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Stress and Strain in Thin Shallow Spherical Calotte Shells
Contraintes et allongements dans les calottes sphériques minces de faible hauteur

Spannung und Dehnung in diinnen, flachen Kugelkalottenschalen

Dr. Phil. GunHARD-AESTIUS ORAVAS, Caracas, Venezuelal)

Introduction

This paper is concerned with the development of an approximate solution
applicable to the analysis of shallow thin segmental shells of spherical middle
surface. ‘

Such segmental or calotte shells have found frequent structural application
on this continent and overseas [19, 22].

Stress evaluations of such shells have been either carried out by model
analysis or by analytical methods which disregard the transverse bending
stiffness of the shell [1, 5, 6,7, 13, 14]. This lack of consideration of transverse
stiffness in stress analysis may bring on a neglect of certain high stresses
created by the boundary disturbances. The extent of this critical perturbation
of the momentless state of stress depends largely upon the proportions of the
shell, loading and its boundary contour.

For instance, a segmental dome over a triangular base exhibits a transverse
bending zone which is comparable in surface area of the shell with the region
where the momentless state of stress predominates. For such a shell a com-
plete neglect of transverse bending in the stress analysis is not admissible.
Such a thin shell behaves rather uneconomically stresswise because the salient
feature of its deformation is a widespread transverse bending and not the
desirable extensional state of strain.

A number of papers have been published on the analysis of spherical shells,
which do not neglect its inherent transverse bending stiffness [2, 32), 4, 9,

1) At present Sr. Structural Engineer, Smith, Hinchman & Grylls Associates, Inc.,
Detroit, Michigan.

2) This thesis has not been published in engineering literature and has been unavail-
able to the writer.



140 Gunhard-Aestius Oravas

16, 18, 20, 21, 23, 24], though none of them have considered shallow thin
calotte shells. In all these investigations transverse shear deformation of the
shell has been suppressed as being of a negligibly small order of magnitude in
comparison with the magnitude of bending and extensional deformations.
This is assumed to be valid also for calotte shells. The present work seeks to
solve the stress problem for thin shallow spherical shells covering polygonal
type of base.

Formulation and Solution of Fundamental Differential Equations

Complementary Solution

The fundamental differential equations given by MusHTARI [12] and
Vwassov [23] for thin shallow shells in generalized orthogonal curvilinear
coordinates are

VA —EhV2w=—~(1—-v)P2T'—EhV¥eT), )

1 P r
4 2 — Pn _ 3
4 W+DV° o D D(C1+02), )

where

I’ external load intensity potential function (see p, and pg below),

or

PnPa™ " 455 PB= "Bag

w normal displacement function,

@ stress function,

h constant shell thickness,

D= E r3[12 (1 —v?) cylindrical bending rigidity,

€ linear thermal expansion,

T =T (x,B) temperature distribution function that describes the differential
thermal increase or decrease from a stress and strain free temperature
level of the shell bringing about an extension or contraction of shell’s
middle surface,

E Young’s modulus,

v Poisson’s ratio,

are components of load intensity (fig. 2),

e , 1 a B % 9
7 = 1F\oe |4 7a) T 78 B 7))
7é= i s o 0s) Fap o 2]
and
Vs =Fp2pe,

3) For equivalent equations in ‘“‘almost cartesian’ coordinates, see «Zur Theorie der
gekriimmten Platte groBer Formianderung» by K. MARGUERRE, Proc. 5th Int. Congress
Appl. Mech., 1938, p. 93.
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In these formulas 42=[4 («,B)]?, and B?=[B(«,B)]? represent coefficients
of the fundamental metric of shell’s middle surface and ¢;=c;(x,8) and
cy=Cy (x, ) are the curvatures of coordinate lines B = const. and « = const.
respectively (fig. 1). Curvilinear coordinates « and B are taken to be coincident
with the principal lines of curvature.

n

d - _—
g (7 s M

Fig. 1. Differential Element of Shell with Fig. 2. Differential Element of Shell with

Coordinates and Displacements. Stress Couples, Stress Resultants and Sur-

face Loads.

