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Influence Surfaces for Moments in Slabs Continuous

over Flexible Cross Beams

Aires d'influence relatives aux moments flechissants dans les dalles continues
avec poutres transversales flexibles

Einflußflächen für Biegemomente von durchlaufenden Platten
mit biegsamen Querträgern

Tadahiko Kawai and Bruno Thüklimann, Fritz Engineering Laboratory,
Lehigh University, Bethlehem, Pennsylvania

I. Introduction

In two recent articles [1,2] influence surfaces for bending moments of
continuous slabs have been presented. In reference [1] Hoeland developed
Solutions for a slab continuous over rigid and flexible cross beams in the form
of infinite series1). However, as the influence functions exhibit singular behavior
at the influence point proper (i. e. point for which the influence functions are
determined), such Solutions are divergent at this point and slowly convergent
in its neighborhood. For a discussion of the singularity and for exact numerical
computations in the immediate vicinity, Solutions in finite form are required.

Such Solutions have been presented in reference [2] for the case of rigid
cross beams. In this paper Solutions in finite form for cases of flexible cross
beams are developed. The singular behavior of the influence functions for the
support moments over the cross beams is discussed. Finally, numerical
Solutions are presented in graphical form.

Whereas in references [1] and [2] Solutions have been obtained by using
the differential equation of a transversely loaded plate, the approach using
the integral equation is presented in this paper. Apart from a different
formulation of the problem this approach has the advantage of avoiding boundary
conditions along the cross beam. This, in turn, shows that the boundary con-

x) An error in the assumption of the boundary conditions expressed by the equation
for q on page 127 of reference [1] will be pointed out shortly.
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dition for the shearing forces along the cross beam in reference [1], equation
for qy, p. 127, are'in error. Instead of using the expression for the boundary
shear Vx containing the contribution of the twisting moment, e. g.

the expression for the shearing force Qx, e. g.

/ d3 w d3 w \
dxdy2)

should have been used. As the twisting moments Mxy are continuous over the
support beam, they should not appear in the boundary condition.

II. Influence Surface for Deflection of Plate Strip Continuous

over Flexible Cross Beam

An infinite plate strip with simply supported parallel edges is considered
(fig. 1). At y 0 the plate is continuous over an elastic cross beam with a
constant bending stiffness EI. The coordinates of a point on the cross beam
are taken as (z, 0) — z being the rc-coordinate — in order to distinguish this

x (u, v)

<-Uz,o)^
(xy)

i x^Flexible Cross Beam (EI)

Fig. 1. Plate Strip Continuous Over Flexible Cross Beam.

Non-dimensional Coordinates: ttU
a

TTX

a
•-(;

ttV
a

a v;

point from a general point (x, y). The deflection w of the plate at a given point
(u, v), referred to as the influence point, due to a concentrated load P at point
(x,y) can be expressed by the following integral equation:

w(u,v;x,y) PG(u,v;x,y)— (EI ^—^—l^-G(u,v;z,0)dz. (1)
ö °z

The function G(u,v;x,y) is the Green's function for the deflection of point
(u, v) of an infinite plate strip with simply supported edges. It is given by the
following series:

a2 v 1

G(u,v;x,y) ^fiB h^^^u^V]X^^ (2)
n=l
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where
ifjn(u,v;x,y)

a
+7}^L(V-V) niru mrx

e a y,sm sm

with the upper sign for v ^ y,
and the lower sign for v ^ y.

*d^w(z 0*#? v)The first term under the integral sign in equation (1), EI ' 4?

expresses the distributed reaction of the cross beam acting on the plate. When
multiplied by Green's function G(u,v;z,0) and integrated over the length of
the cross beam the integral constitutes the influence of this beam on the
deflection at point (u,v).

