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An Experimental Study on Model Continuous Beam Bridge
with Steel Deck

Recherches sur modéle concernant un pont a poutre continue avec tablier métallique

Modelluntersuchung etner Durchlauftrigerbriicke mat Stahlfahrbahn

- Masao NArRUOKA, Professor of Kyoto University, Kyoto, Japan

TosHiMasa OrABE and Korerr Hori, Hull Designing Section, Ship Designing Depart-
ment, Nagasaki Works, Mitsubishi Shipbuilding and Engineering Co., Ltd., Japan

1. Introduction

In the design of the Koln-Miilheim suspension bridge, the steel deck (steel
plate stiffened transversely and longitudinally) was used instead of a reinforced
concrete slab and also as the upper flange of stiffened girders, and thus a
considerable reduction in the steel weight was possible. Thereafter the steel
deck was used in the design of many box girder bridges such as Diisseldorf-
Neuss Bridge, Biirgermeister-Schmidt Bridge and Porta Bridge and also of
plate girder bridges such as Kurpfalz Bridge and St.-Alban Bridge.

In the design of the Kurpfalz Bridge, the steel deck was calculated by the
theory of orthogonally anisotropic (orthotropic) plates and moreover, the
load distribution coefficient of each girder was calculated by the theory of the
orthotropic plate assuming the center span part as the orthotropic plate having
the reduced flexural rigidity in the bridge axis which is simply supported on
the two opposite edges (piers) and supported by flexural beams on the other
two opposite edges. This is the conventional method but much remains to be
solved.

From this point of view, the authors tried to make an experimental study
on the model continuous girder bridge with steel deck and to contribute
something to the design of the bridge of this type.

2. Details of Model Continuous Girder Bridge

The model is a three span continuous girder bridge with steel deck, and the -
details are as follows.
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a) Length and span 3 (@) 2.400="7.200 m.

b) Width 0.400 4+ 3 (@ 0.800 + 0.400 = 3.200 m.

¢) Main girder 4, spaced at equal distances of 80 cm web plate: 6 < 300,
lower flange: 12 x 120.

d) Steel deck deck plate: 6 mm thick; longitudinal stiffener: 6 50,

spaced at equal distances of 10 cm; transverse stiffener:
plate 12 x 100 spaced at equal distances of 30 cm.

e) Sway bracing angle 40 X 40 X 5 located at equal distances of 60 cm.

The plan, side view and cross sections of the model are shown in fig. 1. This
is only a model bridge and is not of the reduced dimensions of the existing bridge
on account of the loading device, transportation and welding deformation. That
is, the bridge width and depth are large compared with the span, and also the
web plate is thick in comparison with the actual thickness of existing bridges.

3. Loading Device and Measurement

The load was applied by hydraulic jacks, the magnitude of the hydraulic
pressure was decided by a pressure gage and load cell which was located
between the jacks and model.

The strain was picked up by an electrical resistance wire strain gage with
bakelite base and measured by a strain indicator. The deflection was observed
by a dial gage.

Main girder fest
O /oaaded point

4 -D—— B 4 <P 4 main girder
B4 > & — = main giraer
4 2 D- b- main girder
B~ b B : main girder
! [ 1
support support support support
Steel deck fest
y .
main girder
X
main girder
support support

Fig. 2.
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The load was applied to various points shown in fig. 2 and at each step
of loading the strain and deflection were measured. Thus, the load distribution
in the transverse direction was obtained and the observed results were compared
for the two cases of the bridges with and without sway bracings. And also the
influence lines of the bending moment at midspan and support were observed.

The stress of the steel deck is very complicated. In order to research this
stress, the stress on the upper surface of the steel grid floor was measured.

4. Method of Analysis

In order to analyse the girder structure of this type, the following methods
can be considered.

1. Method of analysing the structure as a grillage girder bridge such as
F. Leonhardt’s method and H. Homberg’s method.

2. Method of analysing the structure as a parallel girder bridge with uni-
formly distributed cross girder such as H. Homberg’s method, A. J.S. Pippard’s
method and Winowsky-Krieger’s method.

3. Method of analysing the structure as a three span continuous orthotropic
plate with two opposite free edges.

Table 1. Fundamental Data of Model Beam Bridge

a) Moment of inertia of main girder

load skew-symmetrical load on inner girders
) . . the other
girder inner girder
effective width 21/3=53.4 cm A=80cm
. ) 12,000 cm? 13,560 cm*
moment of inertia . . . .
containing the upper flange and longitudinal stiffeners

b) Converted moment of inertia of main girder

Effective width for side span for center span
A=80 cm 11,860 cm? 13,920 cm4
2 A/3=53,4 cm 10,980 cm? 12,960 cm4

c) Converted moment of inertia of transverse stiffener

single load symmetrical skew-sym- effective
load metrical load width
with sway bracing 2,270 cm? 2,370 cm4 1,350 cm*4 60 cm
without sway bracing 302 cm* 30 cm
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Pippard’s and Krieger’s methods were proposed for the simply supported
girder bridge and can not be applied to the continuous girder structure. The
authors’ method may be classified into type (2) and can be applied to the
continuous structure. The detail of the solution is described in Appendix B.

The experimental values were compared with the theoretical values which
were calculated by various methods. In the analysis of this girder bridge
structure, much attention must be paid to the effect due to shearing force,
because the depth of this girder is larger than that of the general girder bridges.
Authors’ method of analysis considers the effect due to shearing force.

The fundamental data for the calculation are shown in table 1.

The method of calculation for the reduced moment of inertia of the cross
girder is shown in Appendix A.

5. Experimental Results on Main Girder

1. Deflection. The deflection measured at the mid-span of each girder of
the loaded span is shown in table 2, compared with the theoretical values cal-
culated by the authors’ method, and also the measured load distribution
coefficient is shown in table 3 with the theoretical coefficient.

2. Stress of lower flange. The stresses of the lower flange measured at the
mid-span of each girder of the loaded span under mid-span loading are shown
in table 4, compared with the theoretical values calculated by the authors’ ana-
lytical method, F. Leonhardt’s method and the theory of the orthotropic plate.

Table 2. Measured Deflection (mm) at the Mid-Span Section of Each Girder
Under the Mid-Span Loading of 30 t (fig. 3)

2.

