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On the Bending of a Sectorial Plate
Flexion des dalles en forme de secteur

Uber die Biegung von Sektorplatten

Tapauiko Kawai, Fritz Engineering Laboratory, Lehigh University, Bethlehem, Penna
U.S.A.

I. Introduction

Recently attention has been paid by aeronautical engineers to the problem
of bending of sectorial plates in conjunction with an investigation of the stress
distribution in the neighborhood of the wing fuselage connection. As a matter
of fact, it has been discovered analytically as well as experimentally that for
certain values of the included angle, the bending stress in the corner reaches
extremely high values. Specifically, it was found that within the limitations
of the ordinary plate theory, the stress tends to infinity as the included angle
exceeds 90°, with the strength of the singularity increasing with the angle.

M. L. WinLiams, Jr. [1] has investigated these stress singularities, dis-
cussing the problem only qualitatively. S. WoiNowSKY-KRIEGER [2] derived a
general method of solution using the Fourier Integral. However, a numerical
application requires laborious computations. Fortunately, simpler solutions
can be obtained in two different ways for the case of a sectorial plate whose
radial edges are simply supported. As an example, Green’s function for the
deflection of a sectorial plate with a clamped circumferential edge will be derived
in double (Fourier-Bessel series) and in single series form. From the latter
solution, Green’s function for bending and twisting moments of a wedge-shaped
plate are obtained in closed form.

With this solution a general discussion of the stress singularity can be
successfully made and influence surfaces as well as moment surfaces can be
developed. The latter solutions will have direct application in the calculation
of influence surfaces for skewed plates which in turn should be useful in the
design of skewed bridge slabs.
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II. Method of Solution

Considering a sectorial plate with radius ¢ and included angle « under a
concentrated load P=1 at (p,p), the classical bending theory of plates of
uniform thickness requires the integration of the following differential equation:

DAAW (r,8)=0 (1)
with the exception of the loading point (p, ). The notation is as follows:

W (r,0) = deflection of point (r,8),
0? 1 o 1 02

4= a2 Ty 5 T2 500 (Laplacian operator),
D = Bh (Bending Stiffness of Plat
Rl ; °

h = uniform plate thickness.

The corresponding boundary conditions are along the radial edges:

2w 1eW 1 ¢2W
=0 W= MBZ_D[V(8r2)+; or +r_2_870_2]=0’

0=0; W=0; My=0

and along the circumferential edge:

r=a; W=0, — =0.

A. Single Series Solution?)

The method of solution parallels the one by CLEBscH used to solve the
problem of a circular plate under a concentrated load (see for example [4],
p. 266). Dividing the plate into two parts by a cylindrical section of radius p,
as shown in fig. 1 by the dotted line, the following product solution can be

assumed:
nar 9

Wmmiimmmh~ (3)

[0 2

(0=a=2m, afmn).

Evidently, eq. (3) satisfies the boundary
conditions imposed on the radial edges. Sub-
stituting eq. (3) into eq. (1), the following
equation is obtained:

g Simply ;fu,a,oar/ef‘
. . n w 2
Fig. 1. Coordinates of a dz2 1d (—a—) 2
; S AN N TN [ -
Sectorial Plate. ( ar? + ydr 2 ) ”

1) A recent literature review disclosed that Nowackr and MosSAKOWSKI [3] treated
the problem on the bending of a wedge-shaped plate using a similar method.
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The general solution of this equation is:

nmw nmw

— —+2
o +On7' o

nw nw
— - ——=+2
A,r* +B,r *

R, (r) = +D,r

R, (r) =

(for p=r=<a),
(4)

nwmw nwmw

2z “Z+2
’ !
Alr>e +0,r>

(for 0=r=p).
Hence for each term of the series four constants for the outer portion of the
plate and two for the inner portion must be determined. The six necessary
equations can be obtained from the boundary conditions at the circumferential
edge of the plate and from the continuity conditions along the section of
radius p. Denoting the deflection of the inner portion of the plate by W7,
those six boundary conditions are written as follows:

T:p: W’= W, (a")
ow’ ow
ar = ar (b)
EW  eW
or2 — or?’ ()
P S 6 )
L
D (4W)~D ——(AW TZ =, (d)
r=a W =0, (e)
ow

Eq. (d) equates the difference in shear of the outer and inner portion to the
applied load P=1 at (p,q) the latter being developed into a Fourier series.
Using eq. (5) the six constants 4,,, B,, C,, D,, 4, , and C, are determined:

