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Distribution of Loads in Two Types of Railway Bridges
Répartition des charges sur deux types de ponts de chemin de fer

Lastverterlung in zwei Eisenbahnbriickentypen

TaeiNn WaH, Southwest Research Institute, San Antonio, Texas

Notation
a = gspacing between centers of longitudinal beams, in feet.
a’ = distance between edge beam and nearest longitudinal diaphragm,
in feet.
b = the total width of the bridge, in feet, measured from center to center

of edge girders.
distance between rail centers, taken as 5 feet in numerical compu-
tations.
= spring constant.
length of bridge, center to center of bearings.
spacing of transverse members, in feet.
rectangular coordinate axes.
modulus ef elasticity for a longitudinal member.
modulus of elasticity for a transverse member.
moment of inertia of a longitudinal member.
moment of inertia of a transverse member.
bending moment.
= couple at the end r in beam extending from 7 to r+ 1.
number of transverse members.
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= i ® dimensionless parameter.

= x coordinate of position of a concentrated load.
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Other symbols are defined wherever necessary.
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Introduction

The present study is an investigation of the longitudinal and lateral distri-
bution of loads in certain types of railway bridges in common use; the aims
of the investigation are to make a theoretical analysis and to furnish formulas
and tables summarizing the results.

The terms ‘‘longitudinal’’ and ‘“lateral’’ distribution arise basically out
of the kinds of problem encountered in the design of two types of railroad
bridges. These are the two general types investigated. In the first type the
problem of interest is the “longitudinal’’ (parallel to traffic) distribution of a
train of wheel loads and in the second type the problem is the “transverse’’
(perpendicular to direction of traffic) distribution of a train of wheel loads.
The definition of “‘longitudinal’’ and “lateral’’ will be made clear in the course
of the next few paragraphs.

Type 1. This type consists of a large number of transverse beams supported
on heavy longitudinal edge girders. It is necessary, for economical design of
this type, for a wheel load or wheel loads to be distributed among as many of
the transverse beams as possible. The problem is thus one of investigating the
propagation of the load or loads in the direction parallel to the traffic or the
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“longitudinal distribution’’. This distribution is achieved to a considerable
extent by the rails themselves. However, several other devices are employed
in order to achieve a more uniform distribution. An important and widely
used method is by means of longitudinal “diaphragms’. As generally used,
these diaphragms consist of plates or short I beams, placed across two adjacent
transverse beams and attached to the webs of the latter by clip angles, the
diaphragms running the full length of the bridge. Such diaphragms may be .
placed on the same vertical line as the running rails, or anywhere else over
the transverse section as the designer may think proper.

Other methods which to a greater or lesser extent assist in the longitudinal
distribution of the loads consist of ballasting the floor, placing of a steel floor
plate, or placing a concrete liner several inches in thickness on the bridge
floor. One or more of these devices may be used in any particular bridge.

This paper confines itself to investigating the distribution of loads in bridges
of the open-deck type, that is to say, those which do not carry either ballast
or concrete liner. However, in the light of experimental results, the theory may
be modified to take approximate account of these additional factors.

There are several variations of this basic type. In a single track bridge,
the diaphragms may be immediately underneath the rails as mentioned above,
or a single diaphragm may run along the longitudinal center line of the bridge.
Similar variations are also possible in a double track bridge. And further, as
has been noted above, the diaphragms may be placed anywhere over the
transverse section, depending on the judgment of the designer.

In order to keep these variations within limits, two types are investigated
as shown in figs. 1 and 2 and designated, respectively, types Ia and Ib.

Evidently the results of the analysis would depend entirely on the assump-
tions made regarding the behaviour of the rails and the diaphragms as compo-
nent parts of the whole structure. In order to keep these assumptions and
therefore the limitations of the analysis in mind it is convenient to list them:

1. The bridge is assumed to be simply supported at the ends; all bridges
investigated are right bridges.

2. The transverse beams are assumed to be closely spaced and therefore
taken as approximating a continuous distribution. Without this simplification
the problem becomes intractable mathematically in a general form.

3. The rails and the longitudinal diaphragms are supposed to behave as
continuous beams. This is perhaps the most questionable of the assumptions.
It may be said that this assumption has the effect of overestimating the stiffness
of the longitudinal diaphragms, that is, they in effect achieve a better longi-
tudinal distribution than they may be expected to do in practice. This follows
from the nature of the diaphragms. Their behavior must depend upon the
action of the clip angles and the elasticity of the rivets that connect them to
the transverse beams. However, diaphragms are customarily treated as con-
tinuous beams and this assumption gives the simplest mathematical picture
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of the action of the diaphragms. One may take a smaller stiffness to account
for the partial effectiveness of the connections.

4. The torsional stiffness of all members is considered negligible. This
assumption is amply justified for all practical purposes.

5. Concrete slabs and ballast are not taken into account. The introduction
of slabs changes the picture completely while the effect of ballast must neces-
sarily be determined by experimental methods. On the other hand, steel floor-
plates may be taken into account by combining their effect with that of the
transverse beams. This amounts to saying that while the torsional stiffness of
a concrete slab cannot be neglected, that of a steel plate may be, without
appreciable error.

With the above limitations, the exact solution of the problem is not diffi-
cult. However, the mathematical solution yields results which are not con-
venient for design purposes, and approximate solutions have to be devised.
Furthermore, the exact solution leads to very slowly converging infinite series
and numerical computation becomes quite laborious.

Type I1. The second basic type of bridge investigated consists of a number
of equally spaced, identical longitudinal beams. Timber ties are placed across
the top of these beams. It is necessary, for the most efficient use of the longi-
tudinal beams, that the wheel loads be distributed as uniformly as possible
over the cross section of the bridge. In an ideal bridge, each of the longitudinal
beams will carry exactly 1/n of the total statical moment over any cross
section, where n is the number of beams. Such a bridge is, of course, impossible
in practice and the problem here is one of investigating the propagation of the
wheel loads in the direction transverse to the direction of traffic, that is, of
“lateral distribution”. This distribution is achieved, to a considerable extent,
by the ties themselves. However, several other devices are employed in order
to achieve a more uniform distribution. A widely used method is by means of
transverse ‘‘diaphragms’’. Generally, these diaphragms consist of a plate or
short I beam placed across two adjacent longitudinal beams and attached to -
the webs of the latter by clip angles. A series of these short diaphragms consti-
tute a transverse diaphragm extending the full width of the bridge. Such
diaphragms may be placed anywhere along the length of the bridge, but are
usually widely spaced compared to the ties.

Other methods which to a greater or lesser degree assist in the lateral
distribution of the loads consist of ballasting the floor, placing of a steel floor
plate or placing of a concrete deck. One or more of these methods may be used:
in any given bridge.

This paper, as mentioned above, confines itself primarily to investigating
bridges of the open-deck type. However, in the light of experimental results,
if these are available, the theory may be modified to take approximate account
of such facts as ballast and concrete deck.

