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Le voilement de I’ame des poutres fléchies, avec raidisseur au cinquiéme
supérieur

Biegungsbeulung der im oberen Fiinftel versteiften Stegbleche

The Buckling of the Webs of Sagging Beams Having Stiffeners in the Top Fifth
of the Web

F. StUssi, Ing. Dr. sc. techn., Prof. & ’E.P.F., Zirich, Président de ’AIPC, et
CHARLES et PIERRE Dusas, Ings. Drs sc. techn., Ateliers de Constructions
Mécaniques de Vevey, Bulle et Vevey

Introduction

Au début de 1957, nous avons décidé de reprendre ensemble et de complé-
ter nos études au sujet du voilement des téles!), notamment en ce qui con-
cerne I’ame des poutres fléchies, avec raidisseur au cinquiéme supérieur.

Le but de ce travail était multiple. Il s’agissait tout d’abord de tenir
compte plus exactement qu’en 1948 et 1954 de 1’effort concentré du raidisseur.
11 s’agissait ensuite de compléter les résultats déja obtenus en 1948 et 1954,
en considérant en particulier des toles sensiblement plus longues qu’a I’époque.
Nous voulions en troisiéme lieu examiner de maniére trés complete la précision
de la méthode de statique appliquée, utilisée en 1948 et 1954 avec dix inter-
valles. Pour cela, nous devions en étudier la convergence avec un plus grand
nombre d’intervalles pour établir une formule de correction. Cette question

1) F. Sttssi, Berechnung der Beulspannungen gedriickter Rechteckplatten. Abhand-
lungen I.V.B.H. 1947, S. 237.

CH. DuBas, Contribution & ’étude du voilement des toOles raidies. Sous ce titre a
paru dans la Publication préliminaire au Congrées de Liege 1948 de PA.I.P.C. un résumsé
de I’étude plus importante parue également en 1948 comme N° 23 des Publications de
I'Institut de Statique appliquée, Edition Leemann, Ziirich.

Cu. DuBas, Le voilement de I’ame des poutres fléchies et raidies au cinquiéme supé-
rieur. Mémoires A.I.P.C. 1954, p. 1. '

P. Dusas, Calcul numérique des plaques et des parois minces, N° 27 des Publications
de I'Institut de Statique appliquée, Edition Leemann, Ziirich 1955, p. 121 (Voilement
des toles).
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nous paraissait spécialement importante pour la double onde transversale,
dont la partie supérieure n’avait été décrite que par un seul point inter-
médiaire?). Enfin il s’avérait utile de comparer les diverses manieres d’appli-
quer la méthode utilisée jusqu’ici par nous en matiere de voilement, spéciale-
ment en ce qui concerne la double onde transversale.

Apres une introduction théorique, nous allons donner dans le présent
article un apercu des résultats obtenus jusqu’ici. Une publication plus impor-
tante paraitra lorsque notre étude sera complétement terminée.

Equation différentielle lors du voilement

Rappelons?) pour commencer 1’équation différentielle de la plaque fléchie
sous une charge p. En désignant par w la fleche en un point quelconque
d’abscisse x et d’ordonnée y, cette équation différentielle s’écrit:

*rw tw dw p
2 =2
bt T et Yoyt T D (1)
ou D=-1-2(]‘i—’fv2), h désignant 1’épaisseur de la plaque et v, la contraction

latérale.

Si la téle est sollicitée uniquement par des efforts de bout (fig. 1), ces der-
niers engendrent lors du voilement un effort de déviation en chaque point.
Comme on le sait, cet effort, perpendiculaire au plan de la tdle, vaut3):

Pt=—%'h—3?- (2)

Le raidisseur longitudinal en contact avec la t6le sur une largeur ¢ s’oppose
(fig. 1), de par sa rigidité J,, aux efforts élastiques précédents. Il s’ensuit un
effort en sens opposé, qui vaut3):

EJ, *w
¢ ot (3)

er =

Si le raidisseur est correctement lié a la tole, il subit les mémes contraintes
longitudinales. Vu sa tendance a flamber par suite de ces efforts, le raidisseur
engendre un effort complémentaire p,,, agissant en sens inverse de p,p et
réduisant dés lors l'action raidissante du raidisseur. Si F, désigne la section
du raidisseur, 1’effort p,, s’écrit:

F, o2

. 02w
Prn = —Gx_c— 5;5 (4)

2) Publication N° 23 précitée, p. 99, fig. 40.

8) Voir par exemple S. TimosHENKO, Theory of Elastic Stability, Mc Graw-Hill,
New York and London 1936, ou la traduction frang¢aise, Théorie de la Stabilité élastiqué,
parue en 1943 chez Béranger, Paris et Liége. Voir aussi les chapitres I et I1I de la publi-
cation N° 23, citée & la note 1, ou I'équation différentielle a été établie également dans
le détail.
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" Utilisons maintenant la notation?):

O'x = w'o-xmaz

#wok-oe (5)

ou o, est une contrainte fictive appelée «eulérienney, c’est-a-dire critique, d une
D

bande de tole de largeur égale a 1’unité (fig. 1), soit ae=%;, d’ou
D
o'w=w-k7]1b2. (6)
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Fig. 1.

En introduisant la charge (2) dans I’équation différentielle (1), on obtient,
compte tenu de la notation (5), 1’équation différentielle suivante, en pleine
tole: ‘

64w+2 Atw +84w__w. 7 P w 1)
ox*  Tox2oy® o0yt b2 ox?’

Au droit du raidisseur, en contact avec la téle sur une largeur c, il faut
ajouter les charges transversales (3) et (4). Nous utilisons dans ce cas les
abréviations bien connues

EJr r

11 s’ensuit 1’équation différentielle:

ot w *w Aw w2 02w b otw w2 02w

iat T leer Tt T T Y a0 (10

ol w, se rapporte a la contrainte longitudinale du raidisseur.

4) Nous signalerons au fur et & mesure les quelques divergences d’écriture d’avec les
publications précédentes, pour éviter toute confusion.
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Rappelons maintenant que, dans le sens longitudinal (fig. 1), la défor-
mation lors du voilement est une sinusoide, si les efforts de bout sont répartis

linéairement. On écrit généralement w=w,,-sin ﬁgﬂ Pour simplifier 1’écri-
ture, remplagons w,,, valeur maximum de w au sommet de la sinusoide, par 7
et supprimons le nombre entier m en ne considérant plus qu’une déformation
avec onde unique. S’il y avait plusieurs ondes, il suffirait de juxtaposer de
nouvelles toles semblables & celles que 1’on vient de considérer. Nous écrivons
donc?):

w=n- sln%gE (11)

nn

Si ’on utilise les abréviations classiques 7" =3—1 et 7 —z—yz, I’équation

différentielle du voilement en pleine téle (7) devient alors, apres division par

in™" 6.
sin — ):
nn 27T2 n 7T4 774 '
gz 1 +$77 =w'kazbz77 (12)
Awu droit du rardisseur, il vient:
w27 o 4 1 o o
M 7 ——n"+ 477 w, k 2b277 (y-baz—wr-kﬁm)n (13)

Pour faciliter aussi bien le raisonnement que les calculs et afin de permettre
plus tard l’utilisation de la méthode d’Engesser-Vianello par approximations
successives, nous renoncons pour l'instant & passer le second membre dans le
" premier et & mettre sous une parenthése commune tous les termes en 7.

3) Dans la Publication N° 23 de la note 1, w,, =7 a été écrit dans le stade final, tout
simplement w, sans indice.

