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Analysis of Thin Elastic Shallow Segmental Shells
Etude des voiles minces élastiques & faible courbure

Berechnung von diimnen und flachen elastischen Segmentschalen

Dr. Phil. GUNHARD-AESTIUS ORAVAS, Asst. Professor of Applied Mechanics,
MecMaster University, Hamilton, Canada

Introduction

An approximate procedure of stress analysis is presented in this treatise
for elastic thin shallow segmental shells of constant thickness. The usual limi-
tations imposed upon the thin shell behavior and material by the classical
shell theory are also assumed to be applicable in the following development.

Segmental shells find frequent practical application in structural and
mechanical engineering. Many of these shells possess geometrical proportions
which are consistent with the fundamental assumptions of the theory of shallow
shells and therefore admit a simplified procedure of stress analysis. In general
the proposed solution is quite appropriate for shallow segmental shells which
have their middle surfaces described by generators that are shallow segments
of second degree curves. The solution is developed from the linear generalized
shallow shell equations, which were formulated by MusHTARI') and VLASOV 2)
and recently used by the author in the treatment of spherical calotte shells3).

Vwvasov has pointed out that for most shallow thin shells the curvatures
of the parametric coordinate lines can be treated as approximately constant.
This simplification perpetrates some errors into the final solution, which
however are of minor importance for most practical cases. He also came to the
conclusion that this approach was quite tenable for the stress analysis of

shallow thin shells with a rise to span ratio gé—.

1) Izvestiya Fiziko-Matematicheskovo Obshchestva pri Kazanskom Universitete, 11,
1938, Series 8. :

2) Obshchaya Teoriya Obolochek i ee Prilozheniya v Tekhnike, Moscow, 1949.

8) Stress and Strain in Thin Shallow Spherical Calotte Shells, Publ. Int. Assoc. Bridge
and Struct. Engng., Zurich, v. 17, 1957, pp. 139—160.
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Fundamental Solution for Shallow Shells

Geometry of Shallow Shells of Rotation

The fundamental quadratic form of the middle surface of rotational shallow
shells in cylindrical manifold is given by

ds? =dr?+r2d0+dz2. (1)
An element of the shell’s middle surface is measured by coordinates » and
6 which designate the radius and its angle from a reference position embedded

in the base plane and by coordinate z normal to the base plane enclosed by

the shell.
Coordinate z of a rotationally symmetrical shell can be expressed as a func-

tion of radius r

z=f(r)=1
Then dz:—g—;drzf’dr.

Equation (1) becomes
ds? =[1+(f)*]dr2+r:d 62 (2)

The normal curvatures of the coordinate lines for the shallow rotational
shell are given approximately by

d2z
Lo, 4
. d z\21°/=
e ) i
1 o

where R, and R, designate the radii of the parametric coordinate lines 6 =
constant and r = constant respectively.
At this stage the restriction
fr<t (4)
is proposed as a measure of the shallowness for the shell of rotation.
If (4) is assumed to be valid then (2) becomes

ds?=dr2+r2d@? (5)
and the approximate normal curvatures (3) are expressible by
Tl
1T (6)
Ry = —r’
n_ B?f

where =g
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Geometry of Shallow Rotational Shells Generated by Second Degree Curves:

When the shell’s generator is a segment of a second degree curve

z=f(r)y=1(1-Sr?, (7)
then "=-218
and according to (6)

1 1

1 1

where R denotes a constant radius and ¢ a constant.

Hence in case of shallow shells whose middle surfaces have been generated by
shallow segments of curve (7) and which obey restriction (4), the principal
curvatures are approximately equal, i.e.

1 1 1

T

Geometry of Shallow Spherical Shell:

The middle surface of the spherical shell is given in MoxGgE’s form by

z2=f(r)=R [(1_7’;)1/2— 1] +H,

where H designates the crown height of the shell measured normal to the base
enclosed by the shell and R denotes the constant radius of its middle surface.
dz R
Then f=a=— e
dr (1 n ) 2

For spherical segments the following order of magnitude relationship can
be specified as a measure of shallowness
2

<1.

