Vertical Deflections of Three Displacements of Three Joints are

Joints. Physically Unattainable.

We evaluate first the internal loads 7}, 7T,, T}, 7, in the members of the
frame due to the system of external loads; the extensions of the members
are then given by

e =MTy, e=MAT,, etc., (13)
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where A;,},, etc., are positive constants. Unit vertical load is then applied
at A, and the internal loads in the members evaluated; similarly, unit vertical
loads are applied, in turn, at B'and C. We have finally, by using the principle
of virtual work, that the vertical deflections at joints 4, B and C are

84 = Ay, Op = 2A;+A3, 8¢ = Ay, (14)
assuming X and Y to suffer no vertical displacements. If 8 , =6, =8,=39, then
A]_:S, 2A2+A3=8. (15)

If 6 is defined, then only one value of A; is acceptable, whereas A, and A; can
have any suitable values within the ranges

0<A, <10, 0<A3<8. (16)

If é is not defined, but we are interested only in the possibility that 4, B and C
suffer equal vertical deflections then we eliminate 8 from eqgs. (15), and have

A — 22, —A3=0. (17)

The coefficients of the A’s in eq. (17) are not all of the same sign, and it is
possible to design the members to give equal vertical deflections. From eq. (17),
we note that if A, and A; are given any positive values, it is always possible
to find a positive value of A;; however, we cannot always find a positive value
of A, if A; and A; assume any positive values.

As a further example, consider the simple frame shown in fig. 5; this is
similar to the frame of fig. 4, except for the positions of the diagonal members.
As before, the frame is supported at X and Y; there is complete symmetry
of the system about a vertical centre-line. We have that the vertical displace-
ments of the joints 4, B and C are

SA = 2A1,
3 = 20, +2X,+A3+21,, (18)
80 = 2A1.

For equal deflections of 4, B and C, we must have
20, +23+22, = 0. (19)

Eq. (19) could only be satisfied if one A at least is negative, which is physically
unacceptable. If A,, A; and A, are always positive, we note from eqs. (18) that
8p must always be greater than &,, a condition for which the frame can
always be designed.

4. More General Case

When the number of joints, at which displacements are specified, is three
or more the analysis becomes generally more complex. We assume as before
that the frame is iso-static, and that for any given system of external loads
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the forces in the members are determined; suppose 7, is the tensile load in a
member m of the frame. Then the extension of the member can always be
written in the form

where A, is positive. Suppose 6,,85,84,... are the deflections specified for
the joints 4, B,C, ... respectively. Then we can always write 8 ,,85,8., -
in the forms :

8A ZZ(ame)}‘m’ 8B ZZ(mem)Am5 SC’:Z(Cme)Am’ (21)

where the summations are carried out for all members of the frame, and in
which a,, is the tensile load in member m due to unit load at joint A applied
in the direction of the deflection & ,,b,, is the tensile load in member m due
to unit load at joint B applied in the direction of the deflection 8, and so on
for ¢,,,.... Suppose we write

oy =&, T, ﬁm=mem, Km=CnT.,... (22)

m

Then egs. (21) become
8A=Z°‘m)‘m> 8B=Z/9mAm’ Sczzkmhmr (23)

Consider, for the sake of simplicity, the case in which deflections are specified
at 3 joints and the frame has six members, suitably arranged to give a just-
stiff structure. Then eqs. (23) become

A
061062 “ e e as A: SA
BiBa - - - Bs : =1 %z |- (24)
KiKg ... Kg /\ 8¢

— "6 —

We now write eqgs. (24) in the forms

) &g g }‘1 84““4}‘4—“5)‘5‘0‘6)‘6
:81 Bz ,93 )‘2 = 83—64)‘4"[35}‘5‘:86’\6 . (25)
Ky Ko Kg Ag 80 —KgAg— Ky A5 — kg Ag
So that
I(SA—“4)\4““5)‘5_°‘6/\6) Ay g l“l % o‘3'
A= | (Op—BsAs—BsAs—BesAs) B2 Bs| +~ | By Bz Bs |- (26)
(SC_K4A4—K5A5—"K6A6) Ko Kg K1 Ko Kg
Then we may write
RS oy Oty Oty oy oLy Oy og g Oy oy Oty Oty
M= |0pBeBs|—As|BaBeBs|—As|BsBaBs|—As| Bs BaBs| | + | BiBaPBsl- (27)
8¢ Ky Ky K4 Ko Kg Ky Ko Kg Kg Ko K3 | _| Ky Ko K3
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We have similarly that