2naw
_tnm nmo \ pz(g) "2
R s N < a P . nTe
A= "D {E_E_lJrﬂ(m_l)}sm o« ’
[+ 4 04 o [0 4
2nw
_inm nw p\? 2\ « :
PR G RO - L A
C = y 5 {%— na £ }smnmp,
o nmoonmLy ﬁ;’(ﬁz_l) o
(o 4 (o4 o o
_2nm nw (6)
_a * px (p? a? . nTe
A4, = 1D (m—ﬂ—l sin o
o o
742 "
B, = - P sin—— %,
nm o



66 Tadahiko Kawai

_Bnw na (P)2

o o 1 P
c, = Llf);(__ a )sinm,
4o KOG «
o o
nm ' (6)
[+
D, = £ - sin 2%
47?,77])(—”—1) «
o
By substitution the following single series solution is obtained.
2nw
0 nm 2 () «
' 1 pr\ « ([ p? a? P (;)
W(7:9>P:‘P) - 4OCD Z (ﬁ) {[E— nw + nm{no
=1 KO | —(_——1)
- o o o (04
5 2nw
P 2\ «
1 a o . 0
+ 2[n n(a) - (pl ]}sm Psin 27 (0=r=p),
nm _77_*_1 _1(_"4_]) o *
(04 o [e4 o
() CRT
_ 1 Zp?‘«x P @ +7"2~1—— a
40(D a,z nm nw nmw nm
n=i nmoonm_ g rmo Ty
o [0 4 o4 o
Rl 2 2 0
0 gy s
r ﬂ(ﬂ_l) ﬁ(ﬂﬂ) % a
where 0ZaZf2m7, aFr.

B. Double Series Solution (Fourier-Bessel Series)

The second solution in form of a Fourier-Bessel series can be derived in the
following way. In a first step the natural frequencies of the plate are deter-
mined, leading to an orthogonal function system whose elements represent the
modes of vibration corresponding to the specific natural frequencies. The con-
centrated load can then be expanded in terms of these orthogonal functions.
Assuming that W (7, 0; p, p) can be also expanded into such a series, the unknown
coefficients are determined by substitution into the original differential eq. (1).

1. Set of Eigen Functions for the Given Plate (fig. 1): The differential equation
of free vibration of a plate is:

2
DAAVV-I——’-;—@a W_

atz —03 (8)

where = the weight of the plate per unit volume,
uniform thickness of the plate,

= gravitational acceleration,

S+ R R
If

= time.
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Assuming W (r,0;t)=F, (r) sin?—;r—aeip‘ and substituting it into eq. (8), an
equation for F, (r) is obtained:

2 (7’&77)2
1 d o 2
e B R ©)
. YhP?
where k _——gD .

The general solution of eq. (9) is:

F,(r) = A, J un (k1) + B, J oy (kr)+Cp Lug (k1) + Dy I uu(kr),  (10)

(o4 4 24 [#4

where J nm(kr): Bessel’s Function of + % order,

24

1 L nm (kr): Modified Bessel’s Function of + 1;17 order.

Since the deflection at the center is finite the coefficients B, and D, must be
equal to zero, or

F,

n

(r)=A,Jpnkr)+C, Lny(kr). (11)

24 [+4

The boundary conditions along the circumferential edge,
ow
M=o (57), 0

yield the following secular equation:

Jnalka) Iz (ka)—Joq(ka) I ng (ka) =0. (12)

[e4 [~ o o

This transcendental eq. (12) has infinite numbers of eigen values. Ordering
these values the following infinite set of eigen functions is constructed:

w0 nml

Ao (6 ) sin 277 = [T () T (R0 @) — T (K™ @) Iy (0 7)] sin ,
= “ = o o 3 *
n=123..., s=1,23..., (13)

where ™ is the s™ root of the eq. (12).

