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Influence Surfaces for Moments in Slabs Continuous
over Flexible Cross Beams

Aires d’influence relatives aux moments fléchissants dans les dalles continues
avec poutres transversales flexibles

EinfluBflichen fir Biegemomente von durchlaufenden Platten
mit biegsamen Quertrdgern

Tapaurko Kawal and Bruxo THURLIMANN, Fritz Engineering Laboratory,
Lehigh University, Bethlehem, Pennsylvania

1. Introduction

In two recent articles [1,2] influence surfaces for bending moments of
continuous slabs have been presented. In reference [1] HorLAND developed
solutions for a slab continuous over rigid and flexible cross beams in the form
of infinite series!). However, as the influence functions exhibit singular behavior
at the influence point proper (i.e. point for which the influence functions are
determined), such solutions are divergent at this point and slowly convergent
in its neighborhood. For a discussion of the singularity and for exact numerical
computations in the immediate vicinity, solutions in finite form are required.

Such solutions have been presented in reference [2] for the case of rigid
cross beams. In this paper solutions in finite form for cases of flexible cross
beams are developed. The singular behavior of the influence functions for the
support moments over the cross beams is discussed. Finally, numerical solu-
tions are presented in graphical form.

Whereas in references [1] and [2] solutions have ‘been obtained by using
the differential equation of a transversely loaded plate, the approach using
the integral equation is presented in this paper. Apart from a different for-
mulation of the problem this approach has the advantage of avoiding boundary
conditions along the cross beam. This, in turn, shows that the boundary con-

1) An error in the assumption of the boundary conditions expressed by the equatlon
for g, on page 127 of reference [1] will be pointed out shortly.
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dition for the shearing forces along the cross beam in reference [1], equation
for q,, p. 127, are'in error. Instead of using the expression for the boundary
shear V_ containing the contribution of the twisting moment, e.g.

Ao o[ )
sz(Qx-*- 8y~/ =—-D (2—1/)355‘2?/2J
the expression for the shearing force ¢, , e.g.
Bw ;w
O =D (3:63 * ﬁxayz)

should have been used. As the twisting moments M, are continuous over the
support beam, they should not appear in the boundary condition.

II. Influence Surface for Deflection of Plate Strip Continuous
over Flexible Cross Beam

An infinite plate strip with simply supported parallel edges is considered .
(fig. 1). At y=0 the plate is continuous over an elastic cross beam with a
constant bending stiffness £ I. The coordinates of a point on the cross beam
are taken as (z,0) — z being the z-coordinate — in order to distinguish this

y
I =
|
T 3 T(z,a) T

l hY *x(x,y)

x(v,v)

\
\

¢ \F/ex/b/e Cross Beam (EI)
X

Fig. 1. Plate Strip Continuous Over Flexible Cross Beam.

. . . TU 772)
Non-dimensional Coordinates: — = «; = f;
a a
T Ty Tz
—=¢ 2 =19; — =1
a a a

point from a general point (z,y). The deflection w of the plate at a given point
(u,v), referred to as the influence point, due to a concentrated load P at point
(x,y) can be expressed by the following integral equation:

4 .
w(u,v;z,y) = PG (u,v;2,y) — [Ela (Z’Zg’x’y)G(u,v;z,O)dz. (1)
The function G (u,v;x,y) is the Green’s function for the deflection of point
(u,v) of an infinite plate strip with simply supported edges It is given by the
following series:

G(u,v;z,y) = Z— (u,v;2,y), (2)
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nmu . NTX

: _nm £ T (=)
¢n(u,v,x,y)=[l+7(v——y)]e a " ¥sin S sin—

where

with the upper sign for v <y,
and the lower sign for v=>y.

4 .
The first term under the integral sign in equation (1), EI L’Z’;’le—)

expresses the distributed reaction of the cross beam acting on the plate. When
multiplied by Green’s function G (u,v;z,0) and integrated over the length of
the cross beam the integral constitutes the influence of this beam on the
deflection at point (u,v).