Si les efforts de bout ne sont pas repart1s linéairement, la relation (11) ne sera plus
applicable, & cause du second membre de (7) dans lequel w varie sur une droite d’ordon-
née y constante. On sait en effet que seule une répartition linéaire satisfait 1’équation
différentielle du probléme des parois minces, sans changer d’'un bord & I’autre. Ce sont
les exemples que l'on trouve généralement dans les traités. (Cf. S. TimosHENKO, Theory
of Elasticity, Mc Graw-Hill, New York and London 1934, p. 27 ou la traduction frangaise
publiée en 1948 chez Béranger sous le titre Théorie de I'Elasticité). Toute répartition
non lindaire des contraintes sur les bords tend au milieu de la t6le vers une répartition
lindaire. Un exemple caraetéristique a été donné & la fig. 35, p. 132 de la Publication
No 27 citée a la note 1.

8) Pour retrouver (12) & partir de I'’équation (6) de 1947 (note 1), il faut remplacer g
al b soit b our m=1 Ll a m t
par sa valeur —~, 2 P =1, p=—33-par 5 et ¢ par .
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La statique appliquée a la résolution des équations différentielles

Rappelons tout d’abord 1’équation différentielle de la poutre fléchie, liant

les fleches w et les charges p:

d*w P

it = BT (14)
On sait que cette équation (14) correspond a 1’équation différentielle (1) de la
plaque fléchie et qu’elle s’obtient en combinant les deux relations différentielles
de base de la statique des poutres:

d*M d?w M

iz = P (15) T TG (16)

On sait par ailleurs que (15) résulte également de la combinaisons des deux
relations différentielles suivantes:

dM aQ _
=0, (17) o = P (18)

Ceci dit, notre but est de transformer, par la statique appliquée, les équations
différentielles (12) et (13) en un systeme d’équations numériques. Pour ce
faire, nous partirons d’un probléme analogue plus simple, celui de la poutre
fléchie. Nous chercherons donc tout d’abord une relation-numérique entre les
moments fléchissants et la charge d’une poutre et transformerons 1’équation
différentielle (15) en un systeme d’équations numériques. Nous passerons
immédiatement a la relation entre les fleches et les moments fléchissants d’une
poutre. La chose est facile, puisque (15) et (16) ont la méme forme (analogie
de Mohr). Par combinaison on obtiendra la relation numérique cherchée entre
les fleches et les charges en lieu et place de (14).

Des lors, on peut résoudre facilement toute équation différentielle conte-

4
nant a la fois 3771) et w. En effet, il suffit pour cela de remplacer p par w dans

la relation numérique trouvée pour ’équation différentielle (14). Si I’équation
d?w
da?
dérant (16) avec w a la place de M.

Enfin, si ’équation différentielle & résoudre contenait en méme temps
d*w d?w
dxt’ da?

dtw d?w

plagant ——= dans (14), — 57 dans (16) et w remplagant p ou w remplagant M
dans (14) ou (16). Pour cela il faut évidemment que les expressions numériques
remplacant p qui devient w dans (14) et M qui devient w dans (16) aient été
obtenues de la méme fagon. Comme il en sera bien ainsi, rien ne s’opposera
plus & cette maniére de faire et I’on aboutira ainsi & une relation numérique en
lieu et place des équations différentielles (12) et (13).

Avant d’aborder le calcul numérique proprement dit, quatre remarques

différentielle contenait & la fois - et w, on ferait de méme, mais en consi-

et w, on cumulerait simplement les expressions numériques rem-
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nous paraissent nécessaires. Pour commencer, il faut observer que 1’on pourrait
procéder d’un seul coup sur les équations différentielles (12) et (13), sans passer
auparavant par les problémes les plus simples.

On remarquera en second lieu que tous les termes de (1) représentent en
fait des charges de la plaque (ou de la téle) fléchie, grace & la relation (14). On
pourrait dés lors écrire (1) sous la forme p,+2p,,+ p,=p. Il en est de méme
des efforts élastiques de déviation au moment du voilement, soit en pleine
tole p, selon (2) et, au droit du raidisseur p, selon (3) et p,, selon (4). On peut
donc trouver une signification statique?) simple des équations différentielles
de la plaque fléchie (1) et de la téle lors du voilement, (7) et (10). Cette signi-
fication statique simple subsiste intégralement apreés introduction de la
relation (11). Cependant la forme de (7) et de (10) change, du fait que les
moments et les fleches d’une charge sinusoidale sont également des sinusoides.
Des lors il est inutile de considérer une variation des fleches le long de I’axe
des x et 1’on s’occupe uniquement de la verticale passant par le milieu de la
tole (fig. 1). En langage statique, nous dirons que le probleme plaque est ramené

a un probleme de poutre. Le terme de (1), (7) et (10) reste la charge de la

poutre transversale considérée par Ie mlheu de la tole. Le terme 2 . devient
774 2
L ou n est tout simplement la fleche de la poutre en question. Quant a
otw
ox?oy?’
engendrant la fleche 7, & un facteur preés selon (16). Il n’y a aucune difficulté
a raisonner de méme pour le second membre de (12) et de (13), n étant directe-
ment la fleche de la poutre transversale considérée. Les observations précé-

dentes permettent ainsi de donner un sens précis, de statique appliquée, a

. . 2 772 N . 7 4
il devient —-3-7", ol 9" n’est rien d’autre que le moment fléchissant

?) Dans un systeme de poutres entre-croisées remplagant la plaque, la charge p,
n’est rien d’autre que la charge des poutres longitudinales, et p, , celle des poutres trans-
versales. La charge p,,, engendre dans les poutres longitudinales des moments fléchissants
M, ; ces moments fléchissants, en agissant sur les poutres transversales, provoquent les
fleches w de la plaque. On peut également considérer les p,, comme engendrant des
moments fléchissants M, dans les poutres transversales; ces moments agiront dans ce cas
sur les poutres longitudinales et engendreront les mémes fléches que précédemment. Le
terme 2p,, représente donc la somme p,, +p,,, ou p,, =p,, . D’autre part, il va de soi
que les fléches w provoquées par les différentes charges p,, p,,, p, sont identiques, ce
qui peut étre considéré par ailleurs comme la condition dite d’élasticité du probléeme
des poutres entre-croisées remplagant la plaque.

Il est facile de se représenter un systéme de poutres longitudinales et transversales
ayant les mémes fleches sous l'effet des p,, ou des p,, qui les sollicitent. La chose est moins
immédiate en ce qui concerne les p,, . Le plus simple serait de couper la poutre longi-
tudinale considérée au point de croisement choisi et de relier le haut et le bas des deux
moitiés au moyen d’une charniére et d’'un vérin hydraulique. La poutre transversale
correspondante devrait étre munie du méme dispositif. Si 'on réunissait les vérins par
une conduite, 'effort qu’ils supporteraient serait identique. Grace aux charniéres, il en
serait de méme des moments. Nous renvoyons pour plus de détails au chapitre II de la
Publication N° 23 citée a la note 1.
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toutes les opérations que nous allons faire pour passer des équations différen-
tielles (12) et (13) aux relations numériques correspondantes.

Le lecteur voudra bien remarquer en troisiéme lieu que le procédé déve-
loppé ici est le procédé formel 8) déja utilisé en 1947. Nous nous sommes cepen-
dant efforcés d’en faire ressortir le mieux possible la signification statique. Il
s’agissait 13 du seul avantage, d’ordre purement didactique, du procédé
implicite®) de 1948 et 1954. Nous avons depuis lors abandonné le procédé
implicite dans le cas du voilement qui nous occupe.

Enfin, il ne faut pas perdre de vue que le dernier terme du second membre
de (13) est dii au raidisseur. Nous avons donc affaire en fait a une charge
concentrée dans un sens, la largeur ¢ du raidisseur tendant vers zéro. C’est
pourquoi nous serons obligés de traiter le cas de charges concentrées, lorsque
nous nous occuperons de trouver une relation numérique entre les fleches et
les charges d’une poutre, en lieu et place de (14). Pour pouvoir utiliser plus
tard ce résultat a 1’équation différentielle (13), nous devrons cependant pro-
céder de la méme maniere que s’il s’agissait d’une charge répartie.