Sectional stress resultants and stress couples are conveniently expressed
by the following relationships [8] (fig. 2):

N ={Li[i3£?]+_1__9_3@}
= \B 3B | Bop| " A2B b« 6]’
Nea oL 2 [L02] 1 04059
B8 —{A Y [A aa] T A8 9B aﬁ}’
NN =_{L[ﬂ_iﬂg@_iiéa@”
of = o AB |6axdB B 00 88 A 2B 0]’
0 =-Dlg 570,
M =_D{}_1[L3_w]+;ﬁ43£+,,[ii(iiw)+ 1 ?11_93__”’“
o Ao |Aoa| TAB? 638 '|Bep\B 8B) T A2B b 0a||’
MBB__D{Li[L?_@E]+ i @@H[Li(i@_w)JrJ_ﬁéa_w]}
B oB| B oB A2B 0a Oa Aoa\A 0 AB? 0B 0B])’

1 [ Pw 1 cBow 1 04 ow
AB|oaxdB B oaxop A 0B oaf
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In order to be able to deal with a differential equation of the form
(Fr+m2P 2)f=F,
it is convenient to introduce a complex dependent variable
V=wt+iwd.

Multiplying the first equation of (1) by (¢w) and adding it to the second
equation yields

1
4 ; i 2 oy~ D) —
Viw+tw®) —itw BRI, (w inthD)

_ %_ %(ca+cﬂ)—iwl72[(l—V)F—l—Eh(e 7).

To secure a differential equation in (w+1%¢ w®) the condition

1 .
W“—m(p = w+®w®,
hence _ V12 (1 —»?)
CTTER

Now equations (1) can be condensed into one complex differential equation

Vi EhoV 2V = %—F(cl+02)—-iwl72[(l—v)f'—}-Ek(e . (2

Original functions @ and w can be expressed in terms of complex function
V as follows

w

3V +V] (a)
and D ‘

i _ :

w
where V is the conjugate of complex V.

For a shallow spherical shell

¢, = ¢y = 1/R = constant
and the first fundamental quadratic form of its middle surface is expressed
approximately by (fig. 1)
ds? =dr2+r2dP+d22 ~dr?+r2d 62

As dz2~(r/R)*dr* and by hypothesis 72> (r/ R)?<1, then |d2z?| is of small
order of magnitude and can be suppressed.

For shallow spherical shells the coefficients of the fundamental metric are

A% =1, B2 =2

and the parametric coordinates
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Inserting all these fundamental quantities of the shallow spherical shell
into differential operators delivers
2 10 + 1 o2
i T rar TR oR

and 1[82 1 0 1 62] 1

pe =

2 _ — __ 2
VC_R RV.

Tyt e

The sectional stress quantities can be expressed by

2
N, ={5%@ r T
Ngg’:%-!-r,
N, =Ner~—£[;%%],
0. =-p| wwl,

or 3)
@ =-D{; 5w,
oo [bo )
- pfi e, (o)
M,gi—D(l—V){é—a;(%)},

where Po = Pr> Pg = Peg-

RasorNov [15] and GOLDENVEIZER [8] have investigated the general
shallow thin shell theory quite extensively for admissible simplifications.
Differential equation (2) simplifies to

(V12(1 =2 . 2 :

{172 [Vz—z (——%h——z)]} V= % - ﬁf—zwlﬁ[(l —v) '+ Eh(eT)]. (4)

A somewhat shorter complex form of equation (4) was first set forth by Vexua

[21]. The homogeneous part of equation (4) has also been given independently

by E. REISSNER [16]. S
Solution of equation (4) is expressible by a function

V=V+Vi+7V,, (5)

where V is a particular solution and the other arbitrary functions are given
by equations
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2y, =0, (6)
{P2—iX2}V, =0, (7)
V12(1—+2)
2
where A% = 1) .

As pointed out by Love [11], solutions for equations of this type can be
assumed in the form

_ 2 cosnb

" ~n§07)" (T){sinn()}

and . cosn b
Vs ﬁngov" (r){sinn(?}'

Substituting function ¥V, in equation (6) yields a characteristic equation

for v,!
2, 1 1
o A2, dv,

22 T, —n2v,l = 0.
For n=0: rd2vnl dv,! 0
dr? dr

Then v,! = Ag+ By Ln(r}),

where 4,, B, are integration constants and L= (rA) designates natural loga-
rithm.
For n=m=1: A2V, dvl,

r dr? +r dr

This is an equidimensional equation and its solution is given by [10,17]

—m2vh, =

1 _ .
v, =C,rm+D,r ™,

where C,, and D,, are integration constants.
The complete solution for V, is then

M8

Ag+ ByLn(rd)+ > [C,r*+D,r"] cosnb,
1

Vy= _ _ (8)
[C,r*+D,r*]sinn8,
1

3
f

™8

3
I

where 4,, B,, C,, D,,, C,, D, are integration constants.
Inserting the assumed function V, in (7) furnishes the characteristic
equation for v,?
' d?v,?  dv,?
2? Yn n_ _
art Ty

7 [t (rA)24+n%]v,2 = 0.

