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On the Bending of a Sectorial Plate

Flexion des dalles en forme de secteur

Über die Biegung von Sektorplatten

Tadahiko Kawai, Fritz Engineering Laboratory, Lehigh University, Bethlehem, Penna
U.S.A.

I. Introduction

Recently attention has been paid by aeronautical engineers to the problem
of bending of sectorial plates in conjunction with an investigation of the stress
distribution in the neighborhood of the wing fuselage connection. As a matter
of fact, it has been discovered analytically as well as experimentally that for
certain values of the included angle, the bending stress in the corner reaches
extremely high values. Specifically, it was found that within the limitations
of the ordinary plate theory, the stress tends to infinity as the included angle
exceeds 90°, with the strength of the singularity increasing with the angle.

M. L. Williams, Jr. [1] has investigated these stress singularities, dis-
cussing the problem only qualitatively. S. Woinowsky-Krieger [2] derived a
general method of Solution using the Fourier Integral. However, a numerical
application requires laborious computations. Fortunately, simpler Solutions
can be obtained in two different ways for the case of a sectorial plate whose
radial edges are simply supported. As an example, Green's function for the
deflection of a sectorial plate with a clamped circumferential edge will be derived
in double (Fourier-Bessel series) and in single series form. From the latter
Solution, Green's function for bending and twisting moments of a wedge-shaped
plate are obtained in closed form.

With this Solution a general discussion of the stress singularity can be
successfully made and influence surfaces as well as moment surfaces can be
developed. The latter Solutions will have direct application in the calculation
of influence surfaces for skewed plates which in turn should be useful in the
design of skewed bridge slabs.
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II. Method of Solution

Considering a sectorial plate with radius a and included angle a under a
concentrated load P=l at (p,cp), the classical bending theory of plates of
uniform thickness requires the integration of the following differential equation:

DAAW (r,6) 0 (1)

with the exception of the loading point (p,cp). The notation is as follows:

W (r, 9) deflection of point (r, 6),
d2 1 d 1 32

/T 1

A=Jr^ + r~~dr~ + r^W2 (LaPlacian Operator),

¦^ Tön 2\ (Bending Stiffness of Plate),
IA y I — V J

h uniform plate thickness.

The corresponding boundary conditions are along the radial edges:

1 d2Wr id2w\ i dw i0 0; 17 0; Me -D [v (^) + - ™- + -2 ^
6 a; W 0; Me 0

and along the circumferential edge:

0;

(2)

dW
r a; W 0; ^-= 0.

dr

A. Single Series Solution1)

The method of Solution parallels the one by Clebsch used to solve the
problem of a circular plate under a concentrated load (see for example [4],
p. 266). Dividing the plate into two parts by a cylindrical section of radius p,
as shown in fig. 1 by the dotted line, the following product Solution can be
assumed: ^ ^

W(r,6) =^Rn{r) Bin"^- (3)
n=l a

(0^0^277, <x+it).

Evidently, eq. (3) satisfies the boundary
conditions imposed on the radial edges.
Substituting eq. (3) into eq. (1), the following
equation is obtained:

Simply Supported

f\P(P

QO

Simply Supportee
2

2
/ri7r\

Fig. 1. Coordinates of a / d2 1 d \ /
Sectorial Plate. I ~r~^ H j ö— I ^n ® •\dr2 r dr

UV
r2 J

A recent üterature review disclosed that Nowacki and Mossakowski [3] treated
the problem on the bending of a wedge-shaped plate using a similar method.
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The general Solution of this equation is:

ntr mr mr mr
Bn(r)=Anr^ + Bnr *+<7„r« +Dnr « (for p£rSa),

mr mr (4)
R'n(r)=A'nr« +C'nr« (for 0 r^p).

Hence for each term of the series four constants for the outer portion of the
plate and two for the inner portion must be determined. The six necessary
equations can be obtained from the boundary conditions at the circumferential
edge of the plate and from the continuity conditions along the section of
radius p. Denoting the deflection of the inner portion of the plate by W',
those six boundary conditions are written as follows:

r p: W =W, (a)

dW dW
dr dr '

d2W
_

d2W
dr2 ~ dr2 '

(b)

(c)

(5)

D-7-(AW)-D—-(AW') =— > sm -*-sin (d)drx ' drK }
poc Li a a ' v '

r a: W 0, (e)

f-o. (t)dr

Eq. (d) equates the difference in shear of the outer and inner portion to the
applied load P=l at (p,cp) the latter being developed into a Fourier series.