4.

with sway-bracing without sway-bracing
load girder
a b d d a b c
Experimental value | 3.140 | 0.738 | —0.010 | -0.213 | 3.333 | 0.490 | —0.098 | —0.050
Authors’ value 3.222 | 0.752 | -0.191 | -0.252 | 3.220 | 0.570 | -0.180 | —0.070
Experimental value | 0.738 | 2.060 | 0.708 | —-0.020 | 0.515 | 2.545 0.650 | —0.110
Authors’ value 0.725 | 1.956 1.014 | -0.164 | 0.580 | 2.220 0.910 | -0.190
Experimental value | 2.720 | 0.580 | -0.025 | -0.135 | 2.905 | 0.510 | —0.050 | —0.020
Authors’ value 2.754¢ | 0.602 | -0.171 | -0.200 | 3.194 | 0.587 | —0.164 | —0.086
Experimental value | 0.640 | 1.970 | 0.685 | —0.010 | 0.420 | 2.295 0.565 | —0.045
Authors’ value 0.579 | 1.717 0.838 | —0.149 | 0.601 | 2.197 0.911 | -0.179
Experimental value | 0.76 2.60 2.69 0.76 0.51 3.00 3.08 0.47
Authors’ value 0.56 2.97 2.97 0.56 0.39 3.13 3.13 0.39
Experimental value | 0.63 2.53 2.53 0.67 0.49 3.04 3.09 0.52
Authors’ value 0.43 2.56 2.56 0.43 0.42 3.11 3.11 0.42
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Table 3. Comparison of Load Distribution Coefficients (fig. 3)

with sway-bracing

with sway-bracing

without sway-bracing

a b c d

a b c d

a b c d

89.1 | 17.5 | -2.5 | -4.2
84.4 | 23.1 | -1.9 | -5.6
91.6 | 15.1 | -54 | -1.3
85.2 | 16.7 0.0 | -1.9

18.0 | 61.2 | 23.6 | -2.8
214 | 57.3 | 21.9 | -0.1
15.6 | 62.6 | 27.7 | 6.0
15.6 | 67.8 | 18.7 | -2.1

90.1 | 16.3 | -2.8 | -3.5
84.8 | 22.1 | -1.3 | -5.6
90.6 | 1569 | -3.5 | -3.1
87.2 | 16.0 1.0 | 4.5

16.6 | 63.8 | 22.8 | -3.1
20.5 | 60.4 | 20.2 | -1.1
16.5 | 63.0 | 24.6 | —4.1
16.7 | 66.7 | 16.7 0.0

88.5 | 19.3 | 4.2 | -3.7
834 | 23.8 | -2.6 | —4.6

85.2 | 16.7 0.0 } -1.9

19.3 | 57.3 | 27.7 | —4.2
22.7 | 52.7 | 26.6 | -2.0

15.6 | 67.8 | 18.7 | 2.1

89.5 | 18.0 | 4.6 | -3.0
83.9 | 23.5 | -2.8 | 4.6

87.2 | 16.0 1.0 | —4.5

18.7 | 59.4 | 27.2 | 4.6
21.8 | 54.2 | 26.4 | -2.4

16.7 | 66.7 | 16.7 0.0

96.6 7.1 | -3.9 | -0.2
90.5 | 144 | 4.4 | 0.5
95.6 | 10.2 | -7.1 | -1.3
92.5 | 10.2 | -3.5 | -1.9

7.1 | 82.0 | 14.8 | -3.9
14.3 | 71.6 | 18.6 | —4.5
10.9 | 80.1 | 16.9 | -7.9

8.3 | 83.4 | 125 | —4.2

96.9 6.3 | -3.5 0.2
90.9 | 13.5
95.1 | 10.2 | -5.7 0.4
93.6 9.5 | -2.1 | -1.0

6.3 | 83.8 | 13.4 | -3.5
12,7 | 74.8 | 17.1 | 4.6
11.0 | 81.3 | 14.2 | —6.6

9.0 | 79.5 | 13.6 | -2.1

142
Method
load of
Analysis

1 L.
G-M.

A.

E.

2 L.
G-M.

A.

E.

3 L.
G-M.

A.

E.

4 L.
G-M.

A.

E.

Remarks

1=2370 cm* for sym-
metrical loading

I=1350 cm* for skew-
symmetrical loading
were used

I=2370 cm*4 was used

L. = F. Leonhardt’s method, G-M. = theory of orthotropic plate, A. = Authors’ method,
E. = Experimental value. These notations are the same as in tables 4~@6.
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Table 4. Stresses of Lower Flange (kg/cm?2) Measured at the Mid-Span of Each
Girder Under Mid-Span Loading of 30 t (fig. 3)

Method with sway-bracing without sway bracing
load of
Analysis a b c d a b ¢ d
1 E. 2385 480 | — 48 | -120 | 2543 248 - 63 - 15
A. 2350 390 | -140 | - 34 | 2442 263 | —184 - 35
L. 2335 459 | — 65 | -110 | 2535 186 | —103 - 5
G-M. | 2210 605 | — 50 | -147 2370 377 -115 - 13
2 E. 397 1665 410 | — 38 268 2070 403 - 63
A. 400 1620 720 | ~153 281 1803 691 -202
L. 472 1603 619 | — 73 186 2150 388 -103
G-M. 561 1560 574 | — 26 377 1875 487 -118
3 E. 2068 425 | — 55 | — 80 | 2170 230 | — 45 - 10
A. 1977 348 | — 76 | — 67 2078 223 | -125 - 9
L. 2050 369 | — 63 | — 79 | 2190 142 | — 79 - 4
G-M. | 1915 500 | — 30 | -126 | 2050 305 | -100 0
4 E. 373 1475 375 | ~- 50 205 1890 305 - 70
A. 360 1380 540 | — 89 241 1563 530 -144
L. 375 1440 515 | - 70 142 1892 303 - 179
G-M. 464 1365 456 | - 26 287 1690 386 -104
2’ E. 395 2020 | 2180 400 110 2290 2415 190
A. 250 2320 | 2320 250 80 2495 2495 80
L. 400 2220 | 2220 400 83 2540 2540 83
G-M. 535 2074 | 2074 535 260 2360 2360 260
4’ E. 212 1690 | 2150 320 100 1900 2000 110
A. 270 1920 1920 270 97 2095 2095 97
L. 300 1955 1955 300 65 2195 2195 65
G-M. 240 1820 1820 240 185 2075 2075 185

Next, the stresses measured at the mid-span of each girder of the span
loaded at é and %l section are shown in table 5 and the distribution coefficients

are shown in table 6.

The authors’ values were obtained by superposing the results calculated
by the reduced moment of inertia for the symmetrical and skew-symmetrical
cases shown in fig. 16. The load distribution coefficients calculated by this
method are shown in the left column of table 3. The values calculated by the
reduced moment of inertia of the sway bracing for the single loading are shown
at the same time in the center column of table 3. The reduced moments of inertia
for cases b) and ¢) of fig. 16 are almost equal and the value for case b) is used,
for single loading.
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Table 5. Stresses at the Lower Flange (kg/cm?) Measured at the Mid-Span of
Each Girder Under é and %l Loading of 30 t (fig. 4)

load |Momodof] 4 b c d | load |Mumodof| o b c d
5 E. 973 | 345 | -8 | -68 | 8 E. 250 | 413 | 263 | —10
A. |1045 | 310 | -63 | —61 A. 220 | 515 | 361 | —69
L. |1065 | 210 | —-30 | —50 L. 188 | 639 | 246 | —29
6 E. 273 | 448 | 268 | 10 | 9 E. 760 | 270 | -18 | —55
A. 310 | 547 | 440 | —63 A. 741 | 225 | —49 | —43
L. 215 | 734 | 282 | —33 L. 940 | 183 | —26 | —44
7 E. 925 | 305 | 30 | —65 | 10 E. 240 | 350 | 238 | -10
A. 909 | 220 | —69 | —28 A. 225 | 376 | 323 | —49
L. 940 | 183 | —26 | —44 L. 214 | 723 | 279 | —33

48(14) =1 - s | U4 Y2 7

T |

= ——— - ——— - measured line

Fig. 4.