Relation numérique entre la charge d’une poutre, son moment
fléchissant et sa fleche

On sait qu’entre les nceuds équidistants d’une poutre, la relation différen-
tielle (17) exprimant 1’accroissement du moment fléchissant d’un point & un
autre par suite de l’effort tranchant, s’écrit aux points m—1 et m sous la
forme M,,=M,, |+ @, 1 n-4x. Aux points m et m+1 on aura de méme
M, y=M, + Qi1 4x. Nous considérons alors la poutre comme chargée
indirectement aux nceuds et appelons «charges aux nceuds» les efforts con-
centrés provenant des poutres secondaires. Par soustraction des expressions
précédentes et en observant que la différence entre les efforts tranchants n’est
rien d’autre que la charge au neud K,,=Q,, 1 ,,— @y my1 (équation différen-
tielle 18), on obtiendra la relation numérique connue:

— M, +2M,—M, =K, Az (19)

Puisque les efforts aux nceuds sont concentrés, la relation (19) est absolu-
ment rigoureuse par définition et vaut toujours, quelles que sotent les charges exté-
rieures considérées, concentrées ou répartie. Pour calculer exactement les charges
aux neeuds K aux différents points, il faudrait connaitre la variation de la
charge répartie sur la poutre. La variation de cette derniere étant donnée la
plupart du temps aux nceuds seulement, on en est réduit aux hypotheses. On
peut admetire soit une variation linéaire d’un point a ’autre, soit une variation
parabolique entre trois points consécutifs.

8) Voir la Publication N? 27 citée a la note 1, au chap. deuxiéme, «Comparaison des
divers procédés exposés», p. 64. Pour certaines conditions aux limites, le procédé formel
est en défaut. On se sert alors du procédé semi-formel qui, tout en présentant & un
moindre degré les inconvénients du procédé implicite, est néanmoins plus rapide.
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Dans le premier cas, on trouve en décomposant le diagramme de charge
en triangles et en appliquant les lois de 1’équilibre, la «formule dite du trapéze»
pour la charge K,, au noeud m:

Ax
Km = ?(pm—l'{_zlpm_{'pm—!—l)' (20)

Dans le second cas, il faut tenir compte en plus des deux secteurs para-
boliques. En utilisant la formule de Simpson, on trouve que cette influence

vaut: Az
—E(_pm—l+2pm_pm+l)' (21)

En ajoutant (20) et (21) on obtient la «formule dite de la parabole» pour

la charge K,, au neeud m:

Adzx
K, = W(pm—1+10pm+pm+l)' (22)

Cette expression (22) étant en général beaucoup plus exacte que (20), sera
désormais seule utilisée, chaque fois que la répartition de la charge ne sera
pas connue.

En lieu et place de (15), on obtient maintenant par juxtaposition de (19)
et de (22), la relation numérique fondamentale entre les moments fléchissants
et les charges réparties d 'une poutre?):

A4 x2
—*Mm—1+2*Mm**Mm+1 = ﬁ(pm—l_!_ 10 pm+pm+1)' (23)

Rien ne nous empéche d’écrire la relation (23) une fois au point m —1, dix
fois au point m et une fois au point m + 1. D’apres (22), cette maniére de faire -

revient d’ailleurs a former la charge au nceud de la relation (23) en question,
dont le second membre est déja une charge au nceud. On obtient alors:

*Mm—2+ QMm—l__ Mm
—10M,,_,+20M, —-10M,,,,

Il

- Mm+ 2lwm—kl_ju'm—m (24)
sz pm—2+10pm~1+ pm
Pm + 10 pm—i—l + pm+2

%) Si l’on supposait que K, =p, - 4z, on obtiendrait la relation bien connue de Marcus,
sous une forme de statique appliquée. En langage mathématique, la méthode de Marcus
exprime directement la dérivée seconde d’une fonction en un point déterminé, tandis
que la méthode de statique appliquée exprime la fonction par rapport & sa dérivée en
plusieurs points. Il s’ensuit que la méthode de Marcus est beaucoup plus grossiére et que
la précision est d’un tout autre ordre de grandeur (cf. F. Sttyssi: Numerische Lésung von
Randwertproblemen mit Hilfe der Seilpolygongleichung, Zeitschrift fiir angewandte
Mathematik und Physik, ZAMP, Vol. I, 1950). Dans le cas du voilement qui nous occupe,
les équations numériques remplacant’équation différentielle (12) contiendraient d’ailleurs,
d’apreés Marcus, le méme nombre d’inconnues, exigeant ainsi, pour une précision bien
inférieure, le méme travail de calcul.
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Le premier membre de cette équation (24) peut étre regroupé comme suit:
-M, ,—10M, .— M,
2M, +20M, .+ 2M, ., =
- Mm—IOMm+1_Mm+2 : (25)
A2 [Pt O0p,a+  Pm
= 15 10p,,_4+100p,,+10p,, .,
Pm +10 Pm+1 + Pm+2
D’autre part 1’équation numérique (23) remplagant (15) s’applique aussi a
(16). 11 suffit pour cela de remplacer M par w et p par E’i{f (analogie de Mohr).
On peut des lors écrire les trois relations numériques suivantes aux points
m—1, m, m+ 1, aprés multiplication de la seconde par deux et changement
de signe de la premieére et de la troisiéme:
Wy o—2W, 1+ W,
— 2w, +4w,— 2w, =
Wy — 2 Wy g+ Whia (26)
1 Adax?
EJ 12
1 Adz?
EJ 12 .
1 Ada?
EJ 12

(—Mm—z_loMm—l— Mm)
(2 My +20 M+ 2M,,,,)

(_ Mm_IOMm+1—Mm+2)

On constate immédiatement que le second membre des équations (26)

Ax?
EJ 127
d’ou 'égalité des deux autres membres, a ce facteur prés. On obtient des lors
par addition des différents termes de méme indice la relation numérique

cherchée entre les fléches et les charges réparties d’une poutrel®).

n’est rien d’autre que le premier membre de (25), au facteur preés

Wy—o— 4 W1+ 6 Wy — 4 W1+ Wiy o =

1 Aat (27)
= FJ 144 (Pm—2+20py_1+102p,, +20p, 1 + Ppia)

18y On arrive au méme résultat en additionnant (23) et 1’équation analogue en w et
2
M, soit -wm_1+2wm—wm+1:ET1J— %(
en M, . En écrivant les termes restants une fois au point m — 1, deux fois au point m,
une fois au point m+ 1, et en utilisant ensuite & nouveau (23), on retrouve finalement
(27). C’est le procédé de 1947 appliqué a toute 1’équation différentielle (12), de maniére
purement formelle, c¢’est-a-dire en travaillant avec les w, w” et w", sans utilisation directe
des notions de charge, de moment fléchissant et de fleche correspondant aux w, w” et
g

w"”. L’emploi de schémas rend les calculs trés faciles. Nous renvoyons & ce sujet aux
Publications N° 23 (p. 219) et N° 27 (p. 40) citées & la note 1.