Using eq. (5) the six constants An, Bn, Cn, Dn, A'n, and C'n are determined:
2fl7T

2mr mr 2 ta\ ol

a " p* \pz a* r \9) .^ nucp
4aD \n*_ nrr

ol ol

2mr

C'

2mr mr
a
~4<

AA
2m

0S (A
olD \nir 2LÜ+1 nTTimr ^\\ a '

a a a \ a /

2n7r mr

A a~~p^" U* a* \dnnir9
(6)

B„ r—— -sin A
4n7TJD(^ + l) a
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2mr mr

c

Z>

©'a a Pa /J__ W \gin»7ry
4«Z> (^» nj<_ j / a

(6)

4w77jd(^_i)
sm mrcp

By Substitution the following single series Solution is obtained.
2mr

¦©¦
a a a \ a /

2W7T

+ r2 7 sm -sinV— —+1 U7T ln7T
1 ] \11 a «

a a a \ a /
71 TT /P\2

(0:£r^p),

(7)

+ m^ r *•* p2 1

V/ 1 ntt Inir ^\ titt Irin ^\ |

a \ a / a \ a /

7177Q9
sm sm

rnrd

(p^r a)
where 0^a^27r, a=f=7r.

B. Double Series Solution (Fourier-Bessel Series)

The second Solution in form of a Fourier-Bessel series can be derived in the
following way. In a first step the natural frequencies of the plate are
determined, leading to an orthogonal function system whose elements represent the
modes of Vibration corresponding to the specific natural frequencies. The
concentrated load can then be expanded in terms of these orthogonal functions.
Assuming that W (r, 8; p, cp) can be also expanded into such a series, the unknown
coefficients are determined by Substitution into the original differential eq. (1).

1. Set of Eigen Functions for the Given Plate (fig. 1): The differential equation
of free Vibration of a plate is:

where y the weight of the plate per unit volume,
h uniform thickness of the plate,

g gravitational acceleration,
t time.

(8)
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i^(r)sin
equation for Fn (r) is obtained:
Assuming W(r, 6; t) Fn(r)sin^—eipt and substituting it into eq. (8), an

where &4

lmr\2
l*.+i±-\ihtF =k*F\dr*+r dr r* } n n'

yhp2

(9)

The general Solution of eq. (9) is:

Fn(r) AnJ^(kr) + BnJ_nE(kr) + CnInS(kr) + DnI_nE(kr), (10)
OL OL OL OL

where J mr(kr): Bessel's Function of ±—- order,
OL

I n7T(kr): Modified Bessel's Function of ±—- order.
OL

Since the deflection at the center is finite the coefficients Bn and Dn must be

equal to zero, or
Fn(r) AnJ^(kr) + CnI^(kr). (11)

OL OL

The boundary conditions along the circumferential edge,

yield the following secular equation:

J^(ka) I'^(ka) - J'^(ka) I^(ka) 0. (12)
OL OL OL OL

This transcendental eq. (12) has infinite numbers of eigen values. Ordering
these values the following infinite set of eigen functions is constructed:

A^ (&<»> r) sin~ [JA, (&<»> r) 1'^ (U* a) - J'^ (^»> a) 1^ (*<»> r)] sin^,OL OL OL OL OL

w l,2,3..., 5=1,2,3..., (13)

where k^ is the sth root of the eq. (12).

2. Orthogonality of the Eigen Functions: The orthogonality condition takes
the form:

a ol

j f p^(^"A)sin^- /i/ x v • nulAn7r(kWr)sm3

OL

rdrdd 0 (m + n, i + j)
o o

or (14)

\Am,n(Wl)r)AniT(k^r)rdr fsin^^sin^^dö 0.
Ö -TT -IT

J
Ö « a
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The second integral takes the following values
' 0 (m 4= n),

* mud nud 7.I sm sm d o
0 a a - (m n).