To simplify the following derivations, dimensionless coordinates are intro-
duced [2], viz:

TU k)
W= 4P
(3)
ffzg Y _ Lzzg
a ’ a K a

Assuming the deflection surface w in the form

w (o, B3 €,m) = ¢ (o, 8;6,m)+ PG (0, 8,6, m) (4)

the function ¢ is determined by substituting equation (4) into equation (1):

¢<a,ﬁ;f,n)=—”3“f Fw (. 06m) gy, 8; 2, 0)dL. (5)

a? oLt
0

Since ¢ is a continuous function with respect to « and B, it can be developed
into eigen-functions associated with the Green’s function G as follows:

BBitn) = 3 an(En)pn (B

®p (2, B) = (L+np) e~"Psinna (6)

for positive values of B. Substituting into equation (5) and replacing G' by
equation (2) gives:

w 3EI w 2 &
5 (€ )9 (5.B) = f S as Y s L OlAL ()
n=1 m=1

Multiplying both sides by sinn « and integrating with respect to « from 0 to =,
the orthogonality relations simplify equation (7) considerably. Taking into
account that

P (2, B3, 0) = @y (o, B) sinm {

the following expression is obtained:
4 4
TanE g et = — T (apye [ Z0Esinnra

2 2n3aD ot
0
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With the substitution

*tw (L, 0 ot
P = TG0 Em) + PG (05, )
o 2
= m‘gl m’4a‘m (‘f; n)Sil’l’m/ L4 2if/1) m 'r/’m (&, 0;¢, 7})]

the function a,, can be determined. Again the orthogonality relations are used.
Introducing the parameter

4a D
_ Pa? n
" 20373 D n+p

a (1+mn)e™sinné. (10)2)

The non-dimensional parameter p depends on the ratio of the bending stiff-
Eh3
12(1—v?)
Substituting the pertinent values into equation (4) with P=1 yields the

influence function for deflection:

ness of the plate, D = to the bending stiffness of the cross beam £ 1.

Wl Bi6n) = gragy 1 [ (1 (B =) esnb-n
n=1

1 (11)2)
Tt (ntp) (L+n7) (1 +n,8)e—"<3+n>] sinnasinn ¢
upper sign 7n=8,
lower sign o <B.

The first term within the parenthesis represents the influence surface for
the deflection of point (u,v) of a simply supported plate strip without cross
beam. The second term expresses the influence of this beam. If the cross beam
is infinitely rigid, viz. £I — o and p — 0, the coefficient of the second
term reduces to:

lim ——— .
p—>0 n? (n + P) n?

On the other hand, in the absence of a cross beam, I — 0 and p — o
such that
1

m ———+ =
p—>o n*(n+p)

and the second term will disappear.

%) If n < 0 the sign preceding n should be changed in equation (10) and in the second
series of equation (11).



Influence Surfaces for Moments in Continuous Slabs 121
III. Influence Surfaces for Bending Moments

The expressions for the influence functions of the bending moments M,
and M, are obtained by differentiating equation (11) with respect to o and 8
as follows (see for example [3], p. 260):

M -influence surface:

mD (Pw  ?w
ma(B) = =" (525 +v )

a? 0 B2
= -21—2 l: (1+v)F (L—v)n(B—n)}etnB-—n (12)3)
n—ll—p(l +nn){(1 +v)+(1—v)n,8}e‘"<3+’7)] sinnosinm €.

My—inﬂuence surface:

m D[ Pw Pw
my (o, B) = — a2 (Vga2+3/32)
= _l_i [i{(l—}—v) (1=v)n(B— }ein(ﬁ—n) (13)3)
27'rn=1 n 77
nip(l+n77){(1 +v)+(1—v)n/9}e*"<3+’l)] sinnasinné.

The influence function for the beam moment is proportional to the curva-
ture of the cross beam, hence:
Influence surface for moment of cross beam:

m K1 0*w(«,0)

mb (d, 0) = - az aa2
N (14)3)
2a 1 1 - ‘
= 5 ———(1- —n7) )
72p :Z;I{n n+p( Pn)}e sinnasinn é

For the particular case of the influence functions for the support moments
over the cross beam, i.e., =0, the expressions for m, and m, reduce to:

my (e, 0) = % 21 [(1 +v){-n1—— ;71;,;(1 —p 77)}“2" 77] e ™Msinnasinné, (15)
my (a,0) = —2%2[(14— ){w—ﬁ;(l pn)}-—?n] e—"ﬂsinno;sinnf. (16)

8) If < 0 the sign preceding 7 should be changed in the second series of equation (12)
and (13) and in equation (14).
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The series with the terms 2v 7 and 27 in the above equations for m, and m,
respectively, are the expressions for the influence functions in case of a rigid
cross beam.

