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A General Theory of Deformations of Membrane Shells x)

Une theorie generale des deformations des voiles minces sans moments flechissants

Eine Allgemeintheorie für die Verformung von Membranschalen

W. Flügge, Professor of Engineering Mechanics, Stanford University, California, USA,
and

F. T. Geyling, Member of Technical Staff, Bell Telephone Laboratories, Inc., Murray
Hill, N. J., USA

Introduction

Current work in the theory of shells concerns itself mostly with an elabora-
tion of the bending theory. Efforts are being made to apply the simplified
versions of this theory to new geometric shapes and to examine critically the
simplifications that have been introduced. At the same time, however, the
authors of this paper feel that membrane theory has not been exploited to its
limits if it has not been used to calculate deformations as well as stresses for
all configurations where it is applicable. The present paper is intended to
close this gap.

The knowledge of the deformation of shells has proven useful in a variety
of engineering applications and is indispensible in the analysis of shells where
the boundary conditions are given in terms of deformations and in externally
statically indeterminate problems.

Convenient Systems of coordinates for the formulation of the deformation
problem are the cartesian one for shells of translation and the cylindrical one
for shells of revolution. This same choice of coordinates has been made in
Pucher's formulation of the membrane stress problem and accounts for the
general applicability of this method. In many formal aspects the present
calculation of membrane deformations is an extension of the Pucher method
and we therefore begin with a brief review of the latter.

x) Paper based on Ph. D. Dissertation at Stanford University by F. T. Geyling,
1953 (Ref. 1).



24 W. Flügge and F. T. Geyling

I. The Pucher Solution of the Membrane Stress Problem2)

Fig. 1 shows a shell of arbitrary configuration whose middle surface is given
as z (x, y) in the cartesian system of coordinates. A few coordinate lines x
constant and y constant are indicated on it. In fig. 2\ a magnified view is

shown ot a dillerential element of the shell, this element being bounded by
arcs of coordinate lines. It is loaded by the external forces px, py, pz, per unit
area of the shell and held in equilibrium by the skew system of membrane
forces Nx, Ny, and Nxy per unit length of coordinate line. The equality of

y CONST

a* „-! dx

> / NXy+_

dx

* N
ö^>

X CONST

Nxu *~ ¦»

NXu +

/ I

*N..+SHELL ELEMENT
N„ I

Nx
Fig 1

SHELL
ELEMENT ?Vt:*

4/ü*
^; s^

v Q

t A.' &I gI o

» -V

Nx+—
Fig 2

xyt:Nv..+
N..+-

the shear resultants, Nxy Nyx follows readily. In the Pucher method we
write the equilibrium equations for the shell element in terms of the horizontal
components of the membrane forces per unit length of horizontal line element

dx or dy, these are denoted as Nx, Ny, Nxy, and shown in fig. 2. Likewise,
the external loads are expressed per unit horizontal area of dxdy and denoted
as px, py, pz. This set of forces will be referred to as the projected forces of
the shell element3).

2) Ref 6 and ref 3, chapter 4

3) Throughout this paper partial derivatives with respect to x and y will be indicated
by subscripts, e g

d*z * d
/ x

zxx and ä^(dx2 )y> (0)

where the quantity m parentheses may also be the marginal number for a formula The

only exceptions will be Nd Ny and Nxy, the strains ex, e and y and px, py, and pz
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It is readily seen that the equilibrium equations for the shell element in
the x and y directions in terms of the projected forces turn out to be identical
to the equilibrium conditions of plane stress or plane strain, namely,

dN„ SN..

dx

3N,

+
' xy

dy
dNxy

-Vx

~Pvdy dx

The equiübrium equation in the z-direction is

dNx ^ dNy_ ^zx + JS x zxx + zv + JSvzm. +dx dx -*„+-
dN:

zx "T" ^ -^ xy zxy ~~ Pz >

(1)

(2)

(3)
dy y ' ~y~yy ' dx ~y '

dy

which, by way of further comparison with the plane stress problem, takes the
place of the compatibility equation there. As in the plane theory of elasticity,
we introduce the Airy stress function cp according to definitions

Hx Vyy-SPxdv, Ny <pxx-$pydy, Nxy -cpxyi (4)

which satisfies the equiHbrium equations (1) and (2) automatically. Equation
(3) is left to be satisfied by the stress function and takes the form

L (9) <Pyy Zxx ~ 2 <Pxy Zxy + <Pxx Zyy ,-.
-p2 + pxzx + pyzy + zxx$pxdx + zyy$\pydy,

where L will be called the Pucher Operator.
The boundary conditions for 99 indicate the type of support which the shell

is given. In roof structures one may expect three alternative edge constraints
as shown in fig. 3.

o y>

ds2

SUPPORTED
EDGEotf-

&>.

PORTED
EDGE

Fig. 3.

