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A General Theory of Deformations of Membrane Shells?)
Une théorie générale des déformations des voiles minces sans moments fléchissants

Eine Allgemeintheorie fiir die Verformung von Membranschalen

W. FLUGGE, Professor of Engineering Mechanics, Stanford University, California, USA,
and
F. T. GeyriNG, Member of Technical Staff, Bell Telephone Laboratories, Inc., Murray
Hill, N. J., USA

Introduction

Current work in the theory of shells concerns itself mostly with an elabora-
tion of the bending theory. Efforts are being made to apply the simplified
versions of this theory to new geometric shapes and to examine critically the
simplifications that have been introduced. At the same time, however, the
authors of this paper feel that membrane theory has not been exploited to its
limits if it has not been used to calculate deformations as well as stresses for
all configurations where it is applicable. The present paper is intended to
close this gap.

The knowledge of the deformation of shells has proven useful in a variety
of engineering applications and is indispensible in the analysis of shells where
the boundary conditions are given in terms of deformations and in externally
statically indeterminate problems.

Convenient systems of coordinates for the formulation of the deformation
problem are the cartesian one for shells of translation and the cylindrical one
for shells of revolution. This same choice of coordinates has been made in
Pucher’s formulation of the membrane stress problem and accounts for the
general applicability of this method. In many formal aspects the present cal-
culation of membrane deformations is an extension of the Pucher method
and we therefore begin with a brief review of the latter.

1) Paper based on Ph. D. Dissertation at Stanford University by F. T. GEYLING,
1953 (Ref. 1).
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I. The Pucher Solution of the Membrane Stress Problem ?)

Fig. 1 shows a shell of arbitrary configuration whose middle surface is given
as z(z,y) in the cartesian system of coordinates. A few coordinate lines x =
constant and y = constant are indicated on it. In fig. 2] a magnified view is
shown of a differential element of the shell, this element being bounded by
arcs of coordinate lines. It is loaded by the external forces p,, Py > P,» Per unit
area of the shell and held in equilibrium by the skew system of membrane
forces N,, N,, and N, per unit length of coordinate line. The equality of

the shear resultants, N, =N, follows readily. In the Pucher method we
write the equilibrium equations for the shell element in terms of the horizontal
components of the membrane forces per unit length of horizontal line element

‘dx or dy; these are denoted as N,, N,, N, , and shown in fig. 2. Likewise,
the external loads are expressed per unit horizontal area of dxdy and denoted

as P, Py, P,- This set of forces will be referred to as the projected forces of
the shell element3).

2) Ref. 6 and ref. 3, chapter 4.

3) Throughout this paper partial derivatives with respect to z and y will be indicated
by subscripts, e. g.,
0%z 7
a—x—zzzm and 55( ) = ( )y) (0)

where the quantity in parentheses may also be the marginal number for a formula. The

only exceptions will be N s N " and N - the strains ¢, ¢,, and Yy’ and p,,, Py and p,.
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It is readily seen that the equilibrium equations for the shell element in
the z and y directions in terms of the projected forces turn out to be identical
to the equilibrium conditions of plane stress or plane strain, namely,

ON, 0Ny

=7 1
iz T oy Ds (1)
ON, ON  _

= —T7.. 2
oy +— Dy (2)

The equilibrium equation in the z-direction is
oN, — N, — ONg 0N
5% zx+Nmzm+Wzy+Nyzw+ 7y T oy
which, by way of further comparison with the plane stress problem, takes the

place of the compatibility equation there. As in the plane theory of elasticity,
we introduce the Airy stress function ¢ according to definitions

zx+2nyzxy = —_ﬁz’ (3)

Nac‘—"Pyy—.[pxd.x’ Nyzq%w—.[ﬁydy’ lvacyz—‘rva’ (4)

which satisfies the equilibrium equations (1) and (2) automatically. Equation
(3) is left to be satisfied by the stress function and takes the form

L ((P) = Quy Rgpp— 2 Py ay + Prz Ryy =
— D+ D2y Dy 2y 250 [ Drd T +2y, B, Y,
where L will be called the Pucher operator.
The boundary conditions for ¢ indicate the type of support which the shell

is given. In roof structures one may expect three alternative edge constraints
as shown in fig. 3.

(5)

EDGE

—

‘
'
‘

A -
e
SUPPORTED

- ED

GE

Fig. 3.

1. An edge is completely free. Both normal and shear forces are required

to vanish along it, i.e.,
o 2o
98t dson

0,

where n and s are the normal and tangential variables along the horizontal
projection of the edge.
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2. An edge is supported by a shear diaphragm. We will denote it as a
“supported edge’’. The diaphragm is usually denied all rigidity transverse to
its plane so that the membrane force normal to that edge is required to
vanish, i.e.,

0.

08

o
2

The diaphragm, however, is expected to carry whatever shear forces the shell
discharges upon it. These forces are dependent on the statically indeterminate
interaction between the shell and the edge member. We simplify this boundary
condition by accepting '
el
oson

as obtained from ¢ along the supported edge.