}—g
Consequently
12 =

hence the line segment (2) can again be represented approximately by
ds? =dri+r2d6?

and the principal normal curvatures are obviously

= = — = (10)
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Solution for Segmental Shells

As is evident upon inspection of the previous section shells of rotation
generated by shallow segments of circular or second degree curves admit
approximately constant radii of principal curvatures, i.e.

11
Rr_RB— ’

and their middle surface can be described sufficiently accurately by
ds® =dr2+r2d62.

In this case the fundamental differential equation for such shallow shells
can be expressed by?)

pe [sz-ii’_‘/li(hl_—ﬁ V] =P _2p iwpr( ) T+ BRG], (1)

where

I'  External load intensity potential function.

Py = "}_gg Circumferential component of load intensity.
Py = —2—; Radial component of load intensity.

p, Normal component of load intensity.
y  Coefficient of linear thermal expansion.

T =T (r,0) Temperature distribution function that describes the differential
thermal increase or decrease from a stress and strain free temperature
level of the shell, bringing about an extension or contraction of shell’s
middle surface.

Poissox’s ratio.

14
E Youne’s modulus.
D = Tz_(% Cylindrical flexural rigidity.

k  Constant shell thickness.
L (riza =y

V =w-+1 (‘—E—,h‘Z_A) F -

w  Normal displacement function.

F  Stress function.

’L' =]/*—1,
02 1 0
2 — -
4 —87"2+r 8r+

1 02
2 962"

4) See ref. [3], p. 143.
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For shallow shells the loading intensities p, and py are mostly of minor
importance, hence they can be suppressed by setting

I'=0.

As the segmental shells considered here are assumed closed at the apex, the
following solution satisfies equation (11) when I'=0 and 7' (r,0)=T,=
constant ®)

T .
w = E};L()Cz +”°c 04 Alberp+ AZbeip+ Ei+
. (12)
+ > [AL ber,,, n+ A2 bei,,, p+CLr*]sinmn 6
n=1 .
2 2
and F =P L{Agbeiy~Aﬁber#+E§+
4c  Y12(1—?) (13)

+ >[4} bei,,, u— A2 ber,,, p+C? rmn]} sinmn@,

n=1

where m  Free constant to be evaluated from meridional boundary conditions.
Pn=7P, Constant normal component of load intensity.
Al A2 CY C%2,El,E2 Integration constants.

Sectional Quantities

In the light of the coordinate system used for the approximate analysis
of shallow segmental shells, the stress resultants and stress couples appear in
the following form ©):

N, =L 2201:+__a;,

Ngg = a;rf,

N, =N9,=—-£—(—:— g-g’) (14)
Q =-D (),

@ =-DFw),

5) See ref. [3].
6) See ref. [3].
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2w 1 2w 10w
i, =D 5 (5 g o) |
1 2w 10w 2w
=—D|& -t 14
Mg D[r2 ger Ty 87+V(8r2)]’ (14)

réf

Jd (1 ow
Mﬂr'__Mrﬂz_’D(l_V)a—r( )

See fig. 1.

X

Fig. 1. Differential Element of Thin Shell Showing Components of Surface Load Inten-
sities, Stress Resultants, Stress Couples, Coordinates and Displacements.

Boﬁndary Conditions Pertaining to Segmental Shells

Segmental Shells Supported at its Periphery

A segmental shell shown in fig. 2 that is simply supported at its meridional
and circumferential edges admits the following practical boundary conditions:

Fig. 2. Segmental Shell
Supported at Three Edges.
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At =06, 0:
Ngg = 0,
Mgy = 0,
w =0,
e, =20,
N, —vN
where eT=~LE——h—09

207

(15)
(16)
(17)
(18)

designates the radial strain in the shell. Boundary conditions (15) to (18) can

all be satisfied by
nm@O =nw, (n=13,5...).

