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Contribution ä Petude des voiles minces Continus

Beitrag zur Berechnung dünnwandiger durchlaufender Schalen

Contribution to the analysis of thin walled continuous shells

Prof. O. Bax Stevens, Royal Netherlands Harbour Works O, Amsterdam

Le calcul des voiles minces cylindriques Continus ä section circulaire est
effectue, comme nous le savons, en deux etapes.

La premiere etape comprend le calcul des efforts internes dans les voiles

par travee en supposant chacun des voiles successifs, ne couvrant qu'une seule

portee ä la fois, librement poses sur deux appuis extremes.
Pour le calcul d'un voile pareil nous connaissons diverses methodes aux-

quelles nous pouvons avoir recours.
La seconde etape comprend le calcul de la repartition des efforts internes

dans le voile continu, c'est-a-dire que nous relions les voiles consecutifs entre
eux aux appuis communs, une Operation entrainant un changement des forces
de coupure trouves par le calcul de la premiere etape.

Pour effectuer le calcul de la repartition des efforts internes dans le voile
continu nous nous basons donc sur les resultats de la premiere etape.

Ladite repartition est caracterisee par les efforts normaux unitaires dans
le sens longitudinal ci-apres designes par nx, par les efforts normaux unitaires
dans le sens transversal designes par n^ et enfin par les efforts unitaires de
cisaillement dans le sens longitudinal aussi bien que dans le sens transversal
designes respectivement par n^ et nX(p(n(px nX(p).

Remarquons encore qu'un calcul directe et rigoureux des voiles Continus
tenant compte des moments flechissants transversaux est impraticable et que
pour cette raison leur calcul est effectue tout comme le calcul des poutres
continues a section pleine ä l'aide de la methode dite ,,Clapeyron", c'est-ä-dire
en determinant les moments agissant dans les sections au droit des appuis
en ne tenant compte que des deformations elastiques dues ä la flexion seule.

Pour une poutre continue ä section pleine ä laquelle on peut attribuer en
general la qualification „elancee" on peut en effet faire abstraction des defor-
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mations elastiques dues a l'effort tranchant sans que ceci ne conduise ä une
trop forte erreur.

Quant aux voiles minces Continus il n'en est cependant pas toujours ainsi.

Ayant calcule les moments au droit des appuis du voile continu ä l'aide de

,,ClapeyronCi, on modifie ensuite les valeurs des forces de coupure nx et nX(p,
obtenues par le calcul de la premiere etape, en rapport avec les valeurs de ces

moments en appliquant le principe de superposition.
Quant aux efforts normaux unitaires n^ et moments de flexion m^ tra-

vaillant dans le sens transversal, resultant de meme du calcul de la premiere
etape, nous admettons que leurs valeurs ne changent pas lorsque les voiles
consecutifs sont relies entre eux aux appuis communs.

En ce qui concerne % ce raisonnement s'adapte entierement ä la methode

que nous exposons ici. En ce qui concerne m^ il n'en est cependant pas ainsi.
Toutefois on peut demontrer par un exemple numerique que la continuite
d'un voile n'affecte que legerement la valeur des m^.

Dans une contribution presentee par Monsieur F. Dischinger ä l'occasion
du 2e congres de l'A.I.P.C. (Berlin, 1936) la methode de calcul que nous
venons d'esquisser est soumise a un examen approfondi. La conclusion qui
s'en degage est que ladite methode, bien qu'elle ne soit qu'approchee, peut
etre maintenue tout au moins pour les voiles dits ,,elances". Pour les voiles
dits ,,courts" la difference entre les moments au droit des appuis calcules par
la methode „Clapeyron" et ceux qui se developpent en realite peut devenir
assez considerable.

Dans son etude Monsieur Dischinger part de l'hypothese que l'allure des

nx sur le pourtour des sections transversales d'un voile librement pose sur

N*+!^d*

© ®
o 9t&***:

9Nx** x*+-3

?%¦*

Fig. 1
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deux appuis extremes est en general analogue ä celle des nx sur le pourtour
des sections transversales d'une poutre tubulaire de meme portee et rayon de
courbure, pourvu qu'elle soit soumise ä une charge caracterisee par:

X 0 Y g • sin ncp Z g- cos n cp.

X, Y et Z designant les composantes de cette charge par unite de surface de la
paroi, respectivement dans le sens longitudinal, tangentiel et radial. Nous les
avons marquees avec leur sens positif sur la figure 1. Quant aux composantes
Y et Z, celles-ci peuvent etre considerees de correspondre ä la ne harmonique
d'une serie de Fourier.