1. An edge is completely free. Both normal and shear forces are required
to vanish along it, i.e.,

ds2 dsdn '

where n and s are the normal and tangential variables along the horizontal
projection of the edge.
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2. An edge is supported by a shear diaphragm. We will denote it as a
"supported edge". The diaphragm is usually denied all rigidity transverse to
its plane so that the membrane force normal to that edge is required to
vanish, i.e.,

ds2

The diaphragm, however, is expected to carry whatever shear forces the shell
discharges upon it. These forces are dependent on the statically indeterminate
interaction between the shell and the edge member. We simplify this boundary
condition by accepting

d2cp

dsdn

as obtained from <p along the supported edge.
3. An edge is completely fixed. Both the normal and shear forces are results

of the interaction between the shell and the edge abutment and again we
simplify these boundary conditions by accepting whatever edge stresses the
membrane Solution produces. That is, we accept

d2cp

ds2
and

d2cp

dsdn
as found from cp.

II. The Elasto-Kinematic Relations of the Deformation Theory

Fig. 4 shows the differential shell element once more, this time with the
positive displacement components u, v, and w and the geometric parameters
oc, ß, and co indicated on it. We shall next express the displacement components

in terms of the membrane strains by using the kinematic laws and shall
finally employ the elastic relations to express them in terms of the membrane
forces.
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Fig. 4.

Fig. 5.
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A. The Kinematic Relations

Fig. 5 shows the edge AB dsx of the shell element which is subjected to
the strain ex. This strain is caused by the x and z components of the relative
displacement between the points A and B while the y component of displacement

does not make a first order contribution. From fig. 5 and after some
manipulation we obtain

ex ux cos2 ol + wx sin a cos a. (6)

Correspondingly, we write for the strain of coordinate lines x const.

€y vy cos2 ß + wy sin ß cos ß. (7)

The shear strain, yxy of the shell element is the change in the angle co.

A decrease of co in the first quadrant of the xy system shall represent a positive

y Fig. 6 shows that the two are elements dsx and ds2 are transformed
by the incremental displacement components at B and C into the heayily
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Undy^y
w..dy~y

Fig. 6.

drawn are elements which now enclose the angle co — yxy. To obtain an equation

involving yxy we assume AC and AB' to be straight lines and vectors
and write their dot-produet

(AC')-(AB')=ds1ds2(l+€x)(l+€y)cos(cü-yxy)
(l+ux)dxuydy + (l+vy)dyvxdx
+ (tgot + wx)dx(tgß + wy)dy.

(8)

Using the kinematic expressions for ex and ey, setting cos yxy 1 and
sin yxy yxy, retaining only terms in the first power of one of the derivatives
or of yxy as first order small quantities, and simplifying we obtain
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y — (u„ cos ol cos ß — u„ sin a cos2 a sin ßrxy S1I1ü)V V r x r
+ vx cos j8 cos oL — vy sin /? cos2 ß sin a

+^ cos3 ol sin ß + wy cos3 ß sin a).

(9)

B. The Elastic Relations

Fig. 7 shows a shell element in normal view where it appears as a parallelo-
gram subjected to the skew system of membrane forces Nx, Ny, and Nxy.
The extensional strains ex and ey are also in skewed directions to each other.
To derive the elastic relation for ex we define the normal set of forces Sx and

Nx,

\Ny, \
g y=CONST

*¦ D

Fig. 7.
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b

'T.

b ctg cj

Fig. 8.

Ny in terms of the original membrane forces as shown in fig. 8. We have

ex=^(8x-vN-v)=~^NxJ[- + 2Nxvctgai + NvSma)(ctg^-v)y (10)

and by analogy,

€^=i(^^ + 2^Ctg^ + ^sinw(ctg2w"v))' (U)

where v is Poisson's ratio. To obtain the elastic relation for yxy we define an
orthogonal set of strains ex, e-, yxy in terms of the orthogonal forces Sx, N-
and Tx (fig. 8) as follows

€x =^(Sx-vNy)> ^-t(Ny-vSx),
2(l+v)T

Yxy Et V)
Fig. 9 shows the relation between ex, ey, yxy and yxy from which there follows

Yxy ~ ~ Yxy ° sm OJ~^€x0 c^& ^ snl <*> — €yb COS CO,
sm co

(13)
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or in terms of the skew membrane forces

(1+v
7xy Et (NxWS^ + ZNxy + NyCOSüj).

b ctg co
zn

(14)

>
1

txb ctgo>
JL^ *Lr\T--\ Wfb

y b

SINCJ

Fig. 9.

C. The Elasto-Kinematic Relations

We equate the expressions we got by the kinematic and the elastic laws
for €x and do the same for ey. JSToting that

cosaN„ N™ß
cosa

N Ny ^cosß'
and Nxy Nxy,

and expressing all trigonometric functions in terms of z and its derivatives
we find

ux -wxzx + f, (15)

vy -wyzy + 9> (16)

where / and g are given below. Proceeding correspondingly with the expressions
for yxy and using the results for ux and vy from equations (15) and (16) we have

uy + vx -wxzy-wyzx + k. (17)

Equations (15), (16) and (17) shall henceforth be referred to as the elasto-
kinematic relations. The terms /, g, and k stand as short notations for the
following quantities

/ ff*(l+z*2 + z2)V^(1^
+ Ny[zx2zy2-v(l+zx2 + zy2)]},

^ ^^(14-z,2 + V)1/2{^(1 + ^2)2 + 2^^^(1 + ^2)

+ Nx[zx2zy2-v(l+zx2 + zy2)]},
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k Et{\+z2+z^rS^*z*Zy(l+z^
+ Nyzxzy(l+zy2)}.

