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A Method for Analyzing Deformations of Plane Trusses
Méthode pour le calcul des déformations des treillis plans

Eine Methode zur Berechnung der Deformationen ebener Fachwerke

J. DUNDURS, Instructor in Civil Engineering, The Technological Institute
of Northwestern University, Evanston, Illinois

Introduction

At least for the case of a statically determinate truss, it is possible to give
the deflection problem a purely geometrical formulation: Given the axial
deformations of the members, find the configuration in which the members
will fit together. This statement of the problem leads to the simple graphical
method of Wirrtor and MoHR. Attempts to put it on an algebraic basis,
however, have resulted in manipulative difficulties.

In the analysis of plane mechanisms, complex numbers have been effec-
tively used to deal with the geometrical problems?!). The success of this
approach is mainly due to the fact that a complex number, being an ordered
pair of real numbers, permits one to operate with two components simul-
taneously and thus automatically takes into account the two-dimensional
nature of the problem. This suggests the use of complex numbers in the ana-
lysis of the deformations of plane trusses.

In this discussion, it is convenient to begin with a special case and to
generalize the results later. The basic relationships and a computational pro-
cedure will be developed for a simple truss consisting only of triangles. The
results can be easily extended to cover other kinds of simple trusses as well as
compound, complex and statically indeterminate types.

The Basic Relationships

Consider the triangle M N P in a plane truss formed by the bars k, £+ 1
and k+2 (k=1,2,...) as shown in fig. 1. Assume that a convenient coordinate

1) For the method and a bibliography on the subject see a paper by G. H. MARTIN
and M. F. SporTs, Trans. ASME 79 (1957), 687.
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system xy has been chosen, and let the joints M, N and P be located in the
xy plane by the complex numbers z;,, zy and zp. Furthermore, assigning
directions to the three bars allows them to be represented as the complex
numbers z;,, z;,; and z;,,.

A S

Fig. 1.

The starting relationships are established from the geometry of the truss
in the undeformed state. Considering the complex numbers as vectors, it is
seen from fig. 1 that

Zer1 T 22 = 2> (1a)

, 2p = 2yt Zpeqr - (Lb)

Eq. (1a) is simply a condition that the three bars form a closed polygon, in

this case a triangle. Assuming that the position of the k-th bar (that is, the

positions of joints M and N) has been established by some previous conside-

rations, eq. (1b) locates the joint P in terms of z;; and 2, ,. Another relation
that can be written in a similar manner is

Zp = ZN T Zpq2- (2)
However, eq. (2) is not independent of the previous relationships, as is easily
shown by substituting z,, +z, for z in eq. (2),

Zp =2t 2~ 22 = 2y T 24
The deformation of a truss due to the changes in length of the bars involves
rotations of the bars as well as displacements of the joints. Consequently, the
complex numbers which describe the bars and locate the joints will experience
certain changes as the truss is deformed. If the increment in the complex
number z is denoted by 4z, the closing condition, which corresponds to eq. (1a)
for the undeformed state, becomes

Frat A 2e0) + @it A 240) = (2 + A 2).
By the use of eq. (1a) this simplifies to
Az +dz, =4z, (3a)
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Similarly,
AZP=AZ‘M+AZ,€+1. (3b)

Thus the increments in the complex numbers satisfy relationships that are analogous

to those satisfied by the original complex numbers, and, as a matter of fact, can

be obtained from the latter if each z is replaced by the corresponding 4 z.
Express the complex number representing bar £, i.e., 2, in the polar form

Zk = lkelek,

where [, is the length of the k£-th bar and 6, is the argument of z, or the angle
measured from the x axis to the bar. At this point the usual assumption will
be made that all deviations from the original configuration are very small. In
other words, the elongations of the bars are small compared to their lengths,
and the bars rotate through only small angles as the truss is deformed. Since
both [, and 6, change,

Az, = %Alk—i—%ﬁ 0, = €0 Al +1, 610 40, = (f]—lﬁH'A ek) 1, € 0%,
k

ol U

where 41, and 46, denote the changes in [, and 0,,, respectively. Recognizing
41/, as the strain ¢, in the k-th bar,

Azk = (Gk‘i‘id Hk)zk. (4:)

Eq. (4) has a very simple geometrical meaning as interpreted in fig. 2.
Note that ¢z, for a positive ¢, (tension in the k-th bar) has the same direction
as z;,, whereas 14 0,2, for a positive 46, is a vector turned through 90° counter-
clockwise from the direction of z,.