The solution of this equation is given in terms of modified Bessel func-
tions [10]

v,2 = Z@hrA) = 8J, @ N+ T Y, @rd) =8, I, Vir\)+ T, K, (Vird),
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where S,, T,, S, and 7T, are integration constants. J., Y, and I,, K,
denote regular and modified Bessel functions respectively.

This solution in turn can be expressed by KerLviN functions [11] of »’th
order, hence

v, 2= F,[ber, (rA)+ibei, (rA)]+ G, [ker, (rA) +t kei, (rA)].
Complete solution for ¥V, and now be set down
Fy[ber (rA)+2bei(rA)]+ Gyker (rA)+ikei(rA)] +

+ i {F, [ber, (rA)+1bei, (rA)]+ G, [ker, (rA) +ikei, (rA)]} cosn b, (9)
n=1

i {F, [ber, (rA) +ibei, (rA)]+ G, [ker, (rA) +i kei,, (rA)]}sinn 6.
n=1

All arbitrary integration constants F,, Gy, F,, G,, F, and G, contained
in the solution of V are to be taken complex.

Particular Solution

Equations (1) for a spherical shell are

174(15—%-’&17270 = —(1=v)P2T—EhV2(T),

' (10)
1 P 2
4 2p — Ln _ _Z
Vitw+ DR V2o ) RF'
The first equation of (10) can be rearranged in order to extract particular
solutions, hence

P2 [VZ@p—%@wp+(l—v)F+Eh(e T)] = 0.
For symmetrical loading it follows
Vo, = %&wp—(l —v)'—Eh(eT)+H+K Ln(rd),

where H and K are integration constants.
Substituting this relation into the second equation of (10)

Eh P (1+v) Eh 1
4 — n __ _—
v Wyt pp ¥ = DR I'—i—DR(eT) DR[H—I—KLn(rA)].
Then _ R? (1+v)R R
Y=g T F+R(eT)——E—k[H+KLn(N\)]

and V:e, =p, B—2T.
For antisymmetrical loading particular displacement function is given by

w _ R (1+v)B
» “FRPrT T Fh

where H and K are integration constants.

>
r

F+R(6T)—%[Er+5]
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Uniform Normal Load:
For uniform loading intensity
Pn= Do>
I =o0.
Then the particular displacement function becomes
R2
w, = Pogy (11)
and particular stress function is delivered by |

Rr?
Py =Po—y (12)

Wind Pressure:
A simplified wind loading can be presented by
Pp = P cosb|R,
Ps = Pr = I'=0.

For wind loading the particular displacement function is

w, = P, Recosb/Eh (13)
and particular stress function is
@, = p,ricosf/8. (14)

Parabolic Normal Load:
Loading function is given by

Pn =pp7'2,
Py =pp=1=0.

Particular displacement function is given by

w, = p, B*r*|Eh (15)
and particular stress function by
®, = p, Rri/l6. (16)

Uniform Horizontal Load:

Loading function can be taken in an approximate form

r
Py = phfcos 0,

p, = ppcosd,
Py = —pysind,
I' =—p,rcosé.

Particular displacement function is then
w, (2+v) p,r RcosO/E h (17)

and particular stress function
D, = 3pp1*[s- (18)
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Uniformly Symmetrical
Temperature Variation:

This condition results from a symmetrical temperature differential 7'= T, =
const. throughout the thin shell.
Displacement function is given by

w, = ReT, (19)
and stress function by
D = 0. (20)

vy
Antimetrical Temperature

Variation:

The proposed temperature function 7'=T,rcos@/r attempts to describe
approximately the temperature variation in the skin of thin shell brought
about by unilateral sunshine.

For such temperature variation the particular displacement function is

w, = €Ty Rrcosr (21)
and again the stress function
®, = 0. (22)

General Solutions Applicable to Calotte Shells

In connection with all the problems considered in this paper the general
solution is confined to the part of functions proportional to cosine.

