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Stability of Rib-Reinforced Cylindrical Shells Under Lateral Pressure
Stabilité sous charge latérale des voiles cylindriques avec nervures de renforcement

Stabilitit von zylindrischen Schalen mit Verstirkungsrippen
unter seitlicher Belastung

JoHANNES MoOE, Lic. techn., Trondheim, Norway. At present: Visiting Engineer,
Portland Cement Association, Chicago, Ill., U.S. A.

1. Introduction

It is the purpose of the present paper to investigate the stiffening effect
of ribs on cylindrical shells under purely lateral pressure.

During the last decades several authors have devoted a great amount of
theoretical and experimental work to the problem of the buckling of cylin-
drical shells.

When considering the special case of shells subject to lateral pressure, some
of the earliest theoretical investigations are due to LORENZ [1], SOUTHWELL
[2,3] and v. MisEs [4].

Valuable contributions were also made by SANDEN, TorLKE [5] and by
FrtaGE [6].

WINDENBURG and TRILLING [7] compared various instability formulas and
results obtained at the U.S. Experimental Model Basin.

Further theoretical and experimental investigations were accomplished by
R. G. SturMm [8].

Most of the earlier investigators arrived at a set of three homogeneous
partial differential equations relating the three displacement components of
the median surface of the shell, which expressed the buckling condition.

In 1934, however, DONNELL [9] succeeded in establishing one differential
equation of the eighth order which expressed entirely the buckling condition.
The derivation was based upon certain approximations which in most cases
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are of very little importance. Certain limitations of the equation will be dis-
cussed in Section 12.

On the basis of Donnell’s equation BATDORF [10] demonstrated that the
small deflection buckling theory may be considerably simplified.

The experimental works reported in the papers mentioned above are carried
out on metallic cylinders. The only experiments known to the author, which
have been performed on reinforced concrete shells failing by instability, are
due to LuNDGREN [11] who tested five short shell roof models under lateral
pressure.

Most of the papers mentioned deal with buckling problems of isotropic
shells. In a recent report STEIN, SANDERS and CRATE [12] have demonstrated
that Donnell’s equation in a modified form may be applied to shells stiffened
by ribs and loaded with pure shear.

The present paper investigates in a similar manner the buckling of stiffened
cylindrical shells subject to lateral pressure.

2. Symbols

length of shell.

width of curved panel.
radius of shell.
thickness of shell.
number of stiffeners.

&,Qﬂﬁo‘b

. . L
stiffener spacing (q_*_—l)
width of stiffener

height of stiffener.
area of stiffener c (b —t).

L2
shell parameter (Tt Vl—p.2) .

Ei
1)
J flexural rigidity of stiffener.

Young’s modulus of elasticity.
Poisson’s ratio.
ratio of rib stiffness to shell stiffness (%) .
c ,(h — t))
td )
distance between nodes measured circumferentially.

flexural rigidity of shell (

NEF &N DU N RBRTS

ratio of rib area to shell area (

wave length ratio (-ii) .

axial coordinate.
circumferential coordinate.
axial displacement of the median surface during buckling.

ER &8 ™ » R
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v circumferential displacement of the median surface during
buckling.
w radial displacement of the median surface during buckling,

positive inward.

@ s By s O » D,y coeflicients.

€, elastic strain in the circumferential direction.

Ky change in curvature in the circumferential direction.
P lateral pressure, positive inward.

o, applied circumferential stress, positive in tension.
Oy applied axial stress, positive in tension.

T applied shear stress.

Oy O T corresponding additional stresses due to buckling.
N, applied circumferential force, positive in tension.
N, applied axial force, positive in tension.

N, applied shear force.

N,,N,, Ny, additional forces due to buckling.

M, M, M, additional moments due to buckling.

Q. Q, additional transverse shear forces due to buckling.

k, stress parameter (— ————o]y)twgz) .

k, stress parameter (— gg;?) .

F Airy’s stress function for the additional median surface
stresses produced during buckling.

, @F , &#F , &F
T a2 T 2 T T Toxaoy)

U, strain energy in ribs due to extensional stresses produced
during buckling.

U, strain energy in ribs due to bending stresses produced during
buckling. o7

7 relative importance of the extensional forces (7:) .

F @), 9m () deflection functions.

Q) differential operator.

N o2 | @

Vv Laplace operator (”8? + W) .

pe=p2.p2 pe=peps.

e inverse operator defined by the equation = (F*f)=f.

d(x—1d) delta function defined by the equation.

[f@)s@—idyda =fGd),

q i .

2 . mmt . pwi

Oymp = — ) SIN sin .
amp q+1iZ1 g+1" q+1
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3. Assumptions

The derivations below are based upon the following assumptions:
1. The ribs are placed symmetrically with respect to the median surface of
the shell, as shown in fig. 1.