2. Orthogonality of the Eigen Functions: The orthogonality condition takes
the form:

ff [Aﬂ(kgmw)sinm;e] [Aﬂ(kgmr)sin ”ZB]rdrdf): 0 (m*n, i+9)
0 0 [0 4 04
or (14)

7Tesinﬂ—ealﬁ =0.
[0 4

_FAM (k5 r) Ay (K1) 7 d r(_fcsin m

0 [0 4 o
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The second integral takes the following values

=0 (m=£n),

Bsin»nﬂgdﬁ

[0 o —

fasinm o (m = n)
0 3 =n).
The value of the first integral depends on ¢ and j:

. (kg.mmdr{ =0 (i +9),

a
[dpa(KMr)4 .
- +0 (2=9).

m
0 [+ 4 [+ 4

The case (¢=+j) can be derived by making use of the following Lommel inte-
grals of Bessel functions: :

[rayOn Ty wndr = 5wy Qa) Ty (pa) ATy Aa) Jy (ua)],

[rdyOn Iy undr = g lwly(a) Iy (ma) =M Ty Qo) Ly (wa)], (15)

a

[P INOn Iy (ur)dr = =55 [ Iy Aa) Iy (pa) =M Ty (a) Iy ()],

where N=@a—ﬂ, A=kpP, p=kp.

Using the additional relations:

a a? N2

Ofr[J.v (Ar)dr = 5{[[5\, Aa)2+ (1 — X_2_a_2) [y ()\a)]z},

[y () Ly (Ar)dr = 551y (Ma) Iy (@) = T4y Aa) Iy (Aa)), (16)

Jar Iy Ar)Rdr = —%{[I;V (Aa)]? - (1 + %:—2) Iy ()\a)]2}.

the second case (i =j) becomes:

Of¢ [Ay Ar)Pdr =a?[Jy Aa)P[Iy(Aa)]? = a®[Jy (Aa)?[Iy(Aa)]?,
=a?Jy(Aa)Iy(Aa)Jy(Aa)ly(Aa).

Observing in eq. (14) that m +n and 7 %/ the orthogonality relation is proven.

3. Fourier-Bessel Expansion of an Arbitrary Function f(r,0): Assuming

w0

i (r,6) = 21 ilAnsAM (K 7y sin (17)

§= o
and multiplying both sides of eq. (17) by
nwd

o

rd ., (kK r)sin
o
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and integrating over the whole area of the plate, 4, can be determined as
follows 2):
2”]‘ (r,0)dnn Ic‘”)r)smTrdrdB

A (18)

" " wat g (K a) Im(k“"a) Snm (K@) Iy (KM a)

o o o o

4. Green’s Function for the Deflection of the Sectorial Plate: Making use of
eq. (18) the distributed load ¢(p,p) over the infinitesimal area pdpdo, as

Fig. 2. Mathematical Formu-
lation of a Concentrated Unit
Load Acting at P (p, ¢).

shown in fig. 2, can be developed into a Fourier-Bessel series. Taking only the
limiting case
Iim gpdedp =1,

de—0
dp—0

corresponding to a concentrated load P=1 at (p,¢), the coefficient 4, takes
the following value:

2lim Sll’l»d(prAn,T(k( p)d

a5
e g (0 0) T (67) T (00) Ty (70
" * * * (19)

24, (kP p)sin "%
%@ Sy (K@) Ly (KD @) S e (B @) L (K @)

o o o o

Using eqgs. (17) and (19) the concentrated load P=1 at (p,p) can be expressed
in the following series:

(P <P) =1= Z Z ‘rbn'n' k( )P> )l/JM (kgn)r, 6);
n=1s=1 po (20)
(na (K1) L (kP @) — T e (KD @) 1 e (K 7)] 80 ": 6
where 1/;21, (EMr,0) = —=2 o o o ’
* ]/% @2 T (K@) 1y (K@) Ty e (K @) T (RS @)
o o o o

2) The mathematical discussion of the completeness of the set of eigen functions, etc.
are beyond the scope of this paper.
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assuming W(r Z Z B, s (KMr,0) (21)
n=1s=1

and substituting into the original differential eq. (1) the deflection W by

eq. (21) and the right hand side by eq. (20) — the latter being zero except at

the loading point (p,p) — B, is determined.

Pnx (K p, @)

@YD .

B

Hence the deflection becomes:
(’C(n)P @ l/’nﬂ' (K7, 0)

Vepg- 5 EIIIEE

=1s
where A2 = (KA D.

This solution is suitable for solving eigen value problems such as buckling
or vibration.