Insertion of appropriate complex integration constants, particular solu-
tions (11), (12) of uniform normal loading and symmetrical temperature
variation (19), (20) into the general solutions (5) yields

V= V0+V1+V2 —

R2 |
N {pl(:]h + ReTy+ Ay ber (rd) + Ag2bei (rd) + By ker (r A) + By2kei (r A) +

+F) Ln(rA)+ E, + i [4, ber, (rA)+ A4 ,2bei, (rA)+ B, ker, (rA)+
n=1

+ B,2kei, (rA)+C, r*+ D, r—"]cosn 9} +

(V12(1=1?)
“{ iEh

+FRLu(r N+ B2+ 5[4, bei, (rA)—A,2ber, (rA)+ B, kei, (rA) —
n=1

poRr2+ Ay bei(rd) — Ay2ber(rd) + By kei(rA) — B2 ker (rA) +

— B, ker, (rA)+C,2r"+ D, 2r "] cosn 0} .
Integration constants 4,1, 4,% B}, B2 C}t, Cz2 F,, F2 E;' and E?
(n=0,1,2...) are all real.
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The final solutions of basic parametric functions @, w can be obtained
from this relation by imposition of equations (a) and (b).

Imposing (a) yields displacement function
__ Do R?

w= "5 +ReTy+A, ber(rd)+ Ay2bei(rA)+ By ker (rA) + By2kei (rA) +

+Fy Ln(rA)+E,) + i [4, ber, (rA)+A,%bei, (rA)+ B, ker, (rA)+ (23)
n=1

+ B,%kei, (rA)+C, r*+ D, r"]cosné.
Stress function is delivered by (b)

Rr2? Eh
®=p0 4

+ VTQ(—I—V-Z) {Ao’ bei (7 A) —A02 ber (rA) + Bo, kei(r )‘) _ B02 ker (r ) +

+F? Ln(rd)+ By + % (4, bei, (rA) —A4,2ber, (rA) + B, kei, (rd)— (24)
n=1

— B,2ker, (rA)+C,2r*+ D, 2r "] cosn6}.

If these functions are going to depict the state of stress and deformation
of calotte shells, it is necessary to let proper boundary conditions of the shell
determine all the integration constants contained in solutions (23) and (24).

In order that this operation can be carried out, individual types of shells
have to be taken under consideration.

Boundary Conditions Relevant to Various Types of Spherical Calotte Shells

Spherical Shells Over Polygonal T'ype of Base

A few shells of this type are illustrated in fig. 3.

In general these shells exhibit two boundaries at »=r; and r=r (fig. 4).

Assuming that the inside boundary is limited to small concentric hole
(r=rs,7;/r < 1) or to a small heavily loaded circular area (r=r,,r,/r < 1) then
the stress distribution around this location is practically rotationally sym-
metrical and the stress function and the normal displacement function can be
given approximately by

R Eh
— 4 1 _ 2 2
P = po— +VT2(_1;V_2){BOkel(rA) Byker (rA)+ F2 Ln(r))},
_ po B?

w = + R(eTy)+ By ker (rA) + By2kei (r A).

Eh

This uncoupling of boundary effects is possible for thin shells, which
dampen out transverse bending perturbations in a very short distance from
the origin of disturbance. In other words the inside boundary disturbance
does not affect the stress nor strain of the outside boundary and vice versa.

The solution for the case of a concentrated load over a small area at the
apex of the shell has been given by E. Reissner [16].
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Fig. 4. Calotte Shell of Triangular
Fig. 3. Thin Shells of Polygonal Type . Type Exhibiting Boundary Coor-
with k Sides. dinates.

e

Axis of Rotation

>

Fig. 5. Exploded Section at Apex Opening of Shell.

In case of a central circular opening that is lined with a circular girder, the
proper boundary conditions are (fig. 5).

At r;: N, =N,
Q= Q>
M,= M,
€@ = €,
[dw/dr] = [dw/dr],,
shell

where ¢y and ¢, designate circumferential strain of the shell and ring girder
respectively.
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That part of the solution, which depends largely upon the influence of
the exterior boundary of the shell, is

_ Do R?