The variations within this basic type consist in a change in the number
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of longitudinal beams or in the number of diaphragms, or both. However, in
order to reduce the number of variables as well as to simplify the general
problem both from the mathematical and design standpoints it is convenient
to add the total stiffness of the diaphragms to that of the ties in all cases.
This is because even in bridges with transverse diaphragms the ties may safely
be assumed to constitute the members primarily effective in the lateral distri-
bution of loads, as may be seen by a comparison of the relative flexural rigidity
of diaphragms to ties in any existing bridge. The variations in this type of
bridge will consist, after the above simplification, merely in a change in the
number of longitudinal beams.

Three variations of type II are investigated, consisting of 4, 5 and 6 longi-
tudinal beams. These are referred to, respectively, as type ILa, IIb and Ilec.

The assumptions made in the analysis are as follows:

1. The bridge is assumed to be simply supported at the ends; all bridges
investigated are right bridges.

2. The ties are always sufficiently closely spaced to approximate a conti-
nuous distribution. The flexural rigidity of the diaphragms is added to that
of the ties. The stiffness is thus the average for the actual spacing.

3. The diaphragms and ties are assumed to behave as continuous beams
and the ties are supposed to extend the full width of the bridge. The first
assumption is justified in the case of the ties but probably not for the dia-
phragms. The second assumption is justified in single track bridges of the
open deck type. In double-track bridges the assumption may not always be
strictly correct.

4. The torsional stiffness of all members is treated as negligible.

5. Concrete slabs and effect of ballast are not taken into account. If a
floor plate exists its flexural rigidity may be added to that of the ties.

6. All longitudinal girders are identical and equally spaced.

With the assumptions above the formal solution is a simple one. Again the
exact solution is not convenient for design purposes. By the use of tables and
charts, however, the solution of specific problems may be simplified.

From the foregoing it is evident that this paper makes no attempt at a
comprehensive study of the subject. Because of the complexity of the general
problem it has been found necessary to ignore various phases.

Historical Review

The problem of lateral and longitudinal distribution of loads in a railroad
bridge is a special and somewhat simple case of a more general problem. In
the general problem the structure consists of an arbitrary number of longi-
tudinal girders interconnected cross-wise by an arbitrary number of transverse
girders. On this network is placed a deck slab, usually of reinforced concrete.
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Rollings loads may move both laterally and longitudinally on the bridge. The
bridge may be continuous over several supports.

The difficulties in the “exact’’ analysis of such a structure are numerous.
Some of the difficulties are as follows: |

The structure is actually a ribbed plate and no mathematical treatment of
the problem exists. The closest approximations to the actual bridge are obtained
by treating it as an anisotropic plate or as a system of interconnected girders
in which the slab acts as the top flange of the girders. This second method
neglects the twisting resistance of the place, while the first method assumes
a continuous distribution of the flexural rigidities of the girders.

If the bridge does not possess a deck plate, the greatest difficulty arises in
the treatment of a finite number of cross girders. The employment of trigono-
metric series is not possible, and one has to have recourse to the various
methods of solving statically indeterminate structures. Whatever the method
employed, an exact solution must find all the indeterminate quantities which
are at least equal to the total number of nodes. Since these may be, in any
given case, very large in number, the exact solutions are necessarily laborious,
even if certain quantities involved in the computation are furnished in the
form of tables.

CHARLES MASSONNET [2, 3] gives an excellent historical summary of the
various investigations of the general problem. The first investigators in this
field include F. ENGESSER, A. OSTENFELD and others. The method of using the
“characteristic loads’’ of a network of girders has been used by BrLEicH and
MEerLAN. For a numerical approach to the problem relaxation methods have
been used, but are very laborious except in the simplest cases.

All the exact methods lead to the construction of influence surfaces for
moments, shears, etc. To compute the moments one has to compute the volume
under the influence surface.

The exact methods are of little practical utility. They serve, however, as
valuable guides to the error involved in approximate methods. Among the
most important of the approximate methods is the one attributed to ENGESSER,
in which the cross girders are treated as infinitely rigid. According to MASSONNET
this method gives reasonably accurate results in certain instances. LEONHARDT
has improved upon Engesser’s method by taking into account the actual
flexural rigidity of the cross girder.

CHARLES MASSONNET has recently treated the problem as an anisotropic
plate [2].

The above historical review is given very briefly as the solutions there do
not have a direct bearing upon the problems under investigation in the present
paper. They are however invaluable as guides in tackling the present research. In
the first place it is clear that diaphragms are treated in all cases as ‘““cross girders’’
with a definite flexural rigidity. This, while questionable as representing the
true action of these members, seems necessary in order to formulate a tract-
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able mathematical problem. Secondly the treatment of a small number of
transverse girders (or ‘‘diaphragms’’, the terms are used interchangeably)
leads to difficulties while a large number of such girders may be approximated
by a continuous distribution and therefore analyzed by the use of trigono-
metric series. ;

Fortunately, in the types of railroad bridges under study, the transverse
members are generally large in number, as indicated in the Introduction. The
exception to this rule arises only where a number of longitudinal girders are
connected by a very small (that is widely separated) number of transverse
diaphragms. But in such cases, the distribution is achieved primarily by the
ties, which should accordingly be classed as ‘‘diaphragms’’; the effect of the
actual diaphragms may be approximately taken into account by adding their
flexural rigidity to that of the ties.

It is also clear from the above review that the closest theoretical approach
to a railroad bridge with a deck slab is that of the anisotropic plate. In the
longitudinal direction the component parts are the longitudinal girders
(assumed distributed uniformly over the width of the bridge) and the deck
slab while in the transverse direction they consist of the ties and the deck
slab. The picture in an actual bridge is, however, complicated by the fact
that the slab and the ties do not usually have the same boundaries. For this
reason, the effect of the slab is not taken into account in this paper, and open
deck bridges are exclusively considered in the analysis.

Longitudinal Distribution of Loads

Case Ia. Two Longitudinal Diaphragms

In the following analysis the rails are treated as the longitudinal dia-
phragms. If actual diaphragms exist immediately underneath the rails, the
moments of inertia of such diaphragms may be added to that of the rails, it
being assumed that a diaphragm and the rail above it act as two separate
longitudinal beams.

Consider any transverse section of the bridge (fig. 3).
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Assume an arbitrary set of deflections y, (), y, (), y; () and y, (z) positive
downward, and positive (clockwise) rotation of all longitudinal members. The
transverse beams are supposed to be sufficiently closely spaced to approximate
a continuous distribution. If N is the number of transverse beams, K, I, the
flexural rigidity of each beam, then the following slope-deflection equations
may be written where the M’s are the bending moments per unit length of
bridge:

NE,I, [ —1)]
M12= lac" cb4@1+2@2_6(y2a1y1)’ ,
NE,I, | —y1)]
My = =58 L2@1+4@2—6§"ia,i_,
_NE L[ (s —¥5)]
M, = I _4@14—2@3—_6—?—__'
Due to symmetry, Ys =Yy, O3=—0,.
Hence the equations become:
NE,I, — Y1)
My == [4@1+2@2—6§/ﬁa,—y1—],
NE, I —Y1)
M21:~l—a7—?[2@1+4@2-6(?/27,y1—],
NE, I,
M23=‘7j‘—/2@2.

