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Contribution a I’étude des voiles minces continus
Beitrag zur Berechnung dinnwandiger durchlaufender Schalen

Contribution to the analysis of thin walled continuous shells

Prof. O. Bax StEvENs, Royal Netherlands Harbour Works Ce, Amsterdam

Le calcul des voiles minces cylindriques continus & section circulaire est
effectué, comme nous le savons, en deux étapes. ‘

La premiére étape comprend le calcul des efforts internes dans les voiles
par travée en supposant chacun des voiles successifs, ne couvrant qu’une seule
portée a la fois, librement posés sur deux appuis extrémes.

Pour le calcul d’un voile pareil nous connaissons diverses méthodes aux-
quelles nous pouvons avoir recours.

La seconde étape comprend le calcul de la répartition des efforts internes
dans le voile continu, c¢’est-a-dire que nous relions les voiles consécutifs entre
eux aux appuis communs, une opération entrainant un changement des forces
de coupure trouvés par le calcul de la premiére étape.

Pour effectuer le calcul de la répartition des efforts internes dans le voile
continu nous nous basons donc sur les résultats de la premiere étape.

Ladite répartition est caractérisée par les efforts normaux unitaires dans
le sens longitudinal ci-aprés désignés par n,, par les efforts normaux unitaires
dans le sens transversal désignés par n, et enfin par les efforts unitaires de
cisaillement dans le sens longitudinal aussi bien que dans le sens transversal
désignés respectivement par n, et n,, (n,, =n,,).

Remarquons encore qu’un calcul directe et rigoureux des voiles continus
tenant compte des moments fléchissants transversaux est impraticable et que
pour cette raison leur calcul est effectué tout comme le calcul des poutres
continues & section pleine & 1’aide de la méthode dite ,,Clapeyron‘, c¢’est-a-dire
en déterminant les moments agissant dans les sections au droit des appuis
en ne tenant compte que des déformations élastiques dues a la flexion seule.

Pour une poutre continue & section pleine & laquelle on peut attribuer en
général la qualification ,,6lancée‘ on peut en effet faire abstraction des défor-



24 0. Bax Stevens

mations élastiques dues a 1’effort tranchant sans que ceci ne conduise & une
trop forte erreur.

Quant aux voiles minces continus il n’en est cependant pas toujours ainsi.

Ayant calculé les moments au droit des appuis du voile continu & 1’aide de
,,Clapeyron’, on modifie ensuite les valeurs des forces de coupure n, et n,,,
obtenues par le calcul de la premiére étape, en rapport avec les valeurs de ces
moments en appliquant le principe de superposition.

Quant aux efforts normaux unitaires 7, et moments de flexion m, tra-
vaillant dans le sens transversal, résultant de méme du calcul de la premiere
étape, nous admettons que leurs valeurs ne changent pas lorsque les voiles
consécutifs sont reliés entre eux aux appuis communs.

En ce qui concerne n, ce raisonnement s’adapte entiérement a la méthode
que nous exposons ici. En ce qui concerne m,, il n’en est cependant pas ainsi.
Toutefois on peut démontrer par un exemple numérique que la continuité
d’un voile n’affecte que légérement la valeur des m,,.

Dans une contribution présentée par Monsieur F. DISCHINGER & 1’occasion
du 2°¢ congrés de I’A.I.P.C. (Berlin, 1936) la méthode de calcul que nous
venons d’esquisser est soumise & un examen approfondi. La conclusion qui
s’en dégage est que ladite méthode, bien qu’elle ne soit qu’approchée, peut
étre maintenue tout au moins pour les voiles dits ,,élancés“. Pour les voiles
dits ,,courts‘ la différence entre les moments au droit des appuis calculés par
la méthode ,,Clapeyron’‘ et ceux qui se développent en réalité peut devenir
assez considérable.

Dans son étude Monsieur DiscHINGER part de I’hypothése que 1’allure des
n, sur le pourtour des sections transversales d’un voile librement posé sur

Fig. 1
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deux appuis extrémes est en général analogue & celle des n, sur le pourtour
des sections transversales d’une poutre tubulaire de méme portée et rayon de
courbure, pourvu qu’elle soit soumise & une charge caractérisée par:

X =0 Y =g-sinne Z =g-cosne.