~ Eh

+R(eTy)+ Ay ber (rA)+ Ay2bei(rA)+ Ey +

+ i [4, ber, (rA)+A,2bei, (rA)+C, r*]cosnb
n=1

and
Rr2 E h?
¢ = pO 4

+——-—oA{A4,bei(rA)—A22ber (rA)+ E,2+
V12(1—v2){ 0 i(rA) 0 (rA) )}

+ i [4, bei, (rA)—A,2ber, (rA)+C,2r*]cosn6}.
n=1

If the shallow spherical shell encloses a base of regular polygon with £ —
sides, then its state of stress and strain also acquires ak — fold pattern of
polar symmetry about the apex of the shell. Accordingly thin calotte shell’s
normal displacement function and stress function exhibit the same kt — fold
characteristics, hence

. ,
w = p0%+R€To+A02bei (rA)+ A, ber (rd) + Ey' +

o (25)
+ Z [Alzcn beikn (7.)‘) + A;cn berkn (TA) + O;cn Tkn] Cos k n 0;
n=1
Rr2. Eh? .
D = p, 4T + VW{AO’ bei (rA) — Ag2ber (rA) + E% +
(26)

+ 3[4}, beiy, (rX) — A2, bery, (rA) + C2, 7] cos kn 6}
n=1

Satisfaction of Edge Conditions by Boundary Collocation

An exact solution of the edge restraints for polygonal shells is for practical
purpose quite impossible, therefore it is advisable to resort to the method of
collocation in order to secure at least a point by point satisfaction of the
prescribed approximate boundary conditions.

For calotte shells the following boundary conditions seem best suited to
describe a reasonable edge behavior.

Hence at r=r:

Nun =0, (c)

M= 0, (d)

€; O, (e)

w =0, (f)
where r radius to collocation points on shell’s boundary,

¢, strain tangential to the boundary of the shell.
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For a central symmetry point, like points (3) in fig. 8, boundary condition
(f) satisfies also condition (e) approximately, hence

e | (c)

Nnn
Mnn= 0: (d)
w = 0. (f)

For many shells encountered in practice the boundary condition (d) could

be replaced by

ow
an =0 (g)

or by M,,=M,

where M is an applied moment distributed along the outside edge.
Boundary condition (c) can be expressed by stress resultants in polar
coordinates (fig. 6)

N,, =N, cos2{+ Ngpsin2é+2 N gsinécosé = 0

1 20 109 2P o (10D
A Tt 2 O F inze | 2 (L OF Y o _
or [7& Y +r (’M] cos §+[8r2] sin? [8r (r 80)] sin2¢ = 0.

The angle formed by the radius vector and boundary normal is measured

by &. |
Relation (d) can be expressed by stress couples in polar cooidinates (fig. 7).

- Voo N Mre
Fig. 6. Stress Resultants Acting at Fig. 7. Stress Couples Acting at
Boundary of Shell. the Boundary of Shell.

M,, =M,cos?2é+ Mpgsin?é+2 M, gsinécosé =0

Q?_’Ll{_}_ 13_’11)_}__1_52?,0 2§
or ar2 " V\r or r2 062 COS™& +

low 13w (Fw & (10w
e cae (1| 9 (Lowy] . _
+ [r oy T2 00 +V(8r2)] sin?¢&— (1 V)[ér (7 89)] sin2¢ = 0.
Boundary condition (e) is

€, = €, COs? (§+—721) + e sin? (54—%) + v, 8in (f +%) cos (f—i—g) =

= ¢,8In?{ + egeos2é —y,gsinécosé =0
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or Ehe =[N, —vNglsin?é+[Ngp—vN,,]Jcos?é —(1+v) Nysin2¢ =0,

where

““or R’ €=y r R’ Y= 80 T ar\r)’
Eker=NM—ngg, Eh€0=Ngg—-—VNW, Eh‘y,rg=2(l—v)N,,9

and u, v, w are meridional, circumferential and normal components of dis-
placement (fig. 1).
Inserting stress function gives

Ehe = l@_*_la“l) izgsmzf%- 82(p~ 16®+i@ cos?§ +
“= Ny or 2o Vor e “\ror " oez)|°®

+(1+v)[ (1 gf)]sn2f—0

Boundary condition (g) is

ow ow 1 ow
Erae (87) os§+( ag)sm.f—o

Boundary conditions (¢), (d), (e) and (f) are:

@ R
Ay +A32 S, + Zl[Allcn‘/Js + A%, +Chntbs 1= —ﬁ‘é_’ (c*)
Al g + AP, + ;[A}cn‘/’s + A% by + Clntb10] = 0, (d*)
® R
A iy + Ao+ 3 [l ia+ Afnihrs + Chutpial = —(1-9 L=, (e¥)

Eyt+ Ay ber p+ Ay2bei p + Z [4}, bery, n+ A2, beiy, u+CL ¥ cosnf =

n_

= [’};f +R(6T)]. (£%)

Boundary conditions (g) yield:
Agtihie+ A2 17+ Zl [Allcn i+ Ay 19+ Chn Phag] = 0. (g%)
T