Hence
mo
G
and
= (2k+1), (k=0,1,2...).
At r=r:
Nrr + 7‘ch =
or more approximately
N, =0,
rr T O:
g =20,
w =0,
NOO—VNW
where W=z

designates the circumferential strain in the shell.

In order to deal more effectively with the boundary conditions at r=r
particular solutions contained in (12) and (13) are expanded into FOURIER

series in terms of 6, whence

4 po y T, N 1 . (2k+1)m
“o = [Ekc2+ ¢ k;(2k+l)sm )

PN L (2k+1)
Fo_wck;(zk-i—l)sm 6

(23)

(24)

Introduction of series (23) and (24) in (12) and (13) respectively yields

Z{( 4 po 47T0)( 1 + Alber pu+ A2 bei_ H+Olrm}sinm9 (25)
K

m B hc? e 2k+1)



Gunhard-Aestius Oravas

) S E h?
(2k+1) Y121 -4?)
mz(zlw@rl)w_

[A} beizu — Afberyu+ C,%rm]}sinm(), (26)

Insertion of the series solutions (25) and (26) into boundary conditions
(19)—(22) and making use of (14) gives four linear simultaneous equations

where

Ay + A, + Oy = ¥,
Ay +A12c‘/’5 +O}c¢‘6 = ¥,,
A,lc:,b7 +Al2c‘/’8 +012c'1[‘9 = EU:}?
Aphro+ A3y + Chibyy =Y,
1 (m\2, . _ 1 (A\, ., _
b= = (7) einr o () i
1 [m)\2 1/A ,
s =%(1—n—z)im—2
2\ 2
i (5] i
wm \2
4 =,,[(%\)bei'm,;_(ﬁ beig /2| +A? beil 2,

2

hy =— Z)‘) berg iz,
_m (m— 1)~ ,

‘/’9 - w r ’

hio = berg i,

Py, = beigza,

thg =TT,

v, -2 leken(5) - )

¥ (2k+1) we’
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1}14____ 4[ po +')/1})] 1

7 |Ehe? ¢c | (2k+1)’°
g =Ar,
d? 1 m\2?
bery, u = —— (ber;u) = ——bery; +(~) ber; u —beizu,
I dp? M 1 m ,u © I
" o dz . _ 1 .y 77’/- 2 .
beigpn = Eﬁg(belﬁp) = —Ebel,—,i p—l—(;) beiy u + bery; p.

Solving equations (27), (28), (29) and (30) for the integration constants
yields:

A:Ilcz D}‘lk, A%: D?ﬁlk

= (31)

where

Dl = — b3 {Wotbs b1 + Vs thehrs — Vaths s — Fathsthia) —
— o (P15 1o+ Pathaths — Prdbethin — Patbothra}
Diuc = “¢’3 {lps '7[‘4 ‘/‘12‘*"9]4 g ‘/’7 “'1U3 ¢‘6 1/110—'}’2 SL’7 ll‘m}_.
— Yo (Vo i+ Frtbsthro— Pathrbe — Fridbathra},
Dty = — s {Wathaths + Vs ibs hro + Votbsthiy — Vadtbsthro — Vatha b — Patbs o) —
— Yo {Wathsihy + Wothathio + Frdbathrs — Vrths hro— Patbr b — Wadho by},
Dy = —tpg {(Vah1bs+ Wsihothro+ Vi by — Vrihsthro— Pathr 1 — Vabatha) —
— o {WPsh1hs + Wathathy +Pibuthy —Withsthy —Wotbihs —Wathathy),
and D = =iy {hro [haths —hsiba] + s [hthry — s throl} —
— o by (512 — b P11l + b [he 10 — Paihral} -

Once the constants A}, 4%, CL and C% have been evaluated as indicated
above the problem of the segmental shell has been formally solved.