III. Green’s Functions for Bending Moments M,, M,y and Twisting Moment M,
of a Wedge-Shaped Plate

Taking the limit @ — oo in eq. (7), Green’s function for the deflection of a
wedge-shaped plate is derived in single series form,

nw

R M N P ST et
2
0

n(ne =

nm

o0 Py o
o (;) o o . nmp . nwl
S LR TNE N R
2

=in (02—

Green’s functions for the moments M,, My and M, , are obtained through
differentiation:

(p S r<oo).

EW  (LeW 1 @W
Mr(ragaP:(P) z{_Dl:arz +V(; or +ﬁ 062 )]}

2w oW 1 2W
Mo(r.0: p.9) ={_D[”W+(? or T a8 )]}

Mg (.85 p0) = | =D (-0 (5 )|
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The resulting series expressions can be summed observing the following sum-
mation formulse:

o 7 1
Z—oosnx = ——log (1 —2rcosx+7r?),
n 2
n=1
® (25)
Z?‘"cosnx— 1—rcosx 1_1 1—r2 3
= ~1—-2rcosx+72  2\1—2rcosz+72 ’

for |r|<1.

The final equations in closed form are:

ks r ™

1 cosh ;log— —COS;(O-}-(])) 1— 2

M, (r,:p.9) = g | (1+9)log (,, ’;) e [
™ cosh (;log;) —cos— (0 —¢) *

. ( sinh (g log ;T) ~ sinh (g log ;::) )]
cosh (g log E) - oosg (0—¢) cosh (g log pz) — eosg 0+ 9) ,

™ r T
1 cosh ;—log— —cos;(0+¢p) 1— .
Mg(r,ﬂ;p,q>)=__8w[(1+v)log ( p) +( v)w(l p )

cosh (glogpz) —cosg(ﬁ—tp) 20 r* (26)
| ( sinh (Zlog ) ) sinh (Zlog ) )]
cosh (z— log pf) — cosg(ﬂ —@) cosh (E log ;r) — cosg(ﬂ + ) ,
M ,o(r,0;p,) = (16_:) (1 - —f;)
sing(e_qp) sin§(0+<p)
. (cosh (% log ;r) —cos~ (0 ~¢) " oosh (g log ;;7:) —cos~ (0 +(p)) .

Eqgs. (26) are valid for the entire domain of the plate. If the loading point
P (p, 9) is fixed, the functions represent the moment surfaces M, (r,0), My (r,8)
and M,4(r,0). On the other hand if the point @ (r,8) is fixed the functions
represent the influence surfaces m, (p, ), mg (p, ) and m,.4 (p, p) for the influence
point (r,8). The following figs. 3, 4, and 5, are examples of influence surfaces
for the opening angles «=60°.
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Fig. 3a. 8 # m; — Influence Surface for O§;p§ 2.5. Influence Point (;p= 1, 0= 30°) .
a«=60°; v=0.

Fig. 3b. 8 # m; — Influence Surface for £> 2.5. Influence Point (f: 1, 0= 30°) .
a=60°; v=0.
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y s

gyt JON . 0.2 —————— —————— o
05 1.0 15 2.0 55
Fig. 4a. 8 » my — Influence Surface for O§£§ 2.5. Influence Point (f: 1, 6= 300) .
a=60°; v=0.
60°
//
# 50°

10°
-~

/' 30
/
/
/
// 200

/’
—
—
—

20 25 0

Fig. 4b. 8 = my — Influence Surface for £>2.5. Influence Point (f: 1, 0:300) .
«=60°; »=0.
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60°

20°

0°

Fig. 5. 8 # myy — Influence Surface for O§£§ 2.5. Influence Point (£=1; 0:300) .

pe
«=60°; v=0.

IV. Stress Singularities at the Corner

In the vicinity of the corner 0, fig. 1, » approaches zero (r — 0). However,
p being finite it follows that

log1—>— o0
p :

2\r

. T r 1(p\™>
sinh (; log ;) ~=3 (7)

and approximate expressions of eq. (26) are obtained.