Table 6. Load Distribution Coefficients at the Mid-Span Section Under the
% and %Z Loading (fig. 4)

load |Mahodofl 4 b e d | load |Motmodof| 4 b c d
5 A. 85 | 25 | -5 | -5 8 A. 25 | 44 | 36 | -5
E. 78 | 27 1 | -6 E. 26 | 43 | 29 | -1
6 A. 25 | 44 | 36 | -5 9 A. 85 | 26 | -6 | -5
E. 28 | 45 | 27 0 E. 77 | 27 2 | -6
7 A. 85 | 25 | -5 | -5 | 10 A. 26 | 43 | 37 | -5
E. 77 | 27 2 | -6 E. 29 | 42 | 29 0
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The comparison of the stress of the lower flange of the main girder of the
bridges with and without sway bracings is shown in table 7.

3. Influence line of bending moment. The influence lines of bending moments
at mid-span and supports experimentally obtained for only the girders con-
cerned are shown in fig. 5. In the calculation of the bending moment from the
measured stress, the effective width of the upper flange of the main girder
was assumed as 1009, and 509, of the girder spacing for the mid-span and
support respectively.

4. Stress of sway bracing. The stresses of the sway bracing at the mid-span
of the side and center span under the mid-span loading are shown in table 8.

The theoretical values were obtained by the method proposed by F. Leon-
hardt, that is, under the assumption of the sway bracing being at the mid-
span, the flexural rigidity of which is 1.6 times larger than that of the indi-
vidual one.

Table 7. Influence of Sway-Bracing upon the Stresses at the Lower Flange of
Mid-Span Section and Load Distribution Coefficients (fig. 3)

stress (kg/cm?2) load distribution coef. (9;)
load girder with without with without
sway-bracing sway-bracing
1 a 2385 2545 88.4 93.7
b 480 248 17.8 9.1
c —48 -63 -1.8 2.3
d -120 -15 —-4.4 -0.5
2 a 397 268 16.4 10.0
b 1665 2070 68.5 77.3
c 410 , 403 16.8 15.1
d —-38 -63 -1.6 -2.4
3 a 2068 2170 87.8 92.6
b 425 230 18.0 9.8
c -55 —45 -2.3 -1.9
d -80 -10 -3.4 -0.4
4 a 373 205 17.1 8.8
b 1475 1890 68.0 81.1
c 375 305 17.2 13.1
d -50 -70 -2.3 -3.0
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6. Discussion on the Experimental Results of Main Girder

1. For the deflection and the stress of the lower flange of the main girder
and the stress of the sway bracing, the measured and theoretical values are
almost equal and show good agreement.

2. The sway bracing has no purpose of distributing the applied load to each
girder, but its influence on the load distribution can be clearly understood.
The sway bracing has been designed customally without calculation, but
because a considerable amount of stress exists, the sway bracing must be
designed for the single concentrated load.

3. The theoretical values for the single loading on the main girder with the
sway bracing were obtained by superposing the results of the two cases of the
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Table 8. Stresses of the Sway Bracing of the Mid-Span Section Measured Directly
Under the Mid-Span Loading of 30t (fig. 6)

Ioad a b c d
oa
exp. theo. exp. theo. exp. theo. exp. rheo.
1 -770 - 570 1080 870 0 0 —280 — 290
2 710 570 -1250 —870 0 0 240 290
3 250 270 -1030 —870 1210 870 -350 - 270
g‘ 3 -310 - 280 1160 870 -1040 —870 340 280
@ 2/ 360 290 50 0 -1040 —-870 770 570
f:s' 1 -360 - 290 - 40 0 1020 870 ~760 — 570
§ 4| -780 | — 825 1580 1410 | — 50 0 —-340 | — 470
5 -940 — 825 1160 1410 — 180 0 -540 — 470
5 -360 — 470 - 100 0 1330 1410 —850 — 825
4/ -590 — 470 — 80 0 1440 1410 -710 — 825
1 -580 - 625 1200 940 - 24 - 35 -330 — 340
2 660 625 -1000 -940 0 35 290 340
3 160 290 -1140 -970 1080 970 —420 - 290
53: 3 -350 - 290 1220 970 — 960 -970 290 290
2 2 290 340 0 35 —-1040 —970 700 625
g 1’ -260 — 340 - 40 - 35 1090 970 ~780 —~ 625
' 4 -700 -1000 1260 1560 - 80 - 35 ~420 — 540
5 -910 -1000 1260 1560 100 - 35 ~600 ~ 540
5’ -590 — 540 150 — 35 1210 1560 ~970 —-1000
4 -360 - 540 - 35 - 35 1410 1560 -890 -1000

symmetrical and skew-symmetrical loadings as described above. On the other
hand, if we calculate, using the reduced moment of inertia of the sway bracing
for the single load or symmetrical load, without performing the superposition
described above, no great difference is recognized for the outside main girder,
but a considerable difference between the measured and theoretical values
can be noticed for the inside main girder.

4. The various methods of analysis give almost the same values for the
deflection and stress at mid-span, but the value of the load distribution under
the special loading at //4 and 31/4 differs considerably from the value obtained
for the mid-span loading. This fact can not be explained by F. Leonhardt’s
method or the theory of the orthotropic plate, but is explainable only by the
authors’ analytical method and H. Homberg’s method.

5. The form of the influence line of the bending moment at the mid-span
of the side and center spans does not differ considerably from that of the

. . l 3 . .
single continuous beam. Of course, near the 1 and Zl sections, a difference

can be seen to some extent, but this effect on the total bending moment
is not large. The influence line of the support bending moment is obtained



148

under the assumption of the effective
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width being 509, of the girder spacing,

and thus the value itself is not always necessary to be correct. However, the
point of the maximum ordinate is close to the support, compared with the
case of the single continuous beam. This was pointed out first by the
author and Prof. H. Yonezawa theoretically by the theory of the continuous
orthotropic plate, and this experiment can explain clearly the theoretical result.

7. Results of Experiment of the Steel Deck and the Discussion

a) Stress Distribution of the Upper Surface of the Steel Deck in the
Main Girder Test

1. Distribution of stress a,.

The distribution of o, is shown in fig. 7. The

measured value of the stress directly under the applied load can not be relied
upon very much, and moreover the magnitude of the stresses are so small

) )
/\ - ~0.8t/em? T“ Z
,‘/‘\ E {' f_ i a
"~ —d -04 \ /\ /\
N
\, \
~, —.
1 1 1 I 1 1
a b c a c 74
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x I 4 T o4
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/\/\ — a ‘ —04 / l g
N \ ~02 /\ - \l/x\
e % I - v
I 1 I 1 1 1 1 1
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10 ! ;
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— - g
1-10 !
N \ /
FNN e \
x / \, -04 / \,
x” Fa X
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measured line on mid-span

Fig. 7a. Distribution of o, of the Upper Surface of Deck with Sway Bracing, ° Load 30 t.
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that we shall not discuss the values, but discuss the effective width of the
upper flange.

a) Calculation of the effective width. According to Prof. Schade, we can
calculate the effective width of the section of the maximum bending moment
between the sections of zero bending moment. Because the external forces on
the test girder bridge are the concentrated loads applied by hydraulic jacks
and support reactions as concentrated loads and the reaction from the neigh-
bouring main girders as a distributed load, we shall consider the effective
width for both loads.