III. Differential Equations and Expressions for w, u, and v

A. The Equations for w, u, and v

In order to obtain a differential equation for w alone we write (15)^ and

(17)x and eliminate uxy between the two expressions. Taking ^— of the resulting

equation and writing (16)xx we can eliminate vxxy from these two. In the
resulting equation all third order derivatives of w cancel out leaving w subject
only to the Pucher Operator as follows

L(W) WxxZyy-2wxyZxy + WyyZxx kXy-fyy-9xx ¦»- (19)

To derive a differential equation for u alone we write (I5)x and (15)^ and
solve for wxx and wxy respectively. Eliminating vxy from differentiated forms
of (16) and (17) we obtain an expression for wyy. Substituting the above
expressions for derivatives of w into (19) and simplifying we get

(20)
L (u) + 2ux (zxy zxx zyy) \zx — 2f (zxy — zxx zyy) j zx

+ fy \zyy ~ % Zxy) + V°y ~ 9x) Zxx + -" Zx '

An analogous equation can be written for v.

B. Expressions for u and v derived from w

In many problems the boundary conditions for the displacements will
make it most convenient to solve for w first and then use this result to
calculate u and v. To obtain an expression for u in terms of w we integrate (15)
and get

u=W-wxzx)dx + j{y), (21)

where j (y) is a function of y alone and will be controlled by the condition (17).
We write (17)y and (16)^ and eliminate vxy from these two equations to obtain
an expression for uyy. Another expression for uyy is obtained from {2\)yy.
Equating ^hese two expressions and solving for j (y) we get

j{y) =N{K-9x-wxzyy-wyyzx-VHi-wxzx)dx\^^ (22)

where ux and u2 are constants. The integrand of the double integral in j (y)
will be automatically independent of x if the single integral term is left inside

it, as can be shown by forming — of the double integrand and obtaining
R — L (w), which is zero.
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Corresponding results for v are

v =$(g-wyzy)dy + i(x), (23)

i (x) {/ßx -fy~wy zxx ~ wxx zy ~ [ J (9 ~ wy zy) d 2/W dxdx (24)

+ v1 x + v2.

From condition (17) it can be shown that u1= —v1. The constants ux, u2, vl9
and v2 represent rigid body displacements of the shell.

IV. Edge Conditions Imposed Upon Membrane Displacements by a Shear Diaphragm

In this paper we shall limit ourselves to considering membrane deformation
problems for shells with either free or supported edges. Since a free edge imposes
no boundary conditions on the membrane deformations we proceed to derive
boundary conditions in terms of u, v, and w from the mechanical actions of
a shear diaphragm upon a shell. For this purpose we introduce the following

.*\
PLANE OF THE

d EDGE DIAPHRAGM

' Jf I /
" fb

Fig. 10.

more relevant edge displacement components in terms of u, v, and w. Consider
an edge with x const. as shown in fig. 10. We have u as before and

v' v cosß + wsmß, (25)
w" wcos/J — v sin/?. (26)

Along edges with y const. we use v as before and

u' u cosa + wsina, (27)

w' — wcosa — u sina. (28)

If we assume that a shear diaphragm has no rigidity normal to its own plane
there will be no control imposed on displacement components u along edges
x const. and no control on displacement components v along edges y
const. Since the edge members carry the shell by tangential shear forces,
their prineipal constraining action on the membrane deformations appears
to be their control of u' and v'. These displacement components must then be
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equal for the shell and the edge member in order to ensure tangential compa-
tibility. From this fact we derive a boundary condition for w along x const.
as follows. Solving equation (25) for v, differentiating it with respect to y and

simplifying, then expressing vy in terms of equation (16) we find

w —[«'(i+oh-
"yy

Correspondingly, we have along edges y const.

(29)

(30)

Should it be desired to obtain boundary conditions for v along edges x
const., we may eliminate w from equations (25) and (16) and thus obtain

*-^{*-*[f(1+z*,),/,l}-
^yy l L^y Ay)

Its counterpart along edges y const. is

^xx l L^x Ax)

(31)

(32)

Boundary conditions based on compatibility between the shell and edge
members in terms of w' and w" can also be formulated. However, their appli-
cability to membrane deformation problems seems rather restricted and
therefore they will not be shown in detail4).

V. Membrane Deformations of the Elliptic Paraboloid

As an example for shells of positive Gaussian curvature we consider those
whose middle surfaces are elliptic paraboloids described by:

£ + £2 (see fig. 11). (33)

/ZZ\ K 9T y
vr \)

DIAPHRAGM

>
Fig. 11.