2. The torsional stiffness of the ribs may be neglected, and the ribs are acting
along lines in the median surface of the shell.

3. Ribs as well as shell are in a state of uniform compression before buckling.
4. The shell is made of a perfectly elastic material.

5. Plane sections perpendicular to the median surface of the shell remain
plane and normal to the deformed median surface.

6. Thickness of shell is constant during buckling.
7. Shell thickness is small compared to radius of curvature and length of shell.

8. Deflections are small compared to radius of curvature and length of shell.

il
7] Th
PPz /////////II//III/I/
77

' |
" d -
Fig. 1. Section Through the Shell.

Regarding the first assumption, it is common practice to provide the shell
with ribs on one side only. In such cases it is probably correct to include the
effective width of the shell when calculating the rigidity of the ribs.

The torsional rigidity of the ribs is of little importance if the shell buckles
into one half wave in the longitudinal direction. If, however, the panels between
the ribs buckle separately, the second assumption involves some inaccuracy
on the safe side.

Assumptions 5 to 8 are well known as the basis of the “small deflection’
buckling theory.

4. Basic Equations

In this section the Donnell-equation, which is the basis of the further
derivations, is established.

The reader should note that for the present problem we are interested only
in the deflections u, v and w that develop during buckling. Deflections are
therefore measured from the position of the deformed surface just before
buckling starts.

Correspondingly, we are interested in the additional forces and moments
produced in the shell during buckling. Those quantities are denoted, N, N_,
Q,, M, etc.
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Do~nNELL [9] introduced the following simplified relations between forces,
moments and deflections of the median surface of the shell:

N/ = Bt %_}_ @_E
e =12 lex Moy T )|

N’ __ljj_t_ @_E_*. %
v =12 \oy 7 Fox)
, , Kt du  0v
Vo= N sty * s L1
M,_—Dn—z—@—]— 2w (‘)
x = o x? ”ayz ’
, cw  Fw
My__D('uaxz—F@yz;)’
, , 2w
My =My, = =D (i —p)g o

Eqgs. (4.1) are the same as those of the general bending theory established
by Donnell.

The same equations are used by JENKINS [13]. HoLaND [14] and MoE [16]
have shown that for most practical cases the Donnell-theory is of sufficient
accuracy.

Before buckling starts, the shell is assumed to be in a membrane state of
stresses, expressed by the equations:

ox ay oy ox

1
0, ;Ny—i—p:: 0. (4.2)

Eqgs. (4.2) express a stress condition which exists in a long cylindrical tube
loaded with constant axial load and twist at the ends, and constant lateral
pressure.

When the membrane forces reach the critical value, buckling starts. Due
to the buckling, secondary forces and moments arise, and the equations of
equilibrium take the following form:

(N +NL) | 6 (NyatNi) _

ox oy 0.
O(Ny+DNy) 8 (Nay+Nay) 5
oy ox '
oQ, 0@, 1 , cdw ,, Pw 2w
Epe + oy —(Ny—i—Ny)-i-QJ-l-Nyﬁ-f-Ax—a—x—Z*-l- Nzyém_o’ (4.3)
M, oMy .,
ox oy —@:=0
oM, oMz, ,
oy T em W=0

where N, N, etc. denotes the secondary forces.
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Only the third of eqs. (4.3) differs appreciably from the corresponding
equation in the bending theory. This equation expresses the equilibrium of
forces in the radial direction.

The last two terms take into account the radial components of N, N,

and N,, due to the distortion of the shell element. The term N y%: corres-

pondingly takes into account the increased radial component of N, due to the

change of angle (2271:) between the faces of the shell element.

The secondary forces N, N, are of an order of magnitude smaller than
N,, N, and N,,. This is the reason why the secondary effects of N,, N,, and
N,, must be taken into account when establishing the equations of equilibrium.

There are several other secondary terms which enter into the equations of
equilibrium (see for inst. [15]), but those terms are of minor importance and
are not considered here.

Combining eqgs. (4.2) and (4.3) one obtains:

ON, BN?’M=O’ 8N{,+8N;y=0’
ox oy ay ox (4.4)
Q. 0Q, 1 02w 02w 2w .
x - ’ %19 v i = 0.
ox + oy +T(N”+N”)+Nz3x2 ny3x8y+Ny9y2+p 0

It is convenient at this point to introduce Airy’s stress function F, defined
by the following equations:
2F 1., 2F 1. 2 F 1.
a7~ Y @ m N Gmay T T iNer (4.5)
The first two of eqs. (4.4) are then identically satisfied. From the last two
of egs. (4.3) one further obtains
oM, oMy,

: U=+ aa (4.6)

oM, oMy

Q. = ox oy

Substituting expressions (4.1) for M, M, and M, into eqs. (4.6) yields

Q,=—D

Yy

, >Bw Bw
¢ = “D(6x3 + 89683/2)’