“As the form of the bending moment diagram of each girder of the continuous
girder structure does not differ very much from that of the single continuous
girder, we shall use the bending moment diagram of the single continuous
beam girder. We shall obtain the following table and figure.

@) &
A wiu wiw .
@
200 230
(3) l
Pan ~ .
@ ()]
170 275
effective width
! UB
concentrated load | distributed load
200 cm | 2.5 0.60 B 0.82 B
(a) 230 cm | 2.9 0.65 B 0.90 B
. 170em | 2.1 0.52 B 0.75 B
®) | 970em | 3.4 0.67 B 0.95 B

B = girder spacing

b) Consideration of effective width. In this experiment, the effective width
of the upper flange is, as can be understood from the above calculation,
50 ~ 609, of the girder spacing for the concentrated load, and 75 ~ 959, for
the distributed load. Near the support, the deflection of each girder does not
differ greatly from each other and the reaction force from the neighbouring
girders (distributed load) is small compared with the support reaction (con-
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centrated load). Therefore, the effective width is almost equal to that due to
concentrated load.

As the reaction from the neighbouring girders is larger near the mid-
span than that near the supports, it is assumed that the effective width
approaches closer to the width due to the distributed load at the mid-span
than near the supports. Moreover, when the measured point does not coincide
with the point where the load is applied, the influence of the concentrated
load is smaller than the previous case and the effective width seems to be
larger. This fact can be understood by comparing fig. 7, a, b and c.

Generally speaking, it seems proper to assume that the effective width is
50 ~ 609, of the girder spacing at the supports and 80 ~ 909, at the mid-span.
It can be understood from fig. 8 that the latter assumption is almost correct.

mid-span section of center span

= 23 upper flange
\\\\ NN '
> AN \\\
S N\ (1) __ . theoretical

% &) } neutral axis

-6 —4 -2 9 2 4 6 & 1@ 12 M _I6 18 20kymm?

—t ¥ + ¥ L E— —

Fig. 8. Stress of Web Plate. Strain Gage: (1) Effective Width = Girder Spacing. (2) Effec-
tive Width = % x Girder Spacing.

2. Distribution of stress o,. The distribution of stress ¢, under the load
applied to the mid-span section of the center span of the inside girder is shown
in fig. 9. It is understood from this figure that the distribution is singular on
the main girder. Except the neighbourhood of the load (on the longitudinal
stiffener neighbouring to the main girder), the stress o, in the direction of the
main girder is constant. Thus, we can assume that we can adopt the full
width of the cross sway bracing as the effective width.

b) Stress Distribution of the Steel Deck vn Deck Test

1. The case where the load is applied to the panel point (the intersecting
point of transverse and longitudinal stiffeners). The stress distribution is shown
in fig. 10, 11 and 12. From fig. 10, it is understood that the steel deck is sup-
ported continuously by the main girders, because the loaded transverse
stiffener and the neighbouring two stiffeners produce negative bending mo-
ments on the main girder and positive bending moments near the loaded points.

Let us compare the measured values with the theoretical values. The
theoretical values are calculated by the theory of the single and continuous
steel deck.
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LS.
loag 3ot , /

Fig. 9a. Distribution of oy of the Upper
Surface of Deck with Sway Bracing.

Fig. 9b. Distribution of ¢, of the Upper

Surface of Deck without Sway Bracing.

T.S. Transverse Stiffener. M.G. Main Girder. L.S. Longitudinal Stiffener. S.B. Sway
Bracing.

load 10t /oad 70t

== \

mid-Sparn section

Fig. 10a. Distribution of ¢, of the Upper

Fig. 10b. Distribution of ¢y of the Upper
Surface of Deck with Sway Bracing.

Surface of Deck without Sway Bracing.
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mid~span section of cen/ef span main girder
}

1 ) ' ' ]

é 1 _ & of lransv.

stiffeners

800
1
|

1 ' )

: ! VYmain girder

along the center /ine

z .
| without sway bracing
N !
& 70
R
NI —o— | measured
3 —-—- | sing/e s/ab
2] 720 —===_| contin.slab
) ‘ /
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N
2
3
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Fig. 11. Stress Distribution of
Transverse Stiffeners. T
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miad-span sec//on\\ main giroer
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main girder
along section A-A

measured
Single slab
contin. slab

~——stress (t/cm?)

Fig. 12. Stress Distribution of
Longitudinal Stiffener without
Sway Bracing.




154 Masao Naruoka, Toshimasa Okabe and Koichi Hori

The former method of calculation is based on the assumption that the deck
is a plate with simply supported edges on the opposite two sides (longitudinal
stiffeners) and with infinite length in its direction. We calculate the theoretical
values by Cornelius’s method using the following values;

_EJ, _EJ, _ 1 . .
B, = 30 B, = 10 J, = 302.3 cm?, J, = 22.8 cm?,
K = _E__z().él.
l/Bsz

The latter method is so complex that we shall use the conventional method.
That is, because the flexural rigidity of the main girder is so much larger than
that of the transverse stiffener that we can consider that the transverse stiffener
is a three span continuous girder supported rigidly by the main girder, we use
the reduced moment of inertia J,=424.0 cm* instead of its original value
J,=302.3 cm?, the other procedure being the same as above.

The theoretical values are plotted in fig. 11, 12. From fig. 11, the theoretical
values calculated by the latter method agreed better with the measured values
than the values calculated by the former method.

The comparison of the stress of the longitudinal stiffeners is shown in
fig. 12. It can be said that the theoretical and measured values coincide with
each other. |

2. The case when the load was applied to the mid-span of the longitudinal

8

I 1 Il 1 — 1 1

T T | T T H
S S S S O R S
e e rp i p e — — 4
—f — = — g ] el b

A—f-——xl— —x}——-x-{—xj -x-fx———l-x—-—-}—A

e — o = —
+——— =4+ == — 4
+———— 44+ — 4+ —+

+ t — + } }

slong section A-A

along section B-8

3 l x
TN Wi,
5 nwem
o -\—-
=~ S
§tw 3 <oz
g x S
o QL
3120 ot as
3
x
+J30 lﬂ"aﬁ
+08

Fig. 13. Stress Distribution of Longitudinal Stiffeners Wiphout Sway Bracing.
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stiffener. The stress of the longitudinal stiffener is shown in fig. 13. Two
methods of calculation can be considered.