L 70%
Therefore cosh (—E log ;::) ~ 1 (ﬁ) ,

J.g
M, (r,0; p,p) ~— (1-v) (1)oc sinltfsinﬂ—o,

4o \p o o
o m_
My (r,0; p, @) ~ (_412‘1)*)(;,’:)“ sin%(psin%, (27)

Mr@ (7’,0; P’(P) o ==
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The corner reaction r (p, p) acting downward at the corner to prevent uplifting
can be computed as follows

l r(P’(P) = Mr0(0>0; P:‘P)'{'Mﬂr(oy‘x; P,(P)
= 2Mr0(0’0; P"P);

T2
1) ~— 52 (5)7 2. (28)

From eqs. (27) and (28) it is evident that M,, My, M.y, and r have a singularity

T 9
at the corner governed by the term (I)“ . Several cases, depending on the
value of «, should be distinguished. g

L
a) O<a<—, Tsa2, 1im(5)°‘ =0,
2 =4 r—0 \P

. M.(0,6;p,9) = My(0,0;p,9) = M,5(0,0; p,) =7(p,p) =0.

m

T2
b) =2 1im(—’-)°‘ -1,

2’ r—0 \P
M,(0,8; p,p) = — (2_—V)Sin298in2(p,
o
1-v) . .
My(0,6; p,p) = 5 sin20sin2¢,
1-—- .
M.4(0,0; p,p) = — (2 V)cos20s1n2<p,
T
1—v) .
r(p, @) = — ( 1})sm2<;o.
T T r §_2
c) —<a<m, 1<—<2 lim(—) =+ 00,
2 24 r—0 \P
M, (0,0;p,9) =—o00, My (0,8; p, @) = + 0,
M,9(0,6; p,p) = £ 00, 7(p,p) = — 0.
d) o« =m.

Although eqs. (27) and (28) are not valid for this case, simple physical
considerations will show the vanishing of the moments:

M,=My=M,;=0.

™
T2
. r
e) m<a<2m, 0<17—<1, hm(—)“ =+ 00,
x r—0 \P
M,,. = —00, M0=+OO,
M,.p= + 0, r =-—00.

It is interesting to note that in the case of the two dimensional flow of an

ideal fluid around a wedge the velocity ¢ is governed by the term ra -
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Finally, the moment M, (r,6) along the bisecting line «/2 is plotted in
fig. 6 for different values of the opening angle «, illustrating the behavior at
the corner as discussed under (a) to (e).

4 4
® | St
0 1 1 i 0 1 i
T am/ 10 15 T a5 10 15
L —r/e - —>r/p
-4 (a=x/3) —4 (@-272)

4 , L AN
o i L]

i L 1 Vi 1 1 L
4 0 15 as 144 15
L —7/p L —>r/p
-4 -4 |
x=x,
(a=-2x/3) ( )

. f\\ \ /\\
T / C X / i
To 1 L L TJ 1 1 1

a 0 5 0.5/ 10 15
—rsp I —r/p

r (a=37/2) N (a=2x)
-8 -8

Fig. 6. M, (r, —;—) for Different Values of Opening Angle « (v=0).

V. Alternative Solutions

A. Cases Where the Opening Angles oc=—;—:—(n=1, 2,3...)

The Green’s function for the deflections of a circular plate with a clamped
edge was developed by J. H. MicHELL [5].

W (r.6; p. ) lazre— 257 cos (0 9) + 7

1
~ 167a*D
a?[r2—2prcos (0 —p) +p?]
a*—2a2prcos (0 —¢)+p2r?

log + (a% —p?) (a®— r2)} .
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Solutions for sectorial plates can be derived by using the ‘“Method of
Images’’ (see for example [4], p. 174). As an example the case of a plate with

2 .
fig. 7, are symmetrical with respect to the diameters 4 C' and B D respectively.

By applying downward unit loads at P, and P, and upwards unit loads at
P, and P, the symmetry conditions will effectively produce conditions along
the diameters A C and BD corresponding to the ones of a simply supported
edge. Therefore the solution of the sectorial plate O A B is obtained by super-
position of the effects of the four loads at P, to P, or:

an opening angle a = will be treated. The loading points P, to P;, shown in

W(T,H; p5‘P) =
1

_ a?[r2—2prcos (60— @)+ p?]
" 16watD

a*—2a%prcos (0 — @)+ p?r?

{az [r2—2prcos (0 —p)+p?]log

a?[r?—2prcos (8 +¢ —7)+p?]

_at[r2—2 6+ — 21
a*[r prcos (0 +@—m)+p?] Oga4—2a2proos(9+<p—77)+P27’2

(30)

a’[r®—2prcos (0 —p —m)+p?]

at—2a%prcos (0 —p—m)+p2r2
a2[r2—2prcos (0 +¢—27)+p?]

a4—2a2prcos(0+q)—2w)+p2rz}'

+a?[r2—2prcos (0 —p —m)+p?]log

—a?[r2—2prcos (0 +¢—2m)+p?]log

It should be noted that the solution is obtained in closed form. However this

method applies only to cases =, withn=1,2....