If V,(x), Vy(x) denote the downward shears produced on the girders (or
diaphragms) by the transverse beams, then: '

My, +M
V() =—£—12;,——21«),
v (x) = !M_ (M23+M32) _ (M12+M21)
2 a// a/, a, .
Hence:
d*y NE, I, s — )
Ell?l?l =~ a0 [6@1+6@2—12_2a7_1 , .
3 _ a
Elggﬂ — _N_Ef_lc 6@1+6@2_12£y_2_,_?/1.) 4 FExternal Load
d x* la'2 -

Neglecting the torsional stiffnesses of the girders and diaphragms, it follows
that:

My, = My +Mys = 0.
These result in the following:

4@1+2@2—6(y—2_,—y—1)=0,

3Y1 3Ys (29 +a’)

7 ’ +@1+
a a

@, = 0.
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The unknown ¢, (x) and 0, (x) may be taken in the form:

nmx
Yr = Z Ay sin —— l

n=1
=1, 2.
nmTx ! ’ (C)

0,—= b, sin 7Y
n=1 !
(c) satisfy the boundary conditions of simple support.
The wheel loads W may be represented by the series:

nmTx

W = ZO sin ] (d)

Substituting the series (c) into the equations (b) there results:

Ay +2b,y—6 D021

’

3 2 !
Ef(anl_an2)+bnl+£—gﬂ_)

The above two equations when solved for the b,, yield:

3(a +¢g)

bnl - a/(2a/+3g) (an2_an1)>

\ (e)
b, = *—i—«( —a, ).
n2 — (2a +39) nl

Substituting the series (c) into equations (a) and eliminating the b,, by means
of (e), there result the following equations, the external load in the second of
equations (a) being replaced by the series (d):

nt 7t . NEcIc 6(611”1—0/"2)
.EI l4 anl'— la,'z (2al+3g) b
nt _ NE,I,6(a,,—a,s)
EI2—————Z4 Ao = ld* (2a +39) +C,.
) 6NE,I, 6NE,I,
Denoting @39 Bl " by A, and(Za’+3g)E12la’2 by A,.

3 : A 4
These equations become: - (n +A ) Ma,, =0

l4
e o (f)
@y ( 7i +A ) Ao @y 1 =E—In2'
Solving these equations simultaneously:

O A
Ez{ + 7, +A2)}

a

nl

c, ("4 4+A )
BL{E + 5 (A1+A2)}°

a’nz =
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Bending Moments

In general, only the bending moments in the transverse beams are required.
In such cases it is convenient to have expressions giving these moments

directly. Thus
iVEvQ G@E_yﬂ
la’ (2a'+3yg)’

M21:

_ _6NE,I, { }Sinnwoc
—la 20; +3g ZEI 7’L4 —|‘A +A !’

L BE c, . nTE n&o, .
= (/\1—1—)\2))\2& ;‘S*Z S ——— T —4‘2—4

= n4{n4 A+ Ay) j—i}

In the case of concentrated loads W placed at x=¢,

C, = gZI/—I/—vsin@%é—:.

Substituting this in the above, the expression becomes

. nw«f N (%
17 SIHTSIDT
M21:2(A1+)‘2)A2“'_82 Iz

“Eil . nwé . nmwx

- S1n Sin

ni l l

nmTx

Case 1b. Four Longitudinal Diaphragms (Double Track Bridge)

In double track bridges, it is customary to use four diaphragms these being

placed directly underneath the rails. Such an arrangement is assumed here
and a symmetrical loading condition, which in general will yield the maximum

bending moment in the transverse beams is contemplated.

Referring to fig. 4 and proceeding as in the case of two longitudinal dia-
phragms, the deflections y,, ¥, and y; may be expressed as follows:

2 . nTx

Y, = Z AppSIN—7— 7 = 1,2,3,
where
Oy {)\ (Bo+2g) L 20A I
0 . = K1, a’g gt mint
Rl T pBa8  pigt (83c+29) (8¢c+2g)  6(c+9) , 6a’c+12a’g+4a’?
TR {)\1 a' g +/\2[ a'g + g* + g° ]}+

[(Bc+6g+2a") (3c+2g)-9(e+g)2]}

Ay (224 2
+ 2( 1 2)

[(Bc+2g)(Bc+6g+2a’)—

9(c+9)]

b
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C, (nt=* (3c+2g) 3c+2g  9(c+g9) 6a’'c+12a’g+4a’?

B 7 L o A A o
n3 T p8g8 o ptgd (3¢c+2g) (3c+2g) , 6(c+g)  6a'c+12a'g+4a’?

e {Al g, [P 2B . ]}+
ZAI/\2Z4 ¢ ’ 2

it [(Be+29) Be+bg+2a’)—9(c+g)"]

+L2;1+—A2)[(3c+29) (Be+6g+2a")—9(c+g)]

and y, may be obtained from the relation

(% o)+ 2 —liw—%sinnwx
Ya = Alyl Ys EIZW Zn4 l ’

4
) ) n=1
in which
5 SNE,I, - SNE,I,
1 3(g+2¢ 3c+2qg)’ 2 3(g+2c 3c+2q)°
la'2E 1, (9 h )+ 9 la'?E 1, g . )+ g
2a g 2a g
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Approximate Solutions for Longitudinal Distribution

The analyses presented above result in infinite series which are, in most
practical instances, very slowly converging. This slow convergence is due, in
the main, to the large relative stiffness of transverse beams to rail (or longi-
tudinal diaphragm). The method given above possesses the advantage of
being general and the same procedure may be employed for any number of
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longitudinal diaphragms, whether these consist of rails, or actual diaphragms
or both, the only limit being the increasing complexity of the algebra involved.

The particular cases discussed above are, however, susceptible of a much
simpler solution by assuming that the edge girders are infinitely rigid and the
bridge is infinitely long. The longitudinal diaphragms may then be looked
upon as infinite beams on an elastic foundation made up of the transverse
beams. It may be shown by actual solution of a bridge of practical proportions
that the above assumptions have a negligible effect upon the final result.

Assume, as noted above, that the supporting girders are infinitely rigid;
within certain limits, to be specified below, depending on the proportions of
the members, it is sufficient to assume that the bridge is infinitely long.