If p =0 the above equations reduce to:

m, (e, 0) = —V'M’Ze—”ﬂsinnasinnf, (17)
m n=1

my, (a, 0) = ——;l Z e~™Msinnoasinné, (18)
n=1

my («, 0) = 0. (19)

Equation (18) checks with a previously obtained result, equation (12) of
reference [2]. The value of m, is v times the value of m, as the curvature along
the cross beam disappears. Finally, the expression for m, reduces to zero as
the cross beam will not deflect.

The other extreme case is obtained if the bending rigidity of the cross
beam disappears, p =co, or

1 v 1 : .
my, (e, 0) QW;n[(lJrv)Jr(l_ v)nnle "Msinnasinn§, (20)
m, (x,0) = iil[(l +v)— (1 —v)nn]e™sinnasinné. (21)
vy 2Trn=1n

corresponding to already known results (see for example [2], equation (6)).

In general, it appears to be impossible to sum the series of equation (12)
to (16) into finite expressions. However, at least for the two specific values of
p=1/2 and p=1 such a summation is possible. Fortunately they correspond
to practical values as will be shown presently. The details of the summation
and also the finite expressions for the general case, i.e., m, («,B) and my, («, B),
are given in the Appendix.

Considering the support moments for point («,0) and the specific value
p=1, equation (14) to (16) takes the following form:

[(1 +v){% — ;1—(1 —77)}—21/77] e™Mgsinnasinné, (22)

1y (1 1
0) = — l4v)]—— — (1 —n)l— —nn g i
my, (e, 0) 2777; [( +V)ln prorig (1 n)} 27;] eMginnasinng, (23)
2a \ (11 : :
my, (o, 0) —_%7;{%—”"‘1 (l—nn)}e—"ﬂsmnasmnf. (24)
The finite expressions for point (g, O) — 1i.e., influence point over the cross

beam at half span — and the ratio p=1 are:
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m,y, (%, 0) = 8—17T[(1 +v){[1 — (n—1)ensin €] log (cosh 1 +sin €)

—[1+(n—1)ensiné]log (coshn—siné) —2(n—1)e? (log 2 —n)sin
+2(n—1)encos é [tan—l (—09?5-#) _tan-1 (—@—)]} (25)

en—sin & en+gin €

1 1
_9 inh -

m, (%’ 0) = %[(1 +V){[l—(7;—l)ensinf]log(coshn+sin§)

—[1+(n—1)ensiné]log (coshn —siné) —2(n—1) e (log2 —n)siné
+2(n—1)emcos ¢ [tan*l (_coi) —tan—1! (—&Sg——)]} (26)

e —sin & em+sin &

2 5 sinh ! !
— 1 : - . ’
A coshn—siné coshzn+sin ¢

my, (—g, 0) = Q—ZZ{[I — (p—1)ensin ¢]log (cosh 7 +sin §)

—[1+(n—1)esiné]log (coshn —siné) —2(n—1)e?(log2 —n)siné
+2(n—1)emcos ¢ [tan—l (CO—SS) —tan—! (—0—085—)]} (27)

e —sin ¢ en+sin &

Similarly, expressions for the case of p=1/2 can be derived, leading finally
to the following equations:

Case: o =

T
i B=0; p=1J2

w 1 cosh n +sin ¢ 7 s & x
m, (—2~, 0) = g;[(l +v){logm+ (5 —1) en [008(5-— Z

1 (¢ n £ 7
-logCOSh§+COS(§_4)—cos(—§-|—1)l cosh§+cos(§+z)
N § 7 2 4 7 & 7
cosh 5 — €08 (§ - Z) cosh - —cos (E + Z)

. & 7

sin (2 + -

— 2sin é + 7 ) tan— (——Lz 4) —2sin £ (28)
& 4 sinh -1 2 4
2

Y e -9 - 1 » 1
: — <V Sm n — — - ,
sinh 2 coshn—sin¢ coshn+siné
2
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T 1 cosh 7 +sin ¢ ] o ¢
m, (5, 0) = g[(l +v) {log goshn—ging T (5 - 1) e [cos (2

4
| cosh%-kcos(g—g) ¢ cosh 2 +00( z)
-log , (5 W\—cos 5T 1 lo ., (f w\
coshE—cos 53— 1) cosh——co \5 i)
. &
(& m\. sin (5 +7) N a
—~251n(§+1~ tan™!' {———— ] —2sin SR (29)

sinh
sin (2 —+

PRI e N |
sinh% coshn—sin¢ coshy+siné

77' a cosh n +sin ¢ ) & =
- _ it it N - /2 =
" ( 2’ 0) - {log coshn—sing (2 1) ¢ [COS (2 4