M, ,+10M, + M, ). Il reste alors un terme
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En utilisant la relation (24) dans laquelle M deviendra w et p deviendra

ol (analogie de Mohr), on obtient immédiatement une nouvelle relation numé-

rique entre les fleches et les moments fléchissants d’une poutre, le second membre
trouvé ayant alors la méme forme que (27):

_(wm~2+8wm—1_18w7n+8wm+1+wm+2):
1 A x?
T EJ 12

28
(Mm—2+20ﬂ{m—1+IOQMm+20M7)z+1+Mm+2) ( )

Cas particulier des charges concentrées

Nous avons vu que la relation (19) est absolument rigoureuse et qu’elle
vaut pour n’importe quelle répartition de la charge p, spécialement si celle-ci
se présente sous la forme de charges concentrées P. Si nous considérons seule-
ment des charges concentrées P, ,, P, , P,.; aux points m—1, m, m+1,
ces charges concentrées sont de toute évidence les charges aux nceuds. On
peut deés lors écrire, en lieu et place de (25), puisque le second membre était
formé des charges aux nceuds en m —1, m, m+ 1:

_Mm*2_10Mm~l_ Mm [Pm—l
2M,, _+20M,+ 2M, ., =dx 10 P, . (29)
- Mm_IOMm+1—]”m+2 [ Pm+1

Nous avons déja dit que 1’'on peut passer immédiatement des relations
numériques entre les moments fléchissants et les charges, aux relations numé-
riques entre les fleches et les moments fléchissants. Il suffit pour cela de rem-

placer M par w et p par EMj (analogie de Mohr). La répartition des moments

se faisant linéairement entre deux points consécutifs, lorsque les charges sont
concentrées, il faut donc se servir de (20) pour le calcul des charges aux nceuds
et non plus de (22). Les équations numériques (26) obtenues précédemment
pour une charge répartie deviennent alors, si les charges sont concentrées:

wm—2—2wm—1+ Wy,
—2w +4w, —- 2w, 4 =

Wy — 2 Wit + Wipro (30)

1 4 9:2(
EJ 6

1 A2

= Fj 6 (zj‘lm—l_{_SMm'{'QMmH)

1 Ada?

EJ 6

Or nous avons vu que la charge au noecud «parabolique» (22) s’obtient
par addition de la charge au nceud «trapézoidale» (20) avec le supplément

m—1

*Mm )

m—1"

M, ,—4M

(_ Mm—'élenLl_Mmﬁ—z)
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provenant des secteurs paraboliques (21). Ce supplément s’écrit maintenant
1 4dx

77z (T

charge au neeud d’un diagramme des moments fléchissants (analogie de Mohr).

Mais alors nous constatons que ce supplément n’est rien d’autre, d’apres (19),

s : 1 2 5 ) .
que la charge concentrée P,, au point m, au facteur Yol Al—"; pres. Il s’ensuit

M, +2M,—M,. ), compte tenu de ce que nous cherchons la

que nous pouvons écrire la charge au noeeud du diagramme des moments
IR ‘ 1 A4
fléchissants pour charges concentrées K, =z T"U(Mm_1+4Mm+Mm 1)

sous la forme d’une charge au neceud du diagramme des moments fléchissants
pour charges réparties, soit:

1 dx 1 Adzx?

Koo = 7 13 Mnea 10 Myt M) = 57 55 P

m- (31)

Ainsi cette valeur (31) de la charge au nceud du diagramme des moments
fléchissants pour charges concentrées nous permet maintenant d’écrire (30)
sous la forme suivante:

Wy o= 2Wy 1+ Wy, —E}jégf m—1
— 2w, +4w, — 2w, +Fljég32Pm =
wm—2wm+l+wm+2—%j—éi—2xj1)mﬂ (32)
El_Jﬂ_f(_Mm_z_loMm_l— M,)
- E% ‘{;2 2M, +20M, + 2M,,,,)
L (= Mu—10M,,;—~M,,;)

Comme auparavant pour les charges réparties, nous constatons maintenant,
a un facteur pres, 1’égalité des équations (32) et (29). Le second membre de
(29) est des lors égal au premier membre de (32), & ce facteur pres. Comme
auparavant pour les charges réparties nous obtenons, par addition des diffé-
rents termes de méme indice, la relation numérique cherchée entre les fléches et
les charges concentrées d’une poutre:

1 A3
wm~2_4wm—1+610m—4wm+1+wm+2 = Ej T(Pm—l+4pm+ Pm+1), (33)

Ainsi le membre de droite de (33), qui est effectivement une double charge
au nceud, remplace, quand il s’agit de charges concentrées, la double charge
au neud pour charges réparties, donnée par le membre de droite de (27).
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Quant aux membres de gauche de (27) et de (33), ils sont identiques, comme
nous le voulions précisément, en vue d’ajouter les résultats partiels obtenus
pour les différents cas a la résolution des équations différentielles (12) et (13).

Passage de I’équation différentielle du voilement aux équations numériques

En procédant chaque fois de la méme maniere, & I’aide de doubles charges
nodales, nous venons d’établir les relations numériques (27), (28) et (33) entre
les charges, réparties ou concentrées, les moments fléchissants et les fleches
d’une poutre. D’autre part, nous savons que les équations différentielles (12)
et (13) contiennent la dérivée quatriéme =" de la fleche 7, c’est-a-dire la
charge, la dérivée seconde 7", c¢’est-a-dire le moment fléchissant de la poutre
transversale médiane de remplacement de la tole, et enfin la fleche n propre-
ment dite.

Deés lors rien ne nous empéche d’ajouter les résultats partiels obtenus (27),
(28) et (33), en tenant compte des coefficients de multiplication de (12) et de
(13). En procédant ainsi, nous agissons comme si nous considérions d’emblée
toute 1’équation différentielle (12) en pleine tole et toute 1’équation différen--
tielle (13) au droit du raidisseur, en prenant d’un seul coup la double charge
au nceeud de ces équations!!). On se souviendra simplement que, selon (11),
il y a lieu d’écrire n a la place de w, 4 y a la place de 4 x puisque 1’on considére
le sens transversal de la tole (fig. 1) et D, rigidité de la plaque, & la place de
E J, rigidité de la poutre.

Le terme n"” de (12) et de (13), représente la charge p, sur la poutre de
remplacement transversale médiane de la téle; il se tire du membre de gauche
de (27) ou (33):

Nm—2 — 4 Mm—1 1 6 Nm — 4 Nm+1 T M2+ (34)

772 ” ’,
Le terme ——%2—77 de (12) et de (13), représente la charge 2p,, dans un

systéme général de poutres entre-croisées, ou aussi, a un facteur pres, le moment
fléchissant le long de la poutre de remplacement transversale médiane de la
toéle considérée; il s’écrit, grace au membre de gauche de (28), cette équation

. dw M : . _
(28) correspondant & ———5 = — et non directement a (16):
w2 4 y?
- ;;2— W(nm—2+8nm—1_ 187]m+877m+1+77m+2)' (35)

Le terme alzn de (12) et de (13) représente la charge p, dans un systéme

général de poutres entre-croisées ou, & un facteur pres, la fleche de la poutre de

11) C’est ainsi qu’il a été procédé en 1947, cf. note 1. Pour plus de détails & ce sujet
on consultera également 'article de la note 9 et I'ouvrage suivant: F. Sttss1, Ausge-
wahlte Kapitel aus der Theorie des Briickenbaues, Taschenbuch fir Bauingenieure,
herausgegeben von Prof. Dr. Ing. F. ScHLEICHER, Berlin/Géttingen/Heidelberg 1955,
Springer, Bd. I, S. 953.
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remplacement; il se transforme & ’aide du membre de droite de (27) ou (28):

4Ay

(1/1 144 (nm 2+20nm 1+1027]m+207)m+1+7]m+2) (36)

De méme, le terme w-ka—:—;n de (12) et de (13), représentant 1’effort de

déviation lors du voilement, devient:

mt Ayt
257 144 (W2 M2 +20 0w, _3 M1+ 102w, 1,
(37)
20 Wpi1 N1+ Oy Mt
Pour simplifier 1’écriture, nous posons?!2):
w2 4y? ANE 7wt Ayt
=— 8 B=|>) = —
4= "% (38) (2) at 144 (39)
. Ayt