3. An edge is completely fixed. Both the normal and shear forces are results
of the interaction between the shell and the edge abutment and again we
simplify these boundary conditions by accepting whatever edge stresses the
membrane solution produces. That is, we accept

Pe 2o

7 and oo

as found from ¢.

II. The Elasto-Kinematic Relations of the Deformation Theory

Fig. 4 shows the differential shell element once more, this time with the
positive displacement components u, v, and w and the geometric parameters
«, B, and w indicated on it. We shall next express the displacement compo-
nents in terms of the membrane strains by using the kinematic laws and shall
finally employ the elastic relations to express them in terms of the membrane
forces.




A General Theory of Deformations of Membrane Shells 27

A. The Kinematic Relations

Fig. 5 shows the edge A B=d s, of the shell element which is subjected to
the strain e,. This strain is caused by the x and z components of the relative
displacement between the points A and B while the ¥ component of displace-
ment does not make a first order contribution. From fig. 5 and after some
manipulation we obtain ’

€, = U, COS%a+ W, SIn a COS . (6)
Correspondingly, we write for the strain of coordinate lines z = const.
€, = v, cos?f 4w, sin B cos f. (7)

The shear strain, y,, of the shell element is the change in the angle w.
A decrease of w in the first quadrant of the xy system shall represent a posi-
tive y,,. Fig. 6 shows that the two arc elements ds, and ds, are transformed
by the incremental displacement components at B and C into the heayvily

Fig. 6.

drawn arc elements which now enclose the angle w —v,,. To obtain an equa-
tion involving y,, we assume AC’ and 4 B’ to be straight lines and vectors
and write their dot-product
(AC")-(AB') = ds;dsy(1+¢,) (1+¢,) cos (w—v,y)
= (14+u,)dxu,dy+(1+v,)dyv,dx (8)
+(tgo+w,)dx (tgB+w,)dy.
Using the kinematic expressions for ¢, and ¢,, setting cosy,,=1 and

sin y,, =v,, retaining only terms in the first power of one of the derivatives
or of v,, as first order small quantities, and simplifying we obtain
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1 . .
Yau = 5o (,, cos o cos 8 —u, sin « cos? a sin
+ v, cos B cos o — v, 8in B cos? B sin o (9)

+w, cos3 a sin B +w, cos® Bsin«).

B. The Elastic Relations

Fig. 7 shows a shell element in normal view where it appears as a parallelo-
gram subjected to the skew system of membrane forces N,, N,, and N,,.
The extensional strains ¢, and ¢, are also in skewed directions to each other.
To derive the elastic relation for ¢, we define the normal set of forces S, and

Ny ? Ng
]
t
]
Mxy
-

A B —— —
Nxy
B ] —— D
Ny Sx

T 5
SR |

C

"bctgw
Fig. 8

N in terms of the original membrane forces as shown in fig. 8. We have

€, =—E—1£(Sx—-vNy) =E%(Nmﬁ-{-2nyctgw+Nysinw(ctg2w—v)), (].O)

and by analogy,

1 1
= - i 2 —
v = Ty (Nysinw+2chtgw+Nxsmw(ctg w y)), (11)

where v is Poisson’s tatio. To obtain the elastic relation for Yzy We define an
orthogonal set of strains e,, €;, 7,, in terms of the orthogonal forces S,, N;
and T, (fig. 8) as follows

| 1 1 2(1+v) T,

(Sz—VNz_/)> eﬂzE—t(NZ"VSz)’ 77902/: Et

€

e =77 (12)

Fig. 9 shows the relation between ¢,, ¢;, y,, and y,, from which there follows

b

ywm=fxybsinw+exbctgwsinw—egbcos<u, (13)
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or in terms of the skew membrane forces

(1+v)
Yov T Ty

(N cosw+2N,, +N,cos w). (14)

Fig. 9.

C. The Elasto-Kinematic Relations

We equate the expressions we got by the kinematic and the elastic laws
for ¢, and do the same for ¢,. Noting that '

N, =Z_\7$COSB N i cos«x
cos a

xy

and N,

y:

<

<
(@]
@]
7]

™

and expressing all trigonometric functions in terms of z and its derivatives
we find

U, = —Wyz,+f, (15)

v, = —W,2,+¢, | (16)

where f and ¢ are given below. Proceeding correspondingly with the expressions

for y,, and using the results for u, and v, from equations (15) and (16) we have

Uy +V, = —W, 2, — W, 2, +k. (17)

Equations (15), (16) and (17) shall henceforth be referred to as the elasto-

kinematic relations. The terms f, g, and k stand as short notations for the

following quantities
f= 1

CEt(l+z.2+22)

AN, (1+2.22+2 N, 2,2, (1+2,2)