To simplify the following derivations, dimensionless coordinates are
introduced [2], viz:

TTU ttv n
cc, ß,

a a
(3)

ttx j. iry ttz
-a~ L -a~ y]> IT= l

Assuming the deflection surface w in the form

w(oc,ß;£,rl)=<f>(oc,ß;£,rl) + PG(cx,ß',£,v) (4)

the function <f> is determined by substituting equation (4) into equation (1):
TT

i / n > x
tt3 EI f d*w(£„0;£, ri) _, n y ^. _ y /r,.<f>(*,ß;g,v) ^3—J J^ "G(*,ßU,0)dZ. (5)

o

Since <f> is a continuous function with respect to a and ß, it can be developed
into eigen-functions associated with the Green's function G as follows:

OO

<f>(oc,ß;£,r]) 2 an(£>y)<Pn(<*>ß)>

cpn(oc,ß) {l+nß)e-nßsmnot [ }

for positive values of ß. Substituting into equation (5) and replacing G by
equation (2) gives:

TT 00

it. s / os tt3EI [diw(i:,0)i a2 ST l 0,M\,yz «»(^i)9»(«^) —zz- gA k^D^^s^^^^'^r^- (7)
w—1 J b l m l 1

Multiplying both sides by sin na and integrating with respect to a from 0 to tt,
the orthogonality relations simplify equation (7) considerably. Taking into
account that

0OT(a,]8;£,O) <pm{oc,ß)smmt)

the following expression is obtained:
TT

^aJi,v)(l+nß)e--ß ~^.I^(l+nß)e--ßjdiW8^°KmnCdC. (8)
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With the Substitution

gg4 g|i:W(^0;f^) + -PG[(£,0;f,iy)]

V w?4" /£ T^sinmf-i —mi// (t.0:P. n)
m=l L £tt° L>

-1 L

1

the function a^ can be determined. Again the orthogonality relations are used.

Introducing the parameter

Pa2 n
a» -2^^D-^^(1+Wr?)e^Sin^- (1°)2)

The non-dimensional parameter p depends on the ratio of the bending stiff-
E h?

ness of the plate, D
__

to the bending stiffness of the cross beam EI.
Substituting the pertinent values into equation (4) with P 1 yields the
influence function for deflection:

00

w(«,ß;Z,r,) =^dZ\\-^(^n(ß~rj)]e±^ß-^
-,

(ll)2)
(l+nrj)(l+nß)e-n(ß+7i) sin^asinw£

n2(n + p) ' r J

upper sign rj ^ ß,

lower sign rj ^ ß.

The first term within the parenthesis represents the influence surface for
the deflection of point (u, v) of a simply supported plate strip without cross
beam. The second term expresses the influence of this beam. If the cross beam
is infinitely rigid, viz. EI -> oo and p -> 0, the coefficient of the second
term reduces to:

lim-07—;—r -3 •

p^on2(n + p) n3

On the other hand, in the absence of a cross beam, EI -> 0 and p -> 00

such that

lim -y-——• 0

and the second term will disappear.

2) If rj<0 the sign preceding rj should be changed in equation (10) and in the second
series of equation (11).
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III. Influence Surfaces for Bending Moments

121

The expressions for the influence functions of the bending moments Mx
and My are obtained by differentiating equation (11) with respect to a and ß
as follows (see for example [3], p. 260):

M^.-influence surface:

tt2D (d2w d2w\
mx(cc,ß) (d2

w d2 w\
I^2+VJß2)

00

(ß-v) (12)3)

n + p
(l+nrj){(l+v) + (l-v)nß}e-n(ß+7i) sin n ol sin ng.

M^-influence surface:

m TT2Dl d2w 82w\

oo

2 TT Z-J
71=1

1

n + p

-{(l+v) + (l-v)n(ß-rl)}e±n(ß-7»

(l+nrJ){(l+v) + (l-v)nß}e-n(ß+7»

(13)3)

sinn ot sinn g.

The influence function for the beam moment is proportional to the curvature

of the cross beam, hence:
Influence surface for moment of cross beam:

mb (cc, 0)
TT2EI d2w(cx,0)

a2 ^x2

00

—5—/ I (1 — 017 )\e~nv sin na. sinn £.
»Viril» n + PK H "\

(14)3)

For the particular case of the influence functions for the support moments
over the cross beam, i.e., ß 0, the expressions for mx and my reduce to:

00

mx(cx,0) jr-/ \(l+v)\ (l-prj)\-2vrj\ e~n^sinnasinn£, (15)

00

™„(*>0) =^-V \(l+v)\~--^(l-prj)\-2rl]e-^sinnocsinn^ (16)
Z7r7^iL \n n + P I J

3) If rj < 0 the sign preceding rj should be changed in the second series of equation (12)
and (13) and in equation (14).
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The series with the terms 2 v rj and 2 rj in the above equations for mx and my
respectively, are the expressions for the influence functions in case of a rigid
cross beam.