3

cosh%—}—cos (g —g) ¢ m cosh%+cos (§+ 1
-log . £ —cos(§-|-—4-)l ; .
cosh—2~ — COos (5 — Z) cosh o — 008 (E + Z)
. & =
sin (= —+
— 2sin (g — %) tan—! (—(2;4)) — 2sin (25 + 1) (30)
sinh% 4

IV. Discussion of the Singularity of the Support Moments

Whereas it is impossible to express the influence functions in finite form
except for specific values of p, a general discussion of the functional behavior

in the immediate vicinity of the influence point (1—27 , O) can be given. In equation

(15) and (16) the last term of the series for m, and m, can be summed [2]:

> . . 1. 1 1
—nmn — — —_
;16 sinmasinn & 4smhn(cosh~q—cos («—§) coshrn—cos (oc+§))'

Considering points in the immediate neighborhood of (7—2r, O) only, or

E = % + €, n = 8,

e=0, 0=0
and neglecting higher order terms, the above equations reduce to:
1 [ v &2

B P>

197 ()] (31)
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82
my~ =g | s =107 )] (32)
my~ o (o) (33)

< 1 1
o= 5 (E-h)
n=1,Z3_;5... » ’I’L+p

Introducing polar coordinates 6 and r=}e2+8% as shown in fig. 2 it follows

that
52

;‘—2—}—_82— = Sin20,
A 1
li Z,0; 2 = — —[vsin2f— 4
ng)lmx(Q,o, 2+€,3) S [vsin?0—(1+v)J (p)], (34)
8—0
limm, (7,0: ™ 4e8) = — —[sin?0— (1 +v) J (p)] (35)
Jmomy {5 ,2+e, __277[5111 v Pl
80
. : 2
lim m, (1,0;1+e,8) - Z2J). (36)
€—0 2 2 TP
8—0
R
I >
ef
A
(*zl;o)’"— ’TT ~ &
l v ‘?\
Y TR v 2
Fig. 2. Polar Coordinates Around Influence Point (%, 0) .

The function J (p) can be computed as follows:

However, the theory of Gamma functions furnishes the following relationships
(for example, [4], p. 458):

(37)

(_1.# L ) e, (38)
n=1
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Making use of the relations (for example, [5], p. 28 (1)):

i (=" _ —log 2,

n=1 n
o] 1 ’ P‘l'l 1 (P
Z(—l)n_ [ =] ! I[F (‘2'“) F(z)] ! (39)
T )lex T p 2 +1) T
e gl e Elr(g) ol e
J (p) becomes:
, rE)
_ 1[I (p) - 1{ ( 2 ) 2 ]
7 (p) “2[F<p)”“"g2+2 ret) p(_f’)} ’
2 2 (39)
_1 Vg (pt] P\I] 9
') [f. 1 \d«
where S f( *<1+a>f>)7
0
Since ¥ (p) satisfies the following two relations:
| 52
T T 2lvm . (vm
‘I’(——)+y=—500t;+2 L {cos( )logmn(—n-)}—log@n),

p—1

1
lP(p)—i—y:Zz, (p=1,2,3,...).
n=1

J (p) can be readily computed. Values are shown graphically in fig. 3. It is a
positive function which increases monotonically from zero to infinity with
increasing p.

15

7.0

Jip)

/

05 7

P,
o 7 2 3 4

Fig. 3. Function J (p).

1) »=0.5772156649 . .. (Euler’s Constant).
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The limit of m, ,m, , m;, can now be discussed. For simplicity the assumption
v =0 is made, such that:

. T T 1
8—0
T T 1
. Kk . T — Y ren2a
ll_r)xgmy(2,0, 2+e,8) 277[sm 6—J(p)], (41)
6—0
. T T 2a
él_lj)lmb (E,O,E‘i‘é,g) = ;Tz—pJ(p). (4:2)
—>0

As only the limit of m, depends upon the angle of incidence 6, the discussion
will be restricted to this case. Inspection of fig. 3 and equation (41) shows that
for J (p)> 1, no angle of incidence exists for which m, will be zero. However
for J(p)=<1, m, becomes zero for specific values 0=0,. Five cases are con-
sidered:

(I) p=0
Tr T 1
— —_— S — = —_—— in2
J(p)=0 my(2,0,2,0) 2Wsm6’
6, = 0 Rad.
(I1) p=1/2:
(1) = 1(™ —10g2) = 0.4388
3] = 3lg—log2) =0
m, (%,0;%, 0) = ~2i(sin20—0.4388)
- ‘

and solving the equation: sin%6 —0.4388 =0
6, = 0.7243 Rad.