+Ny [zxz zyz—V(l +z:c2+zy2)]},
_ 1
I=TFia 2,2 +2,

o {N,(1+2,2)2+2N,,2,2,(1+2,2)
+ N, [2,22,2—v(1+2.2+2,2)]},
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2 — = :
k= Fi(12, 27" {Npz,2,(1+2.2)+ N, [(1+v)(1+2,2+2,2)+ 22,222

+f\7v 2y 2, (14+2,2)}.
III. Differential Equations and Expressions for w, u, and v

A. The Equations for w, u, and v

In order to obtain a differential equation for w alone we write (15), and
(17), and eliminate u,, between the two expressions. Taking a—a@; of the result-

ing equation and writing (16),, we can eliminate v,,, from these two. In the
resulting equation all third order derivatives of w cancel out leaving w subject
only to the Pucher operator as follows

L(w) = wxxzyy_2wzyzwy+wyyzxx = kxy—fyy_gxa: = R. (19)

To derive a differential equation for » alone we write (15), and (15), and
solve for w,, and w,, respectively. Eliminating v,, from differentiated forms
of (16) and (17) we obtain an expression for w,,. Substituting the above
expressions for derivatives of w into (19) and simplifying we get

L (u) +2 Uy (zfzy — 2z zyy) /zz =2 f (zazcy — R zyy) /zx

20
+iy(zyy_2zzy)+(ky_gx)zxx+sz' ( )

An analogous equation can be written for v.

B. Expressions for u and v derived from w

In many problems the boundary conditions for the displacements will
make it most convenient to solve for w first and then use this result to cal-
culate » and v. To obtain an expression for » in terms of w we integrate (15)
and get

u=.‘-(f_wmza:)dx+7(y)> (21)

where j (y) is a function of y alone and will be controlled by the condition (17).
We write (17), and (16), and eliminate v,, from these two equations to obtain
an expression- for u,,. Another expression for u,, is obtained from (21),,.
Equating these two expressions and solving for j (y) we get

7. (y) = .U {ky'—gx —wmzyy"—wyyzm_ [J. (f_wxzx) dx]yy}dydy +u1y+u2> (22)
where u, and u, are constants. The integrand of the double integral in j(y)

will be automatically independent of z if the single integral term is left inside

it, as can be shown by forming % of the double integrand and obtaining
R — L (w), which is zero.
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Corresponding results for v are

=[(g—wyz,)dy+i(), (23)
= {f."km—'fy'—wyzxm_wxxzy"‘ [.f(g—wyzy)dy]xx}dxdx (24)
+vx+v,.
From condition (17) it can be shown that w,= —v,. The constants u,, u,, v;,

and v, represent rigid body displacements of the shell.

IV. Edge Conditions Imposed Upon Membrane Displacements by a Shear Diaphragm

In this paper we shall limit ourselves to considering membrane deformation
problems for shells with either free or supported edges. Since a free edge imposes
no boundary conditions on the membrane deformations we proceed to derive
boundary conditions in terms of %, v, and w from the mechanical actions of
a shear diaphragm upon a shell. For this purpose we introduce the following

PLANE OF THE
EDGE DIAPHRAGM

/ ’/““”””WWM

Fig. 10.

more relevant edge displacement components in terms of «, v, and w. Consider
an edge with x = const. as shown in fig. 10. We have u as before and

I4

v’ =wv cosB+wsinp, (25)
w" = wcos B —v sinf. (26)

Along edges with y = const. we use v as before and

!

w' = u cosa+wsine, (27)
w' = wcosa—u sina. (28)

If we assume that a shear diaphragm has no rigidity normal to its own plane
there will be no control imposed on displacement components u along edges
x = const. and no control on displacement components v along edges y =
const. Since the edge members carry the shell by tangential shear forces,
their principal constraining action on the membrane deformations appears
to be their control of %’ and v’. These displacement components must then be
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equal for the shell and the edge member in order to ensure tangential compa-
tibility. From this fact we derive a boundary condition for w along x = const.
as follows. Solving equation (25) for v, differentiating it with respect to y and
simplifying, then expressing v, in terms of equation (16) we find

w=——[v' (1+2,2)h], ——2-. (29)
“yy Zyy

Correspondingly, we have along edges y = const.

w= [ (L2, - (30)

Should it be desired to obtain boundary conditions for v along edges x =
const., we may eliminate w from equations (25) and (16) and thus obtain

v = —zy—{g—zy 1(1+zy2)‘/2 : (31)
z?l?/ Zy Y
Its counterpart along edges y = const. is
I P I 2y1/,
w=gmlf-n [ ara] | (32)

Boundary conditions based on compatibility between the shell and edge
members in terms of w' and w” can also be formulated. However, their apph-
cability to membrane deformation problems seems rather restricted and
therefore they will not be shown in detail?).