X, Y et Z désignant les composantes de cette charge par unité de surface de la
paroi, respectivement dans le sens longitudinal, tangentiel et radial. Nous les
avons marquées avec leur sens positif sur la figure 1. Quant aux composantes
Y et Z, celles-ci peuvent étre considérées de correspondre & la n® harmonique
d’une série de FOURIER.

L’ordre de 1’harmonique 7 & introduire résulte du calcul de la premiere
étape.

Remarquons que pour les voiles symétriques dits ,,votites‘* nous trouvons
d’ordinaire que » est environ 3, tandis que pour les voiles dissymétriques dits
,,sheds‘‘ nous trouvons que n est environ 6.

De cette fagon Monsieur DiscHINGER identifie le voile essentiellement avec
un segment d’une poutre tubulaire. Son étude meéne a la conclusion qu’a
mesure que 1’ordre de 1’harmonique qu’il faut introduire dans le calcul de la
seconde étape est plus élevé, l'influence de l'effort tranchant sur 1’angle de
rotation des sections transversales décroit et par conséquent également
I'influence de 1’effort tranchant sur les valeurs des moments au droit des
appuis.

En partant de la méme hypothése que Monsieur DISCHINGER en ce qui
concerne 1’allure des n, nous allons montrer ci-aprés comment on peut établir
les formules auxquelles nous ferons appel pour le calcul des moments au droit
des appuis pour n’importe quel cas de voile continu tout en n’appliquant que
la théorie de la flexion classique et en observant pourtant les déformations
dues a l’effort tranchant.

Avant d’aborder le probléme qui nous occupe ici, nous allons d’abord
rappeler la solution générale des équations fondamentales de la théorie des
membranes flexibles que nous appliquons au calcul des voiles cylindriques
isotropes en particulier de section circulaire.

Découpons sur le voile d’épaisseur & un élément infiniment petit, alors
nous pouvons établir pour les trois forces de coupure unitaires: n,, n,, et n,
et les trois composantes: X, Y et Z de la charge les trois équations d’équilibre
suivantes rapportées aux trois axes adoptés pour les coordonnées:

n,=—2-a, (a)
ONgp 0Ny
rot s ==Y, (B (1)
0Ny  O0Ngg _
3z Tasg ~ X (©)

Admettant que dans le calcul des voiles en béton armé ordinaire le coeffi-
cient de PoissoN soit nul, nous pouvons établir les relations suivantes entre
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les forces de coupure et les déplacements: u, v et w, respectivement dans les
sens longitudinal, tangentiel et radial:

ou  n,
7 "D’ @)
ou 0V 2myy
= 2
Rl o b (2
ov a-ne
iU D %

Comme convention de signe nous avons adopté qu’un déplacement longi-
tudinal u est positif s’il est dirigé dans le sens positif de la coordonnée x;
qu’un déplacement tangentiel v est positif s’il est dirigé dans le sens positif
de I’angle ¢, celui-ci étant mesuré & partir de 1’axe vertical passant par le
centre de gravité de la section tubulaire; et enfin qu’un déplacement radial w
est positif s’il est dirigé vers ’extérieur. En outre: D= E -5 désigne la rigidité
extensionnelle par unité de longueur, £ étant le module d’élasticité.

Portons dans les équations différentielles (1) les composantes de la charge
définies par:

X=0 Y =¢g-sinng Z =g-cosne (3)
alors nous obtenons par intégration pour les forces de coupure unitaires dans
la membrane les solutions suivantes:

n,=—g-a-COSNP, ()
ey ={—g(1+n)x+Cy}sinng, (b) (4)
nwz{g%t@ﬁ_%xcl-ycz}cosmp (c)

et pour les déplacements d’un point de la membrane:

1 {i st_ixmlwzxwg}cosmp, (2)

“=Di3a 2 %a

1 n? x? n?x?
- 2 _ -
v = D{g(l—i—n)x (24@2 1) 0196(6@2 2) +

na? nx .
+2—a02+~(—1—03+04}smncp,
1 n? x? n?x?
= 2 2 —~1) = b
w D{ga +gn(l+n)x (24a2 1) nxOl(Gaz 2) + o
c
n? n3x
+%x2 02+703+n04}cosngo.
Considérons la relation (5a) de plus prés et mettons y: n=1 alors cette
relation s’écrit: 1(g 22
= 3__
D{Sax 5a 01+sz+03}008<p (6)

et les composantes de la charge (3) deviennent:
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X =0 Y =g-sing Z = g-cosg. (7)

Les relations (7) s’appliquent & un voile soumis uniquement & une charge ¢
par unité de surface.