- a) If we consider the steel deck as an orthotropic plate with a reduced
flexural rigidity in the z-direction, with the flexural rigidity of the steel deck
plate only in the y-direction and also with the simply supported boundary
conditions at the opposite two edges (transverse stiffeners), the theoretical
stress is 6,160 kg/cm?. The stress ratio is 2,750/6,160 =45%,. The numerical

EJs =2 4
o J,=27.3cm

(the longitudinal stiffeners are considered as three span continuous girders),

flexural rigidity of top plate B, =Tg—t—%ﬁ =4.2 x 10 kg/cm. '

b) From fig. 13, it is shown that the stringers neighbouring the loaded
stringer do not share the external force. From this fact, the deck plate can be
considered as a plate or membrane surrounded by transverse stiffeners and
two stringers neighbouring the loaded one. According to this analysis, a
considerable difference does not exist and the maximum stress is 5,800 kg/cm?.

values used are as follows: reduced flexural rigidity B, =

8. Conclusion

From the above descriptions, the followings can be concluded.

1. The measured values agree with the theoretical values for the deflection
and bending moment at the mid-span. For the deflection and bending moment
at the mid-span, the method using the reduced moment of inertia such as
F. Leonhardt’s method and the theory of orthotropic plates is sufficient. How-
ever, if these methods are applied to the calculation of the deflection and bend-
ing moment at any section except the mid-span section, an error is inevitable.

2. The sway bracing plays the roll of distributing the load to each girder
to a certain extent. This action must be taken into the calculation of the load
distribution. The flexural rigidity of the sway bracing can be calculated from
the cases of symmetrical and skew-symmetrical loadings as shown in fig. 16.
However, the above procedure is limited to the case of four girders. For the
case of more than five main girders, a suitable method remains to be solved.

3. It can be surely said that the steel deck must be calculated as an orthotropic
continuous plate. Some conventional methods were described above. More-
over, a further study is necessary to solve many unknown points.
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Appendix A: The Flexural Rigidity of the Main Girder and Cross Girder

1. The rigidity of main girder. The spacing of girder “A’’ can be considered
as the effective width of the main girder for the symmetrical load, and the
effective width must be chosen as 2A/3 only when the inside girders are
loaded skew-symmetrically, as shown in fig. 14b, but for the other cases “A”’
can be considered as the effective width.

(3)
on oulside girder

1 T I

\ X

() on inner \girder

Hie——

I I L
/
o A A A A

Fig. 14. Skew-Symmetrical Load.

In applying the grillage girder theory or the orthotropic plate theory to
the analysis of this bridge, the converted moment of inertia of the main girder
must be calculated. We considered that the existence of the deflection of the
girder due to shearing forces reduces the flexural rigidity of the main girder and
calculated the converted flexural rigidity, taking the shearing forces into account.

2. Rigidity of cross girder. The sway bracing plays an important part in
the load distribution. This can be clearly understood by experiments. The
converted flexural rigidity of the cross girder can be calculated as follows:

We consider the transverse stiffener-sway bracing system as a girder
stiffened by truss members and calculate the deflection of this stiffened girder
for both symmetrical and skew-symmetrical loadings (fig. 15, 16). Then
assuming a girder which shows the same deflection, the converted moments
of inertia are calculated for these two cases.

It must be noticed that there is a considerable difference in the converted
moments of inertia of the two cases as can be understood from table 1. This
is due to the fact that the deflection due to shearing force is fairly large in the
stiffened truss. Therefore, the calculation in the case of single load must be
done by superposing the results of the calculation for the symmetrical and
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skew-symmetrical loads and the converted moment of inertia for these two
cases should be used.

It is not preferable to use the converted flexural rigidity of the case when
a single load is put on the stiffener-bracing system shown in fig. 16¢ as that
for the single load, because the system receives a reaction from the main girder
even when a single load is applied to one of the main girders and this case is
not equal to the single load case shown in fig. 16c¢.

l’” 2) ] J
L1 -

1

Symmelricdl reaction

No
Nl

1
i
L1

+

_{ T (%) J 1
!

nN
No

A Skew-symmelrical reaction Y

I

Fig. 15. Composition of Load.
P . (c) l

Fig. 16.

reactions for Single load

Appendix B

In this appendix, the solutions are obtained for the cases of bridges with
four main girders under certain convenient assumptions. In the first place, the
floor system is assumed to prevent any twisting of the main girder, and in the
second place, the cross girders are replaced by a continuous connecting system
which is able to resist transverse bending without increasing the longitudinal
strength of the bridge.

1. Notations

l span of the girder.

c distance of the position of the load from the support.

a spacing of the main girders.

J reduced moment of inertia of cross girder per unit length.
1, (1,) moments of inertia of outside (inside) main girder.

A, (4,) sectional area of outside (inside) main girder.

Yo,m (Yo,s) deflections of main girder caused by bending moment

(shearing force) due to concentrated load.
Y1.m Yo,m)> Y1,s (s, s) deflections of outside (inside) girder caused by bending
moment, (shearing force) due to symmetrical load.
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21,m (22,m)s ?1,5 (25,) deflections of outside (inside) girder caused by bending

Y1=Y1,mtYis>

moment (shearing force) due to skew-symmetrical load.
deflections of outside (inside) girder due to symmetrical

Y2=Y2,m T Y25 load.

21 =Z1,mt2>

deflections of outside (inside) girder due to skew symmetri-

Zg=Zy m+725, calload.

Y = Y2,m —Y1,m> Ys = Ya,s—Y1,55

2, = 22,m3—21,m, 2, = Zz,s?jZLs
% Gi% the reciprocal of the spring constant for the case of sym-
. metrical load.
y' 3 saE 7 the reciprocal of the spring constant for the case of skew-
symmetrical load.
Ko the ratio of maximum shearing stress to average shearing
stress when the section is subjected to bending.
1 1 1 , A , A 1
Blz'I_lz’ Bz:T:=/8_1, Blz_A_fs IBZZZ:=IF"
_ 148 Lo LB
El,y’ ko GAyy’
r_ 9+Bl k' = 9+/91, .
B 3E1,y"’ 3k, GAyy""°
) — EI,
Ko GA, 12 ’
B = 05[2(uyhtkTh, 1,8 = 0.5[2(u)h+ KTk
B —h b, = 2P .
V" ELD 2 kg GAL’
@195 (o, B, ) = (2 —B2)exp( azx)cosBxr+2aPBexp( ax)sinpfu,
o> Pg (o, B, %) = (a2 —B2)exp( ax)sin Br+2aBexp( az)cosPu,
@3, P7 (o, B, %) = (6> —B2)exp(—azx)cosBr+2aBexp(—ax)sin Bz,
Pa, s (a2, B, %) = (2 —PB2)exp(—ax)sin Bx + 2aBexp(—az)cosBr.

2. General Relations

a) Generally speaking, the relation between the deflection due to bending
moment y,, and deflection due to shearing force y, can be determined by the
following procedure.

A2 Y,
d x?