V. Membrane Deformations of the Elliptic Paraboloid

As an example for shells of positive Gaussian curvature we consider those
whose middle surfaces are elliptic paraboloids described by:

2 2
z = hi_}”?z_ (see fig. 11). (33)
1

he

4) See ref. 1, pp. 67 to 69.
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A. Inextensional Deformations

We begin with a consideration of deformations which are possible without
membrane stresses being generated in the shell. Thus, if N, =N, =N,, =0,
we have f = g = k = R = 0. For this case equation (19) for w reduces to

1 1
E;wxx‘*'zww =0, (34)

which can be transformed to the Laplace equation by a change of variables
such as
AN
¢= (3) =

so that convenient use can be made of results from potential theory in the
deformation problems for such shells.

We can now take a piece of an elliptic paraboloid without any edge mem-
bers on it and of random shape and prescribe any distribution of w displace-
ments along its edges. An inextensional deformation w, will then exist for the
shell satisfying these boundary conditions since it is merely a solution of the
Dirichlet problem which we have stated. We also note from the maximum
principle of potential theory that the upward or downward deflections w
within the shell will nowhere be larger than the maximum up or down deflec-
tions prescribed along the edges. A local dent in the interior of the shell will
not be possible as an inextensional deformation. We see that such shells of
positive Gaussian curvature offer no membrane resistance to a wide variety
of edge distortions, but must remember that this result holds only for small
deflections since the kinematic relations (15), (16), and (17) were linearized
accordingly. Our group of inextensional deformations therefore represents a
much larger class than would be obtained from a study of the applicability of
elliptic paraboloids as a problem of differential geometry.

Now consider a rectangular piece of the elliptic paraboloid with four fixed
unstrained edge members. From the boundary conditions (29) and (30) we
get with f=¢g=0 and 4'=v"=0, w=0 on all edges. From the Dirichlet problem
it is obvious that w vanishes identically throughout the shell. No inextensional
deformation whatever will be possible for the elliptic paraboloid (and any
other shell with K > 0) with fixed and unstrained edges.

Next, let us subject the elliptic paraboloid with four edge members to the
twisting deformation

—4de .
ab Y

w =

This deformation obviously satisfies equation (34) and results in the following
displacements % and » from the formulas (21) to (24) where we have set
Uy =Wy =1V =Vy =01
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dey(a* o _dex [y 2®
Y= b (h +3h) and ”—W;(@‘Wh—l'

These deformations will result in a warping of the shear diaphrams, in their
rotation within their own plane about centers located at 2z, and z,, and finally
in a shear distortion, i, of the rectangular edge layout of the shell. All of

these results are illustrated in fig. 12.

PERSPECTIVE
VIEW OF W(X,y)= -~ -~

ae
TWIST = ———
ab

Fig. 12.

The inextensional deformation that we just found reveals the interesting
fact that an elliptic paraboloid with four edge members is insensitive to uneven
settlement of the corner supports if at the same time, it is allowed to go
through an accompanying shear distortion of its edge layout. Conversely, such
a shell will offer resistance against a shear deformation of its edge assembly
only if its corners are constrained to remain in one plane.

B. Extensional Deformations

We consider the elliptic paraboloid supported at all four edges and sub-
jected to the load distribution

B, = cosﬂxcos#y
p.=p o a
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We take the edge layout of the shell as a square and for ease of numerical
calculations we simplify the equation for the paraboloid to
x2+y2
Pt

Also, wherever Poisson’s ratio, v, occurs it shall be taken as 0.2. Equation (19)

for this case reduces to .
VZ w = 5 R.

To obtain the membrane forces for the shell we refer to the Pucher solution
of this case®). Computations for R based on the membrane forces from this
solution are best carried out numerically®). The boundary values for w follow
from equations (29) and (30), where we set ' =v" =0, since we neglect the
deformations of the edge members due to the shear forces from the shell. The
boundary value problem for w is conveniently solved by relaxation methods
and the results of these computations are given in table 1 for one octant of
the shell in terms of the dimensionless variable

_ Bt

= ——W,

pr
where £/ = Young’s modulus and ¢ = thicknes of the shell.

Table 1.. Values of W = ;f; w in One Octant of the z, y System
z/a
yla
0.0 0.1 0.2 0.3 0.4 0.5

0.0 1.145 1.087 0.921 0.663 0.342 0
0.1 1.034 0.880 0.640 0.339 0.014
0.2 0.761 0.573 0.329 0.054
0.3 0.461 0.308 0.114
0.4 0.265 0.189
0.5 0.255

Fig. 13 gives a perspective view of W for the third quadrant of the xy
system.

We proceed to calculate v and » according to the method outlined by the
formulas 21 to 247).

Table 2 shows the results for « in terms of the dimensionless variable

5) Ref. 1, p. 14.
%) For details of numerical techniques the reader is referred to ref. 1, p. 97.