If p 0 the above equations reduce to:
00

mx(rx,0) / e~n7isinncxsinn£;, (17)
TT ^-H,n=l

m,y(oc,0) -^-^e-^sinnocsinng, (18)

mb(oc,0) 0. (19)

Equation (18) checks with a previously obtained result, equation (12) of
reference [2]. The value of mx is v times the value of my as the curvature along
the cross beam disappears. Finally, the expression for mb reduces to zero as

the cross beam will not deflect.
The other extreme case is obtained if the bending rigidity of the cross

beam disappears, p co, or
00

1 Y^ 1

mx(cx,0) —-) —[(l+v) + (l-v)nrj]e-n,nsinnocsinn€, (20)
2 tt ^—{ nn l

00
1 V^ 1

my(oc,0) --— }—[(l+v)-(l-v)nr}]e-n7]sinn*sinn£. (21)

corresponding to already known results (see for example [2], equation (6)).
In general, it appears to be impossible to sum the series of equation (12)

to (16) into finite expressions. However, at least for the two specific values of
p=l/2 and p l such a summation is possible. Fortunately they correspond
to practical values as will be shown presently. The details of the summation
and also the finite expressions for the general case, i.e., mx (oc,ß) and my(a,ß),
are given in the Appendix.

Considering the support moments for point (a, 0) and the specific value

p= 1, equation (14) to (16) takes the following form:
00

mx(cc,0) — £ (i+v) l__l_(i_7?)j_2v Je-^sinnasinn^, (22)

00

^(a;0) =^^[(1+^1^-^-(1-7,^-2^ e-^sinnasinn^, (23)

00

mb(cx, 0) —— > | (1 - n rj)} e~n7i sin na sin n£. (24)
77 9 ^\\n w+1 "I v '

The finite expressions for point (^, Ol — i.e., influence point over the cross

beam at half span — and the ratio p 1 are:
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Case: ot -^; ß 0; p 1

mr ff'0) ^[(^^fc-^-^^sinfllog^osh^ + sinl)

— [1 + (v — 1)eV sm £] log (cosh rj — sin £) — 2 (rj — 1) e77 (log 2 — rj) sin £

+ 2(t7-1)^cos| tan -i / CQS£ \ _tan-i / CQS£ \]\ (25)
[ev-singf V^ + sin^/JJ

v '

\ v rj sinh rj I ;—-z —
\cosh rj — sm £ cosh rj + sin £)]•

*("f >°) ^[(l+^jtl-^-^^sin^log^osh^ + sinO#&„ "TT

[1 + (rj — 1) e17 sin |] log (cosh 77 — sin£) — 2 (rj — 1) e77 (log 2 — 77) sin £

™s£ \ __,/ eos£ VU
(26)+ 2(77-l)e^COs£

— 2 rj sinh 77
I

tan

1

-1 / cos^ \ _tan-i cos^ VII
\e77 - sin ij \e^ + sin f/ J J

1

<)]•

m.

i^cosh ?y — sin £ cosh 77 + sin f/

("f'°) ^{ri-('?-1)«,?sin|]log(cosh7?+sin|)

- [1 + (ri - 1) e77 sin £] log (cosh 77 - sin f) - 2 (77 - 1) e77 (log 2 - 77) sin f
+ 2 (77 - l)e^cosf ftan-1 CQS.^ ^ -tan-i C°S^ Tll (27)

Similarly, expressions for the case of p 1/2 can be derived, leading finally
to the following equations:

Case: ot=—;ß 0;p 1/2

^(l'°) 8^[(1+^{l0g

•log
cosh| + cos (^-1)

cosh 77 4- sin £ / 77

cosh 77 — sin £ (i-)-HI-T)
cosh| + cos (g + i)
cosh f-cos (| + |)cosh{—6-3 l2 i}

/Sin ^- v

•tan l-3i
sinh-l sinh-^ /.