These values for @ and @, are substituted in the last of egs. (4.4), yielding
the following expression

(63 w B w

P +8x28y)' (4.7)

U”&yz o T R (4.8)

Pw P>w Pw oy 13F
49 _ R 4 —p =
DVtw t(0x3x2+278.703y+ ) p=0.
Eq. (4.8) contains two unknown quantities F and w. To solve the problem,
another equation relating these unknowns must be found.
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This is obtained by the elimination of v and » between the first three of
eqgs. (4.1). Thus:

, . (PF AF\ ou

) , L (®F &#F\ (v w
PNy, #F _ Bt Pu P
oxdy ox2oy: 2(14pu) \dxoy: ox20y)’

Solving for —g—g from the first equation and for % from the second and

differentiating twice with respect to y and x respectively, one may eliminate
% and v by substitution in the third of the equations. Thus, the following
expression for F is obtained
B 2w
ap . Y
PAF == (4.10)
Eqgs. (4.8) and (4.10) yield one simple differential equation of the eighth
order:

Bt otw 2w 2w 2w o
8 i _ 4 hiliad it
DVdw+ T A tv [0w8x2+278xay+ +

Dty —
- %y T] Pip = 0. (4.11)

Eq. (4.11) is the complete Donnell-equation. As proposed by BATDORF [10],
the equation will be used in the following modified form:

Et_  o*w [ **w Pw Pw oy
4 Zy

4 - — —p=0. (4.12
¥ wt v oxt 0x8x2+278x8y+0y8y2+ r] p=0. (%12)

In the discussion of the boundary conditions it will be necessary to know
u and v in terms of w. It is convenient, therefore, to deduce these relationships

here.
From the first of eqs. (4.9) it is found that

Elviu="pir -y’ i 4.13)
ox “_ayz Hoa? ’ (4.

which together with eq. (4.10) yields

0 4 1] ¢*w *tw
Frid “—;["axraxzayz]- (%.14)
Similarly, from the second of eqs. (4.9):
0 02 02 E
T4y — 74 4 4
anVv 8x2VF pasz F+Tl7w, (4.15)
which, together with eq. (4.10) yields
0 1 ot w otw
L — — twl. 4.1
c’)yV v 7‘[‘“690283/2 8x4+V w] (4.16)
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By integrating eqs. (4.14) and (4.16) with respect to « and y respectively,
the following relationships are found:

1| Bw Pw
4g — = -7
Vi rl:’uaxi‘ 3x&y2]’
iy =1 2+ )ﬂ_}_ﬁw i
= |l Woxray ™ 643 |

5. Derivation of the Differential Equation for a Shell
Reinforced by Ring Ribs

In the case of a shell stiffened by ring ribs the expression (4.1) for M,
must have a correction to account for the effect of the ribs.

For a curved bar with circular axis the following relation exists between
moment and radial displacement [15]:

d*w  w M

W—I—F— —'E—j:. (O.l)

The second term on the left side of eq. (5.1) may be neglected in the present
derivation. A corresponding term has been omitted in the fifth one of eqs. (4.1).
The effect of this simplification is discussed in Section 12.

Hence one may take into consideration the stiffening effect of the ribs by
the following expression:

M/ BT Ssx—id) ¥ 5.2
Myrip = 1_;1 (®—1 )5y§> (5.2)

q
where Z 3 (x —id) is a delta-function which is zero between the ribs, and equals
i=1

one along the lines of action of the ribs, and ¢ is the number of ribs.
Combining now eq. (5.2) and expression (4.1) for M, one obtains

, 2w Pw a . 02w
EJ
where ’y:m,

d = distance between ribs.

vK. (5.3) introduced into the last of eqs. (4.6) yields:

, o w P w q . OPw
Qy———D[(ay3 +8x28y)+ydi%18(x_2d)ﬁ]' (5.4)

The circumferential force N, just before buckling starts has the following
value:

N, =o,t[1+ad Y8 @—id)]. (5.5)
i=1
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Introducing now the modified expression (5.4) and N, from eq. (5.5) into
the last of eqgs. (4.4), the following differential equation is obtained

a Aw 2w 2w w
4 NT 2 - _
4 w-i—ydi:zlS(x zd) 7D [0x8x2+278x8y+%6y2
a Pw oy a 2 F P (5.6)
tado, $3(@—id)jg+ [l +ad 13 —zd)]+;%2—] -2 0.
In the case of constant radial pressure one must have
q
pr=—to,[l+ad X3 (x—1d)], (5.7)
i=1
if edge effects are neglected.
Thus eq. (5.6) can be simplified as follows:
1 2 0t
P 2 sl 'deS @—id)
12 oyt
(5.8)

20 12 2
_%[ xz 5 to, [l-l—ochS —@d)]ay +27'aax?aﬂy] =0,
after elimination of F by means of eq. (4.10).

