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Le voilement de Fäme des poutres flechies, avec raidisseur au cinquieme
superieur

Biegungsbeulung der im oberen Fünftel versteiften Stegbleche

The Buckling of the Webs of Sagging Beams Having Stiffeners in the Top Fifth
of the Web

F. Stüssi, Ing. Dr. sc. techn., Prof. ä l'E.P.F., Zürich, President de l'AIPC, et
Charles et Pierre Dubas, Ings. Drs sc. techn., Ateliers de Constructions

Mecaniques de Vevey, Bulle et Vevey

Introduction

Au debut de 1957, nous avons deeide de reprendre ensemble et de comple-
ter nos etudes au sujet du voilement des töles1), notamment en ce qui
concerne l'äme des poutres flechies, avec raidisseur au cinquieme superieur.

Le but de ce travail etait multiple. II s'agissait tout d'abord de tenir
compte plus exactement qu'en 1948 et 1954 de l'effort concentre du raidisseur.
II s'agissait ensuite de completer les resultats dejä obtenus en 1948 et 1954,
en considerant en particulier des töles sensiblement plus longues qu'ä l'epoque.
Nous voulions en troisieme lieu examiner de maniere tres complete la precision
de la methode de statique appliquee, utilisee en 1948 et 1954 avec dix inter-
valles. Pour cela, nous devions en etudier la convergence avec un plus grand
nombre d'intervalles pour etablir une formule de correction. Cette question

x) F. Stüssi, Berechnung der Beulspannungen gedrückter Rechteckplatten. Abhandlungen

I.V. B.H. 1947, S. 237.
Ch. Dubas, Contribution ä l'etude du voilement des töles raidies. Sous ce titre a

paru dans la Publication preliminaire au Congres de Liege 1948 de 1'A.I.P.C. un resume
de l'etude plus importante parue egalement en 1948 comme N° 23 des Publications de
l'Institut de Statique appliquee, Edition Leemann, Zürich.

Ch. Dubas, Le voilement de Farne des poutres flechies et raidies au cinquieme
superieur. Memoires A.I.P.C. 1954, p. 1.

P. Dubas, Calcul numerique des plaques et des parois minces, N° 27 des Publications
de l'Institut de Statique appliquee, Edition Leemann, Zürich 1955, p. 121 (Voilement
des töles).
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nous paraissait specialement importante pour la double onde transversale,
dont la partie superieure n'avait ete decrite que par un seul point
intermediaire2). Enfin il s'averait utile de comparer les diverses manieres d'appli-
quer la methode utilisee jusqu'ici par nous en matiere de voilement, specialement

en ce qui concerne la double onde transversale.
Apres une introduction theorique, nous allons donner dans le present

article un apercu des resultats obtenus jusqu'ici. Une publication plus importante

paraitra lorsque notre etude sera completement terminee.

Equation differentielle lors du voilement

Rappeions3) pour commencer l'equation differentielle de la plaque flechie

sous une charge p. En designant par w la fleche en un point quelconque
d'abscisse x et d'ordonnee y, cette equation differentielle s'ecrit:

d^w d*w d*w
_ p

Jtf^ dx^dy^Jy^ " ~D

oü i> ——— —, h designant l'epaisseur de la plaque et v, la contraction

laterale.
Si la töle est sollicitee uniquement par des efforts de bout (fig. 1), ces der-

niers engendrent lors du voilement un effort de deviation en chaque point.
Comme on le sait, cet effort, perpendiculaire au plan de la töle, vaut3):

» -"*¦* 8*' (2)

Le raidisseur longitudinal en contact avec la töle sur une largeur c s'oppose
(fig. 1), de par sa rigidite Jr, aux efforts elastiques precedents. II s'ensuit un
effort en sens oppose, qui vaut3):

EJrd*w^=-^-J¥- (3)

Si le raidisseur est correctement lie ä la töle, il subit les memes contraintes
longitudinales. Vu sa tendance ä flamber par suite de ces efforts, le raidisseur
engendre un effort complementaire prN, agissant en sens inverse de prF et
reduisant des lors l'action raidissante du raidisseur. Si Fr designe la section
du raidisseur, l'effort prN s'ecrit:

JW -"*— a^. (4)

2) Publication N° 23 precitee, p. 99, fig. 40.
3) Voir par exemple S. Timoshenko, Theory of Elastic Stability, McGraw-Hill,

New York and London 1936, ou la traduction frangaise, Theorie de la Stabilite elastique,
parue en 1943 chez Beranger, Paris et Liege. Voir aussi les chapitres I et III de la
publication N° 23, citee ä la note 1, oü l'equation differentielle a ete etablie egalement dans
le detail.
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Utilisons maintenant la notation4):

OA 60 • OA — OJ'k' Op•k •*- max e

219

(5)

oü ae est une contrainte fictive appelee «eulerienne», c'est-ä-dire critique, d'une

bände de töle de largeur egale ä l'unite (fig. 1), soit ae ^——, d'oü

77T*D

4/

r\_—»
; i RS!

t— /\~ /
W*

fc

i
/

\4- 'X

(6)

r

co=-t

Fig. 1.

En introduisant la charge (2) dans l'equation differentielle (1), on obtient,
compte tenu de la notation (5), l'equation differentielle suivante, en pleine
töle:

d*w d*w d*w tt2 d2 w
J¥+ 3x2dy2

+ Jy*=~W~b2Jx~2'

Au droit du raidisseur, en contact avec la töle sur une largeur c, il faut
ajouter les charges transversales (3) et (4). Nous utilisons dans ce cas les

abreviations bien connues

y
EJr
Db (8) et 8

FM r
bh (9)

II s'ensuit l'equation differentielle:

i¥+2—
d*w

dx2dy2
+ dy*

Wrk
b2 dx2

tt2 d2 w b d*w 7 ~
TT2 d2 w

(10)

oü cor se rapporte ä la contrainte longitudinale du raidisseur.

4) Nous signalerons au für et ä mesure les quelques divergences d'ecriture d'avec les

publications precedentes, pour eviter toute confusion.
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Rappeions maintenant que, dans le sens longitudinal (fig. 1), la
deformation lors du voilement est une sinusoide, si les efforts de bout sont repartis

lineairement. On ecrit generalement w wm-sin——. Pour simplifier l'ecri-

ture, remplacons wm, valeur maximum de w au sommet de la sinusoide, par 77

et supprimons le nombre entier m en ne considerant plus qu'une deformation
avec onde unique. S'il y avait plusieurs ondes, il suffirait de juxtaposer de

nouvelles töles semblables ä celles que l'on vient de considerer. Nous ecrivons
donc 5):

w 7] •sm-
7TX

(U)

Si l'on utilise les abreviations classiques rjfm'=0—| et rj" ä^' 1 equation

differentielle du voilement en pleine töle (7) devient alors, apres division par
TTX

sin—6)

2_772

a

TT*

> ¦n" + -Zi1i to-k0Pri (12)

Au droit du raidisseur, il vient:

»» 2 TT2 „ TT4 774 1 / TT4 TT4 \
77 -^^+F' ^'*S^'"cly'6^-^'*'W1? (13)

Pour facihter aussi bien le raisonnement que les calculs et afin de permettre
plus tard l'utilisation de la methode d'Engesser-Vianello par approximations
successives, nous renoncons pour l'instant ä passer le second membre dans le

premier et ä mettre sous une parenthese commune tous les termes en 77.

5) Dans la Publication N° 23 de la note 1, wm rj a ete ecrit dans le stade final, tout
simplement w, sans indice.