Coefficients in the boundary relations are given by:
1 /A, . = [A%. ., 5
b, = [Z (?) bei ,u] cos? ¢ + [Z bei l,l,:l sin? ¢,

— 2 -
Py = — [l (;) ber’ ,u] cos? ¢ — [/\Z ber” p,] sin2 £,

w

k 1 _ 2 — Y
by = {[— — ( rn) beiy,, u+— (;\) beiy, p,] cos% ¢ + [—Aw— beiy,, ,u] sin? §} cos kn 6 +

w

+ {[@ (A) bel,m/u,—k—n bel,m,u] s1n2§}smkn0

w
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k 1 = 2 S
P, ={[~— ( Tn) ber;, u —— ( A) bery, [L] cos? ¢ + [%berzn ,u:l sin? §} cosknf+

w

+ {[_ A (%) bery,, w +lc_n :l_z—berknp] sin QE}Sinkne—,

w

Py = rkn- 2k (kn—1)[(1—-2cos2€)cosknf+sin2ésinknb],

g = — [v (%) ber’ p + A2 ber” p.] cos2 € — [—;—\ ber’ u+v A2ber” p] sin2¢,

i

-1

- [v (;) bei’ u+ A2 bei” ;L] cos? € — [(:A) bei’ u+v A2 bei” y,] sin2¢,
Yy = {[ (j) berkny—v(kr ) ber,,, pu + A2 berkn;u] cos2 & +
+ [ i\) bery,, u — ( ) bery,, u +v A2 berkny,] sm2§}coskn9+
+ {( [( ) ber},, . — ber,m ,u.] sin QE}sin kn@,
thy = {[ ( )bel,m,u,—v(lc ) belkn,u+)\ bel,m,u] cos? £ +
+ [( beiy,, 1 — (k; ) beiknp+w\2bei;énp] sin2 E}coskn9+

-+ {(1 —v)kn [(;\) bei;mp,—;z—bei,m,u,] sin QE}sinkné,
o = (L—=v)kn(kn—1)r*"2[(1 —2cos ) cosknf+sin 2 Esinkn f],

— 2 —_—
hyy = w—l— (%) bei’ u— vc%bei” p] sin? & + [% bei” u — ;)V— (TA) bei’ p,] cos? ¢,

2 _ 2
Py = [V Z‘—ber”,u—-l(é) ber’ p] sin2§+[ (}\) ber’ ,u,-z\—ber p] cos2§,
w w \7r
1 (kn\%2, .- 1/A A2
g = [_5(7) bel,m,u,-}—;—(r)belknp,—v belknp] sin? £ +
2

S LR\ . i
+ [-w—bel,mp+;(7) bfﬂknp,———(—;—) bel,m,u.] cos §}cos kno—
_.{(1:V)k [(A) beiy,, u — bel,m/u] sin 2§}s1nkn9
1 (kn 1N, PEEE B
hiy = {[J( 5 ) ber kn“—_(r)berlmf"_v_”berkn”:l sin® £ +

v (A Ln z2
w - 2
+ [w (T)ber;m#« o ( = ) ber,, u+— berkn,u] cos f}cos kn 6+

+ {( 1+ V)chjn [(?)\) ber},, u —;szer,m p] sin 2 {?} sinkn 6,

kn(kn—1)rkn—2[(2cos?¢é —1)cosknf —sin 2 Esinkn 6],
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e = [Aber’ p]cosé,
17 = [Abeip)cosé,

s = {(Abery, u)cos &} cosknd— { [(k—;—%) bery,, /.L] sin E} sinknd,
. - ~ (T/kn\, . 7. 9. -
19 = {(Abeiy,) cos &} cos kn b — { [(—;—) beiy,, /,LJ sin 5} sinkn@,

oo = {[knr*"1)cos &} cosknf—{[knr*»1]sin}sinkn,

with (u=7 )7, 8, &-coordinates of collocation points and where bery,, u, bery, u
indicate first and second derivatives of Kelvin functions of (k=)' th order with
respect to u. Second derivatives of Kelvin functions can be expressed by

kn
berknl"' = - berkn#'}' ( A ) bery,, u — beiy, u,

kn
belkn:u' = —;belknl/"*_( w ) belkn#‘_’_berkn/'l‘

and the third derivatives of Kelvin functions by

kn)24+2. ot kn)? 1, .
bergc’nlu' = Mg‘z’iberkn ©“— belkn H“— 2 (_T)' berkn Kt ;belkn:u,
(kn)

, 1
beij, = 2 bei,, -+ bety, i — 2 ey, - m bery, .