Fig. 2.
The substitution of 4z, as given by eq. (4) and of 4z, , and 4z, , written
by analogy into eq. (3) yields

(€1 + 140),,) 21+ (€grat+t 4 Or12) 2psa = (€ + 140;)z,. (5a)
dzp = Adzy+ (e 3 +146,45) 244 - (5b)
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Consider, first, eq. (5a): z;, 2,4, and 2, are known from the initial geo-
metry. After the forces in the members have been obtained in the usual way
and the sizes of the members established, the strains can be computed from
e, =Py/E, A, where P, is the force in the k-th member, X, is the modulus
of elasticity and A4, is the cross-sectional area of the k-th member2). Tensile
forces and strains are to be considered as positive, compressive forces and
strains as negative. This agrees with the sign convention as required by
Al =¢,l,, positive 41, meaning an increase in length of the k-th bar (or
modulus of ;). Again assuming that the position of the k-th bar in the deformed
state has been established by some previous considerations, the only unknowns
in eq. (5a) are the rotations of bars k+ 1 and k+2, namely, 46,., and 46,,,.
Also, note that eq. (5a) is linear in these quantities. Since every equation in
complex numbers is equivalent to two equations in terms of real numbers,
eq. (5a) can be solved for 40, ., and 480, ,. There is a slight complication,
however, which will be demonstrated in more detail in example 1. Tt will
happen quite frequently that 46, contains the unknown rotation of one bar
dealt with previously. Consequently, 46,,, and 486, , must be expressed in
terms of this unknown rotation which, however, can be evaluated later in the
calculation on the basis of conditions at one of the supports.

The interpretation of eq. (5b) is quite simple; it permits the finding of the
displacement of joint P, provided the displacement of joint M is known since,
presumably, 4 0, ., has been evaluated from eq. (5a).

It is not worthwhile to develop additional relationships, as for example,
to solve eq. (5a) for 40,.,, and 40, ., in general terms, because the equations
become rather unwieldy. Hence, with eq. (4) taken as the basic relationship,
the application of complex numbers to the truss deformation problem is best
demonstrated by a specific example.

% F

720 1n.

A -
= . L,
f— 120in. 120in. i 120n. —|"
lwmzb Hodaata

Fig. 3.

2) In principle, it makes no difference as to what causes the change in length of a
member, hence, the deformation of a truss due to causes other than loading need not be
excluded.



A Method for Analyzing Deformations of Plane Trusses 5
Example 1: Simple Truss

The truss to be analyzed is shown in fig. 3. Again, quantities with number
subscripts are associated with the bars, while letters and quantities with letter
subscripts refer to the joints. The cross-sectional areas of the members are
givenas A;=A;=A;=A4,=4,=2.941in% A,=A,=Ay=Ag=19.221in?%, and the
modulus of elasticity for all members has the value % =30x 10 Ib/in®.

The numerical calculations will be carried to an accuracy that can be
obtained from a slide rule. Computation of forces and strains in the members
gives the values listed below:

P, = +80000 1b € = +0.907 <1073
P, = —89400 1b € = —0.155x 103
Py = +45000 1b €3 = +0.510x 103
P, = —50300 Ib €, = —0.087x 103
Py = +80000 1b €5 = +0.907 X 103
Py = —39100 1b €g = —0.068 X 10-3
P, = +52500 Ib €; = +0.595x 103
Py = —495001b €g = —0.086 X 103
Py = +35000 1b €g = +0.397 X 103

The next step is to assign directions to the bars so that they can be repre-
sented by complex numbers. Some foresight has been used here to avoid minus
signs in the relationships corresponding to eq. (3a). The directions assumed
and a convenient coordinate system are shown in fig. 3. Then

z, = 120 in. zg = 12041 60 in.
ze = 12041 60 in. z, = —¢ 120 in.

zg = —1 60 in. zg = 120 —14 120 in.
2y = 120 —1 60 in. 2y = — 120 in.

25 = — 120 in.