oy 84 o O Oy O3 0 &5 X3 0y g X3 Qy &g X3
Ay = BiOp Bs|—As| BLBaBs|—As| B1BsBs|—As| B1Bs Bs + | By B2 B3 |> (28)
|| K1 d¢ K3 Ky Ky K3 Ky K5 K3 Ky Kg Kg | _| Ky Kg Kg
and
B oty %g 8 4 Oy Og Xy o &g &g 0y Xg Xg i *y g X3
Ag=| |Br1BaOp|—As|BrBaBa|—A5|BrBaBs|—A6|BrBaBs| |+ |BrBaBs] (29)
_ | K1 %g ¢ Ky Ko Ky Ky Kg Kg Ky Kg Kg | _| Ky Kg K3
Suppose the determinants
oy Olg Og 8A Oy Og oy SA Olg oy Oy SA
Bl Bz Bs ’ VSB /82 ﬁ3 ’ Bl 8B BS ’ Bl 182 SB ’ (30)

are all of the same sign (positive or negative); then, in egs. (27), (28) and (29),
if we make A, A; and Aq positive, and sufficiently small, then we have positive
values of A;, Ay, A;. So that the specific deflections 6, 85, and &, are possible
if we can find at least one set of determinants of the type (30), in which all
the determinants are of the same sign (positive or negative). From eqs. (24),
sets of determinants of the type (30) can be selected in 20 ways; positive
values of the A’s are possible if in at least one set the determinants are all of
the same sign. Any set of determinants is formed by taking three columns of
coefficients «, B, « from the left-hand sides of eqs. (24); the first determinant
in any set is the determinant formed from these coefficients; the other deter-
minants in the set are found by replacing each column in turn of the first
determinant by the column of deflections forming the right-hand sides of
eqs. (24).

More generally, if there are m values of A, and displacements are specified
at j joints, then there are
mm—1)...(m—j+1)

Ci = 1.23...(G-1)F °*

(31)

sets of determinants to be studied. The specific deflections are possible if in
one set the determinants have the same signs. However, to show the impracti-
cability of a given set of specified deflections, it is essential to study all sets
of determinants of the type (30).

As an example of a more complex problem, let us consider the deflection
characteristics of the frame shown in fig. 6. The structure is supported at X
and Y, and the whole system is symmetrical about a vertical centre-line. It is
easily shown that the vertical deflections of the joints 4, B and C, are

op = 32, (32)
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Suppose first that we are interested in designing for the case in which
3 ,=085=25,. Then eqgs. (32) may be written
3hg = 44X, +20+A,+2A,,

Ay = 2X5+4). (33)

el ———t
2 2 2
Al 7 oY - b

— % ¥

<—m.~f<
o

Fig. 6. Problem Involving Seven Adjustable Stiffnesses.

For any 4positive values of A;, A;, A, and A,, positive values of A,, A; and Ag
can always be found; it is possible then to design the members to give equal

vertical deflections of joints 4, B and C.
Suppose now, however, that we wish to design for the condition

d,=138p=06,=1, (say).
Then eqgs. (32) become
1 =40 +20+2,+22,, 2 = 3A,, 1 =3A—A+2A,+47,. (34)
On eliminating A, and A,, we have
40+ 20+ 20;+42+22;, = 0. (35)
Since all the coefficients of eq. (35) are positive, at least one A must be negative;
the proposed design is impossible therefore.

Finally, suppose we are interested in the case when 6 , =28;=06,=1, (say).
Then eqs. (32) become

A _
402 1002 \ 1
060 0000 2l=11]. (36)
030-1240 : 1

Consider the third order determinants which can be formed from the 1st,
2nd and 5th columns of the matrix of coefficients of the A’s, together with
the single column of the right-hand side: four determinants can be formed

from the columns
4 0 0 1
0]}, 6], (0 , 1], (37)

0 3 2 1
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and the determinants (formed systematically) have the values

40 0| 100 410 4 01
060|=+48 |160|=+12,]010|=+8,[061|=+12 (38)
032 132 012 031

which are all positive. Hence a solution is possible in which A, A;, Ag and A,
assume small positive values, and A;, A, and A; assume larger positive values.
The existence of at least one wholly positive set of A’s, satisfying eq. (36), is
established therefore. This result could have been found more easily in the
present simple problem; if, in eqs. (36), A;, A,, A; and A, are negligibly small,
then

1=4), 1=6), 1=3X+2), (or 1=4)). (39)

Then A,, A, and A; assume positive values.