(kn)?
B

In order to determine the number of terms to be used in any particular
solution, the pattern of collocation points on the shell’s boundary has to be
established. Naturally an increase in the number of boundary points, where
all prescribed boundary conditions are satisfied, increases the accuracy of the
ultimate solution.

Fig. 8 illustrates that the same number of collocation points on the boundary
of a hexagonal shell yields a more accurate solution than if they were located
on the boundary of a triangular type of shell. Yet the computational effort
spent to obtain the solution is identical.

In order to make the accuracy of the triangular type of shell comparable
to that of the hexagonal shell, the number of its collocation points have to be
increased. This adds considerably to the amount of work required to carry
through the calculation. For instance, inclusion of one more collocation point
requires additional four terms in the solution series. Obviously polygonal

Fig. 8. Collocation Pattern on the Boundary of Polygonal Shell.



Stress and Strain in Thin Shallow Spherical Calotte Shells 155

shells, with larger number of sides, require smaller number of collocation
points to yield satisfactory solution and, therefore, need fewer terms in its
series solutions. |

It should be noted that due to k-ply symmetry of the problem only collo-
cation points 1, 2 and 3 have to be satisfied for boundary conditions. Collo-
cation points 4 and 5 are identically satisfied due to the symmetry of solution
functions.

In general, the number of coefficients required in the stress and displace-
ment functions @ and w depend upon the number of collocation points assigned
to the problem. For instance, in case of a triangular base, with five collocation
points per side, it is necessary to take n=1,2 in series (25) and (26). For a
calotte shell over a square base with five collocation points per side, the
solution is

2 .
w = p‘%R —|—R€ T0+A01ber(7')\)+A02bei(r}\)+E01+

h
2

[4}, ber,, (rA)+ A2, bei,, (rA)+CL, r*"*]cos4nb
= 4an an an an 4an

and

+

Po R 12 Eh? .

@ = —— A 1bel TA —A 2beI‘ 7‘)\ +
£ i s (A bR () A ber ()

2
+ > [A}, bei,, (rA)— A3, ber,, (rA)+C3%, "] cos 4 n b}.
n=1

a

Spherical Calofte Shell over Rectangular Base

IAxis of Rotstion

2.10_{tm/m

Stress Couple Mrr Diagram Along &-b

Fig. 9. Square Calotte Shell and Stress Couple Diagram under Uniform Normal Loading.
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An extremely shallow shell over a square base with the following dimen-
sions and properties (fig. 9a)

R=100m, A=0,10m, a=11,5m, »=0,17, A=0,59 @=;—T

is subjected to a uniform normal loading intensity of p=0,5 t/m2. Then after
some very extensive calculations, the stress couple M,, variation along section
b —b, shown in fig. 9b, is procured (see Appendix).
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Appendix

The sectional quantities (3) can be expressed in terms of solutions (25)

and (26):
R Al Al
N, = % Aol{— ;bel (r A)}—Aoz{a ;ber (r/\)} +
o kn Al
; [ —beiy,, (7 A) - (—) beiy,,, (r)\)} [— o ;ber,m (r )+
(lc ) ber,, (r }\)] +C3, [M r’”“ﬂ}oos kné,
2 2
Ny = %ﬁ + A {% bei” (7”/\)} _ 4,2 {% ber” (w\)} +
@ 22 22
+ > {A [ be:y, (r)\)] + A%, [—ber}én (r)\)] +
n=1 w

+ Olzcn [M_”__l) ,rkn—2:| } coskn 9’
w
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® kn A Vkn, . Ak
Moo = 3 [ et 0) = o S et ()] +h, [ = 2 B ber, 0+

n=1 w

1k kn

+ r—:b—ber,m (r A)] +C2, [-]‘f"—(_a_);” r’”“2] } sinkn 6,

2
Q = D[AO1 [—)\3ber’” (r/\)—)‘?ber” (r)\)+r—);—ber’ (r)x)jl +
hy//4 )\2 n A .7
+ 4,2 | — A3 bei (w\)—Tbel (rA)—i-ﬁbel (rA)| +
o 2 2
+ Z {A}m[—)@ ber;,, (rA) —Z;—ber,’én (rA) + (;—\2— +)\(k—:;)—) bery, (rA) —
(kn)?