7) For an adaptation of these formulas to numerical procedures the reader is referred
to ref. 1, p. 59. ’



36 W. Fliigge and F. T. Geyling

CORNER
(-0.5,-0.5)

EDGE

Wnax = 1145
Fig. 13.
Et ;
Table 2. Values of U =aip ¥ for the First Quadrant of the x,y System
z/a
yla
0.0 0.1 0.2 0.3 0.4 0.5

0.0 0 —0.036 —0.047 —0.013 +0.078 +0.223
0.1 0 —0.034 —0.045 —0.015 +0.069 +0.206
0.2 0 —0.028 —0.040 —0.019 +0.045 +0.157
0.3 0 —0.021 —0.032 —0.026 +0.009 +0.080
0.4 0 —0.011 —0.022 —0.032 —0.035 —0.019
0.5 0 —0.001 —0.011 —0.034 —0.074 —0.127

X

3

CENTER 0.

0.5 Upgax +0.223

o]

ol

0.5

Fig. 14 illustrates the distribution of U for one quadrant of the shell and

EDGE U=-0.127 (0.5,0.5)

it indicates clearly the way in which the edge members warp.
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VI. Deformations of the Hyperhbolic Paraboloid

A. Inextensional Deformations

As an example for shells of negative Gaussian curvature, we consider the
hyperbolic paraboloid, whose middle surface is given by

2 2
2 = %;—%1 (see fig. 15). (35)

Equation (19) for w becomes
1

1
}Zwyy—il_zwxx = O,

which is of the hyperbolic type and can be written in the canonical form

2w
where &= (gﬁ)%x +y and 9= (%)l/zx —vy. The general solution of (36) is
1 1

w=w, (§) +w, (n) which represents two forms of cylindrical bending about
straight line generators £ = const., and n = const. in the shell. Clearly, the
middle surface of the shell is unstrained, and we are indeed dealing with
inextensional deformations.

To build up the solutions for rectangular domains, consider fig. 16 where
a hyperbolic paraboloid is bounded by the edges 1, 2, 3, 4. For simplicity, we
take h,=h, and thus {=x+y, =2 —y. These characteristic coordinates are

also shown in the figure. Now suppose that the boundary conditions w,=

w; (€) +w, (n) and wy, = d?:;lg(é‘) - dﬁzn(") are specified on edge 1 so that values

for w; and w, are given on that line. These will be propagated unchanged
through the shell, viz. w (¢) unchanged along generators ¢ = const. and w (%)
along 7 = const. At edge 2 we solve for w, () from the boundary condition
for w, with the w, (¢§) which was carried over from edge 1. This w, () now
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travels to edge 4. The converse of the situation on edge 2 holds true for edge 3.
On edge 4 some boundary value distribution w,=w, (§) +w,(n) follows from
the total procedure. So far, the solution has been built up as for an initial
value — boundary value problem. It would be convenient to supplant the
condition for w, on edge 1 by any continuous boundary condition for w, on
edge 4 and thus stating a boundary value problem. In many cases this is not
possible. Consider a square domain as in fig. 17. The entire region consists of
rectangular loops of generators as shown in the figure. Along these generators

we may have w; (£§)= —w,(n) so that w,=0 on all edges but not necessarily
-
Y ‘
4
2
3 2 b=
o |
. & e é
%, | N ;
; 5 B

Fig. 16. Fig. 17.

vanishing in the interior of the region. We can now imagine larger domains
made up of such squares whose w, will be antimetric continuations across all
dividing lines between the squares. Clearly, the ratio A=b/a will be of the

form %, where ¢ and r are integers, i.e., A must be a rational number. The

density of the set of rational numbers seems to make every value of A a “near-
.l ys . 1001 ;

critical’’ one, however, one can see that such ratios as Tooo require small

distances between nodal lines in the pattern of w,. For finite amplitudes of
w, this means that the changes of curvature and therefore bending moments
in the deformed shell are no longer negligible. Such deformations, then, must
be dismissed from the membrane theory and we shall consider only such
critical values of A which are ratios of small integers. For these A, inhomo-
geneous boundary conditions can be specified on all edges if they satisfy cer-
tain symmetry conditions®). However, these problems will have no unique
solutions, since nontrivial w, have been shown above to exist for w,=0 on
all edges.

8) ‘See ref. 1, pp. 114 and 115.
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For noncritical values of A it can be shown?) that unique solutions exist
for the inhomogeneous boundary value problem for w,, and of course no
nontrivial solutions exist for the homogeneous problem.

So far we have not assumed that the rectangular domain ab of the hyper-
bolic paraboloid is confined along the edges. Now, consider that it is supported
by fixed, unstrained shear diaphragms on all sides, calling for the boundary
condition w,=0 everywhere. Then we know from the foregoing that this con-
dition will not preclude inextensional deflections w, in the interior of the shell
if A has a critical value. This fact represents a serious practical drawback of
hyperbolic shells as compared with the structural performance of elliptic ones.

Finally, one can subject the hyperbolic paraboloid to an inextensional twist

W =§£—3xy and make similar observations about the results in fig. 18 as we

did with fig. 12. In particular, the shear distortion of the edge layout is

_ de (a® b
¢_3ab hy hy)’
az

which will vanish, in distinction from elliptic cases, for ;5 = % Under these
2

circumstances, other pure twists, w,, like the one in fig. 19 are also possible.