3. Physical Meaning of A

In eq. (1) we introduced A in the form
e=AT, (1) bis

in which 7T is the tensile load in a member, and e is the resulting extension.
We are concerned only with structural members for which a tensile load
results in an extension, and a compressive load in a contraction of the member.
In this case A in eq. (1) is always positive, and the general problem we have
discussed becomes one of finding positive values of the A’s for all members
to satisfy the deflection specifications. Eq. (1) is not limited to linear-elastic
members; for the particular case of a linear-elastic members, A is essentially
a stiffness, and is constant for all values of e and 7'; more generally A is a
function of 7.

Part II. Graphical Analysis

6. Introduction

In a practical structure, having a large number of members and in which
the displacements are specified at a large number of joints, the mathematical
analysis discussed in Part I, may become extremely laborious. The analysis
can be simplified considerably by the use of simple graphical methods; one
such method involves the construction of displacement diagrams similar in
form to the standard Williot diagrams of deflection analysis.

7. Frame Having two Members

We consider first a simple frame consisting of two members which are
pinned to a rigid foundation at X and Y, fig. 7. If the distortions of the frame,
due to an external load P at joint 4, are small, then the internal forces in the
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members of the frame are statically-determinate, and are defined completely
by the magnitude and direction of the external load P. We note that when
the line of action of P lies between X A produced and Y A produced, in fig. 7,
then both members are in tension; if P lies between Y A produced and X 4,
then member 1 is in compression and member 2 is in tension. The nature of
the forces in the members (tension or compression) is determined entirely by
the direction of the force P; in fig. 8, XA X' and Y A Y’ are lines parallel to
X A and Y 4, respectively, in fig. 7; the forces in the members 1 and 2 are
tensile or compressive depending on which of the four sectors of fig. 8 con-
tains the load vector P. For example, when the vector P lies between 4 X
and A Y’ fig. 8, member 1 is in compression ( — ) and member 2 is in tension (+ ).

We consider now the forms of deflection which are possible for the joint 4
of fig. 7. Suppose that both members, 1 and 2, are in tension; then the load
vector D lies in the sector between 4 X’ and A4 Y’, fig. 8. We construct a
“displacement’’ diagram in the following way:

Fig. 7. Frame Having Two Pin-  Fig. 8. Internal Load Systems Resulting from Different
Jointed Members. Directions of the External Load at Joint 4.

Fig. 9. Displacement Region for Joint 4 When Both' . Fig. 10. Displacement
Members are in Tension. . Regions for Joint A4.
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Take a point z,y as origin, fig. 9; members 1 and 2 are in tension, and
they must therefore extend under load. So that, relative to X, the joint 4 is
always displaced to some point to the right of line 1, fig. 9, this line being
perpendicular to X 4 in fig. 7. Similarly, joint 4 is always displaced to some
point to the right of line 2, fig. 9, this line being perpendicular to Y 4 in fig. 8.
On the displacement diagram of fig. 9, the point a, defining the deflection of
joint A relative to X and Y in fig. 7, must lie within the a-region indicated
in fig. 9.

We note that for a given external load the members could be designed to
give any vertical displacement of joint 4; however, horizontal displacements
must always be to the right. The displacement vector za (or ya) in fig. 9 is
limited to the a-region indicated when the load vector P lies between A X’
and 4 Y’ in fig. 8; for other positions of the load vector P, the signs of the
forces in the members 1 and 2 are defined, and these give the displacement
regions of fig. 10, in which line 1 is perpendicular to X 4 in fig. 7, and line 2
is perpendicular to Y 4 in fig. 7.

8. Frame Having four Members

When an iso-static frame carries a given system of external loads the
forces in the members of the frame are determined independently of their
stiffnesses. Suppose the frame of fig. 11 is loaded so that all the members are
in tension; then the external load vectors P and @ at 4 and B, respectively,
must lie within the limits shown. In the ‘“‘displacement’’ diagram, fig. 12, we

Fig. 11. Frame Having Four Pin- Fig. 12. “Displacement’’ Diagram for a Frame
Jointed Members. Having Four Members, all of Which are in Tension.
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take an origin z, y; then a point a, defining the displacement of joint A4, must
lie to the right of line 1, which is perpendicular to X 4 in fig. 11. The point
a also lies to the right of a line 2, which is perpendicular to Y 4 in fig. 11.
A vector xza (ya), defining the displacement of joint 4 relative to X (or Y)
must lie then in the a-region of fig. 12. Within this a-region consider a specific
point a’: relative to 4, the joint B must always displace to the right of line 4,
fig. 12, which is perpendicular to 4 B in fig. 11; relative to X, joint B must
always displace to the right of line 3, fig. 12, which is perpendicular to X B in
fig. 11. So that for a given point a’, within the a-region of fig. 12, the point b’
defining the displacement of joint B must lie within the b’-region shown.