4) See ref. 1, pp. 67 to
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A. Inextensional Deformations

We begin with a consideration of deformations which are possible without
membrane stresses being generated in the shell. Thus, if Nx Ny Nxy 0,

we have f g k==R 0. For this case equation (19) for w reduces to

h-w** + h~Wyv 0' (34)

which can be transformed to the Laplace equation by a change of variables
such as

-ßr-
so that convenient use can be made of results from potential theory in the
deformation problems for such shells.

We can now take a piece of an elliptic paraboloid without any edge members

on it and of random shape and prescribe any distribution of w displacements

along its edges. An inextensional deformation w0 will then exist for the
shell satisfying these boundary conditions since it is merely a Solution of the
Dirichlet problem which we have stated. We also note from the maximum
principle of potential theory that the upward or downward deflections w
within the shell will nowhere be larger than the maximum up or down deflections

prescribed along the edges. A local dent in the interior of the shell will
not be possible as an inextensional deformation. We see that such shells of
positive Gaussian curvature offer no membrane resistanee to a wide variety
of edge distortions, but must remember that this result holds only for small
deflections since the kinematic relations (15), (16), and (17) were linearized
aecordingly. Our group of inextensional deformations therefore represents a
much larger class than would be obtained from a study of the applicability of
elliptic paraboloids as a problem of differential geometry.

Now consider a rectangular piece of the elliptic paraboloid with four fixed
unstrained edge members. From the boundary conditions (29) and (30) we
get with f==g 0 and u' vf 0, w 0 on all edges. From the Dirichlet problem
it is obvious that w vanishes identically throughout the shell. No inextensional
deformation whatever will be possible for the elliptic paraboloid (and any
other shell with K> 0) with fixed and unstrained edges.

Next, let us subject the elliptic paraboloid with four edge members to the
twisting deformation

-4c
w —=—xy.ab u

This deformation obviously satisfies equation (34) and results in the following
displacements u and v from the formulas (21) to (24) where we have set

u1 u2 v1 v2 0:
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4ey Ix2 y2\ _
4=ex /y2 x2\

ab yh-L 3h2) ab \h2 3hJ'

These deformations will result in a warping of the shear diaphrams, in their
rotation within their own plane about centers located at zx and z2, and finally
in a shear distortion, i/j, of the rectangular edge layout of the shell. All of
these results are illustrated in fig. 12.

4h, 4h2

i *2 6h,

'\2e
3ab h Sb

Jk--_I

b Uh

\4h, 4
z.

^lefaf _b

^4h, i2h2j

4h2 i2hj

PERSPECTIVE
VIEW OF W(X,U)

4e
TWIST -—ab

Fig. 12.

The inextensional deformation that we just found reveals the interesting
fact that an elliptic paraboloid with four edge members is insensitive to uneven
settlement of the corner supports if at the same time, it is allowed to go
through an accompanying shear distortion of its edge layout. Conversely, such
a shell will offer resistanee against a shear deformation of its edge assembly
only if its corners are constrained to remain in one plane.

B. Extensional Deformations

We consider the elliptic paraboloid supported at all four edges and
subjected to the load distribution

_ 7tx iry
p„ p cos — cos——.rz ^ a a
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We take the edge layout of the shell as a square and for ease of numerical
calculations we simplify the equation for the paraboloid to

z
x2 + y2

Also, wherever Poisson's ratio, v, occurs it shall be taken as 0.2. Equation (19)
for this case reduces to n

V2w^R.
To obtain the membrane forces for the shell we refer to the Pucher Solution
of this case5). Computations for R based on the membrane forces from this
Solution are best carried out numerically6). The boundary values for w follow
from equations (29) and (30), where we set u' v' §, since we neglect the
deformations of the edge members due to the shear forces from the shell. The
boundary value problem for w is conveniently solved by relaxation methods
and the results of these computations are given in table 1 for one octant of
the shell in terms of the dimensionless variable

alp
where E Young's modulus and t thicknes of the shell.

Table 1..Values of W
w t

-g— w in One Octant of the x, y System

y/<*
x/a

0.0 0.1 0.2 0.3 0.4 0.5

0.0 1.145 1.087 0.921 0.663 0.342 0
0.1 1.034 0.880 0.640 0.339 0.014
0.2 0.761 0.573 0.329 0.054
0.3 0.461 0.308 0.114
0.4 0.265 0.189
0.5 0.255

Fig. 13 gives a perspective view of W for the third quadrant of the xy
system.

We proceed to calculate u and v according to the method outlined by the
formulas 21 to 247).

Table 2 shows the results for u in terms of the dimensionless variable

TT EtU -g— u.
a*p

5) Ref. 1, p. 14.