M dys _ @ By, 1 dM _ Q
Bl dz _ 0GA’ de®  EI dxz EI’
3
o BIEYm A%y, (a)

d x3 0 dx
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b) The value of support bending moment of the three span continuous
girder with equal span and equal flexural rigidity.
For the side span loading, there is the following relation (fig. 17a);

8M,,

M. =
1 15

- (b)

For the center span loading, there is the following relation (fig. 17b);

M= My dM, My =2 Mot Mu
15 2
- (c)
M2=M0—AM, Aszabm.
P
(a) l M
A AN A AN
P |
PR S 7
g P
@ ”ri‘i_—\‘_b——l/"z
£ i - .8
| v
Mo ‘E”m
l

Fig. 17.

Chapter 1. Case Where rthe Load is Applied to the Inside Girder

A. Symmetrical Load

1. Induction of the fundamental differential equation (fig. 18). The relative
deflections y,, and y, of the outside and inside girders due to bending moment
and shearing force can be expressed as follows.

Yn = Y2,m —Y1,m> Ys = Yo,s — Y1,s> Y= yl,m+y1,s
. Ynt+ TY,
Yo =Yomt¥os: Yo V1= YntY LT = P1= P
; Prrr s s
P
2 / 1A, _’OLTO’
P 777777,
3 / 12, A, '02,0/
/7717, \
4 A L4

o
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The following four differential equations are obtained for the outside and
inside girders

A4 Y1 m d* (Yo,m — Yo, m
LR ol:icl‘i = P (1) El, (?/odmx4y2 )=p2=P1- (2)

_ a2y 42 (40,5 — Y.
KOGA1d—:Z;’—'=—P1’ (3) KOGAz—(l/(:ls?gz—_)z_pzz_pr (4)

By subtracting eq. (2) from eq. (1) and also eq. (4) from eq. (3), the following
two differential equations are obtained.

d* (B2 Y1,m~+ Yo,m — Yom) _ d? (B2’ y1,5 +¥Y2,5s —Yo,s) _
e =0, (9 s =0. (6)
Addition of eq. (1) multiplied by B, to eq. (2) gives
d4 m s + A . d4 - y M
pr, W= Vention) _p 14y, BT ),
4 4
d Ym d Yo,m (7)

d zt Yt uYs = dzt *

The same procedure for eq. (3) and (4) gives

d?y, _ PPYyos
d 22 _kys_kym - d x2 . (8)

From eq. (7), we get
dzys _ 1 dsym dzym+ 1 deO,m

dx? o da®  da?  u dad )

Substituting eq. (9) into eq. (8), we obtain

CY Y Pl _ PYom P Yom  APYos ,
Job  Fdet TR T Tdas Fdat P et (109
. ’ . d4y0,m dzyo,s .
If we can assume $8,=8,’, the relation t—== 7.5 =0 can be obtained.

Therefore, finally the important differential equation

Yy Yy APy,  dyom |
dad Fget Th 2 T das (10)

can be obtained. The term on the right side of eq. (10) is previously given for
the given state of loading. Thus, the above differential equation can be solved.
If 4, =Yo,m —Y1,m 18 obtained, the term y,=y, .—y, , can also be obtained
from eq. (9).

FI’OIII eq' (5) a’nd (6)5 the terms B2y1,m+y2,m_y0,m and B2,y1,s+y2,s_y0,s
are given. :

Because y,,=¥Ys ,n—Y1.m 80d Ys =¥, s — ¥, , are previously determined, terms
Yim> Yo.m> Y1,s and y, ; can be obtained. Thus, the deflections y; =y, , +¥1 s
Yo="Yo.m+ Ys,, can be determined.
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2. Solution of the fundamental differential equation and deduction of
deflection y,; and y,.

a) When the load is applied to the girder which is simply supported at the
one end, and is fixed at the other end (fig. 19). The deflections y, ,, and y, ,
of the girder shown in fig. 18 can be expressed as follows from eq. (a).

. 1 1
m = b1 Z( ) sin " cs1n1“;—x+6A1x3+§A2x2+A3x+A4,

2 nme . T
s =b Z( ) Sln~—sm——l~—~)\le x+A4,.

(11)

P

v
: ¥

Fig. 19.

7r—‘>—[

The boundary conditions are as follows.

d2 Yo,m

at x = 0: Yo,m+Yo,s = 0, ——d~—§2—~=0,
d
at x = 1[: Yom+Yos =0, %:0.

Substitution of above eq. into eq. (11) gives the integral constants as follows:

Ay=Ay,=A4,=0,

(—=1)» ol nmwe
2P n? 1
A= —— , (12)
! m B 1, %4—)\ '
1 (=1 . nme
L. 2PP T
3 m B, %+/\ )
Substituting eq. (11) into eq. (10), we obtain
Yy Y Py, 2P nm\2 . mwc . nwx
i gt TH e T TELI (T)mlzsm [ (13)
Solution of the above differential equation is as follows:
1 .
Ym = WLB1 @5 (o, B, @) + By pg (¢, B, ) + By ¢ (o, B, ®) + Bypg (o, B, )]
nmc . w (14:)

2 P sin —l— sin l

ELL= (v (o)

+ Byx+ Bg+
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From eq. (7), the relative deflection can be obtained as follows:

B 1 d4ym 1 d4y0,m
Y=UntYs =~ gat T 0 Tdat

Therefore, the use of eq. (14) gives the following

Yy = _:;[Blgpl (a, B, @) + By oy (e, B, 33)+B3(p3 (a, B, ) + By gy (o, B, )]

b B(E) () ume  nme (15)

z @;)%%)w(ﬁ P

“=0 and at z=I[, y=0,

(fiyx'" =0, the integral constants can be determlned as follows.
— — D1A4 _ _ i D1A3
HE e s 1 PR 1 s v

4, =2R+2( U-coshalcosBl+ WsinhlsinB1l)x,G A,,
A4, =28+42(—WecoshalcosBl+ UsinhalsinBl)kyGA,,
A4 = 2( az—Bz)sinhalcosﬂl—4choshalsinBl
4y =2 (> —p2)coshalsinfl+4oaBsinhalcosBl,

R=E12a—KOGA2(U+%), S=E12/8—K0GA2(—W+%),
K K (16)
U=t W=22
K, K,
Ky=a(@+p),  Ky=B2+p), K= (a®+p)?
Ky=a(®-3p%, K;=B(3«"—p%,

Coek(D)enlly

b) When the load is applied to the side span of the three span continuous
girder with equal span and equal flexural rigidity (fig. 17a).
The ratio of support bending moment (M,) of the three span continuous

girder to that (M,,) of the girder with the simply supported and fixed end is

]ngo = — . Thus, the integral constants determined in a) can be applied to the
1

- blz{KOGAz[(n_i)Z(—l)wf] —Elz} wmo

side span of the continuous girder by multlplylng the factor ;. Therefore, if

we adopt the integral constants which are — 5 times as large as that of eq. (16),

1
the equations of deflection (11) and (15) can be applied to this case with no

modification.
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Rewriting the eq. (5) and (6), we have

d* (Bo y1,m +Y2,m — Yo,m) -0 d?(By Y15+ Y2,5— Yo,s) -0
dxt ’ d x2 )

For the case of this girder the above two equations become zero, namely
Betim+Yom—Yom =0 B Y5+ Y5~ Yos =0
Addition of the above two equations under the assumption B,=f," gives,
Be (Y1,m +Y1,8) + (Y2,m +Y2,5) = Wo,m+Yo,5) = Batr +Y2—Yo = 0.
The relative deflection can be written as follows:
Y = Ym+Ys= Yo,m = Y1,m) + Wo,s = Y1) = Y2 —V1-

Because ¥, ,,, ¥o,s, ¥ are given by egs. (11) and (15), we can determine the de-
flections y, and y,.

c) When the girder is fixed at both ends (fig. 20). The deflection ¥, ,,,, ¥o,s
of the girder shown in fig. 20 can be expressed by the same equation as eq. (11),
except the last term of the right hand of y, , (see eq. (117)).