— 2 v 77 sinh
\cosh77-sisin| cosh 77+sin |

(28)

)]•
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+ sin £

cosh| + cos (f-j) ,£ v 0OshJ + cos(| + g
cosh 4- - cos (1-^ \2 4/ 8cosh|-cos(| + g

-'-(MHO^-'-'H)
¦ tan-1 ^—i^l1 - 2 « sinh *

(29)

cosh 77 — sin £ cosh 77 + sin £)]¦

m. (?¦•)-#* +

•log

cosh 77 + sin f
cosh 77 — sin £

cosh-| +cos (|-j)
_c°s(l+T)iog

cosh -| + cos (|+j)

-HI-.M^)--(I^)
V sinh*. /JJ

(30)

IV. Discussion of the Singularity of the Support Moments

Whereas it is impossible to express the influence functions in finite form
except for specific values of p, a general discussion of the functional behavior

in the immediate vicinity of the influence point (|, 0) can be given. In equation

(15) and (16) the last term of the series for mx and my can be summed [2]:
00 1/1 1 \V e~nrisinnocsinng -sinh771—r— — — - -^

n=i 4 \cosn 77 — cos (a — £) cosh 77 — cos (a + £)/

Considering points in the immediate neighborhood of (|, O) only, or

€z==0, 8 0

and neglecting higher order terms, the above equations reduce to:

1

'¥tt
v82

e2 + 82 •(}+v)J(p)\, (31)



Influence Surfaces for Moments in Continuous Slabs

m„

mh

82

E2 + §a

2(1
TI \

77* p

_(l+v)J(p)j,

125

(32)

(33)

»-Ä5..A» »+*>/

Introducing polar coordinates 0 and r |/e2 + S2 as shown in fig. 2 it follows
that

S2

?q^r= sin20'

limm^|,0;| + e,s) ^ _L[l/sin2ö_(1+l/) J(p)]> (34)
8-*o

Mmmtf(|-,0;|- + e,8) - ^[sin*0-(l +v)J (P)], (35)
8-i-O

limm6(^,0;| + e,8) ^-J(p). (36)
€_>() \* * J TT*p
8->0

(f,or-"*r-

Fig. 2. Polar Coordinates Around Influence Point (-, Ol.

The function J (p) can be computed as follows:
00 oo

J<^X..(^K?.(^)[1-<-1"
"

y (L _ J—\ - y Lziü + y (-1)""
(37)

However, the theory of Gamma functions furnishes the following relationships
(for example, [4], p. 458):

00 00

^logrw+y.g^-^-JjI-^)-!,
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Making use of the relations (for example, [5], p. 28 (1)):

»=i

v (-i)m__ c x"-1 i
_

i r i~2~j j \m i
£4»+, Ji+* x

P 2Lrf±*) r(|)J />"
(39)

J (p) becomes:

j(p) irr
2[r

(p) if^(T) r'(I)
(P)^ + log2 +

2lrm }]'

00

0

Since ^(p) satisfies the following two relations:

(39)

where [da
cx

n+1

(» 2,3,4..., Z= 1,2,... (n-l)),
'viY(p)+Y=Ln' (P=1.2.3, •••)•

J (p) can be readily computed. Values are shown graphically in fig. 3. It is a

positive function which increases monotonically from zero to infinity with
increasing p.

J<?)

t
1

f—

Fig. 3. Function J (p).

4) y 0.5772156649 (Euler's Constant).
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The limit of mx, my, mb, can now be discussed. For simplicity the assumption
v 0 is made, such that:

(40)

8^0

limm^|,0;| + e,s) - ±[^in2d- J(p)], (41)

limm6(|;0;^ + €,8)= -*£/(,). (42)

8^0

As only the limit of my depends upon the angle of incidence 0, the discussion
will be restricted to this case. Inspection of fig. 3 and equation (41) shows that
for J (p)> 1, no angle of incidence exists for which my will be zero. However
for J(p)^l, my becomes zero for specific values 0 0O. Five cases are
considered:

(I) P 0:

J(P) 0 m^|j0;|,oj -2^shv>0

d0 0 Rad.

(II) P=l/2:

jG)=M"i"log2)=o-4388

my^,0;^,o) - -L(ain*0- 0.4388)

and solving the equation: sin2 0 — 0.4388 0

60 0.7243 Rad.

(III) p l:
J(l) 0.69315 ro„(f,0;-|,o) -

ö0 0.9818 Rad.

(IV) p 2:

J(2) l m,(Y,0;-,0J:

Ö0=|Rad.

(V) p> 2: J(p)> 1, no 0O exists

and since lim J (p) oo

limmJ- ,0;— ,01 + 00,

This limiting case corresponds to an infinite strip with no cross beam.
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The results are plotted graphically in fig. 4 (a) to (e). It can be seen that
the angle of incidence 0O for the zero line increases successively from 0 to ^

corresponding to a change in p from zero to two. For values of p > 2 no zero
line passes through the influence point.