HerexvyI [1] gives the following equation for the deflection of an infinitely
long beam on an elastic foundation:

Py .
= L Y%
Y=353°¢ (cosyx+sinyx).
Where P = the concentrated load on the beam at x=0.
k = the “‘spring constant’’, defined as the load required for unit
downward deflection for unit length of spring.

k \'s

Vo= (4 EI) -

E I = Flexural rigidity of beam.

HeTeNYI further notes that a beam of finite length may be treated as one
of infinite length without appreciably impairing the accuracy of the solution,
provided that:

=27

Y

It is evident that the problems treated above can be solved if the values
of k for the various cases can be determined.

Ia. Single Track Bridge. Two Longitudinal Diaphragms
n]

s A

T a’ ! g

=

-1 Referring to fig. 5 and assuming the ends are
simply supported, the deflection at A due to
unit loads at 4 and B is

B ’
' 67,1,

=

N | DU
]
a5
&

Fig. 5. -
The flexural rigidity of the transverse beams

per unit length of bridge is y—El'LIE Hence the deflection of the foundations due
to unit loads at 4 and B is given

(2a"+39g)

. — 1237 _ —9J
by o=in 6NE1,’
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_ 6NEI,
T la’2(2a'+39g)’

whence k

Loads and Bending Moments tn Transverse Beams

The load on the spring is the deflection times the spring constant. Hence
the load on the transverse beams per unit length of bridge, due to wheel
loads Pis: p'=Pky

or p’ =%Ze—7’x(eos;zx+sinyx),
. h r B k 1/‘1 _ § E Elc Ic 1 ll,/‘ (b)
where YE\2EI) T 27 EI 42 (2a'+39)] °

Equation (b) gives the concentrated loads p’ on the transverse beams at a
distance x from the applied wheel loads P. If the beam spacing is s then the
total load on each beam may be obtained, approximately, as p’s. The exact
value would involve the integral of expression (b) and is not warranted. Thus

p=p’s=%Zse‘?’z(cos)/x+sinyx). (e)
The maximum bending moment in the transverse beam due to the loads
P is given by:
M =pa = Eéﬁa' eY*(cosyx+sinyx). (d)
In order to facilitate preparation of tables the length [ of the bridge may
be eliminated from the expression for y by the following approximation:

(N-1) _1

l s’

(N—-1)s=1I, or

Approximately N/l=1/s since N > 1.
The expression for y thus becomes:

_ (3 E,I, 1 U
Y12 ET sa’2(2a' +39)] °

Bending Moment due to a Train of Loads

In practice, the bending moment in a transverse beam is caused by a train
of loads and not due to a single load. Thus, it would be necessary to compute
the effect of each one of the train of loads by means of the expression (c).
However, the effect of a load on a beam decreases rapidly with the distance
due to the negative exponential in expression (c). This suggests that if some
“standard’’ loading, which is flexible enough to take account of slight varia-
tions in the actual loading, is assumed, then the designer’s task will be greatly
lightened without unduly affecting the precision of the solution.

The standard loading here suggested consists of three equal axle loads
each of 2 P, which will usually be the heaviest drivers, spaced a distance z
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apart. The maximum bending moment due to this standard loading may be
obtained by a simple extension of the results of the previous section. The
maximum effect of this train on any beam will be when the load on the central
driver 2 P is directly over the beam. The expression for the maximum load
on the beam becomes:

2p 2p 2p Axle p=Pys{l+e7?(cosyz+sinyz)} (e)
L ' | Loads
£ l z and the expression for the maximum bending moment
Standord Losding in any transverse beam is:
Fig. 6. M =pa' = Pa'ys{i+e7?(cosyz+sinyz)}, (f)
or M = Pa'syp,., (g)
where By, = {F+e7?*(cosyz+sinyz)}.

Values of §,, may be obtained from table 4 given in the Appendix and
tables of y for any given value of I/l s and a’ are furnished in table 1 in the
Appendix. g, the gauge, is taken in all cases as 5 feet, this being closely the
distance center of rails generally employed in American and many other
railroads.

Case Ic. Double Track Bridge. Four Longitudinal Diaphragms

Referring to fig. 7 and assuming that the con-
dition at the supporting girders approximates one
A DA R B A of simple support, the deflection at A due to all

Y A . .
the unit loads shown is:
A 8 \——fC.[C

Fig. 7. d 4

w=1 w=17 w=] w=1 -

_ la’
- 6NECIC(

The deflection at B due to the unit loads shown is
l

4a'24+12a’'g+6a’c+39g%2+3gc).

53:W(4a’2+12a’2g+9a’g6+6a’20+9a'92+3092+293)-
Thus
. 6NE,I,
47 la' (40’2 +12a’ g+ 6a’c+3g%2+3¢gc)’
SN T I | (2)
]cB—_— CcC—C

l(4a’3+12a'2g+9a’'gc+6a’2c+9a'¢g2+3cg2+2¢3)°

In this case the loads delivered by the rails on the transverse beam will not
all be equal. The two exterior loads will be given by k7, and the two interior
loads by kzyp

Pyy

where Y4 =We—7M(COSyAx+sinyAx),
A

P .
Yg = —277/56—?’3“ (cosypx+smmypx),
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o AR (kg \
in which Y4q4 = (ZE’—]) 5 Yp = (Z_—ET) .

Denoting the exterior loads on a beam by p, and the interior loads by pz and
making the same approximation as for case Ia one has:

P .
pa=ky, 8= %SQ_VA’C(COS')/A%-}-SIH')/ALE),

P’)/BS

Pp = kpyps = e 72 (cos ypx +8inypx),

in which

(kA )1/4 {3 Ic 1 }1/4
va=\177) =13 7. z BV TRE ’
4 K1 21s a’g2(432 +12%+60;20+_g_c+3)

( ky )‘/; {3 I, 1 ',

YB=\7m7 =95 7. 73 73 7 7 .

451 2Ls g5 (4970 19974 9% 9% L 304 o
g(g3+. 92+92+'g+g+)

N/l having been replaced by 1/s.

In the expressions for v, and yg if ¢ is taken as 5 feet and ¢, the distance
center to center of inner rails, as 9 feet, vy is seen be a constant multiplied by
y 4, the constant depending only on the value of a’. If one writes yp=a vy,

’ / s

g ro r9
TR | R L S
5 — Y Y] 9 9 9 (i)
a's '2 a'c a 3¢

4% 1128 498090 12000
g e g g

Expressions (h) may therefore be written as follows omitting the subscript 4

iny,:

' P'ys -
Py = e Y% (cosyx+sinyx),
_ (1)
P -
P = o;yse'?’x(cos&yx+smayx).