Si le voile est fermé nous avons affaire & une poutre tubulaire.

En raison de la nature du probléme que nous traitons ici il suffira de nous
borner a 1’étude des poutres tubulaires sur deux appuis extrémes.

De la relation (6) résulte que u est proportionnel &: cos ¢, donc également a:
a-cosp. En d’autres termes, u est proportionnel a la distance: » d’un point
de la section droite par rapport & son axe de gravité horizontal avec lequel se
confond 1’axe de flexion. Il s’ensuit que les sections initialement planes restent
planes a la suite des déformations malgré que les déformations dues a l’effort
tranchant aient été portées en ligne de compte. Par conséquent 1’hypotheése
de BERNOULLI qui donne pour les cisaillements das a 1’effort tranchant une
répartition inacceptable dans les section pleines travaillant en flexion est
pourtant applicable dans le cas de sections creuses formées par les voiles de
faible épaisseur.

Méme si nous portons: g=0 dans (6) il s’ensuit que les sections restent
planes a la suite des déformations.

Ce cas se présente lorsque 1’on a affaire & une poutre tubulaire sur deux
appuis extrémes uniquement sollicitée par un moment fléchissant & une ou
aux deux extrémités.

Etant partis de la supposition que la loi de Hookr est applicable en ce
qui concerne les déformations élastiques, il est évident que la répartition des
efforts normaux: n, sur toute la sections circulaire suivra la loi linéaire. Ce
fait est confirmé par la relation (4c) d’ou résulte pour: n=1

g , X
N, ={-22——C;+ 0y cosp
“ {a a ! 2} °
et si en outre: g =0 nous obtenons:

n, = {—201—1—02}00&;0;

Par conséquent nous pouvons conclure que dans un cas particulier les
forces de coupure: n, et n,, ainsi que les angles de rotation des sections et
éventuellement les fleches peuvent étre calculés a 1’aide de la théorie de la
flexion classique qu’on applique d’ordinaire au calcul des poutres & section
pleine. '

Il est & remarquer cependant que la théorie de la flexion classique ne nous
permet de calculer ni I'effort de coupure n, ni le déplacement radial w.

En ce qui concerne n, remarquons toutefois que de la relation (4a) résulte
que la valeur de cette force de coupure est indépendante de la coordonnée x
et qu’elle n’est en effet définie en chaque point que par une relation ne faisant
intervenir que le rayon de courbure a et la composante de la charge radiale:
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Z =g-cosp. Ajoutons encore que puisque la force de coupure 7, ne résulte
pas d’une équation différentielle quelconque, sa valeur ne changera pas non
plus sous I’action de contraintes dues & un moment fléchissant qui pourrait
agir aux sections extrémes de la poutre tubulaire.

En ce qui concerne le déplacement radial w, remarquons que pour la
détermination des quatre constantes d’intégration: C,, C,, C; et C, dans les
relations (4) et (5) il y aura toujours par travée six conditions de rive aux-
quelles il faudra satisfaire simultanément. De ces six conditions il y en a tou-
jours quatre étant en vigueur pour n’importe quel cas que 1’on considére,
c’est-a-dire qu’au droit de chaque appui: v=0 et w=0. Celles-ci résultent du
fait que pour assurer 1’équilibre dans la poutre tubulaire on dispose au droit
des appuis un cadre raidisseur ou bien une paroi raidisseuse que 1’on suppose
indéformable dans son propre plan mais qui au contraire dans le sens perpen-
diculaire & son plan ne montre aucune résistance aux déformations.

Les deux autres conditions résultent du cas particulier que nous envisageons.

Si par exemple nous avons affaire & une poutre tubulaire librement posée
sur deux appuis extrémes, ces deux conditions s’expriment par: n,=0 pour
chacune des sections terminales. Si nous avons affaire & une poutre tubulaire
encastrée parfaitement & ses extrémités, ces deux conditions s’expriment par:
=0 & I’endroit de chacun des encastrements. Enfin si nous avons affaire a
une poutre tubulaire librement posée & une extrémité et encastrée parfaite-
ment & D’autre, ces deux conditions s’expriment par: n,=0 & l’endroit de
I’appui libre et par: =0 a 1’endroit de ’encastrement.

Pour la détermination des quatre constantes d’intégration il ne nous faut
que quatre conditions. Des six conditions imposées auxquelles il faudra satis-
faire pour qu’une solution soit possible, il y en reste donc deux auxquelles
on ne pourra satisfaire du tout.