The value of the first integral depends on i and j:
0 (i+j),$Ann(kWr)An7T(kWr)rdr<

m m

o IT ^T 1*0 (*=?).
The case (i 4=7) can be derived by making use of the following Lommel
integrals of Bessel functions:

a ß
$rJN(\r)JN(p,r)dr Y ¥[pJN(Xa) J'N(p,a) -A J'N(\a) JN(pa)],
0 A' — p*
a q\rJN(Xr)IN(p,r)dr w—-2[pJN(Xa)I'N(p,a)-XJ'N(Xa)IN(pa)], (15)

a q
$rIN(Xr)IN(fxr)dr -^—^[p IN (Xa)I'N (pa) -X I'N (Xa) IN (pa)],

n uwhere N —, A kW, pu £$*>.

Using the additional relations:

fr [Jv (Ar)]«dr ^{[J'N(Xa)Y+(l-^j [JN (Aa)]*},

JrJiV(Är)/Ar(Af)dr ^i-[JY(Aa)/^(Aa)-J^(Aa)/JV(Ao)], (16)

Sr[IN(\r)]*dr -^{[/^(Aa)]*- (l +^ [/„(Aa)]»}.

the second case (i=/) becomes:

fr [AN (A r)]* dr a* [JN (A a)]* [/^ (A <*)]« a« [J^ (A a)f [IN (A a)]»,
0

a2 JN (X a) IN (X a) J'N (X a) I'N (X a).

Observing in eq. (14) that m + n and i=\=j the orthogonality relation is proven.
J

3. Fourier-Bessel Expansion of an Arbitrary Function f (r, 6): Assuming

f(r,6) 2 Z^Jn^rjBin— (17)
n=ls=i — oc

and multiplying both sides of eq. (17) by

a iit„\ x • nuO
rAn7T (k{™> r) sm
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and integrating over the whole area of the plate, Ans can be determined as
follows 2):

2fff(r,d)An„(Wr)sin—rdrdd
A

00 ^ "
(18)

4. Green's Function for the Deflection of the Sectorial Plate: Making use of
eq. (18) the distributed load q(p,cp) over the infinitesimal area pdpdcp, as

P(P

dp

d(j

Fig. 2. Mathematical Formulation

of a Concentrated Unit
Load Acting at P (p, <p).

shown in fig. 2, can be developed into a Fourier-Bessel series. Taking only the
limiting case

lim qpdcpdp 1,

dp->0

corresponding to a concentrated load P=l at (p,<p), the coefficient Ans takes
the following value:

2lim sin^^dcpqpAn7r(^p)dp
d<p->0 a ~

'-ns aa» J„(ft*)a) /».(*i»>a) J'»*(k™a) I'nAhfia)'
OL OL OL OL

2ABE{¥fiP)Bin^-
a

°ca2Jn„ (H*>a) /„„ (*<»> a) J'n7r (k<sn> a) I'n„ (k™a)'

(19)

Using eqs. (17) and (19) the concentrated load P= 1 at (p,cp) can be expressed
in the following series:

P(p,cp)=l= 2 Z^nAk(sn)p,cp)^nn(}c(sn)r,e),

where i/jn7T (16f]r, 6)

n=ls=l a a ^20j

[Jnn(4?>r) /U (*iw)a) ~ J^. (*4W)«) /». (*4n)r)] sin^

]/f "2 J™ (*4W)«) *»* (4n)a) J'n* (k^a) IU (&<"> a)

2) The mathematical discussion of the completeness of the set of eigen functions, etc.
are beyond the scope of this paper.
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assuming W(r,0) 2 2 Bns^ns{¥^r,6) (21)
n=ls=l

and substituting into the original differential eq. (1) the deflection W by
eq. (21) and the right hand side by eq. (20) — the latter being zero except at
the loading point (p,cp) — Bns is determined.

Bns= 'MMn • (22)a

Hence the deflection becomes:

oo oo ^ (^M)P, 9) </w (A4re>r, 6)

TF(r,0; p,<p) £ £^ ^ (23)
n=ls=l ns

where A*s (¥^fD.
This Solution is suitable for solving eigen value problems such as buckling
or Vibration.

III. Green's Functions for Bending Moments Mr, Mq and Twisting Moment Mrß
of a Wedge-Shaped Plate

Taking the limit a -> oo in eq. (7), Green's function for the deflection of a
wedge-shaped plate is derived in single series form,

er nu9

(O^r^p), (24)
nrr

oo (P\~«~

J-Tn l^—T1 id-(w )p» + (n+— r» sin *-sm

(p ^ r < oo).