The maximum bending moment in the transverse beam due to the axle load
of 2 P, thus becomes: ‘

Psy

3

M = {a’ e=7®(cosyx +sinyx)+a&(a’ +g) e 7% (cosTyx +sinaxyx)}. (k)

Bending Moment due to a Train of Loads

The standard loading suggested for a single track bridge will be used here
also. Consider the maximum effect of the three heaviest drivers, each of 2 P,
placed symmetrically over a cross beam, the axle spacing being z. The maxi-
mum bending moment in the transverse beam for this loading is:

M = Psy{a'[3+e7%(cosyz+sinyz)]|+@(a’ +9)%+e 7% (cos@yz+sin&y2)]}.
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This may be simplified by writing:
M = Psyla’B,.+&(a'+9)Bay.); M
in which By. =t +e7?(cosyz+sinyz),
Bay, =3 +e*Y?(cosxyz+sinayz).

The values of B may be obtained from table 4 given in the Appendix.
Table 2 gives the values of y for values of I,/I, and a’ commonly met with,
and table 3 furnishes values of & for corresponding values of a’. The numerical
values of ¢ and ¢ have been taken as 5 ft. and 9 ft. respectively in the pre-

paration of the tables.
It is found that for practical instances, the value of @ differs but little from

unity, so that equation (1) may be approximately represented by:
M =Psy(2a' +9)B,.- (m)
The Lateral Distribution of Loads

As stated in the Introduction it is assumed that the transverse ‘‘dia-
phragms’’ — whether these consist of ties alone or ties and actual diaphragms
— have a continuous distribution. Furthermore the ties do not separate from
the girders under deflection. All the longitudinal girders are assumed to be
identical. Three cases are investigated: bridges with four, five and six longi-
tudinal girders.

Case I1a. Four Longitudinal Girders .

Consider a transverse section of the bridge (fig. 8). The wheel loads W
cause external loads W, W,, W, and W, to act on the longitudinal girders.
Assume an arbitrary set of deflections y, (), ¥, (x), ¥;(x) and y, (x), positive
downward, from their positions under no load and positive (clockwise) rota-
tions of all longitudinal members. The unknowns are these deflections and
rotations, which may be taken as:

2 . nTx
yr = _la'ﬂTSIH l
n; maxl T = 1,2. (a)
@, => b, sin——
n=1 l

Due to symmetry only beams 1 and 2 need be considered. Equations (a)
satisfy the boundary conditions of simple support.
Let the external loads on the beams be represented by

W, ilomsin'i’flﬂ r=1,2. (b)
n=

The transverse diaphragms being closely spaced, their flexural rigidity
per unit length of bridge is NBole yhere E,1, is the flexural rigidity of each

l
diaphragm, N the total number of diaphragms and 1 the length of the bridge.
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Considering the portion of the diaphragm between any two longitudinal
members, the following slope-deflection equations may be written:

NE,I -
My = =18 ”[4@1+2@2—6—~—-—(y2ay1)],

NE I (%2 —91)
M, =—-°22¢120,+40,—6-22_IU
21 la 1 2 a )
NE,I (©)
M., = —"¢(26@
23 la ( 3)3
g
' Simple Support
— pLLL L L Ll L L, 777793
1['
33—+ Rails
- Longitvdinal
1 Beams
X
1 Ties
—L 77777 TR I T IT T

a _L a J a\l‘—Simp/e Support
L T 1
X

|
| Longitudinal
Beams

If the torsional stiffness of the beams is neglected it follows that:
My =My + My =0,

or 4@1+2@2—6@i@=0,

2@1+6@2—6(y27_y1)=0.



258 Thein Wah

Substituting the series (a) into equation (c) and solving for the b,, in terms
of the a,, one finds:

(e)

Denoting the downward shears on the beams 1 and 2 at the diaphragms by
V, and V,, one finds:

v z_(M12+M21)
1 a )
V — (M12+M21)
2 a L
i.e.
4 _
EId Y1 _ _ &L, 660,+66 —12(—?/2——@ + External Load on Beam 1,
d xt la? ! 2 a '
4 —
EI d v NEL 60,+60,—12-"2 1 (¥2=91) + External Load on Beam 2
dxt la? a

Substituting the series (a) and (b) in the above one obtains the following
equations:

wint 6N E,I, @ . 0.,
g T TR g YT ) T
it 6NECIC( W )+0n2
[ %2 T Frgs g T ) TR

Denoting %TC—E— by A, a dimensionless parameter, the following equa-

tions result:

6 6 C,
4, = nl
a, (n + A) 5)\a = 35T
6 C,.*
1 _ Ynat”
anz(n +— )\) 5)\ =R
Solving which
1 Cm(n4+g)\)+0n2-§/\
nl — 1,4 12 ’
N S
1 Cua(m+32) +Cpig
Apo =

o giia (n4+l5?>\)

The bending moments are given by:

- ( )+O"15 . nmx

-3 ey

- 5

M1()=
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6
5 . nwmx

Sin
n2 72 122 l
n=1 T(n4+T)

62

d2
Mz(x)=—E1d3; )

Let M, (x) be the bending moment in beam 1 due to A=0.

o = C nmx
Then My(x) =) —5sin .
. 6.5 (0h—Chy) nmwx
Hence Ml(x)—Ml(x)_g)\anﬂz( - 1_2_)\) ] (f)
n=1"7a 5
If the load W be a concentrated load at x=¢, then
C,i= 2W1sin nﬂg.
l l
M 12 (W,— 1y & S Tosin T g
~ Whence : ll(x)=€)\( . I)Z ! 12; + ll(x)- (2)
TE e (e

A similar expression may be written for ]

Case I1b. Five Longitudinal Beams

This case is schematically represented in fig. 9. A solution similar in every
respect to that in case Ila yields the following expressions for the bending
moments:

7 L (l—f—?—/\)sin—n"gsinﬁﬂ
MI—M].: 24: (Wg_Wl)AZ 7L4 l l
! ™= e (7n4+204/\+182)‘2)
n
o _3{\ . n'rrf . NTwTx
_36(W3_W2),\Z (1 n4)s1n—~—l Sin —
2 2 ’
. n=1 n2(7n4+204)\+18no4’\)
h
77 ® (5—|—EA) in—n—w—ésinn"x W
Mz_M2= IZ(WI_Wz)/\Z nt l l
2
! 7 n=1 n2(7n4+204/\+1872;\)
© 6 . nwé . nwx
(Wy— W) (11-}-;;) SIn ——= SN —5—
+12 2 )\Z 1802y
G A=t 2 (Tnd 42040+ 00)

where the same notation as in case ITa has been used.
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g
—Simple Support
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Rails
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Fig. 9.