6) For details of numerical techniques the reader is referred to ref. 1, p. 97.
7) For an adaptation of these formulas to numerical procedures the reader is referred

to ref. 1, p. 59.
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CORNER
(-0.5,-0.5) EDGE

(-0.5,0) -0 4 -^0

ENTER
x/a

y/a

(H)

WMAX H45

Fig. 13.

EtTable 2. Values of U -^—u for the First Quadrant of the x,y System

a:/a
yl<*

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0 -0.036 -0.047 -0.013 + 0.078 + 0.223
0.1 0 -0.034 -0.045 -0.015 + 0.069 + 0.206
0.2 0 -0.028 -0.040 -0.019 + 0.045 + 0.157
0.3 0 -0.021 -0.032 -0.026 + 0.009 + 0.080
0.4 0 -0.011 -0.022 -0.032 -0.035 -0.019
0.5 0 -0.001 -0.011 -0.034 -0.074 -0.127

CENTER 0.1 0.2 0.3 0.4 0.5 UMAX+0.223

I CORNER
U=-0.127 10.5,0.5)

Fig. 14.

Fig. 14 illustrates the distribution of U for one quadrant of the shell and
it indicates clearly the way in which the edge members warp.
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VI. Deformations of the Hyperbolic Paraboloid

A. Inextensional Deformations

As an example for shells of negative Gaussian curvature, we consider the
hyperbolic paraboloid, whose middle surface is given by

*=lr*;(Beefig-15)- (35)

Ü

^3L^
\=b/aDIAPHRAGM

*P

Fig. 15.

Equation (19) for w becomes

1
— w
h± yy h2Wxx 0,

which is of the hyperbolic type and can be written in the canonical form

d2w

dtdrj
0, (36)

where |=(-^j 2x + y and n Mj *x — y. The general Solution of (36) is

w w1(£)+w2(rj) which represents two forms of cylindrical bending about
straight line generators £ const., and rj const. in the shell. Clearly, the
middle surface of the shell is unstrained, and we are indeed dealing with
inextensional deformations.

To build up the Solutions for rectangular domains, consider fig. 16 where
a hyperbolic paraboloid is bounded by the edges 1, 2, 3, 4. For simplicity, we
take hx h2 and thus £ x-\-y, rj=x~y. These characteristic coordinates are
also shown in the figure. Now suppose that the boundary conditions w0

wi (£) + w>2 0?) and wQy w^^ ^p2i are specified on edge 1 so that values

for w1 and w2 are given on that line. These will be propagated unchanged
through the shell, viz. w(g) unchanged along generators £ const. and w(r))
along 7] const. At edge 2 we solve for w2(rj) from the boundary condition
for w0 with the wx(^) which was carried over from edge 1. This w2(rj) now
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travels to edge 4. The converse of the Situation on edge 2 holds true for edge 3.

On edge 4 some boundary value distribution w0 w1(g) + w2(rj) follows from
the total procedure. So far, the Solution has been built up as for an initial
value — boundary value problem. It would be convenient to supplant the
condition for w0v on edge 1 by any continuous boundary condition for w0 on
edge 4 and thus stating a boundary value problem. In many cases this is not
possible. Consider a square domain as in fig. 17. The entire region consists of
rectangular loops of generators as shown in the figure. Along these generators
we may have w1(g)= —w2(rj) so that w2 0 on all edges but not necessarily

>y

b +*»o;A(-f-.O)

^
b a

U-

Fig. 16. Fig. 17.

vanishing in the interior of the region. We can now imagine larger domains
made up of such Squares whose w0 will be antimetric continuations across all
dividing lines between the Squares. Clearly, the ratio \ bja will be of the

form —, where q and r are integers, i.e., A must be a rational number. The

density of the set of rational numbers seems to make every value of A a "near-

critical" one, however, one can see that such ratios as 0 require small

distances between nodal lines in the pattern of w0. For finite amplitudes of
w0 this means that the changes of curvature and therefore bending moments
in the deformed shell are no longer negligible. Such deformations, then, must
be dismissed from the membrane theory and we shall consider only such
critical values of A which are ratios of small integers. For these A, inhomo-
geneous boundary conditions can be specified on all edges if they satisfy
certain symmetry conditions8). However, these problems will have no unique
Solutions, since nontrivial w0 have been shown above to exist for w0==0 on
all edges.

8) See ref. 1, pp. 114 and 115.
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For noncritical values of A it can be shown9) that unique Solutions exist
for the inhomogeneous boundary value problem for w0, and of course no
nontrivial Solutions exist for the homogeneous problem.

So far we have not assumed that the rectangular domain ab of the hyperbolic

paraboloid is confined along the edges. Now, consider that it is supported
by fixed, unstrained shear diaphragms on all sides, calling for the boundary
condition w0 0 everywhere. Then we know from the foregoing that this
condition will not preclude inextensional deflections w0 in the interior of the shell
if A has a critical value. This fact represents a serious practical drawback of
hyperbolic shells as compared with the structural Performance of elliptic ones.