Green's functions for the moments Mr,Mg and Jfrö are obtained through
differentiation:

„ f _ T ^2 FF lldW \ B*W\
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The resulting series expressions can be summed observing the following
summation formulae:

(25)

OOrif 1

/ —cosnx — 7-log(l — 2rcosx + r2),
t—in 2 °

71=1

OO

V^ „ 1 — t cos x 1 / 1 — r2 \
/ rn cos nx -— ^ — 1 -1 -— » — 11,^t 1 — 2rcos# + rJ 2\l—2rcosx + r* /

for |r|<l.

The final equations in closed form are:

T r COSh (-log-)-COS-(0 + (p) n v / 2\MAr,6;P,9)=± [(l+v) log )f-^ L _ (I_^ _ |_)
87rL cosh(-^log-)-cos^(0-<p) 2a \ r/

/ sinh(flQg^) sinh(^log^) ,-,

\cosh(—log-1 —cos— (0 — cp) eoshj —log-1 —cos — (0 + cpy 1

i r coshl — log-) — cos— (9 + cp) n x / 2\
m9mp,9) ± (i+v)iog ; g; ^-^^ *--£87rL cosh(-log-)-cos-(6-9) 2a \ r '

U aP/ «x r/ (26)

/ ^(^Q sinh (f log ^) ,-.

^cosh l— log-] — cos—(0 — cp) cosh (— log-j — cos—(0 + <p)/J

/ sin —(0 — 9?) sin—(0 + 9?) \

\cosh( —log-) — cos— (0 — cp) coshi —log-| — cos— (0-f wy

Eqs. (26) are valid for the entire domain of the plate. If the loading point
P (p, cp) is fixed, the functions represent the moment surfaces Mr (r, 0), Mq (r, 0)
and Mr0(r,0). On the other hand if the point Q(r,0) is fixed the functions
represent the influence surfaces mr (p, cp), me (p, cp) and mrQ (p, cp) for the influence
point (r, 0). The following figs. 3, 4, and 5, are examples of influence surfaces
for the opening angles a 60°.
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60° /

\\

vi
$

\\N

3.0

7/j
\\\

CX07

ao3m
2.0

Fig. 3a. S7rmr — Influence Surface for 0^-^2.5. Influence Point (-=1, 0=30°),

a 60u; v 0.

^30y<.

20°

//.//
''/*

/.&/l

Fig. 3b. 8 tt mr — Influence Surface for ->2.5. Influence Point (-= 1, 0 30°]

a 60°; v 0.
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/60°

73

//y/
y/
'/

0.5 2.0 2.5

Fig. 4a. S-rrniß — Influence Surface for 0^-^2.5. Influence Point (-=1, 0 30°)

a=60°: v 0.

'/'////7/4>m

Fig. 4 b. 8 77 me — Influence Surface for ->2.5. Influence Point (-= 1, 6=30°\

c=60°; v 0.
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//
ArNv\\ ///*m /"4,

8C0

Wiw m'/// m^W
\">

0.5 Z.O

Fig. 5. SjrmrQ — Influence Surface for 0^-^2.5. Influence Point (-=1; 0 30°).

a 60°; v 0.

IV. Stress Singularities at the Corner

In the vicinity of the corner 0, fig. 1, r approaches zero (r -> 0). However,
p being finite it follows that

log- ¦oo.

Therefore cosh^log^)- I (£)"*¦,

sinh(>g;,)~-^r
and approximate expressions of eq. (26) are obtained.

—-2
tut i a \ (l-v)(r\tx ucp u0
Mr(r,0; p,cp) ~ —-i——ij —I sm —sm—,4a \p/ a a

—-2
hjt / n x (1—v)/f\a UCD 770
Me(r,0;P,<p)~ ±-—M- sm-^sin—,4a \p/ a a

—-2
n (1— v)[r\oL 7709 770

Mre(r,0;p,<p)~-±-—Li-) sin-^cos—.4 a \/)/ a a

(27)
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The corner reaction r (p, 9?) acting downward at the corner to prevent uplifbing
can be computed as follows

r (p, 9) Mr6 (0,0; p, 9) + MBr (0, <x; p,9)
2Mre(0,0;p,9),

r(p,9)—-^(^"snÄ (28)
2oc \p / OL

From eqs. (27) and (28) it is evident that Mr, M0,Mr0, and r have a singularity
—-2

at the corner governed by the term (-)a Several cases, depending on the
value of ol, should be distinguished.