As an example of the use of this type of displacement diagram, let us
consider whether it is possible to design the members of the frame of fig. 11
so that the displacements of the joints A and B have the magnitudes and
directions given by the vectors za’ and x b’ of fig. 13. Taking the given position
of the vector za’, we find that b’ lies outside the region defining physically
possible positions of b; the displacements za’ and xb’ are impracticable,
therefore.

As a further simple example, let us examine the possibility that the members
can be designed to give equal horizontal deflections to the joints 4 and B,
fig. 11. In the displacement diagram, fig. 14, we set off the required horizontal
displacement x k. Then all points @ must lie on a vertical line through A; the
limiting positions for a are the points ¢’ and a”’. Again, b must lie on a vertical

/A N

m~
N
A

Fig. 13. Determination of the Practicability of = Fig. 14. Design of the Frame to
Specific Displacements of the Joints of a Frame. Give Equal Horizontal Deflections
to Joints 4 and B.
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line through A; so that b’ (which is coincident with a’) is the “lower’ of b,
and b"’ (at infinity) is the “upper’’ limit of 6. Then there is a limited range of
positions of the point a, and an infinitely large range of positions of the point b.
Equal horizontal displacements of the two joints are physically possible.

9. Solution of Some Simple Practical Problems

In general the problem of designing a frame to give specific deflections of
certain joints may take one of so many forms that it is difficult to establish
a general pattern of displacement diagrams of the type already discussed. We
restrict the discussion to a few particular cases which show the advantages
of using the graphical method.

The pin-jointed frame and the loading system of fig. 15 (I) are symmetrical
about a vertical centre-line; the frame is supported at 4 and 4’ and the exter-
nal loads induce tensile ( + ), compressive (— ), or zero forces (0) in the members
as shown in fig. 15 (I). We are interested in the possibility that the frame can
be designed to give equal vertical deflections of B and X. We consider the
displacements of the frame relative to the unstressed member X ¥, which we

= z < 7 —
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Fig. 15. Solution of a Frame to Give Equal Vertical Deflections of Certain Joints.
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Fig. 16. Frame in Which Specific Displacements of Certain Joints are Impracticable.
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assume remains vertical. In the displacement diagram, fig. 15 (II), the a-region
forms a 45° octant; for any point a’ in the a-region, b’ lies on a vertical line
through z,y, and below a horizontal line through a’. Obviously, for any posi-
tion of a’, within the a-region, b’ could always be arranged to coincide with
x,y, giving zero vertical deflection of B relative to X and Y.

We can study the frame of fig. 16 (I) in a similar way; the whole system
is symmetrical about X Y ; the frame is supported at B and B’. We are
interested again in determining whether this frame can be designed to give
equal vertical deflections of joints 4, X and A’. From the displacement dia-
gram, fig. 16 (II), we find that the a-region is such that equal vertical displace-
ments of 4 and X are impossible.

As a final example we consider the frame of fig. 17 (I); the whole system
is again symmetrical about X Y'; the frame is supported at B and B’. For the
external loads shown, the displacement diagram has the form shown in
fig. 17 (II). We can deduce easily that the members can always be designed
to give equal vertical deflections of X, 4 and C.
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Fig. 17. Analysis of a Frame to Give Specific Deflections at a Number of Joints.

10. Graphical Determination of the “Extreme’’ Lumits of Displacement of the
Joints of a Frame

It is a relatively simple matter to find graphically the “‘extreme’’ limits
of displacement of the joints of an iso-static frame. By an “extreme’’ limit
we mean one beyond which displacements of a joint of a frame are certainly
impracticable. Consider, for example, a plane frame, fig. 18 (I), which is pinned
to a rigid foundation at X and Y; the external loads at joints 4, B and C
give rise to internal forces in the members which are tensile (+) or com-
pressive (—), as indicated in fig. 18 (I). Member 1 is in compression, and must
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shorten under load therefore; due to the shortening of member 1, the rest of
the structure, X 4 BC, rotates bodily about X. If the shortening of member 1
is small, we may assume that the displacements of the joints 4, B and C
take place in directions perpendicular to the lines 4 X, BX and C X, respec-
tively; the magnitudes of the displacements of these joints are proportional
to the lengths of the lines A X, BX and CX, respectively. Due to the short-
ening of member 1, the joint A is displaced a small amount given by the vector
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Fig. 18. Graphical Determination of the “Extreme’ Limits of Displacement of the
Joints of a Frame.