Case I1c. Six Longitudinal Beams

The definition sketch for this is shown in fig. 10. The wheel loads W cause
external loads W,, W,, W,, W,, W,, W4 to act on the longitudinal girders.
Again proceeding as in Case IIa the following expressions are obtained for

the bending moments:

n=1 n2 (19n4 + 264\ +

)
(1 o ) sinzz—w-f sin 27%
n

(5+ 12A) sin nﬂfsin nmwx
nt ! !
108/\2)

nt

12
= ;T‘g‘(Wz“‘ Wl))\

nt l l
10822\ ’
ni )

2(19n4+264A+

Mz-ﬂz 12 o (11 +%> Sinﬂl@—'t sin———n;x
l = (W= W)A Z 1081
A=t n2 (1978 4+ 2640+ )

~/\_) : nré . nnx
1) SN ——= sin—
108A2) )

nt

2w 5

° n=1 n2(19n4+264)\+
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Tables for Lateral Distribution
An examination of the equations for lateral distribution shows that they
may be put in the general form:

M, (x)
!

= K, f; (@) + K, f; (x) + K3 F (2),

where the f (x) denote sums of infinite series, F' (x) denotes the statical moment
divided by [ at any point due to a unit wheel load and the K's are parameters
depending on the total width of the bridge. It is clear that the values of f(z)
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and K may be tabulated for various values of A and ¢ and different widths of
bridge. This has been done in reference [9]. The tables are not included here owing
to limitations of space. By the use of these tables it is possible to find the bending
moments in any beam of a four, five or six beam bridge. By using the reci-
procal theorem these tables may be further used for drawing the curve of
maximum moments in any beam, in these three types of bridges, due to a
train of loads.

Conclusions and General Remarks

It is realized that the analysis presented should logically be extended to
cover an arbitrary number of longitudinal diaphragms (Case I) and an arbi-
trary number of longitudinal beams (Case II), in order to be sufficiently com-
prehensive. For these cases, the simplest picture is given by the ‘‘gridwork’’.
But although such a solution is mathematically feasible [9], the results are
not of sufficiently simple form to be attractive to the designer.

As a matter of fact it may be argued that even the use of the tables is too
laborious for the design office. Even simpler formulas can, of course, be derived
if experimental results are available from a fairly large sample of actual bridges
that have been tested, so that the formulas may be modified appropriately to
take account of field conditions (such as effect of ballast, floor plate, spacing
of ties, etc.). In the absence of adequate information of this kind it is believed
that a greater simplicity at the expense of accuracy is not warranted.
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Appendix
Table 1
Type Ia
Values of y
IC
Is a’
3 4 5 6 7 8 9 10
1 0.2985 0.2527 0.2213 0.1982 0.1802 0.1658 0.1539 0.1439
2 0.3549 0.3005 0.2632 0.2357 0.2144 0.1972 0.1830 0.1705
3 0.3928 0.3325 0.2913 0.2609 0.2372 0.2182 0.2025 0.1894
4 0.4221 0.3573 0.3130 0.2803 0.2549 0.2345 0.2177 0.2035
5 0.4463 0.3778 0.3310 0.2964 0.2695 0.2480 0.2302 0.2152
6 0.4671 0.3955 0.3464 0.3102 0.2821 0.2595 0.2409 0.2252
7 0.4855 0.4110 0.3600 0.3224 0.2932 0.2697 0.2504 0.2340
8 0.5020 0.4249 0.3722 0.3333 0.3031 0.2789 0.2588 0.2420
9 0.5170 0.4377 0.3834 0.3433 0.3122 0.2872 0.2666 0.2492
10 0.5308 0.4493 0.3936 0.3525 0.3205 0.2949 0.2737 0.2559
12 0.5555 0.4703 0.4120 0.3689 0.3355 0.3086 0.2865 0.2678
14 0.5773 0.4887 0.4281 0.3834 0.3487 0.3207 0.2977 0.2783
16 0.5969 0.5053 0.4427 0.3964 0.3605 0.3316 0.3078 0.2878
18 0.6148 0.5204 0.4559 0.4082 0.3713 0.3415 0.3170 0.2963
20 0.6312 0.5343 0.4681 0.4191 0.3812 0.3507 0.3255 0.3043
25 0.6674 0.5650 0.4949 0.4432 0.4031 0.3708 0.3442 0.3217
30 0.6985 0.5913 0.5180 0.4638 0.4218 0.3881 0.3602 0.3367
35 0.7260 0.6146 0.5384 0.4821 0.4384 0.4033 0.3744 0.3500
40 0.7506 0.6354 0.5566 0.4984 | 0.4533 0.4170 0.3871 0.3618
45 0.7730 0.6544 0.5733 0.5133 0.4668 0.4295 0.3986 0.3726
50 0.7937 0.6719 0.5886 0.5270 0.4793 0.4409 0.4093 0.3826
60 0.8307 0.7032 0.6160 0.5516 0.5017 0.4615 0.4284 0.4004
70 0.8633 0.7309 0.6402 0.5733 0.5214 0.4796 0.4452 0.4162
80 0.8926 0.7557 0.6619 0.5928 0.5391 0.4959 0.4603 0.4303
90 0.9193 0.7782 0.6817 0.6105 0.5552 0.5107 0.4740 0.4432
100 0.9439, 0.7990 0.6999 0.6268 0.5700 0.5244 0.4867 0.4550

2) Used in the preparation of tables.
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Tables 1, 2, 3 and 4 are for finding the longitudinal distribution of loads
in single track and double track bridges, types Ia and Ib respectively. These
types are shown in figs. 1 and 2.

To find the maximum bending moment in any transverse beam in type Ia,
obtain first the values of I,/ s, which must be known or assumed. Then from