:. Mr (0,6; P, 9) Me (0,6; p, 9) Mr$ (0,6; p, 9) r (p, 9) 0.

77 77 (r\ OL

a) 0<a< —, — >2, liml —j 0,

b) a |: lim^K2=l,
r^0 \P /

Mr(O,0; p,cp) -±——^sin20sin2<p,
2 77

Mg{O,0;p,9)= ^A^sin2 0sin2<p,
2 77

Mr0(O,0; p,cp) - * o~*/)cos20sin2<p,
2 77

(1-v)r (p, cp) — - sin 2 9.
77

x 77 77 /^\ac) —<a<77, 1< — <2 liml —I =+oo,2 a r_^o W
Mr (O,0;p,cp) -co, Me(O,0;p,cp) +co,
Mr0 (0,0; />, 99) ± oo, r (p, cp) - 00.

d) a 77.

Although eqs. (27) and (28) are not valid for this case, simple physical
considerations will show the vanishing of the moments:

Mr Me Mr6 0.

e) 77 <a <277, 0< —<1, liml —I + 00
a r-+o \p J

Mr - 00, Me +00,
Mr0= ±00, r —oo.

It is interesting to note that in the case of the two dimensional flow of an
—-1ideal fluid around a wedge the velocity q is governed by the term r«
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Finally, the moment Mr(r,0) along the bisecting line a/2 is plotted in
fig. 6 for different values of the opening angle a, illustrating the behavior at
the corner as discussed under (a) to (e).

00.5 1.0 1.5

r/<?

(OL-JT/3)

%

r/p

ta-r/2)

IS

F r
\

0. 5 / h0 1.

— r/p

73)

0.5 1.0 15

—-r/p

(CL-2Z (WZ)

W 15

r/P

(0L-3X/2)

\
1.0 1.5

r/fi

(a- 2jt)

Fig. 6. Mr Ir, — I for Different Values of Opening Angle a (v 0).

V. Alternative Solutions

A. Cases Where the Opening Angles a — (n l,2,3

The Green's function for the deflections of a circular plate with a clamped
edge was developed by J. H. Michell [5].

W (r,0]p,cP) l6^D{a2[r2-2prcos(0-cP)+p2]

¦ w a2[^2-2P^QS(g-<p)+p2] {2_ 2){2_ 2)iOga*-2a2Preos(0-cp)+p2r2+(a p)[a r)
(29)
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Solutions for sectorial plates can be derived by using the "Method of
Images" (see for example [4], p. 174). As an example the case of a plate with
an opening angle a | will be treated. The loading points Px to P4, shown in
flg. 7, are symmetrical with respect to the diameters AC and BD respectively.
By applying downward unit loads at Px and P4 and upwards unit loads at
P2 and Ps the symmetry conditions will effectively produce conditions along
the diameters AC and BD corresponding to the ones of a simply supported
edge. Therefore the Solution of the sectorial plate 0AB is obtained by
superposition of the effects of the four loads at P1 to P±, or:

W(r,0;P,cp)
1

I677 a±D a2[r2 — 2pr cos (0 — cp) + p2] log a2[r2-2pr cos (0 — cp) + p2]

— a2[r2 — 2pr cos (0 + cp — u) + p2] log

+ a2 [r2 ~2prcos(0-cp-u) +p2] log

-a2[r2-2prcos(0 + <p-2 77)+p2]log

a4: — 2a2pr cos (0 — cp) + p2 r2

a2[r2 -2 pr cos (0 + cp -u) + p2]
a* — 2a2pr cos (0+ cp — u)+p2r2
a2[r2 — 2pr cos (0 — cp — u) + p2]
a* — 2a2pr cos (0 — cp — u)+p2r2

a2[r2 -2 pr cos (0 + cp - 2u) + p2]

(30)

a4 - 2 a2 p r cos (0 + cp - 2 u) + p2 r2 j

It should be noted that the Solution is obtained in closed form. However this
method applies only to cases a —, with n 1,2

B. Application of Conformal Mapping

Considering the moment sum

M Mr + Me -D(l + v)A W (31)

Substitution into eq. (1) furnishes the following differential equation for M
AM 0 (32)

ß

+>/ <-)
ip,i Ar

cl=a23c\-

(-)(+>

-~_i_

...-M-0

Clamped

ac

p(p\*>

Fig. 7. Sectorial Plate with Opening
Angle ttj2.