Finally, one can subject the hyperbolic paraboloid to an inextensional twist
4e

w0=—rxy and make similar observations about the results in fig. 18 as we

did with fig. 12. In particular, the shear distortion of the edge layout is

4e (a2 b2\
\ab\h^ h2)'

a2 hwhich will vanish, in distinction from elliptic cases, for — ^. Under these

circumstances, other pure twists, w0, like the one in fig. 19 are also possible.

~Lh2 4 h W(X,U)

^i
«--£

z,=

I z Fig. 19

\4h2 12 hj
rr^2 rs2b£ a 1—2e/af_biz«

h2 4h,
--z+lZlZsf-jQ a \4h, 12h

Fig. 18.

B. Extensional Deformations

We consider the hyperbolic paraboloid with h1 h2 b and A 2 under the
uniform loading pz p. It is supported by shear diaphragms on all edges
(fig. 20).

») See ref. 1, p. 115.
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To solve for the membrane forces in this shell, we note that equation (5)
in its canonical form becomes

d£dr) V^>V) 8
•

_b

Fig. 20.

The boundary conditions are cpxx 0 at 1 and <pyy 0 at 2, 3, which may be
ensured by 99 0 on 1, 2, 3. At 4 we should also like to have cpxx 0, but due
to the hyperbolic nature of the problem we must try to meet this condition
by adjusting cpy on 1. We assume some values for the latter to start with. The
total rectangular domain is separated into five characteristic zones as delineated
by a set of dividing characteristics (fig. 20). The Solution cp is now constructed
in each of these zones by the Riemann integration method where we use the
formulas

9(P) $[<p(A) + <p(B)] + % ?<pydx- $ $%d£dr,
A ABP

for regions like fig. 21 and

<p(P)=<p(A) + <p(C)-<p(B)-$ $%dHv-
ABCP

for regions like fig. 22. By using the new edge values arising in each zone as
initial values for the next, we ensure continuity of cp throughout the rectan-

Fig. 21. Fig. 22.
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gular domain. However, the continuity of any of its derivatives at the dividing
characteristics does not necessarily follow unless these derivatives are taken
in the direction of the latter10). Consequently, the resulting membrane forces

may be discontinuous at the dividing characteristics, a fact which proves
of vital interest in the following discussion of deformations11).

The canonical form of equation (19) for w reads

d2w
*(f,i?), (36)

dgdrj

where dt, containing the membrane forces, is discontinuous at the dividing
characteristics. Since the boundary conditions (29) and (30) also contain the
membrane forces, they call for discontinuities in w at the corners of ab. These,
however, were arbitrarily smoothed out in the present example, to retain some
semblance of w with physical reality. Using these boundary conditions on the
edges 1, 2, 3 and some initial condition of wy on edge 1, a Solution of equation
(36) was constructed by the method just outlined in finding cp. The boundary
values of w on edge 4 turned out to be identical to the ones on 1. Since A 2

is a critical value for the given shell, non-trivial inextensional deformations
with homogeneous boundary conditions are possible. They are odd in y and
can be used to eliminate the antimetric part of the Solution already found, so
that the resulting w is even in y as can be reasonably demanded with a pattern
of membrane forces that has the same property12). Fig. 23 shows the results

TP tin terms of a contour map of W —^w (E Young's modulus, t thickness

of shell) for one quadrant in the x, y system and table 3 gives corresponding
numerical values. The figure shows that discontinuities in Wx and Wy occur
along dividing characteristics.

With w known, the horizontal displacements U —j-^u and V —j-^v can

be found in each characteristic zone by formulas (21) to (24) and their adap-
tations for numerical work. Since the deformed shapes of zones II and IV
(fig. 20) no longer fit into the space between the distorted edges of the neigh-
boring ones they had to be given some arbitrary orientation. The resulting
vector field for U and V in one quadrant of the x, y system is given in fig. 24.

It chiefly points out the considerable incompatibilities in tangential displacements

along the dividing characteristics which are essentially due to
discontinuities of the membrane strains in these directions.

10) For the details and results of this calculation the reader is referred to ref. 1,

pp. 30—35.
11) Indeed, this feature greatly decreases the value of membrane analysis in hyperbolic

cases and in the authors' opinion has not been given proper recognition in such
work as ref. 7. An interesting analysis by S. Ban (ref. 8) avoids this diffieulty by treating
only hyperbolic paraboloid panels which do not exceed a characteristic zone.