Table 2
Type Ib
Values of y
Le
Is a’
3 4 5 6 7 8 9 10

1 0.1708 0.1505 | 0.1359 | 0.1246 | 0.1155 | 0.1080 | 0.1017 0.0962
2 0.2030 | 0.1790 | 0.1616 | 0.1481 0.1374 | 0.1284 | 0.1209 | 0.1144
3 0.2247 0.1981 0.1788 | 0.1640 0.1520 | 0.1421 0.1338 | 0.1266
4 0.2415 | 0.2129 | 0.1922 | 0.1762 0.1633 0.1527 0.1438 | 0.1361
5 0.2554 | 0.2251 0.2032 | 0.1863 0.1727 0.1615 | 0.1520 | 0.1439
6 0.2673 0.2356 | 0.2127 | 0.1950 | 0.1808 0.1690 | 0.1591 0.1506
7 0.2778 0.2449 | 0.2210 | 0.2026 0.1879 0.1757 0.1654 | 0.1565
8 0.2872 0.2532 | 0.2285 | 0.2095 0.1943 0.1816 0.1710 | 0.1618
9 0.2958 0.2608 | 0.2354 | 0.2158 0.2000 | 0.1871 0.1761 0.1667
10 0.3037 0.2677 0.2416 | 0.2215 0.2054 0.1921 0.1808 | 0.1711
12 0.3178 0.2802 | 0.2529 | 0.2319 0.2150 0.2010 | 0.1892 | 0.1791
14 0.3303 0.2912 | 0.2628 | 0.2410 | 0.2234 | 0.2089 | 0.1967 0.1861
16 0.3415 0.3011 0.2718 | 0.2492 0.2310 | 0.2160 | 0.2033 0.1924
18 0.3517 0.3101 0.2799 | 0.2566 | 0.2379 0.2224 0.2094 | 0.1982
20 0.3611 0.3184 | 0.2873 | 0.2634 | 0.2442 0.2284 | 0.2150 | 0.2035
25 0.3818 0.3366 | 0.3038 | 0.2786 0.2583 0.2415 | 0.2273 0.2152
30 0.3996 0.3523 0.3180 | 0.2916 | 0.2703 0.2528 0.2379 | 0.2252
35 0.4154 | 0.3662 | 0.3305 | 0.3030 | 0.2809 0.2627 0.2473 | 0.2340
40 0.4294 | 0.3786 | 0.3417 | 0.3133 0.2905 0.2716 | 0.2557 0.2420
45 0.4423 0.3899 | 0.3519 | 0.3227 0.2991 0.2797 0.2633 | 0.2492
50 0.4541 0.4003 | 0.3613 | 0.3313 0.3071 0.2872 0.2703 0.2559
60 0.4753 0.4190 | 0.3782 | 0.3467 0.3214 0.3006 | 0.2829 0.2678
70 0.4939 0.4355 | 0.3930 | 0.3603 0.3341 0.3124 | 0.2941 0.2783
80 0.5107 0.4502 | 0.4064 | 0.3726 0.3454 | 0.3230 | 0.3040 | 0.2878
90 0.5260 | 0.4637 | 0.4185 | 0.3837 0.3557 0.3326 0.3131 0.2964
100 0.5400 0.4761 0.4297 | 0.3940 | 0.3652 0.3415 0.3215 0.3043

Table 3
Type 1b

0.8585 0.8897 0.9225 | 0.9475 0.9668 0.9820 0.9942 1.0040

Rl




Distribution of Loads in Two Types of Railway Bridges

265

Table 4
x B, x By x B, x B,
0.51 1.3173 0.91 1.0648 1.31 0.8303 1.71 0.6540
0.52 1.3113 0.92 1.0584 1.32 0.8251 1.72 0.6505
0.53 1.3054 0.93 1.0521 1.33 0.8199 1.73 0.6470
0.54 1.2994 0.94 1.0459 1.34 0.8148 1.74 0.6435
0.55 1.2934 0.95 1.0396 1.35 0.8098 1.75 0.6400
0.56 1.2873 0.96 1.0333 1.36 0.8047 1.76 0.6365
0.57 1.2813 0.97 1.0270 1.37 0.7997 1.77 0.6332
0.58 1.2752 0.98 1.0207 1.38 0.7948 1.78 0.6299
0.59 1.2690 0.99 1.0145 1.39 0.7898 1.79 0.6266
0.60 1.2628 1.00 1.0083 1.40 0.7849 1.80 0.6234
0.61 1.2566 1.01 1.0021 1.41 0.7801 1.81 0.6202
0.62 1.2503 1.02 0.9960 1.42 0.7753 1.82 0.6170
0.63 1.2442 1.03 0.9899 1.43 0.7705 1.83 0.6138
0.64 1.2379 1.04 0.9839 1.44 0.7658 1.84 0.6108
0.65 1.2315 1.05 0.9778 1.45 0.7611 1.85 0.6078
0.66 1.2252 1.06 0.9716 1.46 0.7565 1.86 0.6048
0.67 1.2189 1.07 0.9656 1.47 0.7519 1.87 0.6018
0.68 1.2126 1.08 0.9596 1.48 0.7474 1.88 0.5989
0.69 1.2062 1.09 0.9536 1.49 0.7429 1.89 0.5960
0.70 1.1997 1.10 0.9476 1.50 0.7384 1.90 0.5932
0.71 1.1933 1.11 0.9416 1.51 0.7339 1.91 0.5904
0.72 1.1869 1.12 0.9356 1.52 0.7295 1.92 0.5876
0.73 1.1805 1.13 0.9298 1.52 0.7252 1.93 0.5849
0.74 1.1741 1.14 0.9240 1.54 0.7209 1.94 0.5822
0.75 1.1676 1.15 0.9183 1.55 0.7166 1.95 0.5795
0.76 1.1611 1.16 0.9126 1.56 0.7125 1.96 0.5769
0.77 1.1547 1.17 0.9069 1.57 0.7082 1.97 0.5743
0.78 1.1483 1.18 0.9012 1.58 0.7041 1.98 0.5717
0.79 1.1418 1.19 0.8955 1.59 0.7000 1.99 0.5692
0.80 1.1353 1.20 0.8898 1.60 0.6960 2.00 0.5667
0.81 1.1289 1.21 0.8842 1.61 0.6919 2.01 0.5643
0.82 1.1225 1.22 0.8786 1.62 0.6879 2.02 0.5619
0.83 1.1160 1.23 0.8731 1.63 0.6840 2.03 0.5595
0.84 1.1096 1.24 0.8677 1.64 0.6801 2.04 0.5571
0.85 1.1032 1.25 0.8623 1.65 0.6763 2.05 0.5549
0.86 1.0968 1.26 0.8569 1.66 0.6725 2.06 0.5526
0.87 1.0904 . 1.27 0.8515 1.67 0.6686 2.07 0.5504
0.88 1.0840 1.28 0.8462 1.68 0.6648 2.08 0.5482
0.89 1.0776 1.29 0.8408 1.69 0.6612 2.09 0.5460
0.90 1.0712 1.30 0.8355 1.70 0.6576 2.10 0.5438
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Table 4 (Contd.)