Fig. 8. Unit Circle for Conformal
Mapping.
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with the exception of the loading point (p,cp). The boundary condition for the
plate of fig. 8 with radius r 1 is taken as (M)r=1 0.

Since eq. (32) is similar to the equation of a membrane it can be concluded
that M is proportional to the Green's function of circular membrane with
unit radius, that is,,

tmw ü x (i+^i l-2prcos(0-(p)+p2r2 /OONM(r,9;p,cp) ±-—-log—^-£ m \ 2 • 33r T 477 ° r2 — 2prcos(0 — cp)+p2

Taking the image of the load with respect to the diameter A B, fig. 8, the
Green's function for M of a semi-unit circle is derived.

M=(l+^]^[l-2pr^(0-9)+P2r2][r2-2prcos(0 + cp)+p2]
4t7 g[r2-2prcos(0-9)+p2][l-2prcos(0 + (p)+p2r2]* l '

From eq. (34), M for a semi-infinite circular plate is derived, making r< 1

and p << 1. The variables are written with a bar in order to distinguish them
from the final variables after mapping:

Turr-S - -\ (1+v)i r2-2rpcos(0 + <p)+p2M (r,0; p,cp) —A -log=^—r—^ j*——x—^. (35)v ' '^r/ 4t7 &r2-2rpcos(0-£)+p2 v '

By conformal mapping, M of a wedge-shaped plate with an opening angle a

can be obtained applying the following mapping function:

w z"/«,

where w reie,

z reie,

so that r r77"^,

8 —.
OL

Proceeding with the mapping the expression for M becomes:

2ir 2tt

(36)

M(r,6;P,9)=^—^\og(l+v) r* -2r™lapnlacoz^-{ß + <p)+pa

(37)

477 ~~° iE 2tt'
ra _2r'r/ap7r/acos-(0-(p)+pa

(l+v), cosh (^log^)-cos^ (0 + 9)
log —

77 cosh (—log -1 — cos — (0 — 99)

The bending moments Mr and Jf# are readily obtained from the moment sum
M by the following differential Operations:
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M =l-M+ V-VUL-E\*KM' 2M+±(l+v)[p r)dtry
W

08)
Md -22 ±(l+v)\p r)d/ry

W

The corresponding results are identical with eqs. (26).
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Summary

Green's function for the deflection ofa sectorial plate with simply supported
radial edges and a clamped circumferential edge is obtained in two different
forms, that is, in double and single series form. Using the second Solution and
taking its limit as the radius of the sector increases to infinity, Green's functions

for bending and twisting moments of a wedge-shaped plate are derived
in closed form.

With this Solution, moment influence surfaces as well as moment surfaces
can be developed with a detailed discussion of the stress singularities at the
corner.
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Resume

La fonetion de flexion de Green pour une dalle en forme de secteur avec
bords radiaux simplement poses et bord circulaire encastre peut etre obtenue
de deux manieres, par sommation double et sommation simple.

En employant la deuxieme forme et en tenant compte de la valeur limite
pour un rayon de grandeur infinie, il est possible d'etablir sous forme expli-
cite les fonctions de Green concernant les moments de flexion et de torsion
sur une dalle en forme de coin.

A partir de cette Solution, il est possible d'indiquer les aires d'influence

pour les moments, ainsi que les aires des moments, avec discussion detaillee
des singularites ä la pointe de la dalle.

Zusammenfassung

Die Greensche Durchbiegungsfunktion für eine Sektorplatte mit einfach
gelagerten Radialrändern und eingespanntem Kreisrand kann auf zwei Arten
erhalten werden: nämlich in doppelter und einfacher Summendarstellung.

Durch Verwendung der zweiten Form und unter Berücksichtigung des

Grenzwertes für unendlich großen Radius können in geschlossener Form die
Greenschen Funktionen für Biege- und Verdrehungsmomente an einer
keilförmigen Platte abgeleitet werden.

Mit dieser Lösung können Einflußflächen für die Momente wie auch
Momentenflächen angegeben werden mit einer detaillierten Diskussion der
Singularitäten an der Spitze der Platte.
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