12) For details see again ref. 1, pp. 121—129.
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TP tTable 3. Values of W —r^w in the Fourth Quadrant of the x,y System

vl*>
x/b

0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.1188 0.1224 0.1332 0.1523 0.1817 0.2236
-0.05 0.1193 0.1228 0.1338 0.1534 0.1833 0.2038
-0.10 0.1205 0.1242 0.1358 0.1565 0.1694 0.1896
-0.15 0.1221 0.1262 0.1390 0.1463 0.1600 0.1805
-0.20 0.1240 0.1287 0.1312 0.1398 0.1546 0.1766
-0.25 0.1261 0.1230 0.1267 0.1366 0.1535 0.1779
-0.30 0.1187 0.1206 0.1252 0.1373 0.1569 0.1849
-0.35 0.1191 0.1211 0.1276 0.1421 0.1654 0.1982
-0.40 0.1279 0.1305 0.1384 0.1520 0.1799 0.2186
-0.45 0.1466 0.1499 0.1597 0.1766 0.2013 0.2471
-0.50 0.1768 0.1809 0.1932 0.2143 0.2446 0.2850
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In concluding, we may say that the membrane Solutions for inhomogeneous,
hyperbolic problems where discontinuities occur, hardly yield any realistic
results. Direct recourse must be taken to developing an appropriate bending
theory. In elliptic cases, however, the analysis of membrane deformations
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produces quite acceptable results especially if the bending corrections neces-
sitated by the uncontrolled w' and w" displacements at the boundaries can be

proven restricted to the edge regions of the shell.
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Summary

The paper develops a membrane theory of deformations for shells of
arbitrary shapes besides surfaces of revolution and cylinders which have been
treated in the past. Cartesian coordinates and projected membrane forces are
used whereby many of the formal details parallel those of the Pucher method
of Solution for membrane stress problems. This method is reviewed for
reference.

After a derivation of the kinematic and elastic relations the elasto-kine-
matic equations between the displacement components u, v, w, and the membrane

forces Nx, Ny, Nxy follow as

Ux -WxZx + f'> Vy -Wyzy + 9'> &nd

uy + vx -™xzy-wyzx + k\

where /, g, k contain the membrane forces. Elimination of u and v from these
equations yields a differential equation for the vertical deflection w:

L(W)e= wxxzyy-2wxyzxy + wyyzxx R,

where the Operator L is typical of the Pucher method. R contains the membrane

forces. Assuming w as (found) u and v may be obtained, by quadratures.
As an alternative, differential equations similar to the one for w are developed
for u and v whose second order Operators are again L.

In most structural applications the edges of a shell are supported by verti-
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eal shear diaphragms. The various constraining actions of such an edge member
are formulated as boundary conditions for the deformations. Amongst them
the most important and useful one, in terms of w, is that there be no tangential

sliding between the edge of the shell and the diaphragm. Shells with positive

Gaussian curvature are studied first and particular attention is given to
the deformations of an elliptic paraboloid with four edge diaphragms under
uneven settlement of the corner supports, surface loading, and other cir-
cumstances. The results of these investigations are applicable to structural
practice.

The corresponding problems are then developed for the hyperbolic
paraboloid as an example for shells of negative Gaussian curvature. A study of its
inextensional deformations reveals that inextensional deflections with
homogeneous boundary conditions may occur in such a shell if a critical or eigen-
value condition is satisfied. The same shell with uniform surface loading is
discussed as an example for extensional deformations. This investigation serves
mainly to point out the discontinuities along dividing characteristics in such
hyperbolic membrane problems which make their Solutions rather unrealistic.

The shell shows that the membrane theory produces quite acceptable
results for the deformations in elliptic cases but it shows also that in hyperbolic

cases the results of similar computations are of a rather limited value
and call for the development of the bending theory.

Resume

Dans cette etude, les auteurs developpent une theorie membranaire des

deformations des voütes minces de forme arbitraire, a l'exception des surfaces
de revolution des cylindres, qui ont fait l'objet d'etudes anterieures. Gräce
ä l'emploi des coordonnees cartesiennes et des projections des efforts de
membrane, de nombreux elements formeis correspondent ä la methode de Pucher

pour la Solution du probleme des tensions membranaires. Cette methode est
ä la base de la presente etude.

Apres avoir etabli les relations cinematiques et elastiques, les auteurs
determinent les equations elasto-cinematiques entre les composantes u, v, w
des deplacements et les efforts membranaires Nx, Ny, Nxy, sous les formes
suivantes:

ux -wxzx + f'> vy -wvzy + 9 et

uy + vx -wxzy-wyzx+'k'

en designant par f,getk les efforts membranaires. En eliminant u et v de ces

equations, on obtient une equation differentielle relative ä la flexion verticale

w:
L(W) wxxzyy-2wxyzxy + wyyzxx R
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1'Operateur L etant caracteristique de la methode de Pucher. R contient les

efforts membranaires. Si l'on considere w comme connu (trouve), on obtient
u et v par quadrature. On peut egalement, en Variante, etablir pour u et v
des equations differentielles semblables ä celle qui concerne w et dont l'opera-
teur de deuxieme ordre est egalement L.

Dans la plupart des applications aux ouvrages, les bords des voütes minces
sont Supportes par des elements plans verticaux. Les differentes actions per-
turbatrices qui s'exercent sur un tel element de bordure sont formulees ä titre
de conditions marginales pour l'etude des deformations. Parmi ces conditions,
la plus importante et la plus utile, suivant laquelle aucun glissement ne doit
se produire entre le bord de la voüte mince et l'element plan, est exprimee en w.