Note that the term taking into account additional axial forces in the ribs
due to buckling is neglected. The inclusion of these additional forces would
lead to a more complicated differential equation. The importance of this
simplification is discussed in Section 10.

In the further discussions it is assumed that =0. Buckling due to pure
shear is discussed by STEIN, SANDERS and CraTE [12].

6. Solution of the Differential Equation

It is now assumed that the shape of the buckled surface of the shell can be
expressed by a series of the following form

e e] <}

Z smmwx Z Ay Iy (X (6.1)

w = sin

where b is the circumferential width of the panel under consideration, and =
is the number of half waves in the circumferential direction. If the expression
(6.1) for w is introduced into eq. (5.8) one cannot find the solution in the general
way by considering one term of the deflection function separately. This is due
to the delta-functions appearing in the equation.

Eq. (5.8) will be solved applying the GALERKIN method. In this method it
is assumed that certain weighted averages of the left hand side of eq. (5.8)
vanish, instead of the equation itself.

The deflection function (6.1) also acts as a weighing function.
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The coefficients a,, should therefore be determined from the following set
of simultaneous equations.

iBmpam=O, p=12... (6.2)
m=1
b L
where goff ) QLf (Y), g (x)]d 2 d y
o , (6.3)
=ffsm 7Y (x)]dxdy.
00
@ (w) denotes the following differential operator (see eq. (5.8)).
12 7?2 8 . 84

t 02 . 02
—ﬁ xa 2-|-0' [1+de28 —@d)]é‘? w

If the integrations (6.3) are carried out, one obtains the following set of
homogeneous equations from which a,, should be determined:

1222 p* =
[(pZ +B2)2 + ot (pz +Bz)2 _pZ kac _B2 ky:l ap + ('J/Bll - aB2kym§ maqmp (64)
L L
where B = X =" (6.5)
o, t L? 2 %
ko= =P iy (6.6)
q . .
. . mmy . pm
Symp = P 1;=1smq"' 1 qu+ T (6.7)
3, mp takes the following values:
Symp = +1 if p—m is a multiple of 2 (g + 1),
Symp = —1 if p+m is a multiple of 2 (g + 1),
Symp = O if neither or both are true.
The following notations are introduced:
12 Z2 A
Mp = (p2+B2)2+ wt (pzfﬁz)z—pzkx—/gzkyi
R =ypt—afk,. (6.8)
Eq. (6.4) then takes the form:
Mya,+RY a,8ymy=0. p=12... (6.9)
m=1

A buckled shape of the shell can only exist if the determinant of the
coefficients of eq. (6.9) is zero.
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This determinant of the coefficients is infinite. The first seven rows and
seven columns in the upper left hand corner of the determinants for the two
special cases ¢ =1 and ¢=3, are shown here:

qg=1:
M,+R 0 —R 0 +R 0 —R
0 M, 0 0 0 0 0
—R 0O M;+R 0 —R 0 +R
0 0 0 M, 0 0 0 |=0. (6.10)
+R 0 —R 0 M,+R 0 —R
0 0 0 0 0 M, 0
—R 0 +R 0 —-R 0O M,+R
q=3:
M,+R 0 0 0 0 0 —R
0 My,+R 0 0 0 —R 0
0 0 M;+ R 0 - R 0 0
0 0 0o M, 0 0 0 |=0. (6.11)
0 0 —R 0 M;+R 0 0
0 —R 0 0 0 Mg+ R 0
- R 0 0 0 0 0 M,+R

The determinants are extremely simple. The determinant (6.11) for ¢=3
will now be discussed and the significance of the various terms shown.

Firstly, it is observed that in the fourth row and fourth column there is
only one term that is different from zero, which can therefore be put outside
the determinant, yielding:

M,+R 0 0 0 0 —R
0 M,+R 0 0 —R 0
0 0 M;+R —R 0 0
M, 0 0 ~R M,+R 0 o [T (612)
0 —R 0 0 M¢+ R 0
~R 0 0 0 0 M,+R

Correspondingly, all terms M, ,); can be put outside the determinant for
t=1,2,3... These terms correspond to buckling patterns with nodal lines
along the ribs, as shown in fig. 2.

Fig. 2. Buckling Between the Ribs.
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Next, the reduced determinant is considered.

As the small deflection theory which is fundamental for the present paper,
is insufficient for cylindrical shells in axial compression, the following dis-
cussion is limited to the case when o, =0.

7. Buckling under Lateral Pressure

The terms M,, M, My;... M.,y (Wherei=0,1,2...)in (6.12) constitute
a determinant which is independent of the other terms. Fig. 3 shows the defor-
mations corresponding to M, and M.

q =3

Fig. 3. Buckling Across the Ribs.