_~—__-—-cr—-_--————1

H X -l-)_(dhz_IZh‘)

Fig. 18.

B. Extensional Deformations

We consider the hyperbolic paraboloid with A, =k,=5b and A=2 under the
uniform loading p,=p. It is supported by shear diaphragms on all edges
(fig. 20).

%) See ref. 1, p. 115.
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To solve for the membrane forces in this shell, we note that equation (5)
in its canonical form becomes

P bp
a | Y
T
)4
3 a4 ~ 2
/C
b » X
m 2
\7’
I o
1
et
Fig. 20.

The boundary conditions are ¢,,=0 at 1 and ¢,,=0 at 2, 3, which may be
ensured by ¢ =0 on 1, 2, 3. At 4 we should also like to have ¢,, =0, but due
to the hyperbolic nature of the problem we must try to meet this condition
by adjusting ¢, on 1. We assume some values for the latter to start with. The
total rectangular domain is separated into five characteristic zones as delineated
by a set of dividing characteristics (fig. 20). The solution ¢ is now constructed
in each of these zones by the Riemann integration method where we use the
formulas

B
p(P)=3%[p(A)+o(B)+} [ gda—| [Fdédy
A ABP
for regions like fig. 21 and
P(P)=¢(A)+o(O)—@(B)— [ [Fdédn.
ABCP

for regions like fig. 22. By using the new edge values arising in each zone as
initial values for the next, we ensure continuity of ¢ throughout the rectan-
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gular-domain. However, the continuity of any of its derivatives at the dividing
characteristics does not necessarily follow unless these derivatives are taken
in the direction of the latter!?). Consequently, the resulting membrane forces
may be discontinuous at the dividing characteristics, a fact which proves
of vital interest in the following discussion of deformations?).

The canonical form of equation (19) for w reads

O w
@—7} =R (f? 7))7 (36)

where %R, containing the membrane forces, is discontinuous at the dividing
characteristics. Since the boundary conditions (29) and (30) also contain the
membrane forces, they call for discontinuities in w at the corners of ab. These,
however, were arbitrarily smoothed out in the present example, to retain some
semblance of w with physical reality. Using these boundary conditions on the
edges 1, 2, 3 and some initial condition of w, on edge 1, a solution of equation
(36) was constructed by the method just outlined in finding ¢. The boundary
values of w on edge 4 turned out to be identical to the ones on 1. Since A =2
is a critical value for the given shell, non-trivial inextensional deformations
with homogeneous boundary conditions are possible. They are odd in y and
can be used to eliminate the antimetric part of the solution already found, so
that the resulting w is even in y as can be reasonably demanded with a pattern

of membrane forces that has the same property!2). Fig. 23 shows the results
Bt
po?
of shell) for one quadrant in the z,y system and table 3 gives corresponding
numerical values. The figure shows that discontinuities in W, and W, occur
along dividing characteristics.

With w known, the horizontal displacements U =

in terms of a contour map of W=-—;w (£ = Young’s modulus, { = thickness

féu and V=§b—2v can
be found in each characteristic zone by formulas (21) to (24) and their adap-
tations for numerical work. Since the deformed shapes of zones II and IV
(fig. 20) no longer fit into the space between the distorted edges of the neigh-
boring ones they had to be given some arbitrary orientation. The resulting
vector field for U and V in one quadrant of the z,y system is given in fig. 24.
It chiefly points out the considerable incompatibilities in tangential displace-
ments along the dividing characteristics which are essentially due to discon-
tinuities of the membrane strains in these directions.

10y For the details and results of this calculation the reader is referred to ref. 1,
pp- 30—35.

11) Indeed, this feature greatly decreases the value of membrane analysis in hyper-
bolic cases and in the authors’ opinion has not been given proper recognition in such
work as ref. 7. An interesting analysis by S. BaN (ref. 8) avoids this difficulty by treating
only hyperbolic paraboloid panels which do not exceed a characteristic zone.

12) For details see again ref. 1, pp. 121-—129.
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Table 3. Values of W = f{;w in the Fourth Quadrant of the x,y System

x/b
y/b
0.00 0.05 0.10 0.15 0.20 0.25
0.00 0.1188 0.1224 0.1332 0.1523 0.1817 0.2236
—0.05 0.1193 0.1228 0.1338 0.1534 0.1833 0.2038
—-0.10 0.1205 0.1242 0.1358 0.1565 0.1694 0.1896
—0.15 0.1221 0.1262 0.1390 0.1463 0.1600 0.1805
—-0.20 0.1240 0.1287 0.1312 0.1398 0.1546 0.1766
—0.25 0.1261 0.1230 0.1267 0.1366 0.1535 0.1779
—0.30 0.1187 0.1206 - 0.1252 0.1373 0.1569 0.1849
—0.35 0.1191 0.1211 0.1276 0.1421 0.1654 0.1982
—0.40 0.1279 0.1305 0.1384 0.1520 0.1799 0.2186
—0.45 0.1466 0.1499 0.1597 0.1766 0.2013 0.2471
—0.50 0.1768 0.1809 0.1932 0.2143 0.2446 0.2850
X
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Fig. 23.