1 at A, fig. 18 (II); similarly, the joint B is displaced a small amount given
by the vector 1 at B, and joint C' a small amount given by the vector 1 at C.
Consider now the extension of member 2; due to the extension of this member
alone, A is displaced a small amount given by the vector 2 at A4, which is
perpendicular to Y 4; the rest of the structure, BA C, rotates about Z, which
is the point of intersection of X B produced and Y 4 produced; we then give
joints B and C displacements defined by the vectors 2 at these joints, fig. 18 (IT).

We then proceed to find the effect of the change in length of each member
in turn on all joints of the frame. For example, joint 4 is unaffected by the



The Design of Frameworks to Give Specific Deflections 97

extension of member 4, whereas the effect of the extension of this member
on joints B and C is given by the vectors 4 at these joints.

Now, the resultant displacement of any joint must be compounded of a
set of vectors of the type indicated in fig. 18 (II). The actual lengths of the
vectors depend on the extension properties of the members. Evidently, the
displaced position of 4 must lie somewhere in the acute angle between vec-
tors 1 and 2 at 4, fig. 18 (II). At joint B, the displaced position of B must lie
in the right angle between vectors 1, 2, 3 and vector 4. At joint C, the dis-
placed position of C' must lie between vectors 5 and 6, since the vectors
1, 2, 3, and 4 also lie within these limits.

We can fix “‘extreme’’ limits very simply by this graphical method; how-
ever, we cannot say that any displacements within these limits are attainable
stmultaneously by the joints of the frame. The limits are “‘extreme’’ therefore
in a broad sense only; any design, specifying displacements outside these
limits, is impracticable.

11. Redundant Frames

Our discussion so far has been limited to iso-static frames. When a struc-
ture contains redundant members, the analysis becomes considerably more
difficult; the inclusion of a redundant member in a frame may not necessarily
make attainable any specific displacements of the frame.

As a very simple example, consider a plane pin-jointed frame, fig. 19,
consisting of three members, which are pinned to each other at 4, and to a
rigid foundation at X, ¥ and Z. In the initially unloaded condition, the
members are unstressed. Suppose an external load is now applied at joint A4;
let us examine the possible forms of internal extensions and contractions of
the members. If each member is free to be extended or contracted, then the
members can be strained in 8 different ways; for example, member 1 may be
in tension, and members 2 and 3 in compression, and so on. All possible types
of behaviour are outlined in table 1; when the three members are in tension,
as in (I) of that table, the displacement of A can always be represented by a
vector somewhere within the right-angle sector defined by lines 1—1 and 3—3,
in column (a); when the extensions of the bars have the forms given by (I1I)

Fig. 19. Displacement Analysis of a Redundant Frame.
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Table 1. Displacement and External Load Limitations for all Possible Systems of Internal
Forces in the Members
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extensions of members 1 and 3 are incompatible with a contraction of member
2; a similar incompatibility exists in (VII). We note first that the systems
(ITT) and (VII) are physically impossible, and we need consider them no
further.

Any given arrangement of internal changes of lengths of the members
determines the signs of the internal forces in the members. If these internal
forces are reversed in direction at the joint 4, then we can find the limiting
positions of the external load vector at A. For example, in arrangement (I),
table 1, the three members are in tension, and the external load vector at 4
must lie within the right-angle between lines 1 and 3, as shown in column (b).
Arrangements (I1IT) and (VII), which we found to be physically incompatible
from a strain standpoint, could be derived from an external load applied in
any direction at A4.

We can summarise the main features of table 1 in graphical form; in
fig. 20 (I) are given the systems of internal strains (extension +, contraction —)
for displacements of the joint A in various directions; in fig. 20 (II) are shown
the internal force systems (tension +, compression —) for external loads in
various directions. We note from fig. 20 (II) that there are two alternative
internal load systems for any given external load; any given external load
may give rise, therefore, to either of two systems of internal extensions.

The insertion of a redundant member into an iso-static system may increase
the range of displacements for which the frame can be designed. For example,
the simple frame of fig. 21 (I) is iso-static; for an external load P at joint A4,
in the direction indicated, the two members are in tension, and the joint 4
is displaced in the a-region of fig. 21 (I). When a redundant member Y A4 is
introduced into the frame, the joint 4 can be displaced anywhere in a larger
a-region, fig. 21 (II), for the same external load P.

/1)

Summary of Displacement Limitations. Summary of External Load Limitations.
Fig. 20.
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In general, the insertion of a redundant member cannot reduce the
“extreme’’ limits of displacement of the joint 4 of the frame in fig. 21 (I). If
the redundant member tends to reduce the limits of the a-region, then by
making the redundant member very flexible compared with the other members
of the frame, we approach the displacement limits of the original iso-static

frame.