*) p-0;e0-o t?)r=};00=*r.5° ^
"V7 -3.720

\ I / ~3'°

\ V & A / -2.o

2.248

-m£s~'.
M\<

¦y/h\\\
Cross Beam

C)f*t; 0O 56.25

0

/ / I \ \' / \

227
0.947

227

// 773

773

+2.503

+2 773

X

fl X*

Cross Beam

e) p=j +0.773 n053

-1.96B
248

0.248

X +0.755

S$ + 1. 485

t/A ^rns
+1.755

m\$'/ \\y

Cf) f> 2, Go=90

+0.280
+1.0

+2.0

b +3.0

3.730

+4.0

+7.773

773

+3 773

4.503

U.773

Cross Beam

Fig. 4. Singularity of ra^-In-
fluence Surface as Function
of Stiffness Ratio p. (Plotted

Values 8 tt times my.)
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Knowing the behavior of my at the influence point 1^, Ol and the tangents

to the contour lines meeting at this point, the general shapes of the my influence
surfaces can be easily visualized. Fig. 5 (a) to (e) illustrate the general appear -

ance schematically. Cases (a) and (e) are the known cases for an infinitely
rigid cross beam, p 0, and no cross beam, p oo, respectively. Between the
two cases a steady transition takes place.

¦V ^-v

/ I \ \

\ I I
1 /

1 J /

—0—^^r—o —

a) f o

Cross Beam

-v X

/ ö x
i

- \
/ /fö)!

/ /^J\ \\ \ s /

\ I '© >h/ ©

c f-2
\> ^V

/r
—°^>4
© ©

—-K

Cross Beam

© ©i^jÄ

b P=J

V-iV ' ' \\^i / ;

i / —)
\ \

V \

d p >2

Fig. 5. Schematic Appearance
of m -Influence Surface as
Function of Stiffness Ratio p.
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V. Extension to the Case of Multiple Cross Beams

The method of the integral equation used in Chapter 2 for the case of a
single cross beam can be extended to the case of a plate strip supported by a
series of cross beams as indicated in fig. 6. If in addition to the bending
resistanee, consideration is given to the waiping a-nd the torsional resistanee of the
cross beams, the influence function for the deflection w of point (a, ß) takes
the following form:

w(*,ß;i,v) ö1(«,j8;f,7,)-£^ [EI, Hf ¦Qi(*>ß\t>i>yi)dU

+

'&*(", ßm,£i>yi)d£i,
where

£i,Yi dimensionless coordinates of i-th cross beam.

E Ii bending stiffness of i-th cross beam.

E1^ warping rigidity of i-th cross beam.

GKi torsional rigidity (St. Venant's Torsion) of i-th cross beam.
Gx(cx, ß;£,rj) Green's function for deflection of point (ot,ß) due to concen¬

trated transverse load at point (£, 77).

G2 (oc,ß; g, rj) Green's function for deflection of point (ot,ß) due to a concen¬
trated moment at point (|, 77) acting about an axis parallel to
the £-axis.

The function G1 is identical with equation (2), or in non-dimensional form:

with

00

n l
i/jn(oc,ß;g,rj) [1 + n (ß - rjfie^tf-7» sinn otsinn £.

(44)

G2 is the limiting case of the difference between P01(a,ß;^9'q + S) and
PG1(ac,ß)^, rj) as PS approaches unity and 8 itself approaches zero, or:

rrn^ir-!
% I *(%*)

Ijj
L„

1- v -i
Kg. 6. Plate Strip With Multiple Cross Beams.
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G,(oc,ß;£,rj)= lim [PG1(ot,ß',i,rj+8)-PG1(oc,ß^,7j)]
pS->i
8->0

(ß-v)V l^ V — e±n(ß-^ sin n cx sin n ß.
D L-in

(45)

n-l
The Solution follows the pattern outlined in Chapter 2, the only diffieulty
being the extent of arithmetical Operations.

VI. Two-Span Continuous Slab with Flexible Cross Beams

The slab as shown in fig. 7 is simply supported along its edges £ 0 and

i 77. The two end beams at 77 + y have the same constant bending rigidity
EI as the cross beam at 77 0. As an example the influence surface for the

x (a,o)

*($,?)