B. Application of Conformal Mapping

Considering the moment sum
M=M+My=—-D(1+v)AdW (31)
substitution into eq. (1) furnishes the following differential equation for M
AM =0 (32)

Fig. 7. Sectorial Plate with Opening Fig. 8. Unit Circle for Conformal
Angle #/2. Mapping.
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with the exception of the loading point (p, ). The boundary condition for the
plate of fig. 8 with radius r=1 is taken as (M),_,=0.

Since eq. (32) is similar to the equation of a membrane it can be concluded
that M is proportional to the Green’s function of circular membrane with
unit radius, that is,

(1 +1/)lo 1—2prcos(f—¢)+p3r?

47 r2—2prcos (0 —¢)+p? ° (33)

M(?‘,B; P:‘P) =

Taking the image of the load with respect to the diameter 4 B, fig. 8, the
Green’s function for M of a semi-unit circle is derived.

_Q —|—v)log [1—2prcos (6 —¢)+p2r2][r2—2prcos (6 + )+ p?]

4 [r2—2prcos(0—¢)+p2][1—2prcos(0+¢)+p2r?]’ (34)

M .
From eq. (34), M for a semi-infinite circular plate is derived, making r <1
and p < 1. The variables are written with a bar in order to distinguish them
from the final variables after mapping:

— g o _ (L), 72—27pcos (§+) +p°
M(r.0;p.¢) =-—5—lo 72— 27 poos (0 — @) +p*’

(35)

By conformal mapping, M of a wedge-shaped plate with an opening angle «
can be obtained applying the following mapping function:

w = 27,
where w = 76“;,
z =rel
so that 7= 7l
5 (36)
=—
Proceeding with the mapping the expression for M becomes:
2= 2
o« — 2pmle gl gos T (04 @) +p *
(14v), T P - P
M(r,@; P>(P)= 417 IOg 2 ﬂ,
ro — 2r”/°‘p’”/°‘cosg—‘(0—q>) +p
(37)
T r T
_a +V)10g cosh (; log;) — oS — @ +)
4

cosh (g logpf) — cosg (0 —o) .

The bending moments M, and My are readily obtained from the moment sum
M by the following differential operations:
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1 (1—v) (r oM
p

1 (1=v) (r oM
o= 3510 7)
P

The corresponding results are identical with eqgs. (26).
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Summary

Green’s function for the deflection of a sectorial plate with simply supported
radial edges and a clamped circumferential edge is obtained in two different
forms, that is, in double and single series form. Using the second solution and
taking its limit as the radius of the sector increases to infinity, Green’s func-
tions for bending and twisting moments of a wedge-shaped plate are derived
in closed form.

With this solution, moment influence surfaces as well as moment surfaces
can be developed with a detailed discussion of the stress singularities at the
corner.
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Résumé

La fonction de flexion de Green pour une dalle en forme de secteur avec
bords radiaux simplement posés et bord circulaire encastré peut étre obtenue
de deux maniéres, par sommation double et sommation simple.

En employant la deuxiéme forme et en tenant compte de la valeur limite
pour un rayon de grandeur infinie, il est possible d’établir sous forme expli-
cite les fonctions de Green concernant les moments de flexion et de torsion
sur une dalle en forme de coin.

A partir de cette solution, il est possible d’indiquer les aires d’influence
pour les moments, ainsi que les aires des moments, avec discussion détaillée
des singularités a la pointe de la dalle.

Zusammenfassung

Die Greensche Durchbiegungsfunktion fiir eine Sektorplatte mit einfach
gelagerten Radialrdndern und eingespanntem Kreisrand kann auf zwei Arten
erhalten werden: nédmlich in doppelter und einfacher Summendarstellung.

Durch Verwendung der zweiten Form und unter Beriicksichtigung des
Grenzwertes fiir unendlich groBen Radius konnen in geschlossener Form die
Greenschen Funktionen fiir Biege- und Verdrehungsmomente an einer keil-
formigen Platte abgeleitet werden.

Mit dieser Losung koénnen KEinfluBflichen fiir die Momente wie auch
Momentenflichen angegeben werden mit einer detaillierten Diskussion der
Singularititen an der Spitze der Platte.
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