Using eq. (4), 4z, = (e, +t486,)z,, the changes in the complex numbers
describing the bars can be computed:

Az, = (108.8 X 1073) + (1204 6,),

Azy = (—18.6X103-60460,)+i(—9.3x10-34+12048,),
Azy = (604 605)+i(—30.6x1073),
Azy=(—10.4x10"24+6040,)+1(5.2x10-34+120446,),
Azg = (—108.8X1078)+i(—120486;),

Azg = (—8.2X103-6040,)+i(—4.1x10"34+12046;),
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Az, = (12040,)+i (—T1.4x 1073),
Azg = (—10.3xX 107341204 ;) +4 (10.3 X 107341204 b,),
Azg = (—47.6xX1073)+¢(—120446,).

The condition that the triangle 4 £ B closes after the deformation of the
truss is 4z, + 4 z;=A4z,, where this is most conveniently obtained by thinking
about the relationship satisfied by the z’s before the deformation (in this case
2, +23=2,;) and then replacing the z’s with 4z’s. This approacli is to be pre-
ferred over an attempt to use eq. (3a) literally, since the algebraic signs of
the 4z’s depend upon the directions assigned to the bars (for example, if z;
had been taken to the left, the condition would read Adz,+d4dz,= —A4z,).
Substituting the previously computed values of 4z,, 42, and 4z; in the
closing condition, separating the real and imaginary parts, and solving for
46, and 460, in terms of 460, gives '

A0, =A40,+0.33%103,
40, =40,+2.12x1073 = 46,4+ 2.45x 1073,

The closing conditions of the other triangles and the results obtained are

listed below:
AECB: dz,+4zy = Az,

40, =40,+4.44x1073,

405, =40,+4.74x1073,
AEFC: Azg+Adz, = Az, .

A0 =46,+5.11x1073,

46, =40,+4.76 x 1073,
AFDC: Azg+Adzyg=A2,,

40 =460,+5.24 1073,

460y =40,+5.92x 1073,

The rotation 46§, can now be evaluated from the condition that the joint
D is free to move in a horizontal direction only, i.e., the coefficient of the
imaginary part of 4z, must vanish. Since z;, =2, —2z; —z,,

S(Azy) =F (A2, —Azg—Azy) = 12040, +12040,+1204 04 = 0,

where I denotes the coefficient of the imaginary part of a complex number.
This value of 46, is now used to find the rotations of all other members:

460, = —3.55x 1073 rad. 460 = +1.56 <1073 rad.
40, = —3.22 1073 rad. 46, = +1.21x 1073 rad.
46, = —1.10x 1073 rad. 40 = +1.69x 1073 rad.
40, = +0.89x 1073 rad. 40y = +2.37x 1073 rad.

46, = +1.19x 1073 rad.



A Method for Analyzing Deformations of Plane Trusses 7

where a minus sign indicates a clockwise rotation.

Again, thinking first about the relationship between the z’s and then
translating it into terms of 4z’s and with the use of the 46’s computed
previously:

Az, = 0in.

Azy = A2,=0.109—70.426 in.

dzg =dzy—A2z; = 0.218—¢0.283 in.
Azp = Adzp—Adzy = 0.266 in.

Azpy =Adzp—A23 =0.175—10.395 in.
Azyp = Azg—Az, = 0.073-70.212 in.

Since all real parts here are positive and all coefficients of the imaginary parts
are negative, the displacements of all joints are to the right and down.

General Applicability of the Method

It remains to be shown that the approach described and illustrated with
a specific example will lead to a solution for all types of plane trusses. Consider,
first, only simple trusses.

To this end recall the rule for the generation of a simple truss: A simple
truss will be obtained if, beginning with one bar, each additional joint is
connected to the previous configuration by means of two bars which do not
lie in the same straight line. For example, consider the truss of fig. 4, where

Fig. 4.

the members are numbered in the order of their inclusion into the structure.
Obviously the first five bars must form triangles. Note that 40,, 40, 40,
and 4 6, can always be expressed in terms of 4 6, as before. Furthermore, each
additional pair of bars included (such as 6,7 and 8, 9) gives an additional
polygon whose closing condition is sufficient to allow evaluation of the rotations
of the pair of bars added in terms of 46,. Thus the consideration of triangle
4-6-7 will give 40, and 4 6,, whereas the quadrangle 2-6-8-9 can be used to
find 46, and 46,. It is seen that this process can be carried on indefinitely,
or that for m members there will be 4 (m — 1) polygons whose closing conditions
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will give m —1 equations for the evaluation of m —1 rotations in terms of,
say, 46,3). However, since the rotation of one bar is a part of the rigid body
displacement of the truss in the deformed state, 4 6, can always be found from
the conditions at one of the supports. Also, it is clear from example 1 that the
position of one joint, which is known from the support conditions, and the
rotations of the members are all that is needed to calculate the displacement
of every joint.