Si les efforts de bout ne sont pas repartis lineairement, la relation (11) ne sera plus
applicable, ä cause du second membre de (7) dans lequel co varie sur une droite d'ordon-
nee y constante. On sait en effet que seule une repartition lineaire satisfait l'equation
differentielle du probleme des parois minces, sans changer d'un bord ä l'autre. Ce sont
les exemples que l'on trouve generalement dans les traites. (Cf. S. Timoshenko, Theory
of Elasticity, McGraw-Hill, New York and London 1934, p. 27 ou la traduction francaise
publiee en 1948 chez Beranger sous le titre Theorie de l'Elasticite). Toute repartition
non lineaire des contraintes sur les bords tend au milieu de la töle vers une repartition
lineaire. Un exemple caraeteristique a ete donne ä la fig. 35, p. 132 de la Publication
N° 27 citee ä la note 1.

6) Pour retrouver (12) ä partir de l'equation (6) de 1947 (note 1), il faut remplacer ß
mb .b n2ß2 -2

par sa valeur soit — pour m= 1, /x -—-r a ' a bl par — et cp par <a.
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La statique appliquee ä la resolution des equations differentielles

Rappeions tout d'abord l'equation differentielle de la poutre flechie, liant
les fleches w et les charges p:

*^ _P_ (14)dx* EJ K '

On sait que cette equation (14) correspond ä l'equation differentielle (1) de la
plaque flechie et qu'elle s'obtient en combinant les deux relations differentielles
de base de la statique des poutres:

d^=-V> (15) d*=~EJ- (16)

On sait par ailleurs que (15) resulte egalement de la combinaisons des deux
relations differentielles suivantes:

Ceci dit, notre but est de transformer, par la statique appliquee, les equations
differentielles (12) et (13) en un Systeme d'equations numeriques. Pour ce

faire, nous partirons d'un probleme analogue plus simple, celui de la poutre
flechie. Nous chercherons donc tout d'abord une relation numerique entre les

moments flechissants et la charge d'une poutre et transformerons l'equation
differentielle (15) en un Systeme d'equations numeriques. Nous passerons
immediatement ä la relation entre les fleches et les moments flechissants d'une
poutre. La chose est facile, puisque (15) et (16) ont la meme forme (analogie
de Mohr). Par combinaison on obtiendra la relation numerique cherchee entre
les fleches et les charges en lieu et place de (14).

Des lors, on peut resoudre facilement toute equation differentielle conte-

nant ä la fois -t-j- et w. En effet, il suffit pour cela de remplacer p par w dans

la relation numerique trouvee pour l'equation differentielle (14). Si l'equation
differentielle contenait ä la fois -r-g- et w, on ferait de meme, mais en consi-

derant (16) avec w ä la place de M.
Enfin, si l'equation differentielle ä resoudre contenait en meme temps

diw d2w i -i • i j i
7t~t> ~j~2 et w> on cumulerait simplement les expressions numeriques rem-

placant -7—^ dans (14), -j-j dans (16) et w remplacant p ou w remplacant M
dans (14) ou (16). Pour cela il faut evidemment que les expressions numeriques
remplacant p qui devient w dans (14) et M qui devient w dans (16) aient ete
obtenues de la meme facon. Comme il en sera bien ainsi, rien ne s'opposera
plus ä cette maniere de faire et l'on aboutira ainsi ä une relation numerique en
lieu et place des equations differentielles (12) et (13).

Avant d'aborder le calcul numerique proprement dit, quatre remarques
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nous paraissent necessaires. Pour commencer, il faut observer que l'on pourrait
proceder d'un seul coup sur les equations differentielles (12) et (13), sans passer
auparavant par les problemes les plus simples.

On remarquera en second lieu que tous les termes de (1) representent en
fait des charges de la plaque (ou de la töle) flechie, gräce ä la relation (14). On

pourrait des lors ecrire (1) sous la forme px + 2pxy + py p. II en est de meme
des efforts elastiques de deviation au moment du voilement, soit en pleine
töle pt selon (2) et, au droit du raidisseur prF selon (3) et prN selon (4). On peut
donc trouver une signification statique7) simple des equations differentielles
de la plaque flechie (1) et de la töle lors du voilement, (7) et (10). Cette
signification statique simple subsiste integralement apres introduction de la
relation (11). Cependant la forme de (7) et de (10) change, du fait que les

moments et les fleches d'une charge sinusoidale sont egalement des sinusoides.
Des lors il est inutile de considerer une Variation des fleches le long de l'axe
des x et l'on s'occupe uniquement de la verticale passant par le milieu de la
töle (flg. 1). En langage statique, nous dirons que le probleme plaque est ramene
ä un probleme de poutre. Le terme -^—^ de (1), (7) et (10) reste la charge de la

poutre transversale consideree par le milieu de la töle. Le terme ^—^ devient

-jr), oü rj est tout simplement la fleche de la poutre en question. Quant ä

„ 00 9 il devient ——^17", oü 77" n'est rien d'autre que le moment flechissant
dx2dy2 a2 ' ' ^
engendrant la fleche 77, ä un facteur pres selon (16). II n'y a aueune difficulte
ä raisonner de meme pour le second membre de (12) et de (13), 77 etant directe-
ment la fleche de la poutre transversale consideree. Les observations
precedentes permettent ainsi de donner un sens precis, de statique appliquee, ä

7) Dans un Systeme de poutres entre-croisees remplacant la plaque, la charge px
n'est rien d'autre que la charge des poutres longitudinales, et p celle des poutres
transversales. La charge p engendre dans les poutres longitudinales des moments flechissants
M ; ces moments flechissants, en agissant sur les poutres transversales, provoquent les
fleches w de la plaque. On peut egalement considerer les p comme engendrant des

moments flechissants M dans les poutres transversales; ces moments agiront dans ce cas

sur les poutres longitudinales et engendreront les memes fleches que precedemment. Le
terme 2p represente donc la somme Pxy + Pyx, oü Pxy Pyx- D'autre part, il va de soi

que les fleches w provoquees par les differentes charges px, pxy, py sont identiques, ce

qui peut etre considere par ailleurs comme la condition dite d'elasticite du probleme
des poutres entre-croisees remplacant la plaque.

II est facile de se representer un Systeme de poutres longitudinales et transversales
ayant les memes fleches sous l'effet des px ou des p qui les sollicitent. La chose est moins
immediate en ce qui concerne les pxlf> Le plus simple serait de couper la poutre
longitudinale consideree au point de croisement choisi et de relier le haut et le bas des deux
moities au moyen d'une charniere et d'un verin hydraulique. La poutre transversale
correspondante devrait etre munie du meme dispositif. Si l'on reunissait les verins par
une conduite, l'effort qu'ils supporteraient serait identique. Gräce aux charnieres, il en
serait de meme des moments. Nous renvoyons pour plus de details au chapitre II de la
Publication N° 23 citee ä la note 1.
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toutes les Operations que nous allons faire pour passer des equations differentielles

(12) et (13) aux relations numeriques correspondantes.
Le lecteur voudra bien remarquer en troisieme lieu que le procede

developpe ici est le procede formel8) dejä utilise en 1947. Nous nous sommes cependant

efforces d'en faire ressortir le mieux possible la signification statique. II
s'agissait lä du seul avantage, d'ordre purement didactique, du procede
implicite8) de 1948 et 1954. Nous avons depuis lors abandonne le procede
implicite dans le cas du voilement qui nous occupe.

Enfin, il ne faut pas perdre de vue que le dernier terme du second membre
de (13) est du au raidisseur. Nous avons donc affaire en fait ä une charge
concentree dans un sens, la largeur c du raidisseur tendant vers zero. C'est
pourquoi nous serons obliges de traiter le cas de charges concentrees, lorsque
nous nous occuperons de trouver une relation numerique entre les fleches et
les charges d'une poutre, en lieu et place de (14). Pour pouvoir utiliser plus
tard ce resultat ä l'equation differentielle (13), nous devrons cependant
proceder de la meme maniere que s'il s'agissait d'une charge repartie.