Il est habituel de poser qu’il faille en tout cas que: v=0 aux appuis ce qui
entraine qu’a ces endroits on ne pourra satisfaire a la condition: w=0.

Par conséquent w+0 & la jonction de la paroi mince du voile et du raidis-
seur. Il s’ensuit que des perturbations de rive se produirons & ces endroits
donnant naissance & des moments fléchissants se propageant dans le sens
paralléle aux génératrices du voile mais vu que 1’allure de ces moments peut
étre comparée a celle d’'une vibration s’amortissant rapidement & mesure
qu’elle s’éloigne de sa source, il en résulte qu’a partir d’une section toute
proche du raidisseur les efforts de coupure ne seront que légérement affectés
par ces moments.

Si par contre nous considérons une poutre tubulaire librement posée & ses
extrémités n’étant sollicitée que par un moment fléchissant & une ou aux
deux extrémités, g étant donc nul, nous pouvons conclure de (5b) que C,=0
en vertu du fait que v=0 aux appuis. Par conséquent il résulte de (5¢) que
w=0 a cet endroit, une conclusion du reste que nous pouvons tirer directe-
ment de la relation (2c¢).
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I1 importe de souligner que les perturbations de rive que nous venons de
signaler ne sont donc pas affectées par la continuité de la poutre tubulaire.

Procédons maintenant & I’établissement des formules auxquelles nous
auront recours pour le calcul des poutres tubulaires continues.

Dans ce but considérons tout d’abord une poutre tubulaire librement posée
sur deux appuis extrémes n’étant sollicitée que par une charge g par unité de
surface de la paroi (figure 2).

Si nous n’observons que les déformations dues & la flexion seule, la relation
permettant de calculer 1’angle de rotation i des sections terminales est la

méme que pour les poutres & section pleine c’est-a-dire:

(8)

l désignant la portée.

E = le module d’élasticité.

I = 7a®8 = le moment d’inertie de la section tubulaire de rayon ,,a‘‘ et
d’épaisseur ,,6°.

g = 2mag = la charge par unité de longueur de la portée.

Les sections restant planes apres les déformations nous pouvons conclure
que les déformations dues & I’effort tranchant seul n’entraineront qu’un glisse-
ment des sections consécutives entre elles tout en conservant leur position
paralléle. Par raison de symétrie, la charge étant symétrique, la conclusion
s’en dégage que puisque la section au milieu de la portée restera verticale,
ceci sera le cas pour toutes les sections et par conséquent également pour les
sections terminales.
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Il s’ensuit que ’expression (8) est exacte pour le cas considéré ici.

Notons en passant que les glissements entrainent pourtant un accroissement
des fleches de la ligne élastique, mais ce fait n’a pas d’importance pour la
présente étude.

Le second cas que nous envisageons est d’une poutre tubulaire librement
posée sur deux appuis extrémes n’étant sollicitée que par un moment fléchis-
sant ,,M‘‘ & sa section terminale de droite (figure 2).

Si nous n’observons que les déformations dues & la flexion seule, les rela-
tions qui nous permettent de calculer les angles de rotation i; et i, des sec-
tions terminales, respectivement de gauche et de droite, sont les mémes que
pour une poutre & section pleine, c’est-a-dire:

Ml Ml
h=smr° Vr=3EI

Quant & D’effort tranchant ¢, celui-ci a une valeur constante sur toute la
longueur de la portée. L’effort tranchant seul n’entrainera de méme qu’un
glissement des sections consécutives entre elles tout en conservant leur position
parallele. Toutefois ces glissements n’entraineront pas un accroissement des
fléches résultant des déformations dues a la flexion seule. 11 est évident qu’en
absence d’une charge symétrique toutes les sections subiront un méme angle
de rotation ,,y*‘ dans le sens inverse du mouvement des aiguilles d'une montre
(figure 2). '

Encore pouvons nous réaliser plus simplement cet angle de rotation en
remarquant que puisque ¢ est constant l’angle de glissement ,,)‘‘ sera le
méme pour tous les éléments consécutifs de la poutre de sorte que nous pou-
vons considérer la poutre entiére comme un seul élément dont la longueur est
égale & la portée.