It is interesting to note that a systematic evaluation of the rotations must
proceed in the same order as that followed when the truss was generated,
whereas the analysis of forces by the method of joints is done in the opposite
order or by ‘‘breaking down’’ the truss. Thus for the K-truss shown in fig. 5,
the calculation of rotations should be started with triangle 1-2-3 and then
continued with triangle 3-4-5, etc. Of course, it is possible to start with triangle
14-16-17, but then in the next step the closing condition of quadrangle
11-13-14-15 will contain three unknown rotations, and the analysis must be
carried further in terms of two 48’s (say 460, and 4 6,;) until triangle 1-2-3
is reached, where one of them can be eliminated.

In order to discuss compound trusses, recall that a compound truss can
be formed by interconnecting two simple trusses with three bars whose axes
do not intersect at a point; a common joint between the two simple trusses
may be used to replace two of the interconnecting bars. An example of this
is shown in fig. 6, where the interconnecting bars are 19, 20 and 21. In each

3) Only those polygons are to be counted which give independent closing relationships.
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of the simple trusses, rotations of all bars can be expressed in terms of the
rotation of one bar as was done previously. The three interconnecting bars
introduce three unknown rotations, but there always will be two additional
polygons (such as 7-19-17-15-11-20 and 3-20-9-21 in fig. 6), so that the four
additional relationships between the rotations can be used to reduce the number
of unknown rotations to one. Or, if m; and m, denote the numbers of bars in
the simple trusses, the total number of bars in the compound truss is
m =m, +m,+ 3, whereas the total number of polygons in the trussis } (m; — 1)+
+3(my—1)+2=%(m;+my+3—1)=1(m—1), thus giving us m—1 relation-
ships for the rotations. The last unknown rotation can again be evaluated on
the basis of a condition at one of the supports. The situation is similar when
two of the interconnecting bars are replaced by a common joint between the
simple trusses. Then there is available only one additional polygon giving
two relationships, but since one interconnecting bar introduces only one
unknown rotation, again the rotations in the two simple trusses can be related.
The argument is easily extended to cases where the compound truss is formed
by interconnecting three or more simple trusses.

The last type of statically determinate trusses to be considered, the so-
called complex truss, is formed by removing one or more bars from a simple
or a compound truss and adding the same number of new bars between existing
joints. If a bar is removed from a statically determinate truss, one part of the
truss is able to move with respect to the other part with one degree of freedom.
For example, if bar 5 is removed from the simple truss shown in fig. 7a, a
four-bar linkage is obtained consisting of I, 4, IT and III interconnected with
12 and IV as indicated in fig. 7b. Then there are several pairs of joints, such
as 4 and B, which could move with respect to each other. In case the bar
to be added is used to connect a pair of such joints, the stiffness of the truss
will be restored, provided that the distance between the two joints did not
have a maximum or minimum value in the relative motion between the joints.
Thus, substituting bar 16 for 5, the complex truss shown in fig. 7c¢ is obtained.
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It is clear from the process of generating a complex truss that the number
of bars is not changed, and that the number of polygons giving independent
closing conditions remains the same. In the truss of fig. 7¢, the closing con-
ditions of 3-4-6-7 and 1-11-14-16 would replace the closing conditions of 3-4-5
and 5-6-7. The only complication that arises in this type of truss is that the
rotations of certain bars cannot be expressed in terms of the rotation of only
one bar, as in the case of a simple truss. Thus for the truss shown in fig. 7c,
triangle 1-2-3 permits, say, 4 0, and 4 6, to be expressed in terms of 46,, but
then the quadrangle 3-4-6-7 introduces three bars not dealt with previously
and, say, 4 6, and 46, must be expressed in terms of 46, and 46,. The same
applies for 46, . ..,40,;. The one missing relationship can be recovered later,
however, from the polygon 1-11-14-16.