Relation numerique entre la charge d'une poutre, son moment
flechissant et sa fleche

On sait qu'entre les nceuds equidistants d'une poutre, la relation differentielle

(17) exprimant 1'accroissement du moment flechissant d'un point ä un
autre par suite de l'effort tranchant, s'ecrit aux points m—1 et m sous la
forme Mm Mm_1 +Qm_lm'A x. Aux points m et m+l on aura de meme
Mm+1 Mm+Qmm+1'Ax. Nous considerons alors la poutre comme chargee
indirectement aux noeuds et appelons «charges aux nceuds» les efforts con-
centres provenant des poutres secondaires. Par soustraction des expressions
precedentes et en observant que la difference entre les efforts tranchants n'est
rien d'autre que la charge au nceud Km Qm-i,m~ Qm,m+i (equation differentielle

18), on obtiendra la relation numerique connue:

-Mm_1 + 2Mm-Mm+1 Km-Ax. (19)

Puisque les efforts aux nceuds sont concentres, la relation (19) est absolu-
ment rigoureuse par definition et vaut toujours, quelles que soient les charges
exterieures considerees, concentrees ou repartie. Pour calculer exactement les charges
aux noeuds K aux differents points, il faudrait connaitre la Variation de la
charge repartie sur la poutre. La Variation de cette derniere etant donnee la
plupart du temps aux noeuds seulement, on en est reduit aux hypotheses. On

peut admettre soit une Variation lineaire d'un point ä l'autre, soit une Variation
parabolique entre trois points consecutifs.

8) Voir la Publication N° 27 citee ä la note 1, au chap. deuxieme, «Comparaison des
divers procedes exposes», p. 64. Pour certaines conditions aux limites, le procede formel
est en defaut. On se sert alors du procede semi-formel qui, tout en presentant ä un
moindre degre les inconvenients du procede implicite, est neanmoins plus rapide.
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Dans le premier cas, on trouve en decomposant le diagramme de charge
en triangles et en appliquant les lois de l'equilibre, la «formule dite du trapeze»
pour la charge Km au noeud m:

A x
Km yfc-l + ^m + ^+l)- (20)

Dans le second cas, il faut tenir compte en plus des deux secteurs
paraboliques. En utilisant la formule de Simpson, on trouve que cette influence
vaut: Ax

-Y2(-Pm-l + 2Pm-Pm+l)' (21)

En ajoutant (20) et (21) on obtient la «formule dite de la parabole» pour
la charge Km au noeud m:

A x
Km 32"(Pm-l+10Pm + ^m+l)- ^

Cette expression (22) etant en general beaucoup plus exacte que (20), sera
desormais seule utilisee, chaque fois que la repartition de la charge ne sera

pas connue.
En lieu et place de (15), on obtient maintenant par juxtaposition de (19)

et de (22), la relation numerique fundamentale entre les moments flechissants
et les charges reparties d'une poutre9):

-Mm_x + 2Mm-Mm+1 -^(Vm_x + 10 pm + pm+1). (23)

Rien ne nous empeche d'ecrire la relation (23) une fois au point m — 1, dix
fois au point m et une fois au point m+l. D'apres (22), cette maniere de faire
revient d'ailleurs ä former la charge au nceud de la relation (23) en question,
dont le second membre est dejä une charge au noeud. On obtient alors:

[-Mm_2+ 2Mm_1- Mm

-10Mm_1 + 20Mm-10Mm+1
— Mm + 2 Mm+1 — Mm+2)

12

(24)

Pm-2+ 10^m_!+ Pm

l^Pm-l+l^Pm+l^Pm+l

9) Si l'on supposait que Km pm • A x, on obtiendrait la relation bien connue de Marcus,
sous une forme de statique appliquee. En langage mathematique, la methode de Marcus
exprime directement la derivee seconde d'une fonetion en un point determine, tandis
que la methode de statique appliquee exprime la fonetion par rapport ä sa derivee en
plusieurs points. II s'ensuit que la methode de Marcus est beaucoup plus grossiere et que
la precision est d'un tout autre ordre de grandeur (cf. F. Stüssi: Numerische Lösung von
Randwertproblemen mit Hilfe der Seilpolygongleichung, Zeitschrift für angewandte
Mathematik und Physik, ZAMP, Vol. I, 1950). Dans le cas du voilement qui nous oecupe,
les equations numeriques remplacant l'equation differentielle (12) contiendraient d'ailleurs,
d'apres Marcus, le meme nombre d'inconnues, exigeant ainsi, pour une precision bien
inferieure, le meme travail de calcul.
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Le premier membre de cette equation (24) peut etre regroupe comme suit:

-^m-2-^^m-l- Mm
2Mm_x + 20Mm+ 2Mm+1

Mn 10Mm+1-Mm+2 (25)

Ax2
12

Pm-2+l®Pm-l+ Pm

10pm_1+100pm+10pm+1
Pm+l0Pm+l + Pm+2\

D'autre part l'equation numerique (23) remplacant (15) s'applique aussi ä
M

(16). II suffit pour cela de remplacer M par w et p par =-y (analogie de Mohr).
On peut des lors ecrire les trois relations numeriques suivantes aux points
m — 1, m, m +1, apres multiplication de la seconde par deux et changement
de signe de la premiere et de la troisieme:

w„ ¦2wm_1+ wn

2wm_1 + 4,wn ¦2wn
2w„

1 Ax2
EJ 12

1 Ax2
EJ 12

1 Ax2
EJ 12

L + Wm+2,

(--tfm-S-lOJfm-i- MJ

(2Mm_1 + 20Mm+ 2Mm+1)

(- Mm-10Mm+1-

(26)

^m+2)

On constate immediatement que le second membre des equations (26)

n'est rien d'autre que le premier membre de (25), au facteur pres ^ry-hta
d'oü l'egalite des deux autres membres, ä ce facteur pres. On obtient des lors

par addition des differents termes de meme indice la relation numerique
cherchee entre les fleches et les charges reparties d'une poutre1®).

™m-2 - 4 U>m-1 + 6 Wm - 4 ^m+1 + ^m+2
1 Ax*

EJ 144
(Pm-2 + 20Pm-l + l02Pm + 20Pm+l + Pm+2)

(27)

10) On arrive au meme resultat en additionnant (23) et l'equation analogue en w et
1 Ax2

M, soit -wm_1 + 2wm-wm+1 ß-j — (Mm_1 + 10Mm + Mm+1). II reste alors un terme

en Mm. En ecrivant les termes restants une fois au point m— 1, deux fois au point m,
une fois au point m+l, et en utilisant ensuite ä nouveau (23), on retrouve finalement
(27). C'est le procede de 1947 applique ä toute l'equation differentielle (12), de maniere
purement formelle, c'est-ä-dire en travaillant avec les w, w" et w"", sans utilisation directe
des notions de charge, de moment flechissant et de fleche correspondant aux w, w" et
w"". L'emploi de Schemas rend les calculs tres faciles. Nous renvoyons ä ce sujet aux
Publications N° 23 (p. 219) et N° 27 (p. 40) citees ä la note 1.
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En utilisant la relation (24) dans laquelle M deviendra w et p deviendra

r=-r (analogie de Mohr), on obtient immediatement une nouvelle relation nume-
iL d

rique entre les fleches et les moments flechissants d'une poutre, le second membre
trouve ayant alors la meme forme que (27):