O=B% = e 1ad 0

Nous obtenons des lors, par addition de (34), (35), (36) et (37), la relation
numérique suivante en pleine tole, en lieu et place de I’équation différentielle (12):

(1—A+B)n, ,—(4+8A4—20B)n, _, +(6+18A+102B)7,,
—(4+84—-20B) 1+ (1—A+B)n,.0 =k-C(wy_o Mm_s (41)
+20 Wy 1* Mp—1 T 102 Wy~ 77m+20 @i 1" M1 T Dppya” Tlm+2)

Au droit du raidisseur, nous devons tenir compte de 1’effort concentré qu’il
engendre, soit —él—(yb — w, k8 )77 d’apres (13). En utilisant le membre

de droite de (33), on obtient, si r désigne le point ot se trouve le raidisseur
longitudinal unique que nous considérons dans la présente étude:

Ay - pour le point r —1
B (V b ak T @r ko b) précédant le raidisseur, (42)
A3 pour le point 7 ou se
—4— (V b—5—w, kd b) trouve le raidisseur, (43)
Ay o - pour le point r +1
7% (Vb— o, o8 2b2) suivant le raidisseur. (44)

12) L’abréviation 4 s’appelait 2y en 1947, dans 'ouvrage cité & la note 1. A ’heure
actuelle y est la rigidité du raidisseur selon (8), qui n’avait pas été considérée a 1’époque.
L’équation (41) n’est rien d’autre que ’équation (11) de 1947, si I’on remplace 2y par 4,

4

ka
y? par B et p par k;z—ggw-n.
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Compte tenu de P’abréviation:

Ay3 7t art

nous obtenons, en ajoutant (42), (43) et (44) & (41), la relation numérique sui-
vante aw point r — 1 précédant le raidisseur, en liew et place de U'équation diffé-
rentielle (13):

(1—A+B)ry, ,—(4+84—20B)y,_,+(6+184+102B)n,_,
—(4+8A4-20B)n,+(1-A+B) 9,y =k-C(w, 31,3 (46)
+ 20 Wy_o° 7]r~2+ 102 Wp_1*Np_1t 20 Wy 7)7'+wr+1' 7)7‘+1) ~R- Ty

Au point r ol se trouve le raidisseur, on trouverait de méme la relation numé-
rique survante remplagant (13):

(1—A+B)n,_,—(4+8A4—-20B)n, ;+(6+184+102 B)x,
—(4+8A4-20B) . +(L=A+ B)n,p = k- C(w,_5 02 (47)
+ 20 Wy 1" Npq+ 102 wr'nr+20 w’r+1'77r+1+wr+2'77r+2)—4’R'77r

Au point 7+ 1 suivant le raidisseur, on obtient enfin:

(1—A+B)n,_,—(4+8A4—20B)n+(6+18A+102B)n,
—(4+84-20B)n, ,+(1 -4+ B) 9,3 = kC (w1 M (48)
+20 W, N+ 102 Wypy 777‘—!—1'*‘20 Wypyo* Npypg T Wpig® 77r+3) - R Ny

Bords d’une téle simplement appuyée sur son pourtour

En régle générale on néglige le faible encastrement de ’ame d’une poutre
fléchie dans les semelles et I’on considére la t6le comme simplement appuyée
sur son pourtour. Puisque la fléche 7 sur le bord est nulle, elle est donc connue
et il suffit de la déterminer aux autres points. Pour avoir autant d’équations
que de 7 inconnus, il nous faut écrire (41) au point 1, le plus rapproché du
bord de la tole. La chose est trés simple, dés que ’on juxtapose, par la pensée,
une téle semblable & la premiere et se voilant de maniére antisymétrique sous
une sollicitation identique. La déformation est alors antisymétrique par rap-
port au bord considéré. Puisque 7,,,;=0 et n_; = —n;, ’équation (41) devient
au point 1 (m=1):

(5+19A4+101 B)n, —(4+8 A4 —20B) o+ (1 —A + B)n; =

49
Zk0(101w1771+20w2’72+w3"’)3) (49)
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Résolution des équations numériques

Quelles que soient la rigidité relative (8) et la sectionrelative (9) du raidisseur
considéré, rien n’est plus facile que d’écrire en tous les points les équations
numériques remplacant les équations différentielles (12) et (13). On calcule
tout d’abord les valeurs auxiliaires (38), (39), (40) pour la pleine téle et (45)
pour le raidisseur. Au dernier point précédant chacun des deux bords de la
tole, on se sert de I’équation (49). En tous les autres points, on utilise soit (41)
en pleine tdle, soit (46), (47), (48) au raidisseur.

Le systéme d’équations obtenu ne contient que des termes renfermant les
fleches inconnues 7. Ces fleches ne nous intéressent d’ailleurs que si nous
voulons tracer la déformation de la téle au moment du voilement. On sait
qu’a ce moment une infinité de déformations affines sont possibles. Il faut
donc donner une valeur définie quelconque & I’'un des % pour déterminer les
autres. Nous avons en conséquence une équation de plus que le nombre de 7y
inconnus. Or si nous considérons le second membre de (41), (46), (47), (48),
(49), nous nous apercevons qu’il contient la véritable inconnue du probléme
qui nous intéresse, le coefficient de voilement k, pour une téle et un raidisseur

de caractéristiques %, y, 8 données, ou la rigidité y pour k, 8 et % donnés. Nous

avons done ainsi & disposition autant d’équations numériques que d’inconnues

Si l’on veut obtenir la valeur de k£ & partir du systéme des équations numé-
riques, rien ne nous empéche d’admettre les fléeches n du membre de droite de
(41), (46), (47), (48), (49), qui sont multipliées par le facteur de voilement k.
On obtient de la sorte des «termes de charge» qui permettent de déterminer
de nouvelles ordonnées 7 et ainsi de suite. A la fin, les fleches admises et celles
qui en sont déduites & partir du systéme concordent parfaitement, & un fac-
teur de multiplication pres, qui est justement le coefficient de voilement k&
cherché. C’est le procédé bien connu d’Engesser-Vianello, utilisé tres fré-
quemment dans les problémes de flambement des barres.

Remarquons tout de suite que les fleches n déduites des fleches admises,
a partir du systéme, ne doivent pas étre employées telles quelles en vue de
I’approximation suivante, dans le probléme du voilement qui nous occupe en
ce moment. Pour éviter de diverger, il faut en effet combiner les » admis et
les n déduits en proportions variables. Dans la zone comprimée, ce sont les »
déduits qui ont le plus grand poids, tandis que le contraire est valable dans la
zone tendue. Une variation continue de la proportion choisie d’un bord de la
tole a 'autre donne les meilleurs résultats, comme la pratique le montre.

Rien n’empéche d’utiliser le procédé d’Engesser-Vianello, par approxi-
mations successives, en considérant tout d’abord des fleches unitaires aux
différents points, ou un groupe de fleches liées entre elles par des coefficients
adéquats, par exemple ceux qui correspondent a une charge au nceud, simple
ou double. Le long de la verticale médiane de la tble, on obtiendra ainsi de
véritables lignes d’influence de la poutre de remplacement transversale con-
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sidérée précédemment (fig. 1). Ce* travail une fois exécuté, il sera facile de
déterminer les fléeches déduites & partir de fleches telles qu’elles ont été admises.
Le procédé direct, sans lignes d’influence, a été utilisé en 1947, vu qu’il s’agis-
sait d’un exemple isolé!). Les lignes d’influence ont été employées en 1948 et
1954, vu qu’il s’agissait au contraire d’un calcul systématique d’une série de
valeurs, avec augmentation progressive des caractéristiques de la tole et du
raidisseur. En 1948 et 1954 nous avons utilisé la méthode dite implicite?),
abandonnée depuis, comme nous ’avons déja dit.