2 < Jé
zt z 7

Fig. 20.

By the boundary conditions at x=0 and x=1: y, ,, +¥, =0, i‘q%’f =0, the
integral constants can be determined as follows:

[1+ (—1) "] 1 . nme

A, =- 3E[ Z 58—,

2Pl 1+(=D"*] 1 . n=we
Az:_m [[—1+(—1)”]—41(——L];3—sm—;,

453+ (17)

A — 2P 1 . nme
ey Y AT L B

2P 1+(=1)" 1 . nwe
A, =——"" [[~l+(—1)n]————]—31 —
a 773K0GA2 4(_11E —I—A) n3 l

The solution of fundamental eq. (10) is quite the same as eq. (15), because

the term & dyo " is identical to the right side of eq. (13).

The boundary conditions at x=0 and x=1[: y=0 and dym = 0 determine
the four integral constants of eq. (15) as follows:
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m
X p_ % p_ XX, o "HtrhoghXetal)
Bl_ ’ Bg— , B3— , B4_ ,
%o %o : %o f1 Ug N

where, X, = Ke,+K'e,, Yy=Kd;—K'd,, uy=d,e5+dse,,
m=o>—f2 n=2af,

Ky =a(a?+8%), Ky=B®+8%), Ky= (248, K,=a(2-3p%),

Ky;=BB2—p%, U=K]K;, W = K,y/Ks;,

R =E12a—xoGA2(U+—§f’—>, 'S=E123—K0GA2(—W+%),

g, = U—exp(al)(UcosBl+ WsinBl), go=U +exp(—al)(— UcosBl+ Wsinpl),

hy = W+exp(al)(UsinBl— WcosBl), hg=W—exp(—al)(UsinBl+ W cosBl),

ty, = R+kygGAyexp( al)(UcosBl+ WsinpBl),

1ty = R—kyGAyexp(—al)(WsinBl—Ucospl),

j1 =S+keGA,exp( «l)(UsinBl— W cosBl),

jo =S —koGAyexp(—al)(UsinBl+ W cosBl), (18)

d, =mexp(—al)(msinBl—ncosBl)+mnexp («l)(mcosBl—nsinBl),

e, = nexp(—oal)(msinBl—ncosBl)+mnexp(xl)(msinBl+mncosBl),

fi =mexp(—oal)(msinBl—ncosBl)+mnexp (al)(mcosBl+nsinBl),

dy =gin—hym, dy=g,ji+hyiy, dy=fadi+f1dy, dy=f3dy—[sds,

eg =n(hy+hy), e =jiha—Jshy, ey =efs—erf1, €5 =exfytesfs,

fo =gan+hym, f3 =gsjs+heiy,

K =Mnf,, K" = Mnfs—Mijsfo+ Lhyfs,

S A i e E e

sin ,

(7)+ 4+ ) l
_bZ =1 _H( ) L Te

(’”) TEAEEIE

d) When the load is applied to the center span of the three span continuous
girder with equal span and flexural rigidity (fig. 17b).
The ratio of the sum of the support bending moments (M, + M,) of the

three span continuous girder to that (M,,+ M,,) of the girder fixed at both

M.+ M, .9
ends, refering to fig. 17b, is as follows; Mot M 15

Therefore, the integral constants determined in c) can be applied to the

center span of the continuous girder by multiplying the factor 195
Thus, if we adopt the integral constants which are 1% times as large as the

integral constants of eq. (17) and (18), the equations of the deflection of the
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center span of the three span continuous girder can be decided by eq. (11')
and (15'), that is,

A 1 1
m =01 Z( ) sin” Cs1 %@+EA1x3+§A2x2+A3x+A4,

2
o0 = b2 ) (%) sin 7 sin "7 NI Ay 2 AR Ay,

(11)

Yy = _%[B] @1 (s B, %) + By gy (¢, B, %) + By g (¢, B, %) + By g (o, B, )]
(157)

l 1\3
b, kﬂ_l_“(n_ﬂ) G i T

sim
FEE )G

The values of equations By ¥y ,, + Yo m —Yo,m a0d By ¥y s+ Ys s — Yo s are zero for
this case and the values of y, and y, can be obtained by the equations y =y, — v,

[eq. (15") and (18)], yo=PB2y1+¥. [eq. (11') and (17)].

B. Skew-Symmetrical Load

1. Induction of the fundamental differential equation refering to fig. 21.
The following differential equations are obtained for the outside and inside
girders by quite the same procedure.

zm+ZS=y,Q17
Cl42 m d4 ,m—‘z’m
Ellhﬁ:qlﬁ (2]_) EIZ (yodx‘l 2 )=q2:3q1, (22)
d?z d? —z
ko G 4, dxlzsz“.‘ha (23) KOGAz—(?“/Zi_;Ti’S“)I-Qz:_:g%a (24)
4 _ 2 ' _ ,
(3 18221,71;}';422,m yo,m) _ 0’ (25) d (332 21;;_2z2’s yO,S) — O, (26)
, /31
3+ &+
d4zm ’ ’ _ d4y0,m ’
dx* TR A2 = dxt ’ # Elz'y (27)
Bl
3+ 5
d22 dzy()s
S _ It s _ I — > [ . 2
dw FrWa =Tk KOGAW (28)
. 1 i4———z 1 d41/0m d?z _ 1 dszm_ dzzm_ideyo,m (29)
ST oW dat T dat d x? p da®  dx® u dab

dﬁzm ’ d4zm 7 dzzm ~‘d6y0,m ’ d2 yO,s /d4y0,m 7
R el il Ul e (30)
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dezm_k, d4z,n+ , A2z, d®yom (30)
d xb dat H dxr T Tdas
o a2 ,d4 ,
if d?a/:g,s+ k dgﬁim = 0 can be assumed.
7 % /;;;;; 4. A 9
» \
2 / 5. A, \\ % =4,
777774, \
2 rrrrr S
é
/ N
L [/, A; { N ¢,
[777774,
Fig. 21.