" (wm-2 + 8 wm-l ~ 18 Wm + 8 Wm+1 + wm+2)

1 Ax2
EJ 12

(Mm_2 + 20 Mm_x + 102 Mm + 20 Mm+1 + Mm+2)
(28)

Cas particulier des charges concentrees

Nous avons vu que la relation (19) est absolument rigoureuse et qu'elle
vaut pour n'importe quelle repartition de la charge p, specialement si celle-ci
se presente sous la forme de charges concentrees P. Si nous considerons seulement

des charges concentrees Pm_1? Pm, Pm+i aux points m—1, m, m+l,
ces charges concentrees sont de toute evidence les charges aux noeuds. On

peut des lors ecrire, en lieu et place de (25), puisque le second membre etait
forme des charges aux noeuds en m — 1, m, m + 1:

-Mm^2-10Mm_1- M„ iPn
2Mm_1 + 20Mm+ 2Mm+1 Ax

- Mm-10Mm+1-Mm+2)

10 P„ (29)

Nous avons dejä dit que l'on peut passer immediatement des relations
numeriques entre les moments flechissants et les charges, aux relations numeriques

entre les fleches et les moments flechissants. II suffit pour cela de rem-

placer M par w et p par -=-j (analogie de Mohr). La repartition des moments

se faisant lineairement entre deux points consecutifs, lorsque les charges sont
concentrees, il faut donc se servir de (20) pour le calcul des charges aux noeuds

et non plus de (22). Les equations numeriques (26) obtenues precedemment
pour une charge repartie deviennent alors, si les charges sont concentrees:

(30)

Wm-2 2 Wm-1 + Wm

— 2 u) -. -J- 4 w — 2w >

wm — 2 wm+1 + wm+2_

1 Ax2
EJ 6 m-2 ^^m-1 ^m)

< ^j^f (2Jfm_1 + 8Jfm-

1 Ax2
EJ 6 (- Mm-

Or nous avons vu que la charge au noeud «parabolique» (22) s'obtient
par addition de la charge au noeud «trapezoi'dale» (20) avec le Supplement
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provenant des secteurs paraboliques (21). Ce Supplement s'ecrit maintenant
1 Ax

yy -j<r (—Mm_1 + 2Mrn — Mm+1), compte tenu de ce que nous cherchons la

charge au noeud d'un diagramme des moments flechissants (analogie de Mohr).
Mais alors nous constatons que ce Supplement n'est rien d'autre, d'apres (19),

que la charge concentree Pm au point m, au facteur •=-=¦ -^- pres. II s'ensuit

que nous pouvons ecrire la charge au noeud du diagramme des moments

flechissants pour charges concentrees Kmconc r=— —— (Mm_1 + 4 Mm + Mm+1)

sous la forme d'une charge au nceud du diagramme des moments flechissants

pour charges reparties, soit:

Kmcmc. YJ^f (Mm-1 + 10 Mm + Mm+1) - -~ ~ P„ (31)

Ainsi cette valeur (31) de la charge au nceud du diagramme des moments
flechissants pour charges concentrees nous permet maintenant d'ecrire (30)
sous la forme suivante:

Wm-2 ~ 2 wm-l + wm

~2wm_1 + 4:Wm-2wm+1

1 Ax3
EJ 12 m'1

+
1 Ai

w„ ¦2Wm+1+W>.

EJ 12

1 Ax3

2P

E

m+l~"/ra+2 irr j -|2 m+l

7 4f"(_Jlf'"-2~10if-1- M«

1 Jx2

(32)

EJ 12

1 Ax2
EJ 12

(2Mm_1 + 20Mm+ 2Mm+l)

(- Mm-lOMm+1- -Mm+2)

Comme auparavant pour les charges reparties, nous constatons maintenant,
ä un facteur pres, l'egalite des equations (32) et (29). Le second membre de

(29) est des lors egal au premier membre de (32), ä ce facteur pres. Comme

auparavant pour les charges reparties nous obtenons, par addition des differents

termes de meme indice, la relation numerique cherchee entre les fleches et

les charges concentrees d'une poutre:

1 Ax3
WA _2 — 4 Wm_1 + 6 Wm — 4 Wm+1 + Wm+2 — ("m-l + ^ *m + ^m+1 (33)

Ainsi le membre de droite de (33), qui est effectivement une double charge
au noeud, remplace, quand il s'agit de charges concentrees, la double charge
au noeud pour charges reparties, donnee par le membre de droite de (27).
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Quant aux membres de gauche de (27) et de (33), ils sont identiques, comme
nous le voulions precisement, en vue d'ajouter les resultats partiels obtenus

pour les differents cas ä la resolution des equations differentielles (12) et (13).

Passage de l'equation differentielle du voilement aux equations numeriques

En procedant chaque fois de la meme maniere, ä l'aide de doubles charges
nodales, nous venons d'etablir les relations numeriques (27), (28) et (33) entre
les charges, reparties ou concentrees, les moments flechissants et les fleches
d'une poutre. D'autre part, nous savons que les equations differentielles (12)
et (13) contiennent la derivee quatrieme 77"" de la fleche 77, c'est-ä-dire la
charge, la derivee seconde 77", c'est-ä-dire le moment flechissant de la poutre
transversale mediane de remplacement de la töle, et enfin la fleche 77 propre-
ment dite.

Des lors rien ne nous empeche d'ajouter les resultats partiels obtenus (27),
(28) et (33), en tenant compte des coefficients de multiplication de (12) et de

(13). En procedant ainsi, nous agissons comme si nous considerions d'emblee
toute l'equation differentielle (12) en pleine töle et toute l'equation differentielle

(13) au droit du raidisseur, en prenant d'un seul coup la double charge
au noeud de ces equations11). On se souviendra simplement que, selon (11),
il y a lieu d'ecrire 77 ä la place de w, A y ä la place de A x puisque l'on considere
le sens transversal de la töle (fig. 1) et D, rigidite de la plaque, ä la place de

E J, rigidite de la poutre.
Le terme 77"" de (12) et de (13), represente la charge py sur la poutre de

remplacement transversale mediane de la töle; il se tire du membre de gauche
de (27) ou (33):

Vm-2 - 4 Vm-1 + 6 Vm ~ 4 Vm+1 + Vm+2 • (34)

Le terme rrj" de (12) et de (13), represente la charge 2pxy dans un

Systeme general de poutres entre-croisees, ou aussi, ä un facteur pres, le moment
flechissant le long de la poutre de remplacement transversale mediane de la
töle consideree; il s'ecrit, gräce au membre de gauche de (28), cette equation

d2w M
(28) correspondant ä — -j-j ^y et non directement ä (16):

GL X Jjj ü

TT'
¦2 A«,2Ay*

" a2 12
(rlm-2 + Srlm-l-l8r)m + 8Vm+l + Vm+2)- (35)

4

Le terme ^77 de (12) et de (13) represente la charge px dans un Systeme

general de poutres entre-croisees ou, ä un facteur pres, la fleche de la poutre de

n) C'est ainsi qu'il a ete procede en 1947, cf. note 1. Pour plus de details ä ce sujet
on consultera egalement l'article de la note 9 et l'ouvrage suivant: F. Stüssi,
Ausgewählte Kapitel aus der Theorie des Brückenbaues, Taschenbuch für Bauingenieure,
herausgegeben von Prof. Dr. Ing. F. Schleicher, Berlin/Göttingen/Heidelberg 1955,

Springer, Bd. I, S. 953.