L’expression pour ’angle de rotation ,,y*‘ en question peut étre établie en
appliquant la loi fondamentale classique par rapport & la déformation due au
cisaillement ,,7*‘:

Y= G
dans laquelle G désigne le module de rigidité étant relié au module d’élasticité
E et au coefficient de Porsson p par:

_
2(1+p)
d’ott pour: =0, comme nous ’avons supposé au début: G=1E.
La théorie de la flexion classique nous fournit en outre la relation:

_@5s_ M8
%I T b1

T

a 1’aide de laquelle nous pouvons évaluer la valeur du cisaillement dans la
fibre neutre de la section, § =2 a2 désignant le moment statique par rapport
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a la ligne neutre de la demi section tubulaire et b =23 la largeur totale de la
section & l'intersection avec la ligne neutre.
Pour 1’angle de glissement nous obtenons donc:
| _2Ma?
VTTEIL
Par superposition nous obtenons pour les angles de rotation des sections
terminales respectivement de gauche et de droite les expressions:

Ml 2Ma> M(2—12a?)

h=eHT T Bl 6E1I o
Ml 2Ma®  M(P+6a?) (9)
e =3HT T HII = 3EII

11 suffit de connaitre les expressions (8) et (9) pour effectuer le calcul de
n’importe quelle poutre tubulaire continue. _

Ainsi que nous allons le voir la discussion qui précede nous servira de base
pour I’établissement des formules a 1’aide desquelles nous pourrons effectuer
le calcul des voiles minces continus.

Considérons une poutre tubulaire soumise & une charge définie par:

X=0 Y =g-sinneg Z =g-cosne.

Notons qu’une charge pareille est irréelle puisque nous trouvons par inté-
gration sur tout le pourtour d’une section que la charge totale est en effet
nulle. En réalité la poutre tubulaire est divisée en un nombre ,,n‘‘ de segments
cylindriques travaillant chacun pour soi comme une poutre sous une charge
changeant alternativement de signe (voir les figures 3 et 4).

Considérons les relations générales (4b), (4c), (5a) et (5b) de plus pres.
Elles peuvent étre transformées comme suit:

Mpp =1—29x+C}sing, (a)
%x={§x2_201+02}00s¢, (b)
_ 10)
. lfg ., x® _ (
u——ﬁ{S—ax —2—6—01+q2x+03}008¢, (C)
1, - x? g w2 @
-1 NS Ea x° x b
B = D{ng (2462 1) Clx(Gﬁz 2) +2ﬁ02+603+04}81n(p. (d)

Dans ces expressions les quantités: ¢, @ et @ sont reliées a: ¢, a et ¢ par les
relations: _ l4n __a e
g - g 2 9 - n ’ @ = ®.
Nous constatons que les relations (10) sont tout & fait analogues aux
relations que nous obtenons en posant: n=1 et s’appliquant, comme nous
I’avons vu, aux poutres tubulaires ordinaires.

Essentiellement la poutre tubulaire de rayon de courbure ,,a‘ se décom-
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pose en un nombre de ,,n‘‘ poutres tubulaires de rayon ,,a‘ soumises & une
charge ,,g¢ par unité de surface.

Chacune de ces ,,n‘‘ poutres que nous désignons par ,,poutres du »°® ordre
correspond & un certain segment de la poutre tubulaire primitive.
Sur les figures 3 et 4 les poutres tubulaires du »° ordre sont représentées
pour les cas: n=3 et n=4 tout en indiquant les segments d’ou elles résultent.
Il est évident que dés 3 présent nous n’avons qu’s nous borner 3 1’étude

d’une seule poutre tubulaire du n® ordre pour 1’établissement des formules
qui nous serviront a calculer les voiles continus.

i Z Poutre
tubulaire
7 B Buis
"/
B
/ Z=gcosny c
Z=Fcosp AN
/ tot buis Poutre \.\ \.\
[/ getransformeerd | |C tubulaire A
;) segment LC @ 3c°ordre P=np \ ’
14 a AN
8=3 \i
\i
\
S < D%
-~ D\ b
0 C.” N, it
G/ \‘. ,’ :
7 A} i
i \
i 1]
i i !
\ . q [} EI" 1/
\ 7 \ /o
\ ) R a >
2 /tot buis’ | tot buis) “\ A
7" getrans- | getrans- - g
RN S H formeerd | formeerd Fo~sxdg="" 7
AN segment | segment z 7.