It may be remarked in passing that the application of complex numbers
to the deformation problem permits one to take advantage of special simpli-
fying circumstances, such as symmetry. For example, in the truss of fig. 8, half
of the work in analyzing the rotations can be saved by noticing that 46,,=0
(this permits one to solve for 46, regardless of the condition at the right
support), and that 40,,= —-460,,40,;,= —480,,, ete.

Fig. 8.

Example 2: Statically Indeterminate Truss

Before proceeding with a general discussion of statically indeterminate
trusses, a specific example for illustrative purposes will be considered.

A = TD‘}' §>_ A /

‘ Z, Z4A 75/h. //

Y

900015 Y
900026 3)

Fig. 9.
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The hypothetical truss to be analysed for forces in the members and deflec-
tions is shown in fig. 9a. The cross-sectional area of every member is 1.00in?
and the modulus of elasticity has the value of 30x 108 lb/in2.

By taking bar 6 (BD) as the redundant member and assuming it to be in
tension, the given truss can be thought of as a statically determinate structure
loaded, besides the 9000-1b external load, by the two forces P, whose magni-
tude must be determined on the basis of the compatibility of the deformations
(fig. 9b). The forces and strains in members 1 to 5 then can be easily evaluated
in terms of Pg or €. Thus,

P, =—-06Pg1b e =—0.6¢

P, = —12000—0.8 P, Ib €, = —0.400 X 10~3— 0.8 ¢,

P, = + 15000 + P, Ib €5 = +0.500 X 1073 + ¢,

P,=—-06P,1b €g = —0.6 ¢,
Py=—08Pglb €5 = — 0.8 ¢

After assigning directions to the bars and with a coordinate system such
as that shown in fig. 9a, the bars are described by the following complex
numbers:

2y =175 in. zy =175 1in.
2y = 100 in. 2y = — 100 in.
zg = — 1004175 in. zg = 100+ 75 in.

The changes in the complex numbers describing the bars can be computed
from eq. (4). In this case, however, bar 1 cannot rotate (46, =0):

Az, =i(—45¢g),

Az, = (—40.0X 103 —80 ¢5) + (1004 8,),

Azg = (—50.0% 103~ 100 e — 754 05) +3 (37.5 X 103 + 75 65— 100 4 8,),
Adzy=(—7540,)+1i(—45¢),

Az = (80 5) +i (—10046,),

Azg = (100 65— 754 05) +3 (75 ¢ + 100 4 ;).

The solution is conveniently started by considering the primary truss of
fig. 9b. The closing condition of triangle BC A (which is 4z, +dz,=42,) gives
upon separation of real and imaginary parts and solving for 46, and 46,,

A0, =—3.60e,—1.575% 1073,
A0, = —2.40 ¢, —1.200 % 10-3,

Similarly, the closing condition of triangle CDA (4dz,+dz,=4z;) gives

40, = —0.533x 103,
A6, = —3.60e;—1.575x 10-3.
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Finally, because of the presence of the redundant bar 6, an additional condition
is imposed which can be obtained either from the triangle BCD or the triangle
BDA. Using the triangle BD A (which gives 4zg+42z;=42,), two relations
are obtained upon separation of the real and imaginary parts:

100eg— 75404 +80¢ = 0,

755+ 1004 05— 1004 0, = — 45 ¢;.

The first of these equations gives
40, = 2.40 ¢,

whereas the second can be used to find ¢4, since 46, had been expressed in
terms of 4 6, before:
€ = —0.219 X103,

The known strain in bar 6 permits the force in this bar and, consequently,
the forces in all other bars to be calculated. Furthermore, the rotations of
bars can be evaluated. The results follow:

Py =+39401b 40, = 0 rad.

P, =—-67501b 40, =—0.788 x 1073 rad.
Py = +8440 Ib 46, = —0.675x 10-3 rad.
P, =+39401b 46, = —0.533 x 1073 rad.
Py = +5250 Ib 46, = —0.788 x 103 rad.
Py = —6560 1b 46 = —0.525 < 1073 rad.

The minus sign on a force indicates compression, and a negative 4 0 represents
a clockwise rotation.
Finally, by use of the 4 6’s computed above,

Az, = 0in.

Azg = -4z, = —¢0.0098 in.

Azg = Adzg+ A2y = —0.0225 —70.0886 in.
Azp = —Azg =0.0175—70.0788 in.

In the coordinate system used, negative components of a displacement indicate
motion to the left and down, respectively.