2
— s ber,,,, (r /\)} + 42, [ A beiy, (rA) — /\7 beiy, (rA)+

+ (%-&-)\(krn) )b eiy, (rA) — (krg)zbeikn (r)\)]}coskn()],

© k k 3
Q = DLZI{A}C,, [A% “Phery (r /\)+/\7—;"ber;m (M)—(%@) ber,, (M)] +

3
+ A2, [Azéﬁbeij{c’n (rA) +)\k7§bei;m (rA) — (lc?'_n) bei,,,, (r /\)]}sinknﬁ],

M, = D[ A 1{/\21061‘ (r)\)—i—véber TA} { "(rA) —I—Vébel (r)\)}+
2 y kn\? )\ ,
+ > A}m[ A*bery,, (M)—i—v( - ber,., (rA) — ber,m (rd)| +
n=1
. kn\2, . A, L,
+A4z2, [—)\2belkn (rA)+v(7) beiy,, (r/\)ﬁv?bel,m (rA)| +

+CL [—(=v)kn(kn— l)r’“"—z]}coskn(?],

My = D[Aol{—;ber’ (rA) —v X2 ber” (M)}+A02{— %bei’ () —» X2 bei” (M)} +
o kn\? A
+ > 4%, (r berkn(r)\)—-berkn(rA)-v)\zberkn(N\) +
n=1
2
+ A%, [(%ﬁ) bei,,, (V)\)—%bei;m(r)\)—v}\zbei;én (r)\)] +

+CL, [(1=v)kn(kn— l)lrk"“2]}coskn0],
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M,y =D i A}m{(l —v) [Aknber;m (r/\)—]i—:bberkn (r)\)]} +
n=1

r
+ A%, {(1 —v) [A?bei}m (rA) —];—?bei,m (r)\)]} +

+CL (1= v) [kn (bn— 1)rkn—2]}]sinkn9.

Summary

An approximate method of analysis for stress and strain in shallow spheri-
cal calotte shells has been developed in this paper. The entire problem was
reduced to determination of two parametric functions, which describe the
overall behavior of thin shell. These functions satisfy exactly the fundamental
differential equations of shallow spherical shell, but exhibit prescribed edge
conditions only at specified boundary points.

This method of solution is applicable to thin segmental shallow spherical
shells (crown height | base circle < 1/5) over regular polygonal type base. The
boundary conditions are not rigorously satisfied, but for practical purposes
they should prove sufficiently accurate. Nevertheless, the numerical compu-
tations involved are extremely extensive.

Résumé

L’auteur expose une méthode d’approximation pour le calcul des contrain-
tes et des allongements dans les calottes sphériques minces de faible hauteur.
L’ensemble du probléme est ainsi ramené a la détermination de deux fonctions
paramétriques, qui expriment le comportement global de ces calottes minces.
Ces fonctions satisfont aux équations différentielles fondamentales des vottes
sphériques de faible hauteur, mais ne remplissent les conditions marginales
prévues qu’en des points limites particuliers.

Cette méthode de résolution peut étre appliquée aux calottes sphériques
minces de faible hauteur en forme de segment (hauteur de la couronne/cercle
de base < 1/5), portant sur une base polygonale réguliére. Les conditions aux
limites ne sont pas rigoureusement satisfaites; la précision obtenue est toute-
fois suffisante pour les applications de la pratique. Les calculs numériques
nécessaires sont néanmoins trés compliqués.

Zusammenfassung

In dieser Abhandlung ist eine Néaherungsmethode zur Berechnung der
Spannungen und Dehnungen in flachen Kugelkalottenschalen entwickelt wor-
den. Das ganze Problem wurde auf die Bestimmung von zwei Parameter-



160 Gunhard-Aestius Oravas

funktionen, welche das gesamte Verhalten von diinnen Schalen beschreiben,
reduziert. Diese Funktionen befriedigen die fundamentalen Differentialglei-
chungen flacher Kugelschalen genau, erfiillen aber die vorgeschriebenen Rand-
bedingungen nur in einzelnen Grenzpunkten.

Diese Losungsmethode ist auf diinne, segmentférmige, flache Kugelschalen
(Kronenhohe/Basiskreis < 1/5) iiber regelméfiger polygonaler Grundfiiche
anwendbar. Die Randbedingungen werden nicht streng erfiillt; die erreichte
Genauigkeit diirfte aber fiir praktische Zwecke geniigen. Dennoch sind die
notwendigen numerischen Berechnungen sehr umfangreich.
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