Solution of eq. (30) finally gives the value of z,, =2, ,, —(1/3) 2, ,,.
2. Solution of the fundamental differential equation and deduction of

deflections 2z, and z,.
As for the solution of the fundamental equation when the load is applied
skew-symmetrically to the inside girder, the essential parts will be described

omitting the details.
a) When the girder is simply supported at the one end and is fixed at the

other end. The deflection can be written as follows, refering to 1. a):

I\, . nme . nmx 1
Yo,m 2512 (7;7_) SlnT51nT+gA1x3+A3xa

2
Yos = b2Z (n%;) singﬁsinn;w~)\l2fllx,

1
2= —?[01(1)1 (77’8?%)+02(P2 (77:Sax)+03(77:8530)+C4(T}a5ax)]

(31)

blZ - IC’%%+ZM, (%,)3 - ) 7&7ch n7Z7lTx
(7 4+ () e ()

The integral constants of the above solution z can be obtained from eq. (16)
by changing the variables such as « — 7, 8 =8, k — k', p — p’, and those of
equation ¥, ,, and y, ; are the same as eq. (12).

b) When the load is applied to the side span of the three span continuous
girder with equal span and flexural rigidity.

From the same reason as described before, if the integral constants of

eq. (31) are multiplied by factor 1—85, they will be useful to the side span of the

continuous girder.
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For this case, 38,2 ,, +25  —Yo.m =0, 385" 21 ¢+ 25 s — Yo s = 0 can be obtained
from eq. (25) and (26).

Therefore, 3 B8," 2, +25 — Y. — ¥o,s =0 can be obtained under the asumption
Bs" =Bz—;&. On the other hand, 2=z, —%1 is given by eq. (31).
Thus, we finally obtain the values of z, and z,.
c) When the girder is fixed at both ends. The deflection can be written as

follows, refering to 1.c):

I\t . nme . nmrx 1 1
Yoom = blZ (E;r—) sm~l—smT+6A1x3+§A2x2+A3x+A4,

2
Yo,s = 522 (n—lw) sin ™ sin TS A2 Ay @ — Al A,

l l (32)

1
2= (0191 (1,3, 2) + Caga (7,8,2)+ Caga (1.3, 2) + Caga (0, 8,)]

, 1 S 1\3
+$ ke wm TH (E) G PTC G T

W e (D (LT

The integral constants in expressions for y, ,, and y, ; are the same as those
of eq. (17) and those of eq. z can be obtained by doing the same exchange of
variables contained in eq. (18); that is, « -7, 8 —> 8, k = k', p — p'.

d) Article 4. When the load is applied to the center span of the three span
continuous girder.

The equation of the deflection is useful if the integral constants described

in 2.c¢) are multiplied by the factor % The values 2z, and z, can be obtained
21

from equations 3 By" 21 4+20 =Ygy +Yo,s5 22— 3 =% a8 described in 2.b).

Chapter 2. Case Where the Load is Applied to the Outside Girder
1. Symmetrical Load
Refering to fig. 22, we can obtain the following four differential equations:

’ B 1
ElzLyo’énFM:Blpza (33) EI a yz,mzpz’ (34)

2 dat

d2 s S 7 ’ d2 > .
KOGAzi‘z’lszl’) =—Bypr=—PBps (35) KOGAz—C%Zs = —P2> (36)
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The same procedure as described in the above two articles finally gives
the following differential equations:

2 2
d ys d yO,S (38)

dty,, d* yo,
. o, @1 o —ky—kyn =

dx4 +/~Lym+;u'ys_ dx4 H

dsym d4ym d2ym _ deO,m
Tat g TR T e (39)

/p
1 5. A4, 5

o LI
2 ST . A, 2
2
J I 4.4, y
2
P
4 Z, 1. A, 2
L1777, !
Fig. 22.

Solving the above equations, the deflection y,,, y=y,, +y, can be deter-
mined in the same way as in the previous articles. On the other hand, from

B2y2,m+y1,m_y(),m:0 and B,y2,s+y1,s—y0,s:0 we obtain By, +y; =

=Yo,m +Yy 0,s°
From this equation and y =y, — y, induced above, we can obtain the values

of y; and vy,.

2. Skew-Symmetrical Load (fig. 23)

The four differential equations corresponding to eq. (21)~/(24) are as follows:

d* (Yo,m — 2 d4 2o m
EIZ yodmx4 = m ﬁ1Q1 31392 (40) EI2 d;‘i = Q2> (41)
d2 (yo,s — 2, , ' d2z
KOGAz—y:i;z—ls—) e T __/913_92, (42) KOGAzﬁ = —qy. (43)
P
/ / /., A, P
9, 717777 N DR
2 42/77727 2,4, g, = \\
3‘77 A
J L. A, s g
9. 7777/ S °
4 e 5, A, g, — \\

Fig. 23.
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The equations corresponding to eq. (27)~(30) are

da ‘ d4y03m d? dzﬁ/%
2 ’ ’ % 4 4
%1_”_}_# Bt z.s_W7 (44) dxzs—kz’s-_kzm= dx? °’ (45)
| s L
&5z, o, dbz, dz 3
. k/ m ! m . 46
d x® dat TF G d b (46)

Solving the above equations, we finally obtain z,, and the procedure there-
after is the same as above.

The deflections ¥,, ¥,, 2; and 2z, can be obtained by the same procedure as
described in chapter 1 and will be omitted.

Bending Moment

From the deflections described above, we can determine the bending
moment of each girder. The formula will be omitted.

Summary

An experimental study of the model of a continuous beam bridge with
steel deck was made in order to clarify the problem involved in the design
of a bridge such as the Kurpfalz Bridge. The stresses and deflections measured
were compared with the theoretical values calculated by various methods.
The authors proposed a new method which takes into account the effects of
shearing force. The measured values of the deflections and stresses in main
girders can be explained by any of the solutions that have been proposed, but
there remain many points to be cleared up concerning stresses in the steel deck.

Résumé

Ces recherches ont été effectuées a titre de contribution & 1’établissement
d’un projet de pont analogue au Pont de Kurpfalz.

Les contraintes et déformations mesurées ont été comparées avec les valeurs
théoriques, obtenues par application de différentes méthodes de calcul. Les
auteurs proposent une nouvelle méthode qui tient compte des contraintes de
cisaillement.

Les valeurs mesurées des déformations et des contraintes dans les poutres
principales peuvent étre expliquées par toutes les solutions proposées; il reste
toutefois de nombreux points non élucidés concernant les contraintes dans le
tablier métallique.
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Zusammenfassung

Diese Untersuchung am Modell einer Durchlauftriagerbriicke mit Stahl-
fahrbahn wurde durchgefiihrt um einen Beitrag zur Projektierung einer Briicke
analog der Kurpfalz-Briicke zu leisten.

Die gemessenen Spannungen und Deformationen wurden mit den theo-
retischen Werten verglichen, die aus verschiedenen Rechnungsmethoden her-
vorgegangen sind. Die Autoren schlagen eine neue Methode vor, die die Schub-
spannungen beriicksichtigt.

Die gemessenen Werte der Durchbiegungen und Spannungen in den Haupt-
tragern konnen durch alle vorgeschlagenen Losungen erkldrt werden, aber es
bleiben viele ungeklidrte Punkte iiber die Spannungen in der Stahlfahrbahn
zu l16sen.
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