Voilement de l'äme avec raidisseur au cinquieme superieur 229

remplacement; il se transforme ä l'aide du membre de droite de (27) ou (28):

(36)
tt4 Ay*
~tf TU ^™-2 + 20 ^m-l + 102 Vm + 20 Vm+1 + Vm+2)

De meme, le terme oj-k^j^rj de (12) et de (13), representant l'effort de

deviation lors du voilement, devient:

tt4 Ay*k
ä2^2 UT ^m~2' 7jm~2 + 2°C°m_1'7?m_1 + *°2 ^m' ^

+ 20 ojm+1 • rjm+1 + com+2 • 77m+2).

Pour simplifier l'ecriture, nous posons12):

A
rr2 Ay2
"ä2 6

(38) B -(4)"-5 144

C
62 ~ a*b2 144

(37)

(39)

(40)

Nous obtenons des lors, par addition de (34), (35), (36) et (37), la relation
numerique suivante en pleine töle, en lieu et place de l'equation differentielle (12):

(41)

Au droit du raidisseur, nous devons tenir compte de l'effort concentre qu'il
engendre, soit —(yb^ — wrk8-^Ar) d'apres (13). En utilisant le membre

de droite de (33), on obtient, si r designe le point oü se trouve le raidisseur
longitudinal unique que nous considerons dans la presente etude:

(\-A + B)nm-2 -(4 + 8,4--20 5)1^l + (6 + 18A + 102B)rjm
-(4 + 8.4 -20 B)Vm+l + 1-A + B) Vm+2 k-C(üJm -2' Vm-2

+ 20ü>ro_1. Vm- i + 102o,m. Vm + 20 "Wl * Vm+1 + ^m+2 Vm+2/

Ay3 ^b^-crk8^rjr
Ay*l utt* c

TT4 \
-^-^vb^-^k8^b)^

(yb^-^kS^jrirAt
6

pour le point r — 1

precedant le raidisseur,

pour le point r oü se

trouve le raidisseur,

pour le point r + 1

suivant le raidisseur.

(42)

(43)

(44)

12) L'abreviation A s'appelait 2y en 1947, dans l'ouvrage cite ä la note 1. A l'heure
actuelle y est la rigidite du raidisseur selon (8), qui n'avait pas ete consideree ä l'epoque.
L'equation (41) n'est rien d'autre que l'equation (11) de 1947, si l'on remplace 2y par A,

TT4

y2 par B et p par k w • -q.
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Compte tenu de l'abreviation:

R
6 K .&8

a*b} (45)

nous obtenons, en ajoutant (42), (43) et (44) ä (41), la relation numerique
suivante au point r — 1 precedant le raidisseur, en lieu et place de Vequation
differentielle (13):

(46)

Au point r oü se trouve le raidisseur, on trouverait de meme la relation numerique

suivante remplacant (13):

(47)

(l-A+B)Vr__3-(4 + 8^--20B)Vr_ 2 + (6 + 18,4 + 102 B) 7ir_!

-(4 + 8.4- 20B)Vr + (l -A + B)rlr+1 ^-C(^r-^'Vr-Z
+ 20ojr_2-77},_2+102cür_1 •7?r_i + 20 Wr'Vr + ^r+1 * Vr+l) ~^'Vr

(1--A + B)r}r_2--(4 + 8.4--20 B)Vr_i + (6 + lSA + 102B)r]r
-(4 + 8.4- 20 5)^+i + (1 -A + B)rjr+2 k-C (a)r_2'7)r_2

+ 20 a)r_1 • 77?^+102 0; r'Vr + 20 wr+l' Vr+ll+<*>r+2'Vr+2)-±R Vr

Au point r+1 suivant le raidisseur, on obtient enfin:

(l-A + B) 7)^ - (4 + 8 A - 20 B) r,r + (6 + 18 A + 102 B) Vr+1

-(4:+SA-20B)Vr+2 + (l-A + B)r]r+3 kC(cür_1-7]r_1

+ 20ü)r• 7]r + 102 cor+1 ¦ r)r+1 + 20 ajr+2¦ 7]r+2 + ior+3• r)r+3) -R-rjr
(48)

Bords d'une töle simplement appuyee sur son pourtour

En regle generale on neglige le faible encastrement de l'äme d'une poutre
flechie dans les semelles et l'on considere la töle comme simplement appuyee
sur son pourtour. Puisque la fleche 77 sur le bord est nulle, eile est donc connue
et il suffit de la determiner aux autres points. Pour avoir autant d'equations
que de 77 inconnus, il nous faut ecrire (41) au point 1, le plus rapproche du
bord de la töle. La chose est tres simple, des que l'on juxtapose, par la pensee,
une töle semblable ä la premiere et se voilant de maniere antisymetrique sous
une sollicitation identique. La deformation est alors antisymetrique par
rapport au bord considere. Puisque r)bord 0 et r}_1= -7|l5 l'equation (41) devient
au point 1 (m 1):

(5 + 19 A + 101 B) 77X - (4 + 8 A - 20B) rj2 + (l-A + B)r]3
kC (101 a>1 r]1 + 20o>2 772 + o>3 773)

(49)
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Resolution des equations numeriques

Quelles que soient la rigidite relative (8) et la section relative (9) du raidisseur
considere, rien n'est plus facile que d'ecrire en tous les points les equations
numeriques remplacant les equations differentielles (12) et (13). On calcule
tout d'abord les valeurs auxiliaires (38), (39), (40) pour la pleine töle et (45)

pour le raidisseur. Au dernier point precedant chacun des deux bords de la
töle, on se sert de l'equation (49). En tous les autres points, on utilise soit (41)
en pleine töle, soit (46), (47), (48) au raidisseur.

Le Systeme d'equations obtenu ne contient que des termes renfermant les
fleches inconnues 77. Ces fleches ne nous Interessent d'ailleurs que si nous
voulons tracer la deformation de la töle au moment du voilement. On sait
qu'ä ce moment une infinite de deformations affines sont possibles. II faut
donc donner une valeur definie quelconque ä Tun des 77 pour determiner les
autres. Nous avons en consequence une equation de plus que le nombre de 77

inconnus. Or si nous considerons le second membre de (41), (46), (47), (48),
(49), nous nous apercevons qu'il contient la veritable inconnue du probleme
qui nous interesse, le coefficient de voilement k, pour une töle et un raidisseur

de caracteristiques -r, y, S donnees, ou la rigidite y pour k, 8 et j- donnes. Nous

avons donc ainsi ä disposition autant d'equations numeriques que d'inconnues
Si l'on veut obtenir la valeur de k ä partir du Systeme des equations

numeriques, rien ne nous empeche d'admettre les fleches 77 du membre de droite de

(41), (46), (47), (48), (49), qui sont multipliees par le facteur de voilement k.
On obtient de la sorte des «termes de charge» qui permettent de determiner
de nouvelles ordonnees 77 et ainsi de suite. A la fin, les fleches admises et celles

qui en sont deduites ä partir du Systeme concordent parfaitement, ä un
facteur de multiplication pres, qui est justement le coefficient de voilement k
cherche. C'est le procede bien connu d'Engesser-Vianello, utilise tres fre-
quemment dans les problemes de flambement des barres.

Remarquons tout de suite que les fleches 77 deduites des fleches admises,
ä partir du Systeme, ne doivent pas etre employees telles quelles en vue de

1'approximation suivante, dans le probleme du voilement qui nous occupe en
ce moment. Pour eviter de diverger, il faut en effet combiner les 77 admis et
les 77 deduits en proportions variables. Dans la zone comprimee, ce sont les 77

deduits qui ont le plus grand poids, tandis que le contraire est valable dans la
zone tendue. Une Variation continue de la proportion choisie d'un bord de la
töle ä l'autre donne les meilleurs resultats, comme la pratique le montre.