L'ordre de l'harmonique n ä introduire resulte du calcul de la premiere
etape.

Remarquons que pour les voiles symetriques dits ,,voütes" nous trouvons
d'ordinaire que n est environ 3, tandis que pour les voiles dissymetriques dits
,,sheds" nous trouvons que n est environ 6.

De cette facon Monsieur Dischinger identifie le voile essentiellement avec
un segment d'une poutre tubulaire. Son etude mene ä la conclusion qu'ä
mesure que l'ordre de l'harmonique qu'il faut introduire dans le calcul de la
seconde etape est plus eleve, 1'influence de l'effort tranchant sur l'angle de
rotation des sections transversales decroit et par consequent egalement
1'influence de l'effort tranchant sur les valeurs des moments au droit des

appuis.
En partant de la meme hypothese que Monsieur Dischinger en ce qui

concerne l'allure des nx nous allons montrer ci-apres comment on peut etablir
les formules auxquelles nous ferons appel pour le calcul des moments au droit
des appuis pour n'importe quel cas de voile continu tout en n'appliquant que
la theorie de la flexion classique et en observant pourtant les deformations
dues ä l'effort tranchant.

Avant d'aborder le probleme qui nous occupe ici, nous allons d'abord
rappeler la Solution generale des equations fondamentales de la theorie des
membranes flexibles que nous appliquons au calcul des voiles cylindriques
isotropes en particulier de section circulaire.

Decoupons sur le voile d'epaisseur 8 un element infiniment petit, alors
nous pouvons etablir pour les trois forces de coupure unitaires: nx, nX(p et nv
et les trois composantes: X, Y et Z de la charge les trois equations d'equilibre
suivantes rapportees aux trois axes adoptes pour les coordonnees:

n(p -Z-a, (a)

dn^ _dn1_ _ b
dx a-dcp ' \ \ i

^ +^ -X. (c)
ax a-dcp

Admettant que dans le calcul des voiles en beton arme ordinaire le coefficient

de Poisson soit nul, nous pouvons etablir les relations suivantes entre
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les forces de coupure et les deplacements: u, v et w, respectivement dans les

sens longitudinal, tangentiel et radial:

du nT x

J-x if' (a)

Ju+8v=2n^
a-dcp dx D

_+M, _*. (c)

Comme Convention de signe nous avons adopte qu'un deplacement
longitudinal u est positif s'il est dirige dans le sens positif de la coordonnee x;
qu'un deplacement tangentiel v est positif s'il est dirige dans le sens positif
de l'angle cp, celui-ci etant mesure ä partir de Taxe vertical passant par le
centre de gravite de la section tubulaire; et enfin qu'un deplacement radial w
est positif s'il est dirige vers l'exterieur. En outre: D E-8 designe la rigidite
extensionnelle par unite de longueur, E etant le module d'elasticite.

Portons dans les equations differentielles (1) les composantes de la charge
definies par:

X 0 Y g-smn(p Z g-cosn<p (3)

alors nous obtenons par Integration pour les forces de coupure unitaires dans
la membrane les Solutions suivantes:

Uy —g-a- cos ncp, (a)

nX(p {-g(l+n)x + C1}sinncp, (b) (4)

n„ =<-(gn(l+n) n \
{— —^ -x XC, + C2\cosncp (c)
[a 2 a

et pour les deplacements d'un point de la membrane:
1 [ q n(l+n) 0 n 0~ ~ ^1

u i> fc—2— 2^ 1+ 2a:+ r0^9' (a)

-ffh'"'-^-')-^^-')*
+ — C2 + — Cz + C4}sinw(

w
1 I / n x \ i n x2 \

n2 n2x 1

+ ^—x2 C»H Co + nC,\cosna>.
2a a J

(b) (5)

(c)

Considerons la relation (5a) de plus pres et mettons y: n=l alors cette
relation s'ecrit: 2

u^^l^^-^Ci + ^x + C^coscp (6)

et les composantes de la charge (3) deviennent:
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X 0 Y g-sincp Z g-coscp. (7)