(I1T) p=1:
J (1) = 0.69315 T 0:7,0) = — - (sin20—0.69315
(1) = 0. m, 5 Vig = 2wsm . )
6,=0.9818 Rad.
(IV) p=2:
T T 1
i J— g —_ —_- M2 —
J(2)=1 my(Z,O, 2,0) 27T(sm 0-1)
T
00=§Rad.
(V) p>2:  J(p)>1, no 0, exists
and since limJ (p) = oo
p—>© lim i 0_71 0) = + o0
p{—momy -2_) ’ 2) - ]

This limiting case corresponds to an infinite strip with no cross beam.
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The results are plotted graphically in fig. 4 (a) to (e). It can be seen that

the angle of incidence §, for the zero line increases successively from 0 to 3

corresponding to a change in p from zero to two. For values of p> 2 no zero
line passes through the influence point.

d) p=0;6,=0 Qf

~40 -3720

///// \\\\x Cross Beam ///-/
N\

e) p=3 +0773 41053
+1773

+2.773

S &
S 4
& +3.773
0°  +4.503
\ %
_ +4.773
/ \ Cross Beam
\ Fig. 4. Singularity of m,-In-
fluence Surface as Function

of Stiffness Ratio p. (Plotted

Values 87 times m,,.)
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Knowing the behavior of m, at the influence point (g, 0) and the tangents

to the contour lines meeting at this point, the general shapes of the m, influence
surfaces can be easily visualized. Fig. 5 (a) to (e) illustrate the general appear-
ance schematically. Cases (a) and (e) are the known cases for an infinitely
rigid cross beam, p=0, and no cross beam, p =0, respectively. Between the
two cases a steady transition takes place.

Cross Beam

Cross Beam |

Fig. 5. Schematic Appearance
of m,-Influence Surface as
Function of Stiffness Ratio p.
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V. Extension to the Case of Multiple Cross Beams

The method of the integral equation used in Chapter 2 for the case of a
single cross beam can be extended to the case of a plate strip supported by a
series of cross beams as indicated in fig. 6. If in addition to the bending resis-
tance, consideration is given to the warping and the lorsional resistance of the
cross beams, the influence function for the deflection w of point («,B) takes
the following form:

. - 4 o4 e
w (o B £.7) = G1<a,5;f,n>—Za—3fmﬁ e g, it v a

k ks
e Cw'wa 77) _a’_z 33w(§¢a'}’i§§»”’7)
; 4” “! 3549% = Ry, (2)
B Livi) A,
where
{;,v; = dimensionless coordinates of ¢-th cross beam.

E1I; = bending stiffness of ¢-th cross beam.
E 1, = warping rigidity of i-th cross beam.
GK; = torsional rigidity (St. Venant’s Torsion) of i-th cross beam.

1

Gy (x,B56m)

I

Green’s function for deflection of point («,B) due to concen-
trated transverse load at point (¢, n).

Gy (x,B;€,m) = Green’s function for deflection of point («, 8) due to a concen-
trated moment at point (£, n) acting about an axis parallel to
the £-axis.

The function G, is identical with equation (2), or in non-dimensional form:

wfit) = 23D2n3¢n Bi€) (44)
with ¢n(a;ﬁjf,n =[1Fn({B—7) ]ei”(ﬁ Wsinnasinn €.

Gy is the limiting case of the difference between PG, (x,B;¢,m+8) and
PGy (x,B;€,7m) as P approaches unity and § itself approaches zero, or:

N
x@,h)

L(@‘, )

|
s |

- - —— - —o

T
l )

IR P S L L H
+1.Fig. 6. Plate Strip With Multiple Cross Beams.
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GZ(“?B;é:? 7]) :ggJPGl(a,B;f,7]+8)_PG1(OC,B;€,77)]
8—0
i (45)
= — (’8_77)Zlei”(ﬁ—’?)sinncxsinnﬁ.

20D =n

The solution follows the pattern outlined in Chapter 2, the only difficulty
being the extent of arithmetical operations.