Rien n'empeche d'utiliser le procede d'Engesser-Vianello, par approximations

successives, en considerant tout d'abord des fleches unitaires aux
differents points, ou un groupe de fleches liees entre elles par des coefficients
adequats, par exemple ceux qui correspondent ä une charge au noeud, simple
ou double. Le long de la verticale mediane de la töle, on obtiendra ainsi de

veritables lignes d'influence de la poutre de remplacement transversale con-
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sideree precedemment (fig. 1). Ce* travail une fois execute, il sera facile de

determiner les fleches deduites ä partir de fleches telles qu'elles ont ete admises.
Le procede direct, sans lignes d'influence, a ete utilise en 1947, vu qu'il s'agissait

d'un exemple isole1). Les lignes d'influence ont ete employees en 1948 et
1954, vu qu'il s'agissait au contraire d'un calcul systematique d'une serie de

valeurs, avec augmentation progressive des caracteristiques de la töle et du
raidisseur. En 1948 et 1954 nous avons utilise la methode dite implicite8),
abandonnee depuis, comme nous l'avons dejä dit.

Rien ne nous empeche non plus de passer tous les 77 du second membre
des equations (41), (46), (47), (48), (49) dans le premier membre correspondant.
On aboutit ainsi ä un Systeme d'equations en 77 sans termes connus. Si l'on
applique ä ce Systeme «homogene» la methode de resolution classique dite
«algorithme de Gauss», on obtient, comme derniere equation du Systeme
reduit, une equation de la forme E rjn 0. A part la Solution immediate 77^ 0,

qui conduit ä des fleches nulles en tous les points, il existe une Solution, indeter-
minee, lorsque E 0. Cette Solution est precisement celle qui nous interesse.
Pour essayer d'annuler le dernier coefficient E du «Systeme reduit», il faut
faire varier un des parametres k, y, 8 en fixant les deux autres, le rapport -j-

etant par ailleurs ä considerer comme une constante. On y arrive avec toute
la precision desirable en procedant tout d'abord par tätonnement et ensuite

par interpolation. On s'efforcera d'obtenir en premier lieu une valeur du
parametre donnant un dernier coefficient «reduit» positif, puis une seconde avec
coefficient negatif ou inversement. Au troisieme essai dejä, on obtie.nt souvent

par interpolation une valeur satisfaisante.
Mathematiquement parlant, le procede decrit ci-dessus consiste ä annuler

aussi exactement que possible le determinant du Systeme d'equations «homogenes»

obtenu; on peut donc l'appeler «methode du determinant»13).
Nous avons constate tout ä l'heure que nous avons les trois parametres

k, y, 8 ä disposition, si -r est une constante. Nous allons montrer qu'il n'y a

pas lieu de s'occuper de 8, tous les calculs se faisant pour 8 0. Reste
donc ä choisir entre k et y. L'examen des equations (41), (46), (47), (48), (49),

apres passage du second membre dans le premier, montre que le parametre k

figure dans tous les coefficients de toutes les equations du Systeme, tandis que
le parametre y ne figure que dans un coefficient de chacune des trois equations
(46), (47), (48) se rapportant au raidisseur, et pas du tout dans celles de la
pleine töle (41), (49). On aura donc tout interet, dans le probleme de la töle
raidie, ä fixer une valeur du coefficient de voilement k et ä chercher la valeur
de la rigidite y du raidisseur qui annule le determinant, c'est-ä-dire le dernier
coefficient du Systeme reduit.

13) C'est le procede utilise en 1955 pour le panneau carre, raidi diagonalement,
comprime uniformement sur deux bords opposes ou cisaille uniformement sur ses quatre
bords; cf. p. 123 de la Publication N° 27 citee ä la note 1.
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Pour plus de facilite, on ecrira en dernier lieu les equations contenant
rinfluence R du raidisseur selon (45); dans le cas de la töle flechie, avec raidisseur

au cinquieme superieur, on commencera donc par le bord inferieur, tendu.
Le tätonnement sur la valeur de y se concentrera ainsi aux dernieres equations
du «Systeme reduit». Bien plus, si le nombre d'intervalles choisi est faible, on
pourra meme eviter tout tätonnement en appliquant l'«algorithme de Gauss»
ä un Systeme contenant dans ses dernieres equations le y inconnu, sans lui
donner de valeur numerique. En exprimant alors que le dernier coefficient du
«Systeme reduit» s'annule, on obtiendra une equation algebrique dont la
resolution fournira la valeur cherchee de la rigidite y du raidisseur.

Si l'on veut par contre fixer les y et calculer les k correspondants, il faut
ä chaque tätonnement recommencer l'elimination des le debut. C'est ce qu'il
faut d'ailleurs faire pour la double onde transversale de la töle non raidie,
puisque le seul parametre ä disposition est alors le coefficient de voilement k.
Pour diminuer le nombre des essais ä effectuer, on determinera k en premiere
approximation par une methode grossiere. A cet effet, on suppose la double
onde formee par deux töles accolees se voilant au meme instant. La töle
superieure peut etre assimilee ä une töle sollicitee par des efforts de compression

uniformement repartis. La töle inferieure est sollicitee ä la flexion pure,
si l'on neglige la zone tendue extreme, peu importante du point de vue
voilement14). Le calcul du facteur de voilement rapporte ä toute la töle ne presente
des lors plus de difficulte.

Rappeions ici que la determination de la double onde transversale est de

toute importance. Nous devons en effet savoir oü nous devons placer le raidisseur

pour qu'il ne fleehisse pas lors du voilement en deux series de cloques
superposees. C'est l'endroit optimum du raidisseur, c'est-ä-dire celui oü l'on
obtient le plus grand coefficient de voilement k. On ne peut evidemment le
depasser, la töle se voilant alors en deux series de cloques superposees, en
laissant le raidisseur sans deformation.

En utilisant la methode du determinant pour la double onde transversale,
on evite toutes les difficultes de 1948, provenant de ce que le procede d

'Engesser-Vianello divergeait et tendait vers l'onde unique. On se rend compte
facilement qu'en fixant la valeur de k, on elimine cette tendance ä diverger
vers un k nettement plus faible. En outre, il n'y a pas de difficulte ä considerer
un nombre de points intermediaires beaucoup plus grand qu'en 1948.

Conformement ä ce que nous avons dejä dit il y a lieu de noter maintenant
que l'on peut tres bien executer tous les calculs avec 8 0 (raidisseur sans
section appreciable) et passer ensuite au cas oü 8 possede une valeur
quelconque. En effet, on peut ecrire, d'apres l'equation (45):

4 4 4

78=0^ 73^-"^^
u) Cf. Publication N° 23 citee ä la note 1, p. 96, tig. 39.
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ou apres simplification:

rs rs=o + wr^§-p- (50)

L'examen de (50) montre immediatement que y croit lineairement avec 8

pour un k donne.
II faut enfin remarquer que nous avons maintenant renonce ä l'emploi de

la methode du renversement des charges d'Andree, utilisee en 1947, 1948 et
19541). Nous avons en effet constate que le faible nombre de termes dans
chacune des equations numeriques (41), (46), (47), (48), (49), permettait une
resolution directe aussi rapide, vu les Operations preliminaires et complemen-
taires necessaires avec la methode d'Andree.

Resultats obtenus pour la double onde transversale

Nous venons de voir que la determination de la double onde transversale
est necessaire pour savoir oü nous devons placer le raidisseur dit «optimum»
ou «economique». Designons par 6X la distance depuis le bord superieur de

l'äme jusqu'ä l'endroit oü la fleche est nulle lors du voilement avec double onde
transversale. Cet endroit est facile ä calculer quand on connait les fleches aux

points consideres equidistants, sur la verticale mediane (fig. 1). Le rapport -r1

indique donc oü devrait se trouver le raidisseur dit «optimum» ou
«economique». D'apres (11) ce raidisseur est necessairement rectiligne et horizontal.