Rien ne nous empéche non plus de passer tous les » du second membre
des équations (41), (46), (47), (48), (49) dans le premier membre correspondant.
On aboutit ainsi & un systéme d’équations en z sans termes connus. Si 1’on
applique & ce systéme «homogéne» la méthode de résolution classique dite
«algorithme de Gauss», on obtient, comme derniére équation du systéme
réduit, une équation de la forme K »,=0. A part la solution immédiate »,, =0,
qui conduit & des fleches nulles en tous les points, il existe une solution, indéter-
minée, lorsque E =0. Cette solution est précisément celle qui nous intéresse.
Pour essayer d’annuler le dernier coefficient £ du «systéme réduit», il faut

faire varier un des parametres k, y, 8 en fixant les deux autres, le rapport %

étant par ailleurs & considérer comme une constante. On y arrive avec toute
la précision désirable en procédant tout d’abord par tdtonnement et ensuite
par interpolation. On s’efforcera d’obtenir en premier lieu une valeur du para-
meétre donnant un dernier coefficient «réduit» positif, puis une seconde avec
coefficient négatif ou inversément. Au troisiéeme essai déja, on obtient souvent
par interpolation une valeur satisfaisante.

Mathématiquement parlant, le procédé décrit ci-dessus consiste & annuler
aussi exactement que possible le déterminant du systeme d’équations «homo-
génes» obtenu; on peut donc 'appeler «méthode du déterminant»!3).

Nous avons constaté tout a 1’heure que nous avons les trois parametres

a

k, v, 6 a disposition, si 7 st une constante. Nous allons montrer qu’il n’y a

pas lieu de s’occuper de 8, tous les calculs se faisant pour 8 = 0. Reste
donc & choisir entre k et y. L’examen des équations (41), (46), (47), (48), (49),
apres passage du second membre dans le premier, montre que le parametre k
figure dans tous les coefficients de toutes les équations du systéme, tandis que
le paramétre y ne figure que dans un coefficient de chacune des trois équations
(46), (47), (48) se rapportant au raidisseur, et pas du tout dans celles de la
pleine tole (41), (49). On aura donc tout intérét, dans le probleme de la tdle
raidie, a fixer une valeur du coefficient de voilement k et & chercher la valeur
de la rigidité y du raidisseur qui annule le déterminant, c’est-a-dire le dernier
coefficient du systeme réduit. ‘

13) C’est le procédé utilisé en 1955 pour le panneau carré, raidi diagonalement, com-
primé uniformément sur deux bords opposés ou cisaillé uniformément sur ses quatre
bords; cf. p. 123 de la Publication N° 27 citée & la note 1.



Voilement de I’dme avec raidisseur au cinquiéme supérieur 233

Pour plus de facilité, on écrira en dernier lieu les équations contenant
I'influence R du raidisseur selon (45); dans le cas de la téle fléchie, avec raidis-
seur au cinquiéme supérieur, on commencera donc par le bord inférieur, tendu.
Le tatonnement sur la valeur de y se concentrera ainsi aux dernieres équations
du «systéme réduit». Bien plus, si le nombre d’intervalles choisi est faible, on
pourra méme éviter tout tdtonnement en appliquant I’«algorithme de Gauss»
a un systeme contenant dans ses dernieres équations le y inconnu, sans lui
donner de valeur numérique. En exprimant alors que le dernier coefficient du
«systéme réduity s’annule, on obtiendra une équation algébrique dont la réso-
lution fournira la valeur cherchée de la rigidité y du raidisseur.

Si I'on veut par contre fixer les y et calculer les k& correspondants, il faut
a chaque tatonnement recommencer 1’élimination deés le début. C’est ce qu’il
faut d’ailleurs faire pour la double onde transversale de la téle non raidie,
puisque le seul parameétre a disposition est alors le coefficient de voilement k.
Pour diminuer le nombre des essais a effectuer, on déterminera k en premiere
approximation par une méthode grossiere. A cet effet, on suppose la double
onde formée par deux toles accolées se voilant au méme instant. La toéle
supérieure peut étre assimilée a une tole sollicitée par des efforts de compres-
sion uniformément répartis. La tole inférieure est sollicitée & la flexion pure,
si 'on néglige la zone tendue extréme, peu importante du point de vue voile-
ment %), Le calcul du facteur de voilement rapporté a toute la tole ne présente
deés lors plus de difficulté.

Rappelons ici que la détermination de la double onde transversale est de
toute importance. Nous devons en effet savoir ot nous devons placer le raidis-
seur pour qu’il ne fléchisse pas lors du voilement en deux séries de cloques
superposées. C’est 1’endroit optimum du raidisseur, c¢’est-a-dire celui ou 1’'on
obtient le plus grand coefficient de voilement k. On ne peut évidemment le
dépasser, la tole se voilant alors en deux séries de cloques superposées, en
laissant le raidisseur sans déformation.

En utilisant la méthode du déterminant pour la double onde transversale,
on évite toutes les difficultés de 1948, provenant de ce que le procédé d’En-
gesser-Vianello divergeait et tendait vers 1’onde unique. On se rend compte
facilement qu’en fixant la valeur de %, on élimine cette tendance a diverger
vers un k nettement plus faible. En outre, il n’y a pas de difficulté a considérer
un nombre de points intermédiaires beaucoup plus grand qu’en 1948.

Conformément & ce que nous avons déja dit il y a lieu de noter maintenant
que ’on peut trés bien exécuter tous les calculs avec d =0 (raidisseur sans
section appréciable) et passer ensuite au cas ou 8 posséde une valeur quel-
conque. En effet, on peut écrire, d’apres I’équation (45):

4 4 4
Yomob i = 7sb g — k8 gy

14) Cf. Publication N° 23 citée & la note 1, p. 96, fig. 39.
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ou aprés simplification:

a2
Vs = 73=o+wrk35§ (50)

L’examen de (50) montre immédiatement que vy croit linéairement avec o
pour un k£ donné.

Il faut enfin remarquer que nous avons maintenant renoncé a 1’emploi de
la méthode du renversement des charges d’Andrée, utilisée en 1947, 1948 et
19541). Nous avons en effet constaté que le faible nombre de termes dans
chacune des équations numériques (41), (46), (47), (48), (49), permettait une
résolution directe aussi rapide, vu les opérations préliminaires et complémen-
taires nécessaires avec la méthode d’Andrée.

Résultats obtenus pour la double onde transversale

Nous venons de voir que la détermination de la double onde transversale
est nécessaire pour savoir ou nous devons placer le raidisseur dit «optimum»
ou «économique». Désignons par b, la distance depuis le bord supérieur de
I’ame jusqu’a ’endroit ou la fleche est nulle lors du voilement avec double onde
transversale. Cet endroit est facile & calculer quand on connait les fleches aux

. Yt s e s . 7 30 b
points considérés équidistants, sur la verticale médiane (fig. 1). Le rapport —b—l
indique donc ou devrait se trouver le raidisseur dit «optimum» ou «écono-
mique». D’apres (11) ce raidisseur est nécessairement rectiligne et horizontal.