@ By @ B @ B z B,
2.11 0.5417 2.51 0.4824 2.91 0.4594 3.31 0.4579
2.12 0.56397 2.52 0.4815 2.92 0.4591 3.32 0.4580
2.13 0.5377 2.53 0.4805 2.93 0.4589 3.33 0.4581
2.14 0.5357 2.54 0.4796 2.94 0.4587 3.34 0.4582
2.15 0.5337 2.55 0.4787 2.95 0.4585 3.35 0.4583
2.16 0.56317 2.56 0.4779 2.96 0.4583 3.36 0.4585
2.17 0.5288 2.57 0.4772 2.97 0.4581 3.37 0.4587
2.18 0.5280 2.58 0.4763 2.98 0.4580 3.38 0.4589
2.19 0.5262 2.59 0.4754 2.99 0.4579 3.39 0.4591
2.20 0.5244 2.60 0.4746 3.00 0.4578 3.40 0.4592
2.21 0.5226 2.61 0.4739 3.01 0.4577 3.41 0.4594
2.22 0.5208 2.62 0.4731 3.02 0.4576 3.42 0.4596
2.23 0.5191 2.63 0.4724 3.03 0.4575 3.43 0.4597
2.24 0.5174 2.64 0.4717 3.04 0.4574 3.44 0.4599
2.25 0.5157 2.65 0.4711 3.05 0.4573 3.45 0.4601
2.26 0.5141 2.66 0.4704 3.06 0.4572 3.46 0.4603
2.27 0.5125 2.67 0.4698 3.07 0.4571 3.47 0.4603
2.28 0.5110 2.68 0.4692 3.08 0.4570 3.48 0.4608
2.29 0.5095 2.69 0.4686 3.09 0.4569 3.49 0.4610
2.30 0.5080 2.70 0.4680 3.10 0.4569 3.50 0.4612
2.31 0.5065 2.71 0.4674 3.11 0.4569 3.51 0.4614
2.32 0.5050 2.72 0.4669 3.12 0.4568 3.52° 0.4616
2.33 0.5036 2.73 0.4663 3.13 0.4568 3.53 0.4618
2.34 0.5022 2.74 0.4658 3.14 0.4568 3.54 0.4620
2.35 0.5008 2.75 0.4653 3.15 0.4568 3.55 0.4622
2.36 0.4995 2.76 0.4648 3.16 0.4568 3.56 0.4624
2.37 0.4982 2.77 0.4644 3.17 0.4568 3.57 0.4627
2.38 0.4969 2.78 0.4639 3.18 0.4569 3.58 0.4629
2.39 0.4956 2.79 0.4635 3.19 0.4569 3.59 0.4632
2.40 0.4944 2.80 0.4631 3.20 0.4569 3.60 0.4634
2.41 0.4932 2.81 0.4627 3.21 0.4570 3.61 0.4637
2.42 0.4920 2.82 0.4623 3.22 0.4570 3.62 0.4639
2.43 0.4908 2.83 0.4619 3.23 0.4571 3.63 0.4641
2.44 0.4897 2.84 0.4615 3.24 0.4572 3.64 0.4644
2.45 0.4886 2.85 | 0.4612 3.25 0.4573 3.65 0.4646
2.46 0.4875 2.86 0.4609 3.26 0.4574 3.66 0.4649
2.47 0.4865 2.87 0.4606 3.27 0.4575 3.67 0.4652
2.48 0.4854 2.88 0.4603 3.28 0.4576 3.68 0.4654
2.49 0.4844 2.89 0.4600 3.29 0.4577 3.69 0.4657
2.50 0.4834 2.90 0.4597 3.30 0.4578 3.70 0.4659
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Table 4 (Contd.)

@ By z . z B, @ By

3.71 0.4662 3.91 0.4717 4.22 0.4801 4.62 0.4893
3.72 0.4664 3.92 0.4720 4.24 0.4806 4.64 0.4897
3.73 0.4667 3.93 0.4722 4.26 0.4807 4.66 0.4901
3.74 0.4670 3.94 0.4725 4.28 0.4817 4.68 0.4904
3.75 0.4673 3.95 0.4728 4.30 0.4821 4.70 0.4908
3.76 0.4676 3.96 0.4731 4.32 0.4826 4.72 0.4912
3.77 0.4678 3.97 0.4733 4.34 0.4831 4.74 0.4915
3.78 0.4681 3.98 0.4736 4.36 0.4836 4.76 0.4919
3.79 0.4684 3.99 0.4739 4.38 0.4841 4.78 0.4922
3.80 0.4686 4.00 0.4742 4.40 0.4845 4.80 0.4925
3.81 0.4689 4.02 0.4747 4.42 0.4850 4.82 0.4928
3.82 0.4692 4.04 0.4753 4.44 0.4855 4.84 0.4932
3.83 0.4695 4.06 0.4758 4.46 0.4859 4.86 0.4935
3.84 0.4697 4.08 0.4764 4.48 0.4864 4.88 0.4938
3.85 0.4700 4.10 0.4769 4.50 0.4868 4.90 0.4941
3.86 0.4703 4.12 0.4776 4.52 0.4872 4.92 0.4944
3.87 0.4706 4.14 0.4780 4.54 0.4877 4.94 0.4947
3.88 0.4708 4.16 0.4785 4.56 0.4881 4.96 0.4949
3.89 0.4711 4.18 0.4791 4.58 0.4885 4.98 0.4952
3.90 0.4714 4.20 0.4796 4.60 0.4889 5.00 0.4954

table 1 obtain the corresponding value of y. Choose from the expected train
load on the bridge the three largest wheel loads P with their axle spacings z.
(These three loads must be all equal and equally spaced to yield exact values
for the result but a slight discrepancy in the value of the loads or axle spacing
will not seriously affect the result.) Obtain from table 4 the value of §,,. Then
the maximum moment in a transverse beam is given by M = Pa’ Sy Bys-

To find the maximum bending moment in any transverse beam in type Ib,
obtain first the value of /,/I s for the bridge, which must be known or assumed.
Then from table 2 obtain the corresponding value of y, and from table 3
obtain the value of @. As before choose the largest three loads P from the
expected load, the loads P being z feet apart. From table 4 obtain the values
of B, and f,,.. The maximum bending moment in any transverse is given by

M = Psy{a'B,+a(a"+9)B5,.}-
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Summary

The question of the distribution of train loads in the direction parallel to
traffic (“longitudinal” distribution) and in the direction perpendicular to
traffic (“lateral”’ distribution) arises in the design of certain types of railroad
bridges. The problems involved in this question are analyzed mathematically
for open-deck bridges and formulas derived for the longitudinal and lateral
distribution of loads. Approximate solutions are also devised wherever feasible
in order to furnish simple formulas which may be of use in design. Some of the
formulas are translated into tables given in the Appendix.

Résumé

Dans I’étude des projets de ponts de chemin de fer, peut se poser la question
de la répartition des charges mobiles en direction parallele au sens du trafic
(répartition longitudinale) et en direction perpendiculaire & la précédente
(répartition transversale). Les problémes corrélatifs ont été étudiés mathé-
matiquement et des formules ont été établies pour exprimer ces deux répar-
titions. I’auteur indique des solutions d’approximation dans tous les cas ou
il a été possible d’établir des formules simples, susceptibles d’une utilisation
pratique dans I’étude des projets. Quelques-unes de ces formules ont fait
I’objet d’une tabulation qui est présentée en annexe.

Zusammenfassung

Beim Entwurf von Eisenbahnbriicken kann sich die Frage der Verteilung
der beweglichen Lasten in Richtung parallel zum Verkehr («Léngsverteilung»)
und in Richtung senkrecht zum Verkehr («Querverteilung») stellen. Die diese
Frage einschlieBenden Probleme werden mathematisch untersucht, und es
werden Formeln fiir die Langs- und Querverteilung der Lasten abgeleitet.
Néherungslésungen werden angegeben, wo immer es mdglich war, einfache
Formeln aufzustellen, die beim Projektieren von Nutzen sein konnen. Einige
dieser Formeln wurden in Tabellen umgewandelt und im Anhang veroffentlicht.
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