Nous donnons ci-dessus les resultats obtenus pour divers rapports -r de la

longueur ä la hauteur de l'äme d'une poutre flechie. Le calcul a ete effectue
avec vingt intervalles le long de la verticale mediane (fig. 1), par la methode
du determinant.

Tableau 1. Valeurs de k et de ~ en fonetion de -=- pour la double onde transversale

a
~b

0,2 0,225 0,25 0,275 0,3 0,325 0,35 0,375 0,4

k

b

142,52

0,1840

135,15

0,1912

131,09

0,1974

129,43

0,2025

129,60

0,2069

131,23

0,2105

134,05

0,2136

137,9!

0,2163

142,67

0,2185

Graphiquement, les valeurs k sont visibles, ä tres petite echelle, ä la partie
superieure de la fig. 3. On remarquera que, dans le sens longitudinal de l'äme,
le voilement se produit en une ou plusieurs ondes, la valeur la plus basse de k
etant toujours determinante. II s'ensuit une courbe en festons, caracteristique
de tous les problemes de voilement. En pratique, on ne raidit guere un panneau
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de poutre flechie dont le rapport est inferieur ä l'unite, et certainement pas,
si ce rapport est plus petit que 0,5. Le premier feston de la flg. 3 n'a donc

pas d'utilite, en construetion metallique normale tout au moins. Quant aux
festons suivants, qui sont d'ailleurs de moins en moins prononces, on ne peut
guere s'oecuper des valeurs plus grandes que le minimum, car il est en fait
difficile de fixer exactement la longueur a et la hauteur b du panneau considere.

En effet, on ne peut dire exactement oü s'arrete l'äme lorsque la section
des semelles et des montants verticaux est quelque peu compliquee. D'autre
part, il est logique de diminuer legerement a et b pour tenir compte de l'en-
castrement du aux semelles, aux montants et aux panneaux voisins, moins
sollicites ou sollicites differemment, surtout s'il s'agit des poutres maitresses
d'un pont muni de solides entretoises ou avec tablier directement appuye sur
les dites poutres maitresses.

Le minimum seul nous interessant, nous avons trouve, par interpolation,
qu'il devait correspondre au rapport -r ^ 0,285. Nous donnons des lors ci-apres
les resultats trouves pour divers nombres n d'intervalles consideres. La
derniere ligne contient les valeurs obtenues en utilisant la loi approchee

1,8 Vu la concordance parfaite ä partir de dix intervalles,£=129,424- ni _' (0,1 n)4
nous pouvons extrapoler ä l'infini, ä l'aide de la loi en question.

Tableau 2. Valeur minimum de k lors du voilement avec double onde transversale

Nombre d'intervalles n=ß n S n=10 n= 15 7i 20 ^ 30 n— oo

Valeur calculee de k
Formule approchee
Erreur par rapport ä n oo

Rapport -jl

126,35 125,28
124,82

127,54
127,54
1,48%

129,05
129,05
0,29%

129,31
129,31
0,09%

129,40
129,40
0,02%

0,2043

129,424

Le tableau precedent montre en outre que le raidisseur au cinquieme
superieur est tres pres de l'endroit oü la töle ne flechit pas lors du voilement

avec double onde transversale, lorsque -^- 0,285. Puisque ä ce moment
-r1 0,204 • 3, le cinquieme superieur se trouve seulement ä 2,2 cm de la position
ideale pour une poutre ä äme pleine de 5 m de hauteur. Cette precision est
plus que süffisante pour les besoins de la pratique.

Considerons maintenant les rapports -r compris entre 0,5 et 1, mais non

multiples de 0,285. Pour cela, nous avons agrandi la courbe des k en fonetion de

t-, representee ä petite echelle au haut de la fig. 3. Nous avons reporte sur la

meme figure les ~ correspondants, ce qui donne non plus des festons, mais

une serie de decrochements. L'intersection des deuxieme et troisieme festons
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a
se produit tout pres de ^ 0,7 2-0,35 3-0,2333...; l'intersection des

troisieme et quatrieme festons, vers ^- 0,98 3-0,3266... 4-0,245. Les valeurs

correspondantes de ~ sont approximativement de 0,214 et 0,193 ä

l'intersection des deuxieme et troisieme festons et de 0,211 et 0,197 ä l'intersection
des troisieme et quatrieme festons. Ainsi l'ecart maximum du raidisseur au

cinquieme superieur serait de 7 cm pour — 0,7 et de 5,5 cm pour ^ 0,98,

si la poutre consideree avait 5 m de hauteur. Lorsque j- augmente, les ecarts

deviennent de plus en plus petits.
On peut donc dire que le raidisseur au cinquieme raidisseur correspond, avec

une precision plus que süffisante pour les besoins de la pratique, ä la position
ideale. Quant au coefficient de voilement k, on ne peut guere admettre une
valeur superieure ä 129,4, par ailleurs tres proche des 129,3 trouves en 1948
et dont la precision nous avait inquietes quelque peu. Pour ne pas allonger,
nous avons renonce ä donner dans la presente publication les deformations
lors du voilement avec double onde transversale. Ces valeurs ont ete cependant
calculees pour determiner le rapport -~.

Resultats obtenus pour la rigidite du raidisseur dite «Optimum»
ou «economique»

La rigidite «optimum» s'obtient en posant £=129,4, valeur maximum
que nous voulons considerer en pratique. Cette rigidite «optimum» n'est
veritablement «economique» que pour les poutres hautes, oü l'on peut reduire
au minimum l'epaisseur consideree, sans en etre empeche par des raisons
d'ordre constructif. Puisque k est fixe d'avance, les calculs se fönt par le
methode dite du determinant ainsi qu'il a ete dit precedemment et pour 8 0.

A l'aide de (50) on passe ensuite au y correspondant ä un 8 quelconque.
Nous donnons dans le tableau ci-apres les resultats obtenus, apres correc-

tion par une formule approchee pour n co. Les resultats trouves ont ete
ensuite arrondis. En ce qui concerne la precision, on remarquera qu'elle depend
du nombre de points equidistants choisis pour decrire une portion de courbe
entre deux points d'inflexion; la precision est des lors bien meilleure dans le
cas actuel avec une seule onde transversale, ä la place de la double onde
precedente. Meme avec 20 points, la precision par rapport ä n oo est dejä tres
grande, de l'ordre de 0,01%, tandis qu'elle atteint 0,1% avec dix intervalles.

On constate que pour les -r superieurs ä l'unite, les differences d'avec le

tableau 2 de 19541) sont assez faibles, malgre l'effet concentre du raidisseur
dont le calcul avait ete effectue de maniere tres approximative ä l'epoque.