. , . a
Nous donnons ci-dessus les résultats obtenus pour divers rapports - de la

longueur & la hauteur de 1’ame d’une poutre fléchie. Le calcul a été effectué
avec vingt intervalles le long de la verticale médiane (fig. 1), par la méthode
du déterminant.

b .
Tableau 1. Valeurs de ket de —bl en fonction de % pour la double onde transversale
% 0,2 0,225 0,25 0,275 0,3 0,325 0,35 0,375 0,4
k 142,5, | 135,15 | 131,05 | 129,4; | 129,6, | 131,2; | 134,0; 137,9, 142,6,
%1 0,1840 | 0,1912 | 0,1974 | 0,2025 | 0,2069 | 0,2105 | 0,2136 |} 0,2163 0,2185

Graphiquement, les valeurs k sont visibles, & trés petite échelle, & la partie
supérieure de la fig. 3. On remarquera que, dans le sens longitudinal de 1’ame,
le voilement se produit en une ou plusieurs ondes, la valeur la plus basse de k
étant toujours déterminante. 1l s’ensuit une courbe en festons, caractéristique
de tous les problémes de voilement. En pratique, on ne raidit guére un panneau
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de poutre fléchie dont le rapport est inférieur a l'unité, et certainement pas,
si ce rapport est plus petit que 0,5. Le premier feston de la fig. 3 n’a donc
pas d’utilité, en construction métallique normale tout au moins. Quant aux
festons suivants, qui sont d’ailleurs de moins en moins prononcés, on ne peut
guere s’occuper des valeurs plus grandes que le minimum, car il est en fait
difficile de fixer exactement la longueur a et la hauteur b du panneau consi-
déré. En effet, on ne peut dire exactement ou s’arréte 1’ame lorsque la section
des semelles et des montants verticaux est quelque peu compliquée. D’autre
part, il est logique de diminuer légérement a et b pour tenir compte de 1’en-
castrement dii aux semelles, aux montants et aux panneaux voisins, moins
sollicités ou sollicités différemment, surtout s’il s’agit des poutres maitresses
d’un pont muni de solides entretoises ou avec tablier directement appuyé sur
les dites poutres maitresses.

Le minimum seul nous intéressant, nous avons trouvé, par interpolation,

qu’il devait correspondre au rapport %g 0,285. Nous donnons dés lors ci-apres

les résultats trouvés pour divers nombres n d’intervalles considérés. La der-

niére ligne contient les valeurs obtenues en utilisant la loi approchée
k= 129,424—%. Vu la concordance parfaite a partir de dix intervalles,

nous pouvons extrapoler a 'infini, & I’aide de la loi en question.

Tableau 2. Valeur minimum de % lors du voilement avec double onde transversale

Nombre d’intervalles n==06 n=8 | n=10|n=15 | n=20 | n=30 | n=o0
Valeur calculée de & 126,35 | 125,28 | 127,54 | 129,05 | 129,31 | 129,40 —
Formule approchée — 124,82 | 127,54 | 129,05 | 129,31 | 129,40 | 129,42,
Erreur par rapport & n= oo — — 1,489 1 0,299, | 0,099, | 0,029, —
Rapport % — — — — — 0,2043 —

Le tableau précédent montre en outre que le raidisseur au cinquieme
supérieur est tres prés de 1’endroit ot la tole ne fléchit pas lors du voilement
avec double onde transversale, lorsque %:0,285. Puisque & ce moment
% =0,204-3, le cinquiéme supérieur se trouve seulement & 2,2 cm de la position
idéale pour une poutre & d&me pleine de 5 m de hauteur. Cette précision est
plus que suffisante pour les besoins de la pratique.

« 17 . a . .
Considérons maintenant les rapports 3 compris entre 0,5 et 1, mais non

multiples de 0,285. Pour cela, nous avons agrandi la courbe des k en fonction de

%, représentée a petite échelle au haut de la fig. 3. Nous avons reporté sur la

A b . -
méme figure les f correspondants, ce qui donne non plus des festons, mais

une série de décrochements. L’intersection des deuxiéme et troisiéme festons
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se produit tout pres de %=0,7:2'0,35=3-0,2333...; I’intersection des troi-

sieme et quatrieme festons, vers %=0,98=3-0,3266...=4~O,245. Les valeurs
correspondantes de % sont approximativement de 0,214 et 0,193 & l’inter-

section des deuxiéme et troisieme festons et de 0,211 et 0,197 & 'intersection
des troisieme et quatriéme festons. Ainsi ’écart maximum du raidisseur au
. Iy s . . a - a

cinquieme supérieur serait de 7 cm pour 3=O,7 et de 5,5 cm pour —b—=0,98,
a

, augmente, les écarts

si la poutre considérée avait 5 m de hauteur. Lorsque

deviennent de plus en plus petits.

On peut donc dire que le raidisseur au cinquiéme raidisseur correspond, avec
une précision plus que suffisante pour les besoins de la pratique, a la position
vdéale. Quant au coefficient de voilement k, on ne peut guére admettre une
valeur supérieure a 129,4, par ailleurs trés proche des 129,3 trouvés en 1948
et dont la précision nous avait inquiétés quelque peu. Pour ne pas allonger,
nous avons renoncé a donner dans la présente publication les déformations
lors du voilement avec double onde transversale. Ces valeurs ont été cependant

calculées pour déterminer le rapport %

Résultats obtenus pour la rigidité du raidisseur dite «optimum»
ou «économique»

La rigidité «optimum» s’obtient en posant k=129,4, valeur maximum
que nous voulons considérer en pratique. Cette rigidité «optimum» n’est
véritablement «économique» que pour les poutres hautes, out ’on peut réduire
au minimum 1’épaisseur considérée, sans en étre empéché par des raisons
d’ordre constructif. Puisque %k est fixé d’avance, les calculs se font par le
méthode dite du déterminant ainsi qu’il a été dit précédemment et pour 8 =0.
A T’aide de (50) on passe ensuite au y correspondant & un § quelconque.

Nous donnons dans le tableau ci-apres les résultats obtenus, aprés correc-
tion par une formule approchée pour n=o0. Les résultats trouvés ont été
ensuite arrondis. En ce qui concerne la précision, on remarquera qu’elle dépend
du nombre de points équidistants choisis pour décrire une portion de courbe
entre deux points d’inflexion; la précision est dés lors bien meilleure dans le
cas actuel avec une seule onde transversale, & la place de la double onde précé-
dente. Méme avec 20 points, la précision par rapport & n=o0 est déja trés
grande, de ’ordre de 0,019%,, tandis qu’elle atteint 0,19, avec dix intervalles.
a
b
tableau 2 de 19541) sont assez faibles, malgré 1’effet concentré du raidisseur
dont le calcul avait été effectué de maniére trés approximative & 1’époque.

Les valeurs du tableau précédent n® 3 sont représentées graphiquement &
la figure 2. Pour faire cette représentation, il faut se souvenir que le voilement
peut se faire en plusieurs ondes, ce qui donne une nouvelle fois les festons

On constate que pour les - supérieurs & 1’unité, les différences d’avec le
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Tableau 3. Valeurs de y, (k=129,4)
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% 8=0 |8=0,02|8=0,04|56=0,06|5=0,08( 6=0,1 |6=0,12/6=0,14|6=0,1656=0,18| 6=0,2
0,5 6,9 7,3 7,6 , 8,0, 8,4 8,8 9,2 9,6 | 10,0 | 10,4 | 10,7
0,75 11,3 12,2 13,0) 13,9| 14,8 | 15,7 | 16,5 | 17,4 | 18,3 | 19,1 | 20,0
1 17,6 19,2 20,7 22,3 23,8 254 | 26,9 | 28,56 | 30,0 | 31,6 [ 33,1
1,25 24,7 27,1 29,5 31,9 34,4 36,8 | 39,2 | 41,7 | 44,1 | 46,5 | 48,9
1,5I 31,71 35,2 38,7, 42,2 45,6 | 49,1 | 52,6 | 56,1 | 59,6 | 63,1 | 66,6
1,75 | 37,8| 42,5, 47,3, 52,0 56,8 | 61,5 | 66,3 | 71,0 | 758 | 80,6 | 85,3
2 42,0 48,2 54,4 60,6| 66,8 ) 73,1 | 79,3 | 85,5 | 91,7 | 97,9 | 104,1
2,25 43,4} 51,3| 59,2 67,0 74,9 | 82,7 | 90,6 | 98,5 106,3 |114,2 |122,0
2,5 41,0( 50,7 60,4} 70,1} 79,8 89,5 | 99,2 | 108,9 | 118,6 | 128,3 | 138,0
2,75 33,6| 45,3 57,00 688| 80,51 92,3 1104,0 | 1158 | 127,5 | 139,2 |151,0
3 19,9 33,9] 47,9| 61,8 758 | 89,8 |103,8 | 117,7 |131,7 | 145,7 | 159,7
3,25 -1,2] 15,2 31,6] 48,0| 64,4 | 80,8 | 97,2 | 113,6 | 130,0 | 146,4 | 162,8
3,5 -31,3| -12,3 6,7 257| 44,8 63,8 | 82,8 |101,8 {120,8 |139,9 {158,9
3,75 | 71,8 -50,0| —28,2| -6,3| 15,5 37,4 | 59,2 } 81,0 |102,9 | 124,7 | 146,5
4 ~-124,4| -99,6| -74,7| —49,8 -25,0 | 0,1 | 24,7 | 49,6 | 74,4} 99,2 |124,1
4,25 [-190,7 |-162,6 |-134,6 |-106,5; -78,5 | -50,4 |-22,4 5,6 | 33,7 | 61,7 | 89,8
Tableau 4. Valeurs maxima de y, (k=129,4) pour divers &