In concluding, we may say that the membrane solutions for inhomogeneous,
hyperbolic problems where discontinuities occur, hardly yield any realistic
results. Direct recourse must be taken to developing an appropriate bending
theory. In elliptic cases, however, the analysis of membrane deformations
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produces quite acceptable results especia]ly if the bending corrections neces-
sitated by the uncontrolled w’ and w" displacements at the boundarles can be
proven restricted to the edge regions of the shell.
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Summary

The paper develops a membrane theory of deformations for shells of
arbitrary shapes besides surfaces of revolution and cylinders which have been
treated in the past. Cartesian coordinates and projected membrane forces are
used whereby many of the formal details parallel those of the Pucher method
of solution for membrane stress problems. This method is reviewed for refe-
rence.

After a derivation of the kinematic and elastic relations the elasto-kine-
matic equations between the displacement components «, v, w, and the mem-

brane forces NV, o N 475 N, zy follow as

Uy = —Wy2,+]; v, = —w,z,+g; and
Uy + Uy = —W,u2, —wWy2,+ k;

where f, g, k contain the membrane forces. Elimination of # and » from these
equations yields a differential equation for the vertical deflection w:

L(W) = w2y, — 2w,y 2., + Wy 2., = R,

T ~Yy xy ~xy

where the operator L is typical of the Pucher method. R contains the mem-
brane forces. Assuming w as (found) » and » may be obtained, by quadratures.
As an alternative, differential equations similar to the one for w are developed
for u and v whose second order operators are again L.

In most structural applications the edges of a shell are supported by verti-
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cal shear diaphragms. The various constraining actions of such an edge member
are formulated as boundary conditions for the deformations. Amongst them
the most important and useful one, in terms of w, is that there be no tangen-
tial sliding between the edge of the shell and the diaphragm. Shells with posi-
tive Gaussian curvature are studied first and particular attention is given to
the deformations of an elliptic paraboloid with four edge diaphragms under
uneven settlement of the corner supports, surface loading, and other cir-
cumstances. The results of these investigations are applicable to structural
practice.

The corresponding problems are then developed for the hyperbolic para-
boloid as an example for shells of negative Gaussian curvature. A study of its
inextensional deformations reveals that inextensional deflections with homo-
geneous boundary conditions may occur in such a shell if a critical or eigen-
value condition is satisfied. The same shell with uniform surface loading is
discussed as an example for extensional deformations. This investigation serves
mainly to point out the discontinuities along dividing characteristics in such
hyperbolic membrane problems which make their solutions rather unrealistic.

The shell shows that the membrane theory produces quite acceptable
results for the deformations in elliptic cases but it shows also that in hyper-
bolic cases the results of similar computations are of a rather limited value
and call for the development of the bending theory.

Résumé

Dans cette étude, les auteurs développent une théorie membranaire des
déformations des votites minces de forme arbitraire, & 1’exception des surfaces
de révolution des cylindres, qui ont fait I’objet d’études antérieures. Grace
a I’emploi des coordonnées cartésiennes et des projections des efforts de mem-
brane, de nombreux éléments formels correspondent & la méthode de Pucher
pour la solution du probléme des tensions membranaires. Cette méthode est
a la base de la présente étude. )

Aprés avoir établi les relations cinématiques et élastiques, les auteurs
déterminent les équations élasto-cinématiques entre les composantes u, v, w

des déplacements et les efforts membranaires N,, N,, N,,, sous les formes
suivantes:
Uy = —Wy2,+f; v, =—wyz,+g et

U+, = — W2, —Wy2,+k

en désignant par f, g et k les efforts membranaires. En éliminant « et v de ces
équations, on obtient une équation différentielle relative & la flexion verti-
cale w:

L(W) = W Zyy — 2 Wy 2y + Wiy 2y = R
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Popérateur L étant caractéristique de la méthode de Pucher. R contient les
_efforts membranaires. Si ’on considére w comme connu (trouvé), on obtient
u et v par quadrature. On peut également, en variante, établir pour « et v
des équations différentielles semblables & celle qui concerne w et dont I’'opéra-
teur de deuxiéme ordre est également L.

Dans la plupart des applications aux ouvrages, les bords des voltes minces
sont supportés par des éléments plans verticaux. Les différentes actions per-
turbatrices qui s’exercent sur un tel élément de bordure sont formulées a titre
de conditions marginales pour I’étude des déformations. Parmi ces conditions,
la plus importante et la plus utile, suivant laquelle aucun glissement ne doit
se produire entre le bord de la volite mince et ’élément plan, est exprimée en w.