Les relations (7) s'appliquent ä un voile soumis uniquement ä une charge g

par unite de surface.
Si le voile est ferme nous avons äffaire ä une poutre tubulaire.
En raison de la nature du probleme que nous traitons ici il suffira de nous

borner ä l'etude des poutres tubulaires sur deux appuis extremes.
De la relation (6) resulte que u est proportionnel ä: cos cp, donc egalement ä:

a- cos cp. En d'autres termes, u est proportionnel ä la distance: rj d'un point
de la section droite par rapport ä son axe de gravite horizontal avec lequel se
confond l'axe de flexion. II s'ensuit que les sections initialement planes restent
planes ä la suite des deformations malgre que les deformations dues ä l'effort
tranchant aient ete portees en ligne de compte. Par consequent l'hypothese
de Bernoulli qui donne pour les cisaillements düs ä l'effort tranchant une
repartition inacceptable dans les section pleines travaillant en flexion est
pourtant applicable dans le cas de sections creuses formees par les voiles de
faible epaisseur.

Meme si nous portons: g 0 dans (6) il s'ensuit que les sections restent
planes ä la suite des deformations.

Ce cas se presente lorsque l'on a affaire ä une poutre tubulaire sur deux
appuis extremes uniquement sollicitee par un moment flechissant ä une ou
aux deux extremites.

Etant partis de la supposition que la loi de Hooke est applicable en ce

qui concerne les deformations elastiques, il est evident que la repartition des
efforts normaux: nx sur toute la sections circulaire suivra la loi lineaire. Ce

fait est confirme par la relation (4c) d'oü resulte pour: n= 1

{Q X \
— x2 — Cx + C2 \ COS cp
a a j

et si en outre: g 0 nous obtenons:

Par consequent nous pouvons conclure que dans un cas particulier les
forces de coupure: nx et nxq} ainsi que les angles de rotation des sections et
eventuellement les fleches peuvent etre calcules ä l'aide de la theorie de la
flexion classique qu'on applique d'ordinaire au calcul des poutres ä section
pleine.

II est ä remarquer cependant que la theorie de la flexion classique ne nous
permet de calculer ni l'effort de coupure ?i ni le deplacement radial w.

En ce qui concerne n^ remarquons toutefois que de la relation (4 a) resulte
que la valeur de cette force de coupure est independante de la coordonnee x
et qu'elle n'est en effet definie en chaque point que par une relation ne faisant
intervenir que le rayon de courbure a et la composante de la charge radiale:
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Z g-cos(p. Ajoutons encore que puisque la force de coupure n^ ne resulte

pas d'une equation differentielle quelconque, sa valeur ne changera pas non
plus sous l'action de contraintes dues ä un moment flechissant qui pourrait
agir aux sections extremes de la poutre tubulaire.

En ce qui concerne le deplacement radial w, remarquons que pour la
determination des quatre constantes d'Integration: G1} C2, C3 et 04 dans les

relations (4) et (5) il y aura toujours par travee six conditions de rive aux-
quelles il faudra satisfaire simultanement. De ces six conditions il y en a
toujours quatre etant en vigueur pour n'importe quel cas que l'on considere,
c'est-ä-dire qu'au droit de chaque appui: v 0 et w 0. Celles-ci resultent du
fait que pour assurer l'equilibre dans la poutre tubulaire on dispose au droit
des appuis un cadre raidisseur ou bien une paroi raidisseuse que l'on suppose
indeformable dans son propre plan mais qui au contraire dans le sens perpen-
diculaire ä son plan ne montre aueune resistanee aux deformations.

Les deux autres conditions resultent du cas particulier que nous envisageons.
Si par exemple nous avons affaire ä une poutre tubulaire librement posee

sur deux appuis extremes, ces deux conditions s'expriment par: nx 0 pour
chaeune des sections terminales. Si nous avons affaire ä une poutre tubulaire
encastree parfaitement ä ses extremites, ces deux conditions s'expriment par:
u 0 ä l'endroit de chaeun des encastrements. Enfin si nous avons affaire ä

une poutre tubulaire librement posee ä une extremite et encastree parfaitement

ä l'autre, ces deux conditions s'expriment par: nx 0 k l'endroit de

l'appui libre et par: u 0 k l'endroit de l'encastrement.
Pour la determination des quatre constantes d'Integration il ne nous faut

que quatre conditions. Des six conditions imposees auxquelles il faudra satisfaire

pour qu'une Solution soit possible, il y en reste donc deux auxquelles
on ne pourra satisfaire du tout.