VL Two-Span Continuous Slab with Flexible Cross Beams

The slab as shown in fig. 7 is simply supported along its edges £ =0 and
¢ =7. The two end beams at 7= ++ have the same constant bending rigidity
E I as the cross beam at 7=0. As an example the influence surface for the

Y.

|
|
i k x(§,7)
|
1

7 7>

Fig. 7. Two-Span Continuous Slab With Flexible Cross Beams.

support moment M, at point («,0) will be computed. Referring to [2] the
m,-function is taken in two parts:

m,y == my0+my1, (46)

where m, is the solution of the infinite plate strip with an elastic cross beam
at =0 as given by equation (16) or (27) and m,, is a solution of the homo-
geneous plate equation: ,

o o (47)
m,, = > (a,sinhnxy+b, coshnn+c,nnsinhny+d,nncoshny)sinnasinné.

n=1

The sum (m,q+m,,;) must fulfill all boundary conditions. Considering sym-
metry with respect to n =0 these conditions are: At 5 =0:

a) | oy _y, (48)
on :
o Mmyo ol

However as by = 0 the condition becomes:

Ty, (49)
dn
b) __7r3D B my Bmy\ mEI ¢*m, (50)
a® \ 73 0&20m T 2t 064
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Equation (50) expresses the condition that the ‘‘shearing force’’%) at +0 is
equal to half the reaction of the cross beam. However as m,, fulfills this con-
dition separately the equation reduces to:

_7r3D(E)3my1+ 33my1\ mt B 0*my1
a® \ 0

— . 51
on® " 0€07) 2a' o0& (51)

wC

c) 02 my
= 0. (52)

0n?
— a3 (W+(2—V)W = —*—'aT—a—gl—. (53)

The first condition assumes the edge free of bending moments M, whereas
the second condition postulates the identity between the plate boundary shear
and the loading of the cross beam. Introducing the expressions (16) and (47)
for m,, and m,, into the boundary conditions (49), (51), (52) and (53) furnishes
a system of equations for the determination of the constants a, to d,, . Explicit
expressions for these constants in general form are too complex. However,
their actual computation for a given example does not offer any particular
difficulty.

VII. Numerical Examples

The foregoing derivations were used for computation of two examples:

a) Plate Strep Continuous over Flexible Cross Beam

4aD_ |
nE1
equation (14), (15) and (16) were used to compute the influence surfaces for
the beam moment m, and the bending moments m, and m,. Furthermore,
the assumption of Poisson’s ratio v=0 makes the expressions for m, and m,
identical except for a constant multiplier. The results are plotted in two
graphs (9 and 10). It should be noted that the plotted values correspond to
‘87 times the influence values for m, and m, and 2 #%/a times for m,. For cases
other than v=0, the graphs 9 and 10 are still applicable. Due to the fact that
v does not enter the boundary conditions, the influence surface can be taken
in the following form:

2

Choosing the influence point (g, O) and a stiffness ratio p=

my = (my)v=0 +v (mz)v=0

and similarly for m,. However for other cases where v influences the boundary
conditions (e. g., free edges, elastically supported edges, ete.) such a procedure
is not rigorously applicable and its accuracy must be investigated from case
to case.

%) As m, must fulfill the same boundary conditions as the deflection w such termino-

logy seems appropriate.
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A remark is indicated concerning the choice of p=1. A cross section
through the cross beam shown in fig. 8 is considered. The dimensions are given
in terms of the span length a. The interaction between the beam and the slab
is usually taken into account by determining an effective width of the slab
acting as a flange of the beam (see e.g., [3], p. 119). However, for the present
qualitative consideration, it is sufficiently accurate to assume that the action
of the slab forces the neutral axis of the beam to coincide with the middle
plane of the slab » —n. Computing the moment of inertia I of the rectangular
beam a/10 X a/25 with respect to n —n the value of p is determined, p=0.98.

Slab /25
by !
14 | I
A —— o — — A== =1
' |
33/100
10
320

r<—3/25—>
Fig. 8. Section Through Cross Beam.
. . 4
Span Length = a. Stiffness Ratio p :_(12 = 0.98.
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Fig. 9. Plate Strip with Flexible Cross Beam (p === 0).
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m,, = Influence Surface for Plate Moment over Cross Beam (8 = times).
my, = Influence Surface for Bending Moment of Cross Beam (2 #%/a times).
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A more rigorous investigation would lead to a neutral axis slightly below n —n
and hence to a smaller / and a somewhat higher value of p. Nevertheless the
example shows that the case p=1 will correspond in practice to a rather
flexible cross beam, the usual cases being limited between 0 <p <1.
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m,, = Influence Surface for Plate Moment over Cross Beam (87 times).
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m,, = Influence Surface for Plate Moment over Middle Cross Beam (8 7 times).
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b) Two-Span Continuous Slab with Flexible Cross Beams