Segmental Shells Supported only at the Meridional Edges

The shallow segmental shell shown in fig. 3 is supported only along the
meridional edges §=0 and §=0. At the parallel boundary »=r a reaction
capable edge member has been omitted.

Fig. 3. Segmental Shell Supported
at Meridional Edges.
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Boundary conditions at the parallel edge are modified to imply a free edge
while the boundary conditions (15)—(18) at the meridional edges are satisfied
by solution series (25) and (26).

Hence at r=r:

N, =0, (32)

M, =0, (33)
1 oM,y

N,y=0. (35)

Substitution of series solutions (25) and (26) in boundary conditions (32)
o (35) and applying relationships (14) yields

Aiy + AR, +Ckipy =¥, (36)
Allc‘/‘4 +A12c‘/’5 +0}c‘/‘6 = 'Pza (37)
Alprs+ Afipry + Chihys =0, (38)
Al g+ Afthr +Cfirs = 0, (39)

4 2 ’ mz Az ”
where ;3 = —A3berj: 1 ( Z ) Abery i —2 (73—) ber i — (7) ber;; i +

A AN, ., 1.,
+to 5 bery i+ (1 —v)m [(ﬁ)belmp—ﬁ-be]m“,

3 et —o9
berjpu = dd 5 (berzu) = m + 2 ber,, u —beizpn—2 (ﬂ) ber; u +—beizu,
w
T m2 m
beiZpn = =3 (beigpu) = belm,u + bery; (;—) bei;; u ——ber;;

The solution of linear simultaneous equations (36), (37), (38) and (39) for
integration constants yields:

1 N2
Dy D%,

D1
Ck
) A} =

A} = , Ch=

o]
o]
¥
o]
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where

Dy = b [Pathis hra]l + thas (¥ (s Prus — e Pr1a) — Pathathss],

D%, = — b5 [Pathss el +h1s [Fathy is + W1 (s hys — hathas)],

Dy = —Woibsthas [Pns — th1al + P16 [P (Pathas — 1 Y1) + P1 (Pathra — b5 1)1,
DYy, = — W[5 (hs this — hatbun) + b (o thrr — Prathae)] + Pathas [ha thas — 1 1],

and D = — iy [y (s P16 — Path1z) + 6 (a3 hrr —bathie)]1 +
+ 16 [ (Psihas —Petbaa) +ba (s 13—y ths)]

Substitution of the calculated integration constants (40) in series (25) and
(26) yields the normal displacement function and stress function that are
sufficient to describe the state of stress and strain prevalent in the skin of the
shell subject to surface loading.

Sectional Quantities

When solution functions (25) and (26) are introduced in relations (14) the
following sectional stress resultants and stress couples result:

_N_» 2 [ L (e
N,, —k;{ e [(210-{-1)(@) (2k+1)]+Ak[ w(y)belmp«—i—
1/, ., [1(m)\? 1 (A,

+C% I:—Z)l(l —'ﬁ‘z)rm—z]}sinmﬁ,

Ngy = Z{%’ [le_i_l]—!-A;lc[(Az)bel ] Ak[(’\z)beri ]+

E=0
+42 [(Z} —?) ber,. u — (—? le)berm ] —-C3 [ﬁ( —1)ym 2]}cosm0
3 4 2 ’ /)’T’Lz Az
Q. Dk; Al [/\3 ber; u ( ) berm/u+2(—¢?) bery; ,u+(7) bery u —
7\ 2 2
~ (r )ber- ]+A2 [)\3be1ﬂp, )\(—?) beiimp,—2( )belmp,—{—