II est habituel de poser qu'il faule en tout cas que: v 0 aux appuis ce qui
entraine qu'ä ces endroits on ne pourra satisfaire ä la condition: w 0.

Par consequent w#=0 ä la jonetion de la paroi mince du voile et du raidisseur.

II s'ensuit que des perturbations de rive se produirons ä ces endroits
donnant naissance ä des moments flechissants se propageant dans le sens

parallele aux generatrices du voile mais vu que l'allure de ces moments peut
etre comparee ä celle d'une Vibration s'amortissant rapidement ä mesure
qu'elle s'eloigne de sa source, il en resulte qu'ä partir d'une section toute
proche du raidisseur les efforts de coupure ne seront que legerement affectes

par ces moments.
Si par contre nous considerons une poutre tubulaire librement posee ä ses

extremites n'etant sollicitee que par un moment flechissant ä une ou aux
deux extremites, g etant donc nul, nous pouvons conclure de (5b) que (74 0

en vertu du fait que v 0 aux appuis. Par consequent il resulte de (5 c) que
w 0 k cet endroit, une conclusion du reste que nous pouvons tirer directe-
ment de la relation (2 c).
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II importe de souligner que les perturbations de rive que nous venons de

signaler ne sont donc pas affectees par la continuite de la poutre tubulaire.
Procedons maintenant ä l'etablissement des formules auxquelles nous

auront recours pour le calcul des poutres tubulaires continues.
Dans ce but considerons tout d'abord une poutre tubulaire librement posee

sur deux appuis extremes n'etant sollicitee que par une charge g par unite de
surface de la paroi (figure 2).

Si nous n'observons que les deformations dues ä la flexion seule, la relation
permettant de calculer 1'angle de rotation ifs des sections terminales est la
meme que pour les poutres ä section pleine c'est-ä-dire:

1 qP
<A (8)

24: EI
l designant la portee.
E le module d'elasticite.
I 7ra3S le moment d'inertie de la section tubulaire de rayon ,,a(i et

d'epaisseur ,,S".
q 2 irag la charge par unite de longueur de la portee.

Les sections restant planes apres les deformations nous pouvons conclure
que les deformations dues ä l'effort tranchant seul n'entraineront qu'un glissement

des sections consecutives entre elles tout en conservant leur position
parallele. Par raison de symetrie, la charge etant symetrique, la conclusion
s'en degage que puisque la section au milieu de la portee restera verticale,
ceci sera le cas pour toutes les sections et par consequent egalement pour les
sections terminales.

v"~y

T]=a cosjö

24 EI

' U-

y.2M0»
EIL

6EI

Q=M

M±
3EI Ml

Q

Fig. 2
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II s'ensuit que l'expression (8) est exacte pour le cas considere ici.
Notons en passant que les glissements entrainent pourtant un accroissement

des fleches de la ligne elastique, mais ce fait n'a pas d'importance pour la
presente etude.

Le second cas que nous envisageons est d'une poutre tubulaire librement
posee sur deux appuis extremes n'etant sollicitee que par un moment flechissant

„M" k sa section terminale de droite (figure 2).
Si nous n'observons que les deformations dues ä la flexion seule, les

relations qui nous permettent de calculer les angles de rotation ifjj et i/jr des
sections terminales, respectivement de gauche et de droite, sont les memes que
pour une poutre ä section pleine, c'est-ä-dire:

Ml Ml
6EI' rr 3EI'

Quant ä l'effort tranchant Q, celui-ci a une valeur constante sur toute la
longueur de la portee. L'effort tranchant seul n'entrainera de meme qu'un
glissement des sections consecutives entre elles tout en conservant leur position
parallele. Toutefois ces glissements n'entraineront pas un accroissement des

fleches resultant des deformations dues ä la flexion seule. II est evident qu'en
absence d'une charge symetrique toutes les sections subiront un meme angle
de rotation ,,y" dans le sens inverse du mouvement des aiguilles d'une montre
(figure 2).