.\,
Y a-region

Fig. 21. Effect of the Inclusion of a Redundant Member on the Range of Displacements
of a Loaded Joint of a Frame.

Part III. Design of a Frame to Give:Equal Vertical Deflection of the Loaded Joints

12. Introduction

In Parts I and IT we discussed certain examples in which it was physically
impossible to design the members of a given frame to give deflections. In these
cases the designer is led to experiment with alternative arrangements of the
members of the frame.

In a recent structural problem, for example, it was required to fabricate
a pin-jointed frame so that under the action of external loads, the loaded
joints deflected vertically by equal amounts. In its simplest form the system
of external loads consisted of a uniformly distributed vertical loading on the
upper boom of a truss, fig. 22. The frame could be taken as symmetrical about
a vertical centre-line. No horizontal thrusts could be induced at rigid supports
on the underside of the frame. The problem reduced to designing a plane
frame to give equal vertical deflections of the loaded joints of the upper boom.

Part IIT of the paper is limited to a discussion of iso-static plane frames
having the property of equal deflections at the loaded joints. First, the poten-
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Fig. 22. Loading and Support Conditions for a Plane Frame.
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tialities of Warren trusses are discussed; secondly, the properties of ‘“‘spray’’
frames are studied; and, finally, a method of fabrication using basic structural
units is introduced.

13. Use of Simple Warren Trusses

The authors were led first to examine the deflection characteristics of
simple Warren trusses, as a possible means of meeting the design specification.
If there are only three external loads applied to the upper boom, then the
frame can be fabricated as shown in fig. 23. The distributed load can be treated

w 2w w
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Fig. 23. Warren Truss Carrying Three Loads in the Upper Boom.

as concentrated vertical loads of W and 2 W at B and C, respectively. Suppose
the members are linear and elastic, and that the extension e of any member,
carrying a tensile load 7', is

e=AT, (1) bis

where A is constant for that member. If the frame is symmetrical about a
vertical centre-line, and carries the external loads shown, then equal vertical
displacements of the joints B and C are ensured if

AL — Az = Ag8in%0, (40)

in which the subscripts refer to the members 1, 2, 3, respectively.

When there are four loaded joints in the upper boom, the frame can be
fabricated as shown in fig. 24. Equal vertical deflections of the joints in the
upper boom are ensured if

AL—2Ay = (22— A4+ ;) sin20. (41)

aw Iw
Fig. 24. Warren Truss With Four Loads in the Upper Boom.
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Unfortunately, Warren trusses of this type cannot be extended to give
equal vertical deflections of more than four loaded joints. For example,
fig. 25 (I) shows a frame which is symmetrical about a vertical centre-line;
it is required to design the members so that the loaded joints, D, B and X,
suffer equal vertical deflections. A simple displacement diagram of the type
shown in fig. 25 (II) (and discussed in Part II), indicates that there is always
a vertical deflection of B relative to X, and the design is clearly impracticable.

w 2w 2w 2w

e
-3

X,y
Fig. 25. Warren Truss With Five Loaded Joints.

14. Spray Frames

From § 13 it is clear that the specified deflections can be achieved in Warren
trusses having only one or two bays between the supports. If in the Warren
truss of fig. 23 two additional vertical members are introduced, the frame is
capable of providing equal vertical deflections of five loaded joints; this is
the case for the frame of fig. 26. The intermediate members between the upper
and lower booms radiate from the joints at the supports; this arrangement
we call a “spray’’ frame. If the whole system is symmetrical about a vertical
centre-line, then for equal vertical deflections, 8, of the joints of the upper
boom we have
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A =—3,—cos29—(/\4+/\5)sin20, A =§%,—, Ag =—I§—,—cos20, (42)
where A, Ay, A3, A,, A; are the extensional stiffnesses of the members 1,2,...5

of fig. 26. If & is the height of the frame, then the longitudinal strains in the
members 1, 2 and 3 are, respectively,

el=—£cos29+%()\4+)\5)sin20, € = —ES, 53=—£cos20. (43)
If the members 1, 2 and 3 are made of the same material, then the compressive
stresses are proportional to the strains; we note that the compressive stress
varies as cos? 6, so that for the long members 1 and 3, the stress is considerably
less than in member 2. This implies that the outer members of the spray must
be stressed rather inefficiently; since the outer members constitute the greater
part of the weight of the frame, the system is generally inefficient from the
weight standpoint. This property is true generally of spray frames; this leads
us to consider alternative methods of fabricating frames to give equal vertical
deflections of the loaded joints.

2w 2w 2w w

4w @w
Fig. 26. Spray Frame Having Five Loaded Joints.