In the case of pure lateral pressure it is known that the equations con-
taining M, correspond to the lowest eigenvalue of the system. This eigenvalue
can therefore be determined from the very simple determinant

M, +R - R
M4! U M.+ R l:o (7.1)
or in general form
M,+R —R
Mq+1 - R M2q+1+R 1_ 0: (7'2)
which reduces to the equation
Ml
g ot (125 )] =0 35

Also the determinants (7.1) and (7.2) are really infinite, but numerical
calculations show that it is quite accurate enough to consider only the first
two terms.

In fact, when ¢> 1, also the correcting term MM ! is of very little import-

» . . 2¢+1

ance, and one arrives at the following equation: “
M, ,[M;+R]=0 (when ¢>1). (7.4)

The solution
which by introduction of expressions (6.8) reduces to

(L+B2)2 1222 1 ,
g mt BE(L+B%)° P

(1 +oc)ky == (7.5)

-
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determines the buckling load as long as this is below the value which cor-
responds to M, =0. The latter solution expresses the condition under which
the shell between two consecutive ribs buckles independently of the rest of
the structure.

The buckling criteria presented above contain a parameter 8 which expresses
the wave length ratio. When numerical calculations are carried out, the buckling
load must be minimized with respect to 8. This is done by trial and error.

In fig. 4 curves are given which show the relation between the stress
parameter (1+a«)k, and the stiffness ratio y for various values of the curva-
ture parameter Z. The curve marked Z =0 applies to the flat plate. The dashed
curves will be discussed later on. They apply only when ¢=1,

1000 /,
’
500 L / “
400 A p
300 r_{ /
A= }47 A
o
v /!fi?—"}q=f P
—~"lg=2
100 - i } ,/
_z_'?ia—O-J—/ /ZZT} g=1 /
o / _::‘} q=2 —
- -1 —
N:'-IN “°L‘L{9—0—0’ et / | /Z_:JZ
Sk =g
Sl0
X 20 g:_a.zo} , P
— L 2L _a-010 > §- ~_"
:. // 4 ’—/——maoo . /4:/J
- Z 100 _| =" //
z a A
=] 0 =
* /4 /
z 0 | //k
i e
Tz o
3
2———
q:rz\umber of ribs
a=Ahg
f | | Lgf
) 02 03 0405 10 20 30 4050 10 20 30 40 50 100
y-EL
Dd

Fig. 4. Influence of Rib Stiffness on the Buckling Stresses of Plates and Shells.

When minimizing the buckling load, B has been assumed to vary con-
tinuously. This will give buckling loads which are a little too low when the
buckling pattern, which corresponds to the found value of 8, does not agree
with boundary conditions and dimensions of the shell. However, the discre-
pancies are in most cases of very little importance and on the safe side. The
buckling load varies very little with variations in 8 in the neighbourhood of
the value at which buckling starts. In fig. 5 the variations of 8 with y will be
found for various values of Z.
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The terms in the buckling determinant (6.12) which have not been con-
sidered, correspond to higher eigenvalues and will not be discussed further in
the present paper. If the shell is also loaded axially, those higher buckling
modes may under certain circumstances become important and should not be
neglected.

To facilitate the interpolation for various values of Z, a new set of buckling
curves is presented in fig. 5. In that figure the straight lines corresponding
to the equations M, =0 have been omitted.

The panel between two consecutive ribs should therefore be treated as an
isotropic shell, and the safety against local buckling of the panel is found by
using the curves in fig. 6, which are drawn from eq. (7.5) after putting oy =0.
In this case one must of course introduce the distance between two consecutive

ribs (fo_l) as the length of the shell.

Fig. 7 shows the values of y at which the safety against buckling for the
complete structure equals the safety against individual buckling of the panels.

As previously mentioned, the third term in the series (6.1) for w is of some
importance in the case of one single rib (¢=1). The buckling pattern in this
case will be studied a little more to determine the importance of a;.

When g =1 the determinant (7.2) corresponds to the following homogeneous
set of equations:

(M;+ R)a,— Raz = 0,

(7.6)
— Ra,+(M;+ R)a, = 0.

1000[ 1 ) 7100
[ LA
500—-— = et A l g /,l 1 =0
400 = S A “—7 .
S N B e s = = B 1 A A A A,
P fr— A Pl /
| < | DA / P/_
200 —e ik s 5 - /\ asSivd 4/; = o) 20
- T2 PalipZ s T
— e ] |4~ \7/.\\\// // D~
o | e R T | P
é: Z.’, P———— o | et d ;{f/ “\\}4 /1 ;>4~ "54/ // ﬁ 10 T
100 = dtinm E I T 7 = T
S8 e 1 1 | LT ) A T DR T e g
T e T T y
Ny el T D] ~720]
3 poy ~
S 4ol zi00 - i = N1 el D N 1~ Izzlsi— 4
+ /’/ h-JP‘ = =<y ~ at
= 30f 250 =] = - allime_ 3
— 2500 ~ = -
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Fig. 5. Buckling Parameters for Ring-stiffened Shells under Lateral Pressure.
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Adding the two equations one obtains
M,a,+Mia; =0,

from which
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Numerical calculations show that the value of a; is zero for y=0 and
increases to 0,05a,—0,20a,, depending on the shell parameters, when y
reaches the value at which one panel buckles separately. The influence of the
rigidity of the ribs on the buckling pattern is shown in fig. 8. In fig. 8a there
is no rib (y=0) and the shell buckles longitudinally into one half sine wave.