Encore pouvons nous realiser plus simplement cet angle de rotation en

remarquant que puisque Q est constant l'angle de glissement 5,y" sera le

meme pour tous les elements consecutifs de la poutre de sorte que nous
pouvons considerer la poutre entiere comme un seul element dont la longueur est

egale ä la portee.
L'expression pour l'angle de rotation ,,y" en question peut etre etablie en

appliquant la loi fondamentale classique par rapport ä la deformation due au
cisaillement ,,t": T

dans laquelle G designe le module de rigidite etant relie au module d'elasticite
E et au coefficient de Poisson pu par:

r F
2(1+/*)

d'oü pour: /^ 0, comme nous l'avons suppose au debut: G \E.
La theorie de la flexion classique nous fournit en outre la relation:

_ QS _ MS_
T ~ bi bll

k l'aide de laquelle nous pouvons evaluer la valeur du cisaillement dans la
fibre neutre de la section, S 2 a2S designant le moment statique par rapport
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ä la ligne neutre de la demi section tubulaire et 6 28 la largeur totale de la
section ä l'intersection avec la ligne neutre.

Pour l'angle de glissement nous obtenons donc:

2Ma2

Par superposition nous obtenons pour les angles de rotation des sections
terminales respectivement de gauche et de droite les expressions:

Vl~~SEl~ Ell ~ WWTl '

Ml 2Ma2
_ M(l2 + 6a2)

(9)

^ ~ SEI + Ell ~ 3EII '

II suffit de connaitre les expressions (8) et (9) pour effectuer le calcul de

n'importe quelle poutre tubulaire continue.
Ainsi que nous allons le voir la discussion qui precede nous servira de base

pour l'etablissement des formules ä l'aide desquelles nous pourrons effectuer
le calcul des voiles minces Continus.

Considerons une poutre tubulaire soumise ä une charge definie par:
X 0 Y g-sinncp Z g- cos n 9.

Notons qu'une charge pareille est irreelle puisque nous trouvons par
Integration sur tout le pourtour d'une section que la charge totale est en effet
nulle. En realite la poutre tubulaire est divisee en un nombre „n" de Segments
cylindriques travaillant chacun pour soi comme une poutre sous une charge
changeant alternativement de signe (voir les figures 3 et 4).

Considerons les relations generales (4b), (4c), (5a) et (5b) de plus pres.
Elles peuvent etre transformees comme suit:

üxq, {-2gx + C1}siny, (a)

^ {I^2"iCi+C2}cos<?' (b)

1 f q x2 (10)

^^{^(ä-^-^^-^+ä^+i^^H- (d)

Dans ces expressions les quantites: g, d et <p sont reliees ä: g, a et 99 par les
relations: 1+n _ a J

9 9—s—> a=~, et <p ncp.
£j n

Nous constatons que les relations (10) sont tout ä fait analogues aux
relations que nous obtenons en posant: n=l et s'appliquant, comme nous
1'avons vu, aux poutres tubulaires ordinaires.

Essentiellement la poutre tubulaire de rayon de courbure ,,a" se decom-
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pose en un nombre de „n" poutres tubulaires de rayon ,,ä" soumises ä une
charge ,,g" par unite de surface.

Chacune de ces „n" poutres que nous designons par ,,poutres du ne ordre"
correspond ä un certain segment de la poutre tubulaire primitive.

Sur les figures 3 et 4 les poutres tubulaires du nG ordre sont representees

pour les cas: n 3 et n 4t tout en indiquant les segments d'oü elles resultent.
II est evident que des ä present nous n'avons qu'ä nous borner ä l'etude

d'une seule poutre tubulaire du ne ordre pour l'etablissement des formules
qui nous serviront ä calculer les voiles Continus.

Poutre
tubulaire

Buis

Fig. 3

Dü]
1 B

5, l+n
fl~2~ l/j Z=gcosnp

^~<<<& Z=gcosp
T\\>H&Poutre ^s
c / tubulaire s'

q 3eordre,^s n

/-% \"«\
tot buis ^<^_
getransformeerd \_

^ segment LC/,'
5=*

K^" -_D

\

E/ /^\ /tot buis'\ *' getrans-
-"^ formeerd

segment
LG

tot bufsv*a\ /"<getrans- v \formeerd F *•-
segment

CG '"&¦¦¦
- -Z^ F

Fig. 4

r»
n=4 x«p

Poutre ^
vtubulairef'~X

ordre

K / / ,*\i / _h 1/

\
vu^

-><'/F
-n /

7?V-Z/v
v ^

>>aK _a
\N:^^ ^

Z=gcosn</)

Z=gcos0

\*Poutre
xv \{ubulaire

- / /^/v
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Si donc une poutre tubulaire du ne ordre librement posee sur deux appuis
extremes est soumise ä l'action d'une charge q par unite de longueur, les
sections terminales subiront un angle de rotation:

