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A Method of Determining the Buckling Stress and the Required Cross-
Sectional Area for Centrally Loaded Straight Columns in Elastic and
Inelastic Range

Méthode pour déterminer la contrainte de flambage et la section d’une colonne
rectiligne comprimée par wune force centrée, dans les domaines élastiques et
inélastiques

Ein Verfahren fiir die Bestimmung der Knickspannung und der erforderlichen
Querschnitisfliche eines zentrisch belasteten geraden Stabes im elastischen und
unelastischen Bereich

ARrvo YLINEN, D. Sc. Techn., Prof., Institute of Technology, Helsinki

1. Stress-Strain Function

In order to investigate the buckling strength of columns loaded in the
inelastic range, it is advantageous to approximate the stress-strain diagram
of the uniaxial state of stress occurring in the column with a suitable function
and to deduce the corresponding buckling-stress formula. The function chosen
should contain a sufficient number of free parameters. By choosing them
appropriately, it is possible to make the values of the function coincide with
the experimental values of the stress-strain diagram. In practice the stress
at which the stress-strain diagram with increasing stress for the first time
becomes parallel to the strain axis should be considered the upper limit of
the buckling stress. This limit is either yield point or compressive strength
depending on whether the material has a yield point or not. From this it
appears that, in order to be suitable for this purpose, the so-called stress-
strain function presenting the stress-strain diagram should be valid up to this
stress limit for materials having a pronounced yield point and up to the
compressive strength for other materials. For the sake of simplicity we speak
in the following only of the yield point remembering that it will be replaced
by compressive strength if no yield point exists.

For the approximation of the stress-strain diagram many different func-
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tions have been used!)?). In the following we present a new one which is
meant particularly for elucidating problems in connection with the buckling
phenomenon of columns?). Since not the stress-strain function itself but only
its first derivative with respect to the strain is needed, the simplest way is
to make a suitable assumption with respect to this derivative itself and to
prove that the stress-strain function deduced from it by integration agrees
with the test results. The expression of the derivative should be as simple as
possible and only a function of stress.

We assume in the following that the expression of the derivative of the
stress-strain function has the form

do a—o

de b—c o (1)

Here o is the stress, € the strain and a, b, ¢’ are three free parameters, the values
of which should be determined so that the stress-strain function deduced
from (1) by integration suitably agrees with the stress-strain diagram. Below
the yield point, the elasticity and the strength properties of the material are
determined on the basis of its modulus of elasticity, its proportional limit and
yield point stress. Therefore, we use these quantities for determining para-
meters a, b, ¢’.

For the yield-point stress ¢ =0, we have do/de=0. By introducing these
values into eq. (1) we obtain

a=a,. (2)

When o=0, we have do/de=E, hence, from eq. (1) it follows

2 _ %
BE=p=-r (3)
By introducing the expressions of ¢ and b and a new parameter c=c'
into eq. (1) we obtain
do oy—0

ic-F

ay—c&_' )

In order to connect the third material constant, the proportional limit o,
with ¢, we need function o = o (¢) itself. Separating the variables the differential
eq. (4) can be written as

1 (1—c¢c)oy
de ———E‘ [C‘l‘—a—__T:l do

Yy
The general solution of this is

€ = %[ca—(l—c)ayln(ay—a‘)+0],

1)y R. MEBMKE, Z. f. Math. u. Physik. 1897, p. 327.
2) W. 0scoop, Journal of Aeron. Sciences. 1946, p. 45.
3) See writer’s paper in Teknillinen Aikakauslehti, Vol. 38 (1948), p. 9.
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where C' is the constant of integration. Since the stress-strain diagram goes
through the origin of coordinates, the values e=0, o=0 correspond to each
other. From this condition follows for the constant of integration the expression

C=(1-c)o,lno,,

which, introduced into the general solution, gives as result the stress-strain
function

¢ =%[ca—(l—c)oy]n(1 —a‘i)]. (5)

Yy

With the value ¢=1 this is reduced to Hooke’s law.

The nature of the stress-strain curves according to eq. (5) may be seen
from figure 1, where o is plotted against e. To determine the parameter c
the difference 6 between strain (5) and the strain e, =oc/E corresponding to
HooxkE’s law is formed and for that the expression '

8=E—GH=——1—;—€[U+0‘yln(l——i)] (6)

Oy
is obtained.
When ¢=0,, the corresponding value of & is denoted by 5,. When these
values are introduced into eq. (6), its both sides multiplied by the ratio E/o,
and the equation is solved for ¢, we obtain

Edp
c=1+ =L . (7)
P 4 In (1 —2)
oy oy

This formula shows how the parameter ¢ depends on the proportional
limit ¢, the yield-point stress ¢, and the modulus of elasticity E. In addition,
its value is affected by the quantity §,, which indicates the allowable devia-
tion from Hookr’s law at the proportional limit. The usual definition is
3,=0.00002 to 0.0002. In table 1 are presented the values of the parameters c
of some materials, calculated from formula (7).

Ac

e

g

Fig. 1. Stress-strain diagram.
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Table 1. E, o,, o, and c of some materials

Material E Ip %y c
kg/cm? kg/cm? kg/cm?