The plates were chosen as two square plates, y =, simply supported along
the edges £ =0 and ¢ == (fig. 7). Taking the ratio p =1, equal bending stiffeness
E I for all three cross beams was assumed. Only the influence surface for

m, (7—27, 0) was computed. It should be pointed out that the calculations were

done for v=0. Using the method outlined in Chapter 6 the computed constants
a, to d, of equation (47) for the first and third term of the series are given in
the following table:

ay 5.151x 10-3 as 7.674 X 10-10
b, 5.151x 10-3 by 2.558 x 10-10
¢y 2.830 x 10-3 cy 7.538 X 10-10
d, —5.151x 10-3 dy | —7.674x10-10

In calculating the m,; values, only the first term of the series was con-
sidered. The influence surface for m, is shown in fig. 11.
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Appendix
a) Summation Formule

For summation of equations (12) to (14) use of the following formulee
was made:
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[o o]

n 1
Z " cosnx = ——log (1 —2rcosz+1r?), (A)

n 2
n=1
> re rsinx
Z —sinnx = tan—l(———), (B)
- n 1—rcosx
n=1
i rr 1 1+27rcosx+17r2

—cosnT = Zlog1 3 5o (€)

wtT s —2rcosx+r
[o o} 7 2 .
Z "sinne = tan‘l( 11'81112%), (D)
n=1,3,5...7 —-r
i 1 1 1—7r2
—rCcosT —r
7;1 r" cosnx (1—2rcosx+r2 ) 2(1——27‘00590—1—7‘2 ), (E)
[o o] .
) rsinz

n =
; TSRy 1—-2rcosx+r?’ &)
o0

r{(1+r? -2

Z nrrcosnx = {( +r7)cosw r} (G)

(1—2rcosx+1r2)? ~’

3
it
—

for values of |r| <1. Equations (A), (B), (D) may be found in reference [6],
p. 190. The derivation of equation (E) is given in reference [2], p. 496, Appen-
dix. Equations (C), (F), (G) were developed similarly.

b) Summation of Equations (12) to (14)

With the aid of the formulae (A) to (G) the series of equations (12) to (14)
for the specific value p =1 are summed. The results are given without repeating
the arithmetical operations. For p=1:

8mmy (x,B8;€,m) =

cosh (8 —7) —cos (x+§) .
cosh (B —n) —cos (a_§)+(1 —v) (B —n)sinh (8 —1)

(14+v)log

1 1 .
'(cosh(ﬁ—n)—cos (a—&) ~ cosh (B—n)—ocos (a+§))+(l +v){+ nsinh (B + 1)

1 1
. (cosh(ﬁin)——cos (a—&) cosh (8 + 7) — cos (a+§))+(iﬂ—1)eﬁiﬂ

. [cos (e +&)log[cosh(B + n) —cos(x+§)] —cos (ax — ¢)log[cosh (B + 1) — cos (a —€)]

sin (« +£) .
ePEN — cos (« +§)) T 2sin («=¢)

—2(log2F n)sinocsinf—2sin(oc+§)tan‘1(

sin (o — §)

—cos (a+ £)] — cos (o — &) log [cosh (B + 1) —cos (« — €)] — 2 (log 2 F ) sin asin ¢
-—2sin(oc+§)tan—1( sin (a + £) )+2sin(a——§)tan—1( sin (o« —¢) )]

ePEM — cos (a + §) eBE1 —cos (x— &)
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in(cosh(ﬁin)cos(a—f)—l COSh(BiW)COS(“+§)"1)+(14777)sinh(,84_r77)

[cosh (B + 7) —cos (x— O [cosh (B £ 1) —cos (x +£)]?

1 1
. (cosh (B £ 7m)—cos (a—§) " cosh (B+m)—cos (“+§))}’ (H)

87 m, (o, B3 €:m) =
cosh (8 —n) —cos (x+¢§)
cosh (B —7) —cos (x—¢€)

(1+v)log —(1—v)(B—7)sinh (8 —17)

1 1 s
' (cosh(B—n)—cos (x—€)  cosh (B—n)—cos (a+§)) +(1+V){+ nsinh (8 + 1)

1 1
'(cosh(Bin)—cos (x—§&)  cosh (B + ) —cos (a+§))+(in—l)eﬁﬂ:n

. [cos (o + €)log[cosh (B + 1) — cos (a — €)] — cos (o« — €) log [cosh B + n) — cos (« + €)]

sin (e« + &) .
PET_ cos (oc+§)) +2sin (x— &)