Fig. 8. Effect of Variations in the Rib Stiffness on the Buckling Pattern (¢=1).

When y> 0 the buckling pattern will deviate from the sinecurve, as
demonstrated in fig. 8b. The deviation, taking its maximum value just when v
reaches the value at which the two panels buckle separately (fig. 8c), will
usually be 10—209, of a,.

The dashed lines in fig. 5 applies when ¢=1. In this case the buckling load
is slightly reduced on account of the modifications of the buckling pattern
just discussed.

It is quite natural that such modifications will not influence the buckling
load when ¢> 1. Considering once again fig. 3, it is clear that the buckling
pattern corresponding to the value p =7 represents a very high buckling load.
The cylinder will surely buckle in a half-sine wave without noticeable modi-

fication due to the influence of the term M]:II - in eq. (7.3).
g+

8. Buckling of the Flat Plate Reinforced by Ribs

If Z equals zero, one obtains the buckling condition for a flat plate rein-
forced by longitudinal ribs as shown in fig. 9.
The general buckling conditions in this case take the following form:

(1+a)k, = (1+322+754, (8.1)
f = HGH 1P+ B | (8.2)

v 32
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Eq. (8.1) corresponds to the condition M, + R=0. Eq. (8.2) corresponds to
M,.,=0, and the buckling load is the minimum value found from the two
equations. In fig. 4 the variation of k, with y is shown.

Eq. (8.1) is exactly the same equation as the one given by TIMOSHENKO
[15] when due regard is taken to the different notations used. It is only
necessary to introduce

BT=%’ 2yp =y, 20p=a and by =L, (8.3)

where the index 7' denotes symbols used by Timoshenko for ¢ =1.
Correspondingly, one may also find from eq. (6.4) the buckling load for a
flat plate loaded in the direction perpendicular to the stiffening ribs as shown
in fig. 10.
In this case
kx — (p2+32)2p_*2_'y3484p17, (84)

where again only one term of the deflection function (6.1) has been considered.
In the case of one rib (¢ =1), a better approximation is obtained by taking
into account the combined influence of @, and a; as discussed in Section 7.
If p is chosen equal to the number of panels (¢+ 1), then §,,,, is zero and
one obtains

_ lg+ 1R+
P =T (8.5)
y
-
e =
e o R |
- 0 : “oy
X
Fig. 9.
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b ]
I X

Fig. 10.
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If p is not a multiple of (¢+1), 3,,,=1 and

> Ta4pp

. _PBY 4y B
x pz

(8.6)

The minimum value of k, as found from eqgs. (8.5) and (8.6) yields the
buckling load. ‘

Eq. (8.6) is in every respect in accordance with eq. (288) in [15].

This is easily seen when remembering that in this case:

EJ EJ L
')’T=b*D“=fﬁ—b—=V(9+1)B~ (8.7)

9. Boundary Conditions

The assumed expression (6.1) for the deflected surface corresponds to zero
deflection and zero moments along the edges.
Introducing w from eq. (6.1) into expressions (4.17) and integrating, yields

o

u = sin n;ry Z C, cosmzx, v = cos ~ Z sm ,  (9.1)
m=1

where C,, and D,, are functions of a,,, m and the shell dimensions only.
From eqs. (9.1) it is seen that at the curved edges where x=0 or z=L

ou

%=0, v=20, u =+ 0. (9.2)

In the case of a curved panel one correspondingly finds that at the straight
edges where y=0 or y=>0
v
oy
Hence, the deflection form (6.1) is based upon the following assumptions
concerning boundary conditions:

=0, w=0, wv=0. (9.3)

1. The edges are simply supported.
2. No displacements of the shell parallel to the edges.

3. The shell is free to move perpendicular to the edge in the plane of the
median surface of the shell.

In the case of a single cylindrical shell roof the edge conditions along the
curved edges are generally in good agreement with the conditions of eqs. (9.2).

If the edge beams along the straight edges have little stiffness horizontally,
eqgs. (9.3) are in most cases fairly well satisfied.

Eqgs. (9.2) and (9.3) are, however, not satisfied in the internal valleys
between parallel shells, nor at the internal supports of a continuous shell.
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BATDORF [10] states that the presence of normal stresses at the curved
edges will probably not affect the buckling load appreciably. Stresses normal
to the straight edges are, however, believed to be of some importance.