Les auteurs etudient tout d'abord les voütes minces comportant une courbure

positive de Gauss. L'attention est particulierement attiree sur les
deformations d'un paraboloide elliptique comportant quatre elements plans de
bordure, avec tassement non uniforme des appuis aux angles, charge super-
ficielle et autres conditions. Les resultats de ces investigations peuvent etre
appliques ä la construetion pratique.

Des problemes analogues sont ensuite etudies pour le paraboloide hyper-
bolique, ä titre d'exemple d'une voüte mince presentant une courbure negative
de Gauss. L'etude de ses deformations exemptes d'allongement montre que
dans une teile voüte, il peut se produire des flexions sans allongement, avec
conditions marginales homogenes, lorsqu'une condition critique ou parti-
culiere est remplie. A titre d'exemple de deformations avec allongements, les

auteurs etudient la meme voüte mince dans le cas d'une charge superficielle
uniformement repartie. Cette investigation est essentiellement destinee ä

mettre en evidence les defauts de coordination des autres caracteristiques dis-
criminatoires dans ces problemes relatifs aux membranes hyperboliques,
defaut qui rend problematique la possibilite d'application pratique de la Solution

de ces problemes. La voüte mince montre que la theorie des membranes
donne des resultats entierement acceptables pour les deformations, dans le
cas des ellipses; eile montre toutefois aussi que dans le cas des hyperboles, les
resultats des calculs analogues ne presentent qu'une valeur tres limitee et
exigent une transformation de la theorie de la flexion.

Zusammenfassung

In der vorliegenden Arbeit wird eine Membrantheorie für Formänderungen
von Schalen beliebiger Form, außer Rotationsflächen und Zylindern, die
früher behandelt wurden, entwickelt. Dank der Verwendung von Kartesischen
Koordinaten und projezierten Membrankräften entsprechen viele formale
Einzelheiten der Methode von Pucher zur Lösung der Membranspannungs-
probleme. Diese Methode dient als Grundlage.

Nach einer Ableitung der kinematischen und elastischen Beziehungen
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erhält man die elasto-kinematischen Gleichungen zwischen den Komponenten

u, v, w der Verschiebungen und den Membrankräften Nx, Ny, Nxy zu

ux -wxzx + f; vy -wyzy + g und

UV + VX -WXZy-WyZx + k,

worin /, g und k die Membrankräfte enthalten. Eliminiert man aus diesen

Gleichungen u und v, so erhält man eine Differentialgleichung für die vertikale
Durchbiegung w:

L(W)= wxxzyy-2wxyzxy + wyyzxx R,

wobei der Operator L typisch für die Methode von Pucher ist. R enthält die
Membrankräfte. Nimmt man w als bekannt an (gefunden), so erhält man u
und v durch Quadratur. Als Alternative werden für u und v zu derjenigen
für w ähnliche Differentialgleichungen aufgestellt, deren Operator zweiter
Ordnung ebenfalls L ist.

In den meisten baulichen Anwendungen werden die Schalenränder von
vertikalen Binderscheiben getragen. Die verschiedenen Randstörungen eines
solchen Randgliedes werden als Randbedingungen für die Formänderungen
formuliert. Unter diesen ist die wichtigste und nützlichste Bedingung
ausgedrückt in w, daß zwischen Schalenrand und Scheibe kein Gleiten stattfinden
darf. Zuerst werden Schalen mit positiver Gaußscher Krümmung untersucht.
Spezielle Aufmerksamkeit wird den Formänderungen eines elliptischen Para-
boloids mit vier Randscheiben bei ungleichmäßiger Setzung der Eckstützen,
Flächenbelastung und andern Umständen gewidmet. Die Ergebnisse dieser

Untersuchungen sind in der Konstruktionspraxis anwendbar.
Die entsprechenden Probleme werden dann für das hyperbolische

Paraboloid als Beispiel einer Schale mit negativer Gaußscher Krümmung
entwickelt. Eine Untersuchung über ihre dehnungslosen Formänderungen zeigt,
daß die dehnungslosen Durchbiegungen mit homogenen Randbedingungen in
einer solchen Schale vorkommen können, falls eine kritische oder Eigenwertsbedingung

erfüllt ist. Dieselbe Schale wird unter gleichmäßig verteilter Flächenlast

als ein Beispiel für Formänderungen mit Dehnungen diskutiert. Diese

Untersuchung dient hauptsächlich dazu, den Mangel an Zusammenhang
weiterer Unterscheidungsmerkmale in solchen hyperbolischen Membranproblemen
hervorzuheben, was ihre Lösung für die praktische Anwendung fragwürdig
macht. Die Schale zeigt, daß die Membrantheorie ganz annehmbare Resultate
für die Formänderungen im Fall von Ellipsen gibt; sie zeigt aber auch, daß
im Fall von Hyperbeln die Ergebnisse ähnlicher Berechnungen nur einen sehr
beschränkten Wert haben und den Ausbau der Biegelehre fordern.
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