Fig. 7. Two-Span Continuous Slab With Flexible Cross Beams.

support moment My at point (a, 0) will be computed. Referring to [2] the
m^-funetion is taken in two parts:

my my0 + myl, (46)

where my0 is the Solution of the infinite plate strip with an elastic cross beam
at 77 0 as given by equation (16) or (27) and myl is a Solution of the
homogeneous plate equation:

(4?)

myl= 2 (an sinh n rj + bn cosh n rj + cn n rj sinh nrj + dn n rj cosh ^77) sin n cx sin ni.
n l

The sum (my0 + myl) must fulfill all boundary conditions. Considering
symmetry with respect to 77 0 these conditions are: At 77 0:

a) dmlt
0.

^77

However as ™v° 0 the condition becomes:
CT)

dmyl
d rj

0,

b) tt3D (d3my
t

33my \ _ tt*EI 8*my
2a* d^ '

n3D l
a3 \ drj3 d i2drj j

(48)

(49)

(50)
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Equation (50) expresses the condition that the "shearing force"5) at +0is
equal to half the reaction of the cross beam. However as my0 fulfills this
condition separately the equation reduces to:

TT3D/d3myl d3myA _ tt*EI d*myl
~aF\drj3 +di2drj)~ 2a4 ~dW '

At ttC _
a ^'

c) d2my

8rj2
=°- <52>

IF- <53>
d) TT3D(d3my d3my\ tt*EI

a3 \drj3 +i V)di2drj) a4

The first condition assumes the edge free of bending moments My whereas
the second condition postulates the identity between the plate boundary shear
and the loading of the cross beam. Introducing the expressions (16) and (47)
for my0 and myl into the boundary conditions (49), (51), (52) and (53) furnishes
a system of equations for the determination of the constants an to dn. Explicit
expressions for these constants in general form are too complex. However,
their actual computation for a given example does not offer any particular
diffieulty.

VII. Numerical Examples

The foregoing derivations were used for computation of two examples:

a) Plate Strip Continuous over Flexible Cross Beam

Choosing the influence point (^, 0] and a stiffness ratio o —^—= 1,

equation (14), (15) and (16) were used to compute the influence surfaces for
the beam moment mb and the bending moments mx and my. Furthermore,
the assumption of Poisson's ratio v 0 makes the expressions for mb and mx
identical except for a constant multiplier. The results are plotted in two
graphs (9 and 10). It should be noted that the plotted values correspond to
8 77 times the influence values for mx and my and 2 772/a times for mb. For cases
other than v 0, the graphs 9 and 10 are still applicable. Due to the fact that
v does not enter the boundary conditions, the influence surface can be taken
in the following form:

and similarly for mx. However for other cases where v influences the boundary
conditions (e.g., free edges, elastically supported edges, etc.) such a procedure
is not rigorously applicable and its accuracy must be investigated from case
to case.

5) As m must fulfill the same boundary conditions as the deflection w such termino-
logy seems appropriate.



Influence Surfaces for Moments in Continuous Slabs 133

A remark is indicated concerning the choice of p 1. A cross section
through the cross beam shown in fig. 8 is considered. The dimensions are given
in terms of the span length a. The interaction between the beam and the slab
is usually taken into account by determining an effective width of the slab

acting as a flange of the beam (see e. g., [3], p. 119). However, for the present
qualitative consideration, it is sufficiently accurate to assume that the action
of the slab forces the neutral axis of the beam to coincide with the middle
plane of the slab n — n. Computing the moment of inertia / of the rectangular
beam a/10xa/25 with respect to n — n the value of p is determined, p 0.98.
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A more rigorous investigation would lead to a neutral axis slightly below n — n
and hence to a smaller / and a somewhat higher value of p. Nevertheless the
example shows that the case p 1 will correspond in practice to a rather
flexible cross beam, the usual cases being limited between 0 <p < 1.
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Fig. 10. Plate Strip with Flexible Cross Beam L —^-= 1; v Oj

m Influence Surface for Plate Moment over Cross Beam (877 times).
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b) Two-Span Continuous Slab with Flexible Cross Beams

The plates were chosen as two square plates, y 77, simply supported along
the edges i 0 and i tt (flg. 7). Taking the ratio p 1, equal bending stiffeness

EI for all three cross beams was assumed. Only the influence surface for

my\L, 0) was computed. It should be pointed out that the calculations were

done for v 0. Using the method outlined in Chapter 6 the computed constants
an to dn of equation (47) for the first and third term of the series are given in
the following table:

«1 5.151 X IO-3 az 7.674 x 10-10

&1 5.151 X IO"3 K 2.558 X 10-10

Cl 2.830 x IO-3 C3 7.538 X 10-10

dt - 5.151 X IO-3 dz - 7.674 XlO-10

In calculating the myl values, only the first term of the series was
considered. The influence surface for my is shown in fig. 11.
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Appendix

a) Summation Formulce

For summation of equations (12) to (14) use of the following formulae

was made:
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— cosnx —-log(l —2rcos# + r2), (A)

V rn - / rsmx \/ — sin nx tan-11
^—i n \ 1 — r cos xl (B)

V rn 1. 1+ 2r cos# + r2 yi~./ —cosnx -rloffi—^ 5, (C)A?J. n 4 &l-2reosx + r2 v '

CD)Zrn - / 2 r sin #\
— sin ti # tan-11 — 5-1,

1.3.5..» \ 1~rt r
V1 / 1— rcosx \ 1/ 1— r2 \ /x,,> rncosnx -— ö-1l «h—ö 9-1 h E
L^x \l-2rcosx + r2 / 2 \l -2r cosz + r2 / v '

00

V • rsina; /T,X/ rnsinnx -— ^, (r)^-J l-2reos# + r2
n=l

v^ f{(l + r2)cos# — 2r} .^,,> nrncosnx= -£——- ^, G)L^ (l-2rcosx + r2\2 v '

n=l,3,5...

n=l (1 — 2 r cos # + r2)2

for values of |r| < 1. Equations (A), (B), (D) may be found in reference [6],
p. 190. The derivation of equation (E) is given in reference [2], p. 496, Appendix.

Equations (C), (F), (G) were developed similarly.

b) Summation of Equations (12) to (14)

With the aid of the formulae (A) to (G) the series of equations (12) to (14)
for the specific value p 1 are summed. The results are given without repeating
the arithmetical Operations. For p 1:

$Trmx(rx,ß;i,rj)
COsh(ß — rj) — COS (cx + i) wo x /n x

(1+-)logcosh(g-^)-cos(a-|) + (1-)^-^Smh^-T')

•(coSh(i3-1?)1-cos(a-|)-cosh(^-^)1-cos(a +
^)) + (1+v){T,?sinh^±,?)

| | _L + v — l) 6ß±V
\eosh(j8±77)-cos(a-^) cosh(ß±rj)-cos (<x + i)J v~ ' '

• COS (a + i) log [cosh (ß±rj) — cos (a + i)] — COS (a — i) log [cosh (ß±rj) — COS (a — i)]

-2(log2 + iy)gmasmg-2Bm(a + g)t^^

•tan-i^j;1^
— cos (a + i)] — cos (a — i) log [cosh (ß±rj) — cos (a — i)] — 2 (log 2 + 77) sin a sin i

~ >, n/ sin(a + £) \ rt ^k ,/ sin(a — i) \1- 2 sin a + i) tan-1 l-n——*—t^ttt + 2 sm a ~£)tan fi+„ —t^-tt^ b' yeP±*? _ cos (a + £)/ ' \eP±ri - cos (cx-i)/]



Influence Surfaces for Moments in Continuous Slabs 137

~ /\[cosh(i8±7?)-cos(a-|)]2 [cosh(j8±7?)-cos(aH-|)]2/ v /; xr ~ "
'
\cosh (ß ± rj) - cos (a - i)

~~
cosh (ß±rj)- cos (a + i))J' * '

STrmy(cx,ß;i,rj)

._ COSh(ß — 7))— COS (ot + i) ,- wn x • i /r» x(1+I>)logcosh(g-")-cos(a-g)-(1-v)^-^Sinh^-^

•(cosh(^-^)-coS(a-|)-cosh(i3-1?)1-cos(« + o) + (1+,'){T7?Sinh^±7?)