10. Investigation of the Errors Made when Disregarding
Extensional Rigidity of the Ribs

As stated before, the extensional rigidity of the ribs was neglected when
establishing eq. (5.8).

An idea of the errors involved by that assumption is obtained by com-
paring the elastic strain energy which is stored in the ribs due to extensional
forces, to the energy absorbed by the ribs due to bending stresses. Only the
latter part is taken into consideration in eq. (5.8).

The strain energy due to the extensional forces is:

b

L L b ,
’ - A : ’ Y
U,= lffayeUS(x——@d)dxdy=2—E;ff(oy)28(x—?fd)dxd?/: (10.1)
00 00

a

T

where o, is the additional stress produced during buckling, given by the

v
expression:
, O*F
O'y = 'é—x—z. (10.2)
From eq. (4.10)
E 3w K {(n\? . mx . Brmy
ap 29 _ 2T hliad
Ve r T . (L) @, 8in——sin ==, (10.3)
if the first term only of eq. (6.1) is considered.
By integration one obtains
£ (%)2 LT . By
30 SN —7-sin —7=. (10.4)

ECEE)

As o, must be periodical, the constants of integration of equation (10.4)

v
equals zero.
Hence
, O*F 1 Ea, . mx . Bny
= — 10.5
Oy = s +F r smLsm 7 (10.5)

which by introduction in eq. (10.1) yields:
aq

Ueo=7 +1/5’2)“‘ Efb(%fz (sin ”I”;d)z. (10.6)

t=1
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The strain energy due to bending is
L

q q
12: , . E'J}:
0

b
02 w\? .
L f(@gﬁ) d(x—1d)dxdy. (10.7)
0

2
Introducing now g_y%; from eq. (6.1)

Lb
EJ (Bm\4
U, = —5— (%;—) alzl ff (sm-—s1n
1o
which by integration yields:

EJBmtb N ( wid)2
U,=—"=—a? sin . (10.9)
b 414 1 ; L

) d(x—rd)dxdy, (10.8)

As a measure of the relative importance of the terms neglected, take the
ratio

U, AL 1

=T, T TR AR (10.10)
which in the case of symmetrical cross section (fig. 1) equals
12 Zz2 t\2 1
1 :”4(1“H2) (E) B(1+B2)%" (10.11)

From this equation it is possible to calculate in each particular case the
part of the stiffening effect of the ribs which has been neglected.

For reinforced concrete shell roofs Z varies between 10 and 10%, and
stiffening ribs are probably only used for values of Z above 100. In such cases
n will always be less than 0,05 if 5 <0,10 and y < 100. Poisson’s ratio is assumed
to be 0,2.

11. The Effect of Longitudinal Ribs

If the shell also is provided with axial ribs, the previous equations will be

slightly altered.
Defining y,, d, and g, as being analogous to the corresponding terms
without subscripts, but now referring to the ribs in the axial direction, the

fourth of eqs. (4.1) must be replaced by the following:

8 w . 2w

8952

and correspondingly

@, =-D

3w 3w 2z ™
[3.%‘3 +axay2+7wdxi=215(y—ldx)-a—-x—§], (11.2)
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Eq. (11.2) is now, together with eqs. (5.4) and (5.5), introduced into the
last of eqs. (4.4) thus yielding:
1272 ,o*w " *tw
Viw+ 74 2 Ep deS ——zd)a 4+'ygad ZS zdx)—é}r

¢ 2w 2w 2w
——-3[ xa 2+0y[1+ddz§8 ——ld)] y 27373"?;] =

(11.3)

Eq. (11.3) corresponds to the previously derived eq. (5.8).

In the case of pure lateral load the effect of longitudinal ribs is compara-
tively small. For simplicity eq. (6.1) for the deflection function is applied,
though it is possible that a series expansion in the y-direction would give a
better approximation to the buckling pattern. The stiffening effect of the
longitudinal ribs will therefore probably be slightly overestimated in the
present derivations.

Solving eq. (11.3) by the Galerkin method, the following set of homo-
geneous equations expressing the buckling condition is found:

12 Z2 4
PP+ B+ 5 oy g+ P~ PR — By | 4,
7 (p*+p?)
. (11.4)
+('}/B4—'a62k Z=1 m 9% mp = 0,
dzx T B
where Sgonn = (sm = ) .
0,4, nn bakes the following Values.
Ogynn = +1 for n + (q,+1)7 1=1,2,3..
Sgonn = 0 for n = (q,+1)7.
Eq. (11.4) may also be written as follows:
(M), a,+ R Zam‘éqmp =0, (11.5)

where

_ 5 12 Zz2 pt
(Mp)x = (p?+B%)>+ ™ (PP + P

As will be seen from eq. (11.6) the influence of y, will be the one of reducing
the importance of higher buckling modes in the axial direction, since
(M), =M

The equality applies only when the buckling pattern involves nodal lines
along the axial stiffeners [n=(q,+1)7].