Les auteurs étudient tout d’abord les volites minces comportant une cour-
bure positive de Gauss. L’attention est particulierement attirée sur les défor-
mations d’un paraboloide elliptique comportant quatre éléments plans de
bordure, avec tassement non uniforme des appuis aux angles, charge super-
ficielle et autres conditions. Les résultats de ces investigations peuvent étre
appliqués & la construction pratique. ,

Des problémes analogues sont ensuite étudiés pour le paraboloide hyper-
bolique, a titre d’exemple d’une votite mince présentant une courbure négative
de Gauss. L’étude de ses déformations exemptes d’allongement montre que
dans une telle votte, il peut se produire des flexions sans allongement, avec
conditions marginales homogénes, lorsqu’une condition critique ou parti-
culiére est remplie. A titre d’exemple de déformations avec allongements, les
auteurs étudient la méme voite mince dans le cas d’'une charge superficielle
uniformément répartie. Cette investigation est essentiellement destinée a
mettre en évidence les défauts de coordination des autres caractéristiques dis-
criminatoires dans ces problémes relatifs aux membranes hyperboliques,
défaut qui rend problématique la possibilité d’application pratique de la solu-
tion de ces probléemes. La votlite mince montre que la théorie des membranes
donne des résultats entiérement acceptables pour les déformations, dans le
cas des ellipses; elle montre toutefois aussi que dans le cas des hyperboles, les
résultats des calculs analogues ne présentent qu’une valeur trés limitée et
exigent une transformation de la théorie de la flexion.

Zusammenfassung

In der vorliegenden Arbeit wird eine Membrantheorie fiir Formanderungen
von Schalen beliebiger Form, auBler Rotationsflichen und Zylindern, die
frither behandelt wurden, entwickelt. Dank der Verwendung von Kartesischen
Koordinaten und projezierten Membrankréiften entsprechen viele formale
Einzelheiten der Methode von Pucher zur Losung der Membranspannungs-
probleme. Diese Methode dient als Grundlage.

Nach einer Ableitung der kinematischen und elastischen Beziehungen
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erhédlt man die elasto-kinematischen Gleichungen zwischen den Komponenten
u, v, w der Verschiebungen und den Membrankriften N, N,, N, zu

U, = —w,2,+f; v,=—w,z,+¢g und

Uy +V, = Wz, —w, 2, +k,

worin f, ¢ und k die Membrankrifte enthalten. Eliminiert man aus diesen
Gleichungen » und v, so erhéilt man eine Differentialgleichung fiir die vertikale
Durchbiegung w:

LW)y=w

xx

2w, 2., +w,, 2., = R,

Zyy — xy “Ty vy “xx

wobei der Operator L typisch fiir die Methode von Pucher ist. B enthilt die
Membrankrafte. Nimmt man w als bekannt an (gefunden), so erhélt man
und v durch Quadratur. Als Alternative werden fiir # und v zu derjenigen
fiir w ahnliche Differentialgleichungen aufgestellt, deren Operator zweiter
Ordnung ebenfalls L ist.

In den meisten baulichen Anwendungen werden die Schalenrinder von
vertikalen Binderscheiben getragen. Die verschiedenen Randstérungen eines
solchen Randgliedes werden als Randbedingungen fiir die Forménderungen
formuliert. Unter diesen ist die wichtigste und niitzlichste Bedingung aus-
gedriickt in w, dal zwischen Schalenrand und Scheibe kein Gleiten stattfinden
darf. Zuerst werden Schalen mit positiver Gauflscher Kriimmung untersucht.
Spezielle Aufmerksamkeit wird den Forménderungen eines elliptischen Para-
boloids mit vier Randscheiben bei ungleichméfliger Setzung der Eckstiitzen,
Flachenbelastung und andern Umstédnden gewidmet. Die Ergebnisse dieser
Untersuchungen sind in der Konstruktionspraxis anwendbar.

Die entsprechenden Probleme werden dann fiir das hyperbolische Para-
boloid als Beispiel einer Schale mit negativer Gauflscher Kriimmung ent-
wickelt. Eine Untersuchung iiber ihre dehnungslosen Forméinderungen zeigt,
daB die dehnungslosen Durchbiegungen mit homogenen Randbedingungen in
einer solchen Schale vorkommen konnen, falls eine kritische oder Eigenwerts-
bedingung erfiillt ist. Dieselbe Schale wird unter gleichméaflig verteilter Flachen-
last als ein Beispiel fiir Formanderungen mit Dehnungen diskutiert. Diese
Untersuchung dient hauptséchlich dazu, den Mangel an Zusammenhang wei-
terer Unterscheidungsmerkmale in solchen hyperbolischen Membranproblemen
hervorzuheben, was ihre Losung fiir die praktische Anwendung fragwiirdig
macht. Die Schale zeigt, dall die Membrantheorie ganz annehmbare Resultate
fir die Formédnderungen im Fall von Ellipsen gibt; sie zeigt aber auch, daf}
im Fall von Hyperbeln die Ergebnisse dhnlicher Berechnungen nur einen sehr
beschrinkten Wert haben und den Ausbau der Biegelehre fordern. “
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