/ + + v _ 1) eß±v
\COsh(j8 + n)-COS(a-|) COsh (ß ± rj) - COS (a + f)/ V~ ' '

• COS (a + £)log[cosh (ß±rj) — COS (a — £)] — COS (a — i) log [coshß ± rj) — COS (a + i)]

— 2 (log 2 + sin « sin £ - 2 sin (« + f) tan"* (^3^|^j) + 2 sin (a- £)

•tan_i (e^r_ L~(f -1))]}+(i ~v) ß{{i t v) eß±v [c°s (a+°iog [c°sh ^± v)

— cos (a + i)] — cos (a — i) log [cosh (ß±rj) — cos (a - £)] — 2 (log 2 + 17) sin a sin £

^ • / sm. 1/ sin(a + £) \ rt -/ sin(a-£) \]— 2 sm (a + i) tan"1 n^——*—, + 2 sm a -f) tan"1 -0——*v b/ \eß±ri - cos (a + i)J v b/ \e0±7?-cos(a-£)/J
/ cosh (ß + n) cos (a — £) — l cosh(j8 + 7))cos(a + |) — 1 \ /0± 17 1. /o v / ^-.9-?—wo x

v ; ^-.J + (1 + 77)sinh(]8 + 71)
/\[cosh(j8±77)-cos(a-|:)]2 [cosh (ß ± rj) -cos (a + |)]2/ "

'
\cosh (ß±rj)- cos (a -1) ~ cosh (ß±rj)- cos (a + f)/J'

' '

772

— wft(a,0;f,77)

lQgcosh^-Z(a-^ (K)

— cos (cx — i) log [cosh rj — cos (a — i)] — 2 (log2 + rj) sin a sin £ — 2 sin (a + i)
-/ sin(a + £) \ rt ,xx ,/ sin(a-£) \)
\e±77-cos(a + £)/ v w \e±7?-cos(a-|)/J

It may be pointed out that the above expressions hold anywhere on the

plate strip, fig. 1. The equations for the support moments of point (|, 0)

follow either by introducing a ^, ß 0 into the above equation (H) to (K)
or by summing equations (22) to (24), expressed in series form, directly with
the use of the formulae (A) to (G). Both procedures will lead to equations
(25) to (27).

For the case of p l/2 summation is also possible. The results for the
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support moments are given by equations (28) to (30). However, as indicated
before, no summation for a general value of p is possible.

Summary

The influence functions for bending moments of a simply supported plate
strip continuous over a flexible cross beam, are derived in closed form. A
complete discussion of the singularities of the support moments (influence point
above cross beam) is given, and numerical values for different ratios of slab
to beam stiffness are presented. The mx- and m^-surfaces for the support
moments and the mb-surface for the bending moment of the cross beam are
plotted in graphs, readily usuable for design.

As an extension, the cases of a two-span continuous slab with flexible
cross beams and of a plate strip with multiple cross beams, are treated. A
graph shows the my-surface for the support moment of the two-span slab.

Resume

Les fonctions d'influence relatives aux moments flechissants dans une dalle
de grande longueur portant librement et comportant une poutre transversale
flexible ont ete determinees sous une forme finie. Les singularites des moments
aux appuis (point d'influence au-dessus de la poutre transversale) sont etudiees
d'une maniere detaillee et concretisees par des valeurs numeriques se rappor-
tant ä differentes conditions relatives de rigidite de la dalle et de la poutre
transversale. Pour l'utilisation directe, dans la pratique, les aires d'influence

mx et my des moments aux appuis et l'aire mb relative au moment flechissant
de la poutre transversale sont representees.

A titre d'extension, les auteurs etudient le cas de la dalle ä deux travees
avec poutres transversales flexibles et celui de la dalle de grande longueur
avec plusieurs poutres transversales. Enfin, ils donnent la representation de
Faire my du moment aux appuis d'une dalle ä deux travees.

Zusammenfassung

Die Einflußfunktionen für die Biegemomente eines einfach gelagerten
Plattenstreifens mit einem biegsamen Querträger werden in geschlossener Form
abgeleitet. Die Singularitäten der Stützenmomente (Einflußpunkt über dem

Querträger) werden ausführlich besprochen und durch numerische Werte für
verschiedene Verhältnisse der Platten- zur Querträgersteifigkeit veranschaulicht.

Zur direkten Benutzung in der Praxis sind die mx- und die m^-Einfluß-
flächen der Stützenmomente und die mö-Fläche für das Biegemoment des

Querträgers dargestellt.
In einer Erweiterung werden die Fälle der Zweifeldplatte mit biegsamen

Querträgern und des Plattenstreifens mit mehreren Querträgern besprochen.
Schließlich ist die m^-Fläche des Stützenmomentes einer Zweifeldplatte
dargestellt.
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