15. Use of Bastc Structural Unaits

In dealing with the particular problem of a frame giving equal vertical
deflections of the loaded joints, consider the simple triangular frame of fig. 27 (I).
We suppose that the whole system — frame, external loads, and form of
distortion — is symmetrical about a vertical centre-line through the support
0; then the member 4 B is displaced to the horizontal position 4’ B’. Suppose
that the members are all equally strained, whether in tension or compression;
then the displacement diagram has the form shown in fig. 27 (II); in this
displacement diagram O a, is the contraction of the member O 4, and is drawn
parallel to O A4; ab is the extension of 4 B, and @, a is perpendicular to Oa,.
For both tensile and compressive members to be equally strained, b,a,=ab.

Suppose we now modify the frame of fig. 27 (I) by adding a central triangu-
lar frame C' D E, as in fig. 28 (I), at the same time adding a vertical force 2 W
at the newly-formed pin-joint C, which is at the mid-point of 4 B. The newly-
formed pin-joints D and E are at the mid-points of O B and O A4, respectively.
As before, we assume that all members are equally strained, whether in tension
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or compression. Then in the displacement diagram, fig. 28 (II), we construct
a small triangle cde within the triangle Oab. For symmetrical deflections, the
frame gives equal vertical displacements of joints 4, B and C.

In the frame of fig. 28 (I), the horizontal members 4 C and C' B carry equal
tensile loads; the tensile load in the member D E is twice as great as that in
the members 4 C and C B. The compressive loads in the inclined members
OD and O E are equal, and are twice as great as those in the inclined members
AE, EC, CD and D B. The members of the triangular frame E O D are loaded
twice as heavily as corresponding members of the triangular frames 4 EC
and CD B.

We now consider further sub-divisions of the frame by introducing smaller
triangular units FGH and IJ K, as in fig. 29. Additional vertical loads 2 W
are applied at ¢ and J, which are the mid-points of 4 C and C B, respectively.
It is easily shown that no horizontal thrusts are transmitted across the pins

Fig. 27. Symmetrical Deflections of a Simple Structural Unit.
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at G, C and J; so that all triangular units in the “first level’’ are loaded
similarly. The loads at the ‘“second level’’ are twice those in corresponding
members in the “first level’’. At the “‘third level’’ the loads are twice the
corresponding loads at the ‘‘second level’’, or four times those at the “‘first
level”’. If all members are equally strained, as before, the loaded joints, 4,
B, C, G, J, displace vertically by equal amounts.

The sub-division introduced in fig. 29 involves the reduction of the upper
levels of the frame of fig. 28. Continued sub-division gives the frame shown
in fig. 30. The general pattern consists in introducing first a triangular frame a,
secondly two triangular frames b, thirdly four frames ¢, and so on. At each
stage the linear dimensions of the triangles are halved. The vertical loads at
the upper panel points are all equal, except at the remote ends; this system
of loads is, in the limit, equivalent to a uniformly-distributed vertical load
on the upper boom.
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Fig. 28. Sub-Division of the Basic Unit to Provide for Another Loaded Joint.
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No horizontal forces are transmitted across the pin-joints of the frame,
and all units at any level are loaded in the same way.

In fig. 30 the sub-division gives rise to long members in the lower levels;
these longer members can be braced to some extent by introducing further
triangular units, as shown by the broken lines of fig. 31. The additional bracing
members shown in fig. 31, are unloaded, and have no adverse effects on the
deflection properties of the frame; moreover, all horizontal members are of
the same length, as also are the inclined members.

Sub-divisions have been carried out on a triangular frame having only
one support on the underside. The same process can be used to fabricate
frames with two supports. For example, the frame of fig. 32 consists of two
adjacent triangular units, ACD, BD E. Under the loading conditions shown
there is no horizontal thrust between the two units at D. The vertical deflec-
tions of joints €, D and E are equal if the extensional stiffnesses of the members
satisfy the relation
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Fig. 29. Further Sub-Division to Provide 5 Loaded Joints.
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Fig. 30. Continued Sub-Division of the Basic Form.
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The frame of fig. 32 is sub-divided by introducing small triangular units, as
in fig. 33, and applying additional loads to the upper boom member. If the
strains in the members of any unit are the same as the strains in the corres-
ponding members of any other unit, then the structure retains its special
deflection properties. The members in the lower levels are more heavily loaded
than corresponding members in the upper levels of the frame.

ol

Fig. 32. Frame Having Two Supports.

144 4w

Fig. 33. Sub-Division of a Frame Having Two Supports.