(/\ )bel ();)bei,’ﬁp,]}sinmﬁ,



212 Gunhard-Aestius Oravas

Jrom— — 3. ——— N
()\2—?) berL i — (7”3) bery, p + (A ?) berL ,L] +

m . m\3, . m o —
7) bei,. _(7) belmp—}—()\T) belm,u]}cosmﬂ,

.
I
I
!
g
'
En

2
M, = —DZ{A}C [Azber%p-kv(%ber’mp—%bermp)] +
72
+ Az [)\2 bei%y—{—v(?)\bei;ﬁp-%beimp)] +
+CLm(m—1)+vm (1l —m)] 7m‘2}sinm0,

s ==\ 2
My, = -DZ{A,{. [(;—\) beri,ﬁ,u,—(ﬁ) ber,—n/u+v)\2ber7%/u:| +

k=0

<

m

)\ 2
—I—A,%[(%)bei;ﬁ _( )beim,u+v)\2bei%/u]+

<

+CLm (1 —m)+vm (m— 1)]rm—2}sin7ﬁ9,

M,.g=—-D(1—v) Z{A}C [(?\?) ber . u — (7—2) ber,—n;{l +

k=0

+C,1€[m(m—l)rm"2]}cosm9.

g

Numerical Results

A shallow thin segmental shell of the type shown in fig. 2 that admits the

following information
1
ﬁ ’

= 100 meters,

cC =

0,10 meters,

1,75 meters,

0,59,

I

6,
v = 0,30,

® >ﬁ|@t:u
I
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AMrr

rimnm. 2 7 1

a1pF?

Lnm 2 /

Y

-01pF2

Fig. 4. Distribution of Stress Couples
M,, and:M gp along the Radius 7.

is subjected to a uniform normal surface pressure of intensity p. The resulting
stress couples prevailing within the skin of the segmental shell along the radius

rat 0 =~g are shown in fig. 4.

Summary

A method of stress analysis is presented in this paper for thin elastic shells
that are meridional segments of rotational surfaces generated by shallow
segments of second degree curves.

The MUSHTARI-VLAsOV shallow shell theory served as the foundation for
the development. The analysis does not neglect the interaction between trans-
verse bending and in the surface acting stress resultants of the shell. The
ensuing solution is expressed by a trigonometric series coupled with Kelvin
functions of m’th order. The usefulness of this analysis is limited to segmental
shells spanning circumferential angles @ which conform to the restriction

%= integer. Numerical results are also given on an extremely shallow segmen-

tal shell stressed by a uniformly distributed normal load intensity.

Résumé

L’auteur expose une méthode de détermination des contraintes dans les
voiles minces élastiques, en forme de segments, délimités par des sections
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méridiennes dans une surface de révolution engendrée par des éléments a
faible courbure de courbes du second degré.

La théorie de MUSHTARI-VLASOV pour les voiles & faible courbure sert de
base au développement. L’étude ne néglige pas 1’action réciproque de la flexion
transversale et des efforts agissant dans la surface du voile. La solution qui
s’ensuit est exprimée par une série de fonctions trigonométriques et par des
fonctions de KeLvin d’ordre m. L’étude s’applique uniquement & des voiles
en forme de segments dont ’angle au centre @ satisfait la condition % =

nombre entier. On donne des résultats numériques pour un voile & courbure
trés faible, sollicité par une charge normale, uniformément répartie.

Zusammenfassung

Diese Abhandlung beschreibt eine Methode der Spannungsberechnung an
diinnen elastischen Rotationsschalen, erzeugt durch ein flaches Segment einer
Kurve zweiten Grades und begrenzt durch Meridianschnitte.

‘Als Grundlage diente die Theorie von MusHTART-VLASOV fiir flache Scha-
len. Die Berechnung vernachlassigt die gegenseitige Beeinflussung zwischen
der Querbiegung und den Resultierenden der in der Schalenoberfliche wirken-
den Spannungen nicht. Die Losung wird in Form einer mit KELvVINschen
Funktionen m-ter Ordnung gekoppelten trlgonometrlschen Reihe gegeben.
Die Brauchbarkeit der Berechnung beschrankt s1ch auf Segmentschalen, deren

Zentriwinkel © der Bedingung — g = ganze Zahl geniigen. Es werden numerische

Resultate angegeben fiir eine sehr flache Schale, beansprucht durch eine gleich-
miBig verteilte Normalbelastung.
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