—~2(log 2 F n)sinasin ¢ — 2s8in (« + &) tan—1 (

sin (« — §)

—c0s (e +£)] — cos (x — &) log [cosh (B + 1) —cos (e« — &)] — 2 (log 2 F 1) sinasin &
—2sin(a+£)tan—1( sin (x +£) )+2sin(a—§)ta,n—1( sin (« — £) )]

eBEM — cos (x+§) ePEn — cos (c—§)

N cosh (B+n)cos(x—§)—1 cosh(B+n)cos(a+§)—1
=7 ([cosh (B+m)—cos («—§)]* [cosh (B+7)—cos («+£)]?

)—I—(l F n)sinh (B8 + 1)

1 1
' (cosh (B+m)—cos (a—§&) cosh (B +7)—cos (OH'f))}’ ®

2
w
%mb (aa Os f: 7]) =

cosh 5 — cos (a + ¢)
cosh  —cos (a« — £)

+(+ n—l)ei"{cos (e +€) log[cosh p —cos (a + €)] (K)

—cos (« — &) log[cosh n —cos (x —§)] — 2 (log2 F %) sin asin § — 2 sin (a + £)
-tan—l( Sin (« + £) )+25in(a—§)tan‘1( sin (« — £) )}

e£M —cos (e +¢) etm —cos (a —§&)

It may be pointed out that the above expressions hold anywhere on the

plate strip, fig. 1. The equations for the support moments of point (—125, 0)

follow either by introducing a:%, B =0 into the above equation (H) to (K)
or by summing equations (22) to (24), expressed in series form, directly with
the use of the formule (A) to (G). Both procedures will lead to equations
(25) to (27).

For the case of p=1/2 summation is also possible. The results for the
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support moments are given by equations (28) to (30). However, as indicated
before, no summation for a general value of p is possible.

Summary

The influence functions for bending moments of a simply supported plate
strip continuous over a flexible cross beam, are derived in closed form. A com-
plete discussion of the singularities of the support moments (influence point
above cross beam) is given, and numerical values for different ratios of slab
to beam stiffness are presented. The m,- and m, -surfaces for the support
moments and the m,-surface for the bending moment of the cross beam are
plotted in graphs, readily usuable for design. ‘

As an extension, the cases of a two-span continuous slab with flexible
cross beams and of a plate strip with multiple cross beams, are treated. A
graph shows the m,-surface for the support moment of the two-span slab.

Résumé

Les fonctions d’influence relatives aux moments fléchissants dans une dalle
de grande longueur portant librement et comportant une poutre transversale
flexible ont été déterminées sous une forme finie. Les singularités des moments
aux appuis (point d’influence au-dessus de la poutre transversale) sont étudiées
d’une maniére détaillée et concrétisées par des valeurs numériques se rappor-
tant & différentes conditions relatives de rigidité de la dalle et de la poutre
transversale. Pour 'utilisation directe, dans la pratique, les aires d’influence
m, et m, des moments aux appuis et I’aire m, relative au moment fléchissant
de la poutre transversale sont représentées.

A titre d’extension, les auteurs étudient le cas de la dalle & deux travées
avec poutres transversales flexibles et celui de la dalle de grande longueur
avec plusieurs poutres transversales. Enfin, ils donnent la représentation de
I’aire m, du moment aux appuis d’une dalle & deux travées.

Zusammenfassung

Die EinfluBfunktionen fiir die Biegemomente eines einfach gelagerten
Plattenstreifens mit einem biegsamen Quertriager werden in geschlossener Form
abgeleitet. Die Singularititen der Stiitzenmomente (Einflufpunkt iiber dem
Quertrager) werden ausfithrlich besprochen und durch numerische Werte fiir
verschiedene Verhiltnisse der Platten- zur Quertragersteifigkeit veranschau-
licht. Zur direkten Benutzung in der Praxis sind die m,- und die m,,-Einflu3-
flichen der Stiitzenmomente und die m,-Fliche fiir das Biegemoment des
Quertriagers dargestellt.

In einer Erweiterung werden die Fille der Zweifeldplatte mit biegsamen
Quertrigern und des Plattenstreifens mit mehreren Quertrigern besprochen.
SchlieBlich ist die m,-Fliche des Stiitzenmomentes einer Zweifeldplatte dar-
gestellt.
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