*=±H. dl)^ 2± EI
K

q et I etant reliees ä: a, g et n par les relations:

o -- o a l+n + 7 -32 a3s
q 2-naq 2tt — q ——— et l=7Taöö 7T—ö.

n 2 n3

Si par contre cette poutre tubulaire est soumise uniquement ä l'action
d'un moment flechissant M travaillant ä sa section terminale de droite,
l'extremite de gauche subira un angle de rotation:

_ M(l2-I2ä2) /10 x^ —- - (12a)Yl 6EII
et l'extremite de droite: ,*- /72 a-i\M(l2 + 6a2)t

3EII
A l'aide des relations (11) et (12) nous pouvons enfin proceder au calcul

de la seconde etape des voiles minces Continus.
Pour terminer la presente etude nous allons envisager ä titre d'exemple

un voile mince continu ä trois travees de portees inegales, designees respec-
tivement de gauche ä droite par: l1, l2 et Z3. Supposons les epaisseurs des
voiles successifs respectivement: 81? S2 et S3; et les rayons de courbure:
a1 a2 as a. Supposons en outre que du calcul de la premiere etape resulte
que l'ordre de l'harmonique ä introduire dans le calcul de la seconde etape
est pour tous les voiles: „n".

II s'ensuit pour toutes les travees: ä —.

Les moments d'inertie sont donc respectivement:

It rrd381, I2 77 ä3 S2, I3 tt ä3 S3.

Les epaisseurs etant inegales il s'ensuit pour les charges par unite de
surface: 91=¥g2z¥9z, et par consequent pour les charges par unite de longueur
des portees successives: qx 2 7rä<71; q2 27rä~g2; q3 2iTäg3.

Les moments flechissants: M1 et M2 travaillant dans les sections au droit
des appuis intermediaires de gauche ä droite peuvent etre calcules des deux
equations de continuite suivantes etablies ä l'aide des relations (11) et (12):

1 ?i*i3
[

1 92hs Mt (1^ + 60?)
[

MiW+ßcP)
[

M2(l22-I2ä2)
2±EIi 2±ej2 ZEI^ ZEI2l2 §EI2l2

± Ml + _L Ml M^l^-Uä2) M2(l22 + 6ä2) M2(ls2 + ßä2)

2±EI2 2*EIS 6EI2l2 SEI2l2 3EI3l3
Les valeurs de M1 et M2 ayant ete calculees de ces deux equations nous

pouvons maintenant proceder au calcul de la deuxieme etape.
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Resume

Un examen detaille de la Solution generale des equations differentielles de

ce qu'il est convenu d'appeler ,,distribution des contraintes de membrane"
dans les voiles minces, nous amene ä la conclusion que la theorie elementaire
de la flexion, fondee sur l'hypothese de Bernotjllt, est exacte pour des poutres
tubulaires, cylindriques et circulaires.

Une transformation simple de la Solution generale des equations differentielles

montre que l'hypothese de Dischinger en ce qui concerne l'analyse
des voiles minces Continus nous mene ä la notion de ,,poutres tubulaires
d'ordre n", ce qui nous permet d'etablir rapidement des formules pour le
calcul des moments de flexion dans le voile, aux supports intermediaires.

Zusammenfassung

Eine kritische Betrachtung der allgemeinen Lösung der Differentialgleichungen

für den Membranspannungszustand in dünnwandigen Schalen
führt zu dem Schluß, daß die einfache Biegungstheorie, welche sich auf die
BERNOULLische Hypothese gründet, genau ist für kreisförmige zylindrische
Rohrträger.

Eine einfache Umformung der allgemeinen Lösung der Differentialgleichungen

zeigt, daß die DiscHiNGERsche Hypothese in bezug auf die Berechnung

durchlaufender Schalen zum Begriff: ,,Rohrträger n-ter Ordnung"
führt, welche es uns ermöglichen, sofort Formeln für die Bestimmung der
Stützenmomente in der Schale aufzustellen.

Summary

A close consideration of the general Solution of the differential equations
for the so-called membrane stress distribution in thin walled shells leads to
the conclusion that the elementary theory of bending, based on Bernoulli's
hypothesis, is exact for circular cylindrical tubulär beams.

A simple transformation of the general Solution of the differential equations
shows that Dischinger's hypothesis, with regard to the analysis of continuous
shells, leads to the notion of „tubulär beams of the nth order", which enable
us to establish readily formula? for the computation of the bending moments
in the shell at the intermediate supports.
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