Fig. 3

Fig. 4




Contribution & 1’étude des voiles minces continus 33

Si donc une poutre tubulaire du n°® ordre librement posée sur deux appuis
extrémes est soumise & l’action d’une charge ¢ par unité de longueur, les
sections terminales subiront un angle de rotation:

1 gk
EI
q et I étant relides a: a, g et n par les relations:
_ . a l1+n 7 _as 0P
q—27rag—-27-r;g—2~ et [=na 8—7Tn—38.

Si par contre cette poutre tubulaire est soumise uniquement & 1’action
d’un moment fléchissant M travaillant & sa section terminale de droite,
I'extrémité de gauche subira un angle de rotation:

M @E-12a)

= 12a
M R S8
et extrémité de droite: _ M@®+ea)
g, = v 20 (12b)
SEII

A Taide des relations (11) et (12) nous pouvons enfin procéder au calcul
de la seconde étape des voiles minces continus.

Pour terminer la présente étude nous allons envisager a titre d’exemple
un voile mince continu a trois travées de portées inégales, désignées respec-
tivement de gauche & droite par: [, I, et I;. Supposons les épaisseurs des
voiles successifs respectivement: 3,, 5, et 5,; et les rayons de courbure:
a,=a,=a;=a. Supposons en outre que du calcul de la premiére étape résulte
que l’ordre de 1’harmonique & introduire dans le calcul de la seconde étape

13

est pour tous les voiles: ,,n.
. , — a
11 s’ensuit pour toutes les travées: a =

Les moments d’inertie sont donc respectivement:

Les épaisseurs étant inégales il s’ensuit pour les charges par unité de sur-
face: g, +7,+7,, et par conséquent pour les charges par unité de longueur
des portées successives: ¢; = 27aG,; o = 27w aAGy; G5 = 27 AGs.

Les moments fléchissants: M, et M, travaillant dans les sections au droit

des appuis intermédiaires de gauche & droite peuvent étre calculés des deux
équations de continuité suivantes établies & 1’aide des relations (11) et (12):

L@k, 1 Gl _ M (2+6@) M, (2467) | M,y (- 123)

24 Fg], 24EFI, 3EIl 3E Il 6 E 1,1,
1 &l 1 gl M (0 -12a) M, (" +6a%) M, (" +6a?)
241, 24EI, 6 I, 3E 1,1, 3EIl,

Les valeurs de M, et M, ayant été calculées de ces deux équations nous
pouvons maintenant procéder au calcul de la deuxiéme étape.
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Résumé

Un examen détaillé de la solution générale des équations différentielles de
ce qu’il est convenu d’appeler ,,distribution des contraintes de membrane‘
dans les voiles minces, nous améne a la conclusion que la théorie élémentaire
de la flexion, fondée sur 1’hypothése de BERNOULLI, est exacte pour des poutres
tubulaires, cylindriques et circulaires.

Une transformation simple de la solution générale des équations différen-
tielles montre que ’hypothése de DiSCHINGER en ce qui concerne 1’analyse
des voiles minces continus nous meéne & la notion de ,,poutres tubulaires
d’ordre n‘‘, ce qui nous permet d’établir rapidement des formules pour le
calcul des moments de flexion dans le voile, aux supports intermédiaires.

Zusammenfassung

Eine kritische Betrachtung der allgemeinen Losung der Differential-
gleichungen fiir den Membranspannungszustand in dinnwandigen Schalen
fithrt zu dem SchluB}, dall die einfache Biegungstheorie, welche sich auf die
BerNouLLische Hypothese griindet, genau ist fiir kreisférmige zylindrische
Rohrtrager. '

Eine einfache Umformung der allgemeinen Losung der Differentialglei-
chungen zeigt, dafl die DiscHINGERsche Hypothese in bezug auf die Berech-
nung durchlaufender Schalen zum Begriff: , Rohrtriger n-ter Ordnung‘
fiihrt, welche es uns ermdoglichen, sofort Formeln fiir die Bestimmung der
Stiitzenmomente in der Schale aufzustellen.

Summary

A close consideration of the general solution of the differential equations
for the so-called membrane stress distribution in thin walled shells leads to
the conclusion that the elementary theory of bending, based on BERNOULLI’S
hypothesis, is exact for circular cylindrical tubular beams.

A simple transformation of the general solution of the differential equations
shows that DISCHINGER’s hypothesis, with regard to the analysis of continuous
shells, leads to the notion of ,,tubular beams of the nth order‘, which enable
us to establish readily formule for the computation of the bending moments
in the shell at the intermediate supports.
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