Comments on Statically Indeterminate Trusses

The previous example indicates that in analysing a statically indeterminate
truss by means of complex numbers the conventional approach used in other
methods can be employed successfully. That is, the force in a redundant
member or from a redundant support is carried through the calculation as an
unknown until it can be evaluated from the conditions of geometric compa-
tibility of deformations.



A Method for Analyzing Deformations of Plane Trusses 13

A truss with one or more internal indeterminacies may be thought of as
being obtained from a determinate truss by including one or more bars between
existing joints. An example is shown in fig. 10, where bar 10 may be considered
to be the redundant member. In the analysis by complex numbers, each
redundant bar introduces two unknowns, namely, the force or strain in the
bar and the rotation of the bar. At the same time, however, an additional
polygon is obtained whose closing condition is always sufficient for finding the
two unknowns. It is interesting to note that, although each redundant member
generates several additional polygons, only one of these will yield an indepen-
dent closing condition. Thus for the truss of fig. 10, the primary system gives

Fig. 10.

Adzg+Adz,=A4z; and Adzg+dz2y=42,. In addition, the redundant member
dictates the condition 424+ 42z,,=4z2; if the triangle F G B is used. On the
other hand, using triangle GC B, 4zy+ 4 z2,=A4z2,,. It is easy to show, however,
that the last relationship can be obtained from the previous three, and hence
is not independent.

A truss becomes externally indeterminate if it is constrained in more ways
than are required for support in a statically determinate manner. In case the
redundant support is a roller or its equivalent, one unknown force is introduced,
but at the same time an additional condition is obtained pertaining to the
deflections. A redundant hinge gives two unknown components of a force and
also two conditions on deflections. In either case, the number of additional
unknowns is equal to the number of additional conditions. As a matter of
fact, it makes little difference in the application of the method of what type
the indeterminacy is, except that external indeterminacies tend to affect the
forces in a larger number of bars than do most internal indeterminacies.

The analysis of assembly and thermal stresses as well as the effect of the
settlement of supports requires no special extension of this method, and such
problems are easily formulated in terms of complex numbers.

Summary

Assigning directions to the members of any plane truss allows the members
to be described by complex numbers. The increments in these complex numbers
upon the deformation of the truss may be expressed in terms of the strains
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and the rotations of the members by eq. (4). The conditions of geometric
compatibility that must be satisfied by the increments are readily obtained
from the original geometry of the truss, and are of a sufficient number to
permit the solution for the unknown rotations of the members and, in the
case of a statically indeterminate truss, also for the strains in the redundant
members. The displacements of the joints may be computed by using the
rotations of the members previously evaluated.

Résumeé

Lorsqu’une direction est assignée & chacune des barres d’un treillis plan, il
est possible de représenter ces barres par des nombres complexes. Les variations
de ces nombres complexes par suite de la déformation du treillis sont expri-
mées suivant I’équation (4) en fonction des allongements et des rotations des
barres. Le nombre des conditions géométriques de compatibilité qui résultent
de la forme initiale du systéme porteur et qui doivent étre satisfaites par ces
variations des nombres complexes est suffisant pour la détermination des
rotations inconnues des barres, ainsi que des rotations qui se produisent dans
les barres surabondantes dans le cas d’'un ouvrage statiquement indéterminé.
Le déplacement des noeuds peut étre calculé a ’aide des rotations ainsi déter-
minées des barres.

Zusammenfassung

Wenn allen Stéaben eines ebenen Fachwerkes je eine Richtung zugewiesen
wird, kénnen sie mit komplexen Zahlen beschrieben werden. Die Veridnderun-
gen dieser komplexen Zahlen infolge der Deformation des Fachwerkes werden
nach Gl. (4) in Funktion der Dehnungen und Drehungen der Stabe ausgedriickt.
Dabei geniigt die Anzahl der sich aus der urspriinglichen Tragwerksform
ergebenden geometrischen Vertréaglichkeitsbedingungen, die durch diese Ver-
anderungen der komplexen Zahlen erfiillt werden miissen, fiir die Bestimmung
der unbekannten Stabdrehungen sowie auch der Drehungen in den iiber-
zahligen Stiben im Falle eines statisch unbestimmten Fachwerkes. Die Ver-
schiebung der Knotenpunkte kann mit Hilfe der oben ermittelten Drehungen
der Stidbe berechnet werden.
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