Les valeurs du tableau precedent n° 3 sont representees graphiquement ä

la figure 2. Pour faire cette representation, il faut se Souvenir que le voilement
peut se faire en plusieurs ondes, ce qui donne une nouvelle fois les festons
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Tableau 3. Valeurs de ye (£ 129,4)
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a
~b

8=0 8=0,02 8=0,04 8=0,06 8=0,08 8=0,1 8=0,12 8=0,14 8=0,16 8=0,18 8=0,2

0,5 6,9 7,3 7,6 8,0 8,4 8,8 9,2 9,6 10,0 10,4 10,7

0,75 11,3 12,2 13,0 13,9 14,8 15,7 16,5 17,4 18,3 19,1 20,0

1 17,6 19,2 20,7 22,3 23,8 25,4 26,9 28,5 30,0 31,6 33,1

1,25 24,7 27,1 29,5 31,9 34,4 36,8 39,2 41,7 44,1 46,5 48,9

1,5 31,7 35,2 38,7 42,2 45,6 49,1 52,6 56,1 59,6 63,1 66,6

1,75 37,8 42,5 47,3 52,0 56,8 61,5 66,3 71,0 75,8 80,6 85,3

2 42,0 48,2 54,4 60,6 66,8 73,1 79,3 85,5 91,7 97,9 104,1

2,25 43,4 51,3 59,2 67,0 74,9 82,7 90,6 98,5 106,3 114,2 122,0

2,5 41,0 50,7 60,4 70,1 79,8 89,5 99,2 108,9 118,6 128,3 138,0

2,75 33,6 45,3 57,0 68,8 80,5 92,3 104,0 115,8 127,5 139,2 151,0

3 19,9 33,9 47,9 61,8 75,8 89,8 103,8 117,7 131,7 145,7 159,7

3,25 -1,2 15,2 31,6 48,0 64,4 80,8 97,2 113,6 130,0 146,4 162,8

3,5 -31,3 -12,3 6,7 25,7 44,8 63,8 82,8 101,8 120,8 139,9 158,9

3,75 -71,8 -50,0 -28,2 -6,3 15,5 37,4 59,2 81,0 102,9 124,7 146,5

4 -124,4 -99,5 -74,7 -49,8 -25,0 -0,1 24,7 49,5 74,4 99,2 124,1

4,25 -190,7 -162,6 -134,6 -106,5 -78,5 -50,4 -22,4 5,6 33,7 61,7 89,8

Tableau 4. Valeurs maxima de ye(k= 129,4) pour divers 8

a
6"

8=0 8=0,02 8=0,04 8=0,06 8=0,08 8=0,1 8=0,12 8=0,14 8=0,16 8=0,18 8=0,2

2,23 43,4
2,34 51,6
2,45 60,5
2,56 70,2
2,67 80,8
2,77 92,3
2,87 104,6
2,96 117,8
3,06 131,9
3,15 146,9
3,25 162,8

Formule 43,40 51,45 60,37 70,15 80,79 92,30 104,67 117,91 132,01 146,97 162,80
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classiques des courbes de voilement. Par ailleurs, si l'on avait tenu compte du
fait que la double onde transversale ne donne pas toujours £=129,4, on
obtiendrait en plus des festons secondaires sur les diverses courbes.

En pratique et pour les raisons dejä enumerees precedemment, on se main-
tiendra au maximum ä partir de celui-ci, en faisant disparaitre les festons.
Pour ce motif, nous donnons les maxima correspondant aux divers 8, dans
le tableau special 4. Tout au bas du tableau, nous avons indique les

valeurs que l'on obtiendrait par la formule approchee yemax 43,4+ 381 8 +
+ 1080S2. On voit que cette formule donne d'excellents resultats.

Resultats obtenus jusqu'ici pour un raidisseur de rigidite
et de section quelconques

Comme nous venons de le faire pour la rigidite dite «optimum» ou
«economique», avec £ 129,4, il est possible de tracer, pour un £ quelconque fixe
d'avance, les courbes des rigidites correspondantes y du raidisseur, avec
diverses valeurs de 8. On obtient alors autant de diagrammes que de £. Etant
donne les quatre parametres y, 8, k et -r du probleme du voilement avec raidisseur,

plusieurs autres representations sont possibles, comme il ressort des

publications de 1948 et de 19541). Mais les calculs effectues en 1948 et 1954

par le procede d'Engesser-Vianello peuvent etre facilement corriges pour tenir
compte plus exactement de l'effet concentre du raidisseur, tel que nous l'avons
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expose selon les equations (46), (47), (48). Nous avons donc conserve ce
procede, en fixant par avance les valeurs de y que nous voulions considerer, soit
de 5 en 5. Nous avons renonce ä donner les resultats sous forme de tableaux et
nous sommes contentes pour l'instant de la fig. 3, ces resultats etant encore
trop fragmentaires et sans passage ä un tres grand nombre d'intervalles (n co).
Nous constatons cependant, en comparant la fig. 3 actuelle et la fig. 3 de 1954,

que les differences sont minimes des que a est superieur ä 1'unite. Nous avons
dejä fait la meme constatation pour la rigidite dite optimum ou economique.

Lk

129

130

'20

j^/<L*

^^ /• fi

¦J / V ii

* X

Fig. 3.

D'autre part, nous avons renonce ä donner ici la figure correspondant ä la
fig. 3, lorsque 8 a une valeur differente de zero, par exemple 8 0,1 comme en
1954. Ainsi que le montre le tableau n° 3, nous aurions besoin pour cela de

nous occuper de rigidites tres faibles du raidisseur, en allant meme jusqu'ä
des valeurs negatives de y et quoique ces valeurs n'aient guere de sens phy-
sique. Or, ce travail n'est pas encore completement acheve. Nous pouvons
cependant dire d'ores et dejä que le diagramme des £ en fonetion des ^ pour
les diverses rigidites de y, de 5 en 5, et avec 8 0,1 est tres peu different de

celui de 1954, des que l'on depasse l'unite pour le rapport -r. Notre intention
est d'aller d'ailleurs jusqu'ä 8 0,2 dans la publication plus complete dont
nous avons parle dans l'introduction.

Comme precedemment, les festons ou guirlandes de la fig. 3, obtenus en
tenant compte du voilement en plusieurs ondes dans le sens longitudinal,
seront en pratique remplaces par une horizontale ä partir de £ minimum.
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Remarques finales

Bien qu'elle ne soit pas encore completement achevee, la presente etude a

confirme une fois de plus les avantages des methodes de statique appliquee.
Ces methodes permettent en effet de traiter ä peu de frais et avec une tres grande
precision les problemes aussi compliques que celui du voilement de l'äme des

poutres flechies, avec raidisseur au cinquieme superieur.
On remarquera en outre que les resultats des divers procedes de statique

appliquee utilisees en 1947, 1948, 1954 et dans le present article, donnent
strictement les memes resultats, ä condition de tenir compte de la meme
maniere qu'aujourd'hui de l'effet concentre du raidisseur.

Le lecteur voudra bien se rappeler enfin, que nous ne nous sommes occupes
que du domaine elastique et que nous n'avons rien dit de la securite.

Resume

Les auteurs poursuivent et developpent leurs etudes anterieures. Ils com-
pletent les resultats dejä trouves en 1948 et 1954 pour le voilement de l'äme
des poutres flechies, avec raidisseur au cinquieme superieur. Ils tiennent
compte en particulier d'une maniere plus exacte de l'action du raidisseur en
question.

Les auteurs montrent, par les resultats obtenus, que les methodes de

statique appliquee qu'ils ont utilisees donnent sans travail exagere des resultats
tres precis.

Zusammenfassung

Die Verfasser entwickeln und setzen ihre früheren Untersuchungen fort.
Sie ergänzen die schon erhaltenen Resultate aus 1948 und 1954 über die
Biegungsbeulung der im oberen Fünftel versteiften Stegbleche. Insbesondere
berücksichtigen sie genauer die Wirkungsweise der Steife.

Durch die erhaltenen Resultate zeigen die Verfasser, daß die angewandten
baustatischen Methoden ohne allzu große Mühe zu sehr genauen Ergebnissen
führen.

Summary

The authors develop and extend their previous investigations. They Supplement

the results already obtained in 1948 and 1954 for the buckling of the
webs of sagging beams having stiffeners in the top fifth of the web. In particular,

they take into consideration, in a more accurate manner, the effect of
the stiffener.

From the results obtained, the authors show that the methods of applied
static they employed give very accurate results without excessive work.
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