Thus, it is clear that one may, also in this case, calculate the buckling load
from the equation

+7xp48qxnn"p2kw_lgzky‘ (11'6)

M, [M,+R]=0. (11.7)



134 Johannes Moe

The expression in the parenthesis yields, for o, =0, the following equation

_ 1452 1222 1 Yo :

(1+a)k, = g +——3 ,82(1+ﬁ2)2+752+,828%"”' (11.8)

The effect of longitudinal ribs for various values of y and Z is shown in
table 1. It is assumed that the circumferential ribs are so closely spaced that
local buckling of the panel between two consecutive ribs is prevented. The
effect of the circumferential ribs alone is also shown in the table. It will be
seen that it is poor economy to provide the shell with axial ribs under the

Table 1. Effect of Longitudinal Ribs

Z

7’1:0 ‘}/xZO ’)/le 'yzzo 'yZ:lO ')’x=0 ’)’x:IOO

ky 11.90 18.34 18.50 57.60 60.62 271.1 322.0

100 EffeCt o/ 5 40 o/ o [¢) o/
of ribe 54.00, | 55.49, | 3849, | 4089, | 21809, | 2600,

ky 34.26 55.95 56.00 192.9 193.7 982.5 996.3

1000 EffeCt o/ o/ o) o/ o/ o/
of i 63.09 | 63.00, | 4629, | 4629, | 27609, | 28009

present loading conditions. The strengthening effect of the axial ribs is some-
what overestimated in the table, for the following two reasons:

1. The assumed buckling pattern is probably not very close to the correct
one.

2. When establishing table 1 the fact is disregarded that very often the
buckling pattern will, due to the effect of the longitudinal ribs, be slightly
altered in such a way that n=(q,+1)¢ and therefore 3, _,, = 0. This will imply
a lower effect of the axial ribs than the one which is read from the table. When
calculating a special shell construction with a given number of ribs this may
easily be taken into account.

If the shell is provided with axial ribs only, the buckling load is found
from the formula

(1+p%)2 1222 1 Y
ky = B2 + 7wt B2(1 4 B2)2 + quznw (11.9)
which in the case of a flat plate reduces to
2)2
ke, = P A7 O nn (11.10)

ﬁ2

This equation of course leads to the same results as eq. (8.4).
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12. Limitations on the Formulas

DoxNELL [9] has demonstrated that the small terms neglected when

establishing eqgs. (4.1) are of the order of magnitude (;)2 or (7%)2 as compared

to the remaining terms.

Returning now to eq. (5.1) it is remembered that the second term on the
left side of the equation was neglected.
Introducing expression (6.1) for w, one finds that

dw  w nm\? 1 n\?2 w .
a = (7)) ra) o= |(5) 1) (12.0)
since b=2mr for the complete tube. Also the simplification of eq. (5.1), there-
2

fore, implies the neglection of a term with the relative importance (ng) .
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Summary

In the present paper formulas are derived and graphs presented which
estimate the stiffening effect of ring ribs on a complete thin-walled cylinder
loaded with external lateral pressure. As a complete cylinder generally will
buckle into a great number of circumferential waves, the formulas are also
believed to apply in predicting the safety against buckling near the top of a
rib reinforced shell roof construction. Additional account must be taken of the
influence of axial stresses on the stability of the shell.

Résumé

Les relations et les courbes qui figurent dans ce mémoire sont destinées
au calcul de I'influence raidissante des anneaux de renforcement sur un cylindre
fermé a paroi mince soumis & une pression extérieure latérale.

Etant donné que généralement le voilement d’un cylindre fermé s’effectue
selon de nombreuses ondulations disposées sur ce périmeétre, les formules
doivent trouver également application & la détermination de la sécutité vis-a-
vis du voilement au voisinage de I’aréte supérieure des ouvrages en vofte
mince raidis par des nervures. En outre, il y a lieu de tenir compte de I'influence
des contraintes axiales sur la stabilité du voile.

Zusammenfassung

Die in der vorliegenden Abhandlung abgeleiteten Beziehungen und die
gegebenen Kurven dienen der Berechnung des versteifenden Einflusses von
Verstiarkungsringen auf einen geschlossenen diinnwandigen Zylinder unter
einer dulleren seitlichen Pressung.

Da ein geschlossener Zylinder allgemein in einer groBen Zahl von, dem
Kreisumfang folgenden Wellen ausbeult, sollten die Formeln auch Anwendung
finden in der Bestimmung der Sicherheit gegen Beulen in der Nédhe des Schei-
tels von rippenversteiften Schalendachkonstruktionen. Zusdtzlich mufl der
EinfluB von Axialspannungen auf die Stabilitdt der Schale beriicksichtigt
werden.
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