16. Fabrication of a Space Frame Using Basic Unats

The use of structural units in fabricating simple iso-static frames, with
specific deflection properties, can be extended to space frames. The statically-
determinate tetrahedron of fig. 34 (I) suffers equal vertical deflections of the
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loaded joints if all the inclined members have the same stiffnesses, and if all

the horizontal members are also of equal stiffness.
In the first subdivision of the structure hinges are introduced at the mid-

points of all members; three tetrahedral units then rest, at the upper level,
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Fig. 34. Space Frame Having one Support.
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Fig. 35. Intensities of Loading on the Upper Surface of the Frame for Continued Sub-
Division.

Fig. 36. Space Frame Having Three Supports.
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on a single tetrahedral unit at the lower level, fig. 34 (II); the upper surface
then carries the external loads shown in fig. 34 (II). When the sub-division is
carried two stages further, the loads on the upper surface have the forms
shown in fig. 35; there are two load units at each panel point, except at the
extreme corners. The loading conditions do not correspond to uniform loading
of the upper surface of the frame. As before, bracing of the space frame may
be introduced at the lower levels, without impairing the deflection properties
of the structure.

The space frame of fig. 36 has three supports; it consists of three basic
tetrahedral units. The stiffnesses of the members can be arranged to give
equal vertical deflections of the loaded joints.

Conclusions

The mathematical analysis of an iso-static frame, designed to give specific
deflections, becomes in general a problem of finding positive values of a large
number of variables (or stiffnesses), which satisfy a relatively small number
of linear simultaneous equations.

In the general problem of a plane frame there are at least twice as many
variables as linear equations, and this leads to certain difficulties in the mathe-
matical analysis; a condition for the existence of a set of positive values of
the variables (or stiffnesses) can be formulated in terms of determinants of
the variables.

The analysis of the deflection properties of a frame can be simplified using
graphical methods. But whereas the mathematical methods discussed in
Part I could be extended to deal with problems of space frames, the usefulness
of the graphical method is limited probably to plane frames. Graphical methods
may be extended to study redundant plane frames; the analysis of redundant
frames is complicated by the fact that alternative systems of internal loads
are possible for any given system of external loads.

In an effort to simplify the design of a frame to give equal vertical deflec-
tions of the loaded joints, the structure has been built up from basic units
which are loaded similarly. The composite structures developed are all iso-
static; their analysis is relatively simple, compared with other types of struc-
tures giving the same specific deflection properties.
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Summary

A study is made of the problem of designing a pin-jointed elastic structure
so that the structure deflects under load in a given way. In the general problem
of a plane iso-static frame there are at least twice as many variables as linear
equations, and this leads to certain difficulties in the mathematical analysis.
For this reason, graphical methods of solution are discussed; such methods
can be extended to the study of hyper-static frames.

Finally, a method of “‘synthesis’’ is introduced to deal with the problem
of designing a frame to give specific deflections. This is illustrated in relation
to a plane pin-jointed truss on two supports.

Résumé

Les auteurs étudient le probléme que pose un treillis élastique a nceuds
articulés et devant présenter en charge des fléeches déterminées.

Dans le cas général d’un treillis plan isostatique, il intervient au moins
deux fois plus d’inconnues que d’équations linéaires, ce qui introduit certaines
difficultés dans 1’étude mathématique. v

Pour cette raison, on a recours a des méthodes graphiques; ces méthodes
peuvent étre étendues a 1’étude de systeémes hyperstatiques.

Enfin, les auteurs présentent une méthode de «synthese», permettant de
traiter le probléme d’un treillis & fleches imposées. A titre d’exemple, ils
étudient le cas d’un treillis plan & neeuds articulés, portant sur deux appuis.

Zusammenfassung

Hier wird das Problem, ein mit Gelenkbolzen verbundenes elastisches
Tragwerk zu entwerfen, das unter Belastung Durchbiegungen in vorgegebener
Art erleidet, untersucht.

In der allgemeinen Aufgabe eines ebenen statisch bestimmten Fachwerks
sind mindestens zweimal soviel Unbekannte vorhanden als lineare Gleichungen,
was zu gewissen Schwierigkeiten in der mathematischen Untersuchung fiihrt.

Aus diesem Grunde werden graphische Losungsmethoden vorgeschlagen;
diese Methoden konnen fiir das Studium von statisch unbestimmten Systemen
erweitert werden.

Zuletzt wird eine Methode der «Synthese» eingefithrt, um das Problem
des Entwurfs eines Fachwerks mit vorgegebenen Durchbiegungen zu behan-
deln. — Als Beispiel wird ein ebenes Gelenkbolzenfachwerk auf 2 Auflager
untersucht.
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