—Z— 8=0 |8=0,02|58=0,04}3=0,06|8=0,08| 5=0,1 |8=0,12|6=0,14|6=0,168=0,18| 6=0,2
2,23 | 43,4

2,34 51,6

2,45 60,5

2,56 70,2

2,67 80,8

2,77 92,3

2,87 104,6

2,96 117,8

3,06 131,9

3,15 146,9

3,25 162,8
For-
mule 43,40 | 51,45 | 60,37 | 70,15 | 80,79 | 92,30 1104,67 |117,91 132,01 146,97 |162,80
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classiques des courbes de voilement. Par ailleurs, si I’on avait tenu compte du
fait que la double onde transversale ne donne pas toujours k£=129.4, on
obtiendrait en plus des festons secondaires sur les diverses courbes.

En pratique et pour les raisons déja énumérées précédemment, on se main-
tiendra au maximum a partir de celui-ci, en faisant disparaitre les festons.
Pour ce motif, nous donnons les maxima correspondant aux divers 8, dans
le tableau spécial 4. Tout au bas du tableau, nous avons indiqué les
valeurs que l’on obtiendrait par la formule approchée v,,,.,=43,4+ 3813+
+ 108062, On voit que cette formule donne d’excellents résultats.

Résultats obtenus jusqu’ici pour un raidisseur de rigidité
et de section quelconques

Comme nous venons de le faire pour la rigidité dite «optimum» ou «éco-
nomique», avec k=129,4, il est possible de tracer, pour un k quelconque fixé
d’avance, les courbes des rigidités correspondantes y du raidisseur, avec
diverses valeurs de 6. On obtient alors autant de diagrammes que de k. Etant

donné les quatre parametres y, 8, k et % du probléme du voilement avec raidis-

seur, plusieurs autres représentations sont possibles, comme il ressort des
publications de 1948 et de 19541). Mais les calculs effectués en 1948 et 1954
par le procédé d’Engesser-Vianello peuvent étre facilement corrigés pour tenir
compte plus exactement de 1’effet concentré du raidisseur, tel que nous I’avons
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exposé selon les équations (46), (47), (48). Nous avons donc conservé ce pro-
cédé, en fixant par avance les valeurs de ¢ que nous voulions considérer, soit
de 5 en 5. Nous avons renoncé & donner les résultats sous forme de tableaux et
nous sommes contentés pour I'instant de la fig. 3, ces résultats étant encore
trop fragmentaires et sans passage a un tres grand nombre d’intervalles (n = o).
Nous constatons cependant, en comparant la fig. 3 actuelle et la fig. 3 de 1954,
que les différences sont minimes dés que a est supérieur & 1’unité. Nous avons
déja fait la méme constatation pour la rigidité dite optimum ou économique.

4~
729.4
1294 — ya
/ i
7
=130 /
/ /
{00 . >
7=120 ,
/
/ 7/
/
/ / //
70 rd -
7
/ / //
/ / Pte
/ yd ~
50 / // - 5
// -7 /// I
4 i P B - b
/ P - IT
/ - -
-
H—-——‘;———H
7 2 3 4 3 %_
Fig. 3.

D’autre part, nous avons renoncé & donner ici la figure correspondant & la
fig. 3, lorsque & a une valeur différente de zéro, par exemple 6 =0,1 comme en
1954. Ainsi que le montre le tableau n® 3, nous aurions besoin pour cela de
nous occuper de rigidités trés faibles du raidisseur, en allant méme jusqu’a
des valeurs négatives de y et quoique ces valeurs n’aient guére de sens phy-
sique. Or, ce travail n’est pas encore complétement achevé. Nous pouvons

cependant dire d’ores et déja que le diagramme des £ en fonction des % pour
les diverses rigidités de y, de 5 en 5, et avec §=0,1 est trés peu différent de
celui de 1954, dés que 1’on dépasse 1'unité pour le rapport % Notre intention

est d’aller d’ailleurs jusqu’a §=0,2 dans la publication plus compléte dont
nous avons parlé dans 'introduction.

Comme précédemment, les festons ou guirlandes de la fig. 3, obtenus en
tenant compte du voilement en plusieurs ondes dans le sens longitudinal,
seront en pratique remplacés par une horizontale & partir de £ minimum.
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Remarques finales

Bien qu’elle ne soit pas encore completement achevée, la présente étude a
confirmé une fois de plus les avantages des méthodes de statique appliquée.
Ces méthodes permettent en effet de traiter a peu de frais et avec une trés grande
précision les problémes aussi compliqués que celui du voilement de 1’dme des
poutres fléchies, avec raidisseur au cinquiéme supérieur.

On remarquera en outre que les résultats des divers procédés de statique
appliquée utilisées en 1947, 1948, 1954 et dans le présent article, donnent
strictement les mémes résultats, & condition de tenir compte de la méme
maniére qu’aujourd’hui de 1’effet concentré du raidisseur.

Le lecteur voudra bien se rappeler enfin, que nous ne nous sommes occupés

que du domaine élastique et que nous n’avons rien dit de la sécurité.

Résumé

Les auteurs poursuivent et développent leurs études antérieures. Ils com-
pletent les résultats déja trouvés en 1948 et 1954 pour le voilement de ’ame
des poutres fléchies, avec raidisseur au cinquiéme supérieur. Ils tiennent
compte en particulier d’'une maniére plus exacte de ’action du raidisseur en
question.

Les auteurs montrent, par les résultats obtenus, que les méthodes de sta-
tique appliquée qu’ils ont utilisées donnent sans travail exagéré des résultats
trés précis.

Zusammenfassung

Die Verfasser entwickeln und setzen ihre fritheren Untersuchungen fort.
Sie ergénzen die schon erhaltenen Resultate aus 1948 und 1954 iiber die
Biegungsbeulung der im oberen Fiinftel versteiften Stegbleche. Insbesondere
beriicksichtigen sie genauer die Wirkungsweise der Steife.

Durch die erhaltenen Resultate zeigen die Verfasser, dal die angewandten
baustatischen Methoden ohne allzu groBle Miihe zu sehr genauen Ergebnissen
fiihren.

Summary

The authors develop and extend their previous investigations. They supple-
ment the results already obtained in 1948 and 1954 for the buckling of the
webs of sagging beams having stiffeners in the top fifth of the web. In parti-
cular, they take into consideration, in a more accurate manner, the effect of
the stiffener.

From the results obtained, the authors show that the methods of applied
static they employed give very accurate results without excessive work.
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