Finnish pine 125 000 160 450 0,875

Magnesium Alloy (Electron) 460 000 | 500 1000 0,857

Steel St 37 2 100 000 1920 2400 0,977

Steel St 52 2 100 000 2880 3600 0,977

Concrete 250 000 50 280 0

We see that the values ¢ of all other materials are slightly less than unity
except that of concrete, which is zero. }

It should be observed that, for determining c, it is not necessary to use the
proportional limit, but any point on the stress-strain diagram between the
proportional limit and the yield point is applicable. The stress-strain function
determined in this manner agrees in general better with the stress-strain dia-
gram than that obtained with the aid of the proportional limit.

In order to get a general idea of the form of the stress-strain diagrams
represented by function (5), we put it into a more suitable form for graphical
representation by multiplying both sides by the ratio E/s,, which gives

E—€=ci—(1—c)1n(1-i). (8)

O'y O'y O'y

Compared with (5) this dimensionless form has the advantage that Ke/o,
is a function only of the ratio ¢/o, and parameter c. But on the right side of
eq. (5) there are four variable quantities ¥, o, o, and c. The stress-strain curves
according to eq. (8) may be seen from figure 2, where o/c, is plotted against
E¢/o,, c as parameter. We see that the greater the value of ¢ is, the smaller
is the deviation of the stress-strain curves from the broken line formed by
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Fig. 2. Dimensionless stress-strain diagrams according to eq. (8).
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HookE’s line ¢/o, = K ¢/o, and the horizontal line /s, =1 corresponding to the
yield-point stress.

2. Tangent-Modulus Theory of Inelastic Buckling

The buckling force of a straight, centrally compressed, prismatical column
in the elastic range is obtained from EurLER’s buckling formula?)

Fc=——lz ’ (9)

where E denotes the modulus of elasticity, J the smallest moment of inertia
of the cross-section and / the length of the column. u is the coefficient of restraint
depending on the manner in which the ends of the column are fixed. The value
of this coefficient varies within the ranges !/, < u < 4. Figure 3 presents the
value of n in some modes of restraint. The case 2 of a column with hinged
ends is very often encountered in practical applications and is called the
fundamental case of buckling of a prismatical column.

Expressing in eq. (9) the moment of inertia J by the radius of gyration ¢
and the area A of the cross section in the form J =142 A4, the formula may be
written in the form F /A =u=?E/(l/i)%. Denoting further the average com-
pressive stress by F /A =0, and the slenderness ratio of the column by I/¢=2A
we obtain for the buckling stress of the column the formula

pmiEJ
G, = ‘—-AZ— .
The buckling stress is independent of the shape of the cross section of the co-
lumn.

(10)
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Fig. 3. Some fixing cases of the Fig. 4. Stress-strain diagram for

ends of the column. increase and decrease of load.

4) L. EULER, De curvis elasticis. Lausanne and Geneva, 1744. — The EvrLERr formula

was derived in a later paper, Sur la force de colonnes, published 1759 in the Mémoires
de I’ Académie de Berlin.
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EvLer’s formulas (9) and (10) are valid only as far as the compressive
stress o, <o,. By introducing the expression of ¢, from (10) and solving the
inequality for A we obtain as the validity limit of formulas (9) and (10)

A/ LE (11)
Oy

Let us now examine the determination of the buckling stress of a column
buckling above the proportional limit. If the material is still perfectly elastic
even beyond the proportional limit so that the diminishing stress in figure 4
follows the same stress-strain diagram (' BO as obtained with increasing
load, the buckling force and the buckling stress of the columns are, according
to ExcEssER?), obtained from formulas (9) and (10) by replacing in them
the modulus of elasticity £ by the tangent modulus d o/d € of the stress-strain
diagram at the point corresponding to the buckling stress. Denoting this tan-
gent modulus by

g; = Et (12)
we obtain ENGESSER’s formulas
2E.J
F, = &lzt— (13)
2
and o) = W;zEt (14)

for determining the buckling force and the buckling stress beyond the pro-
portional limit. Below the proportional limit E, equals E and formulas (13)
and (14) are changed into EuLER’s formulas (9) and (10). Consequently,
ExcEssErR’s formulas (13) and (14) are valid both above and below the pro-
portional limit. Both the buckling force and the buckling stress of a perfectly
elastic column are independent of the shape of the cross section of the column.

By introducing the expression of the derivative do/de from eq. (4) into
formula (12), the tangent modulus can be expressed in the form

Gy —C

E,=E (15)

o,—Co
Introducing this into ENGESSER’s formula (14) and taking into consideration
that ¢ equals o; when buckling occurs, it follows for the buckling slenderness
ratio of a centrally compressed straight column the formula

2
_pm E o,—o0

A2 (16)

O't O'y—CO'l

This is valid when 0=<¢,Z0,.

%) F. ENGESSER, Zeitschrift des Architekten- und Ingenieur-Vereins zu Hannover. 1889,
p. 455.
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When eq. (16) is reduced, we obtain for buckling stress o, an equation of the
second degree, the roots of which are

. psz-}—oy)\z(i)l/(;rn'zE+oy)\2)2—4pu'rrzcan)\2. (17)

9= 2c\2 4c2 )4

For the square root a negative sign should be chosen, because the buckling
stress must vanish when A — co.

In order to get an idea of the buckling stress according to eq. (16) we re-
present this equation graphically. For that purpose we first multiply both
sides of the equation by o,/un? E thus giving it the dimensionless form

WX _ o o (18)
,LL’/'T2E Gy l_cﬂ
Gy

Compared with eq. (16) this form has the advantage that o, A?/un? K is only
a function of the parameter ¢ and the ratio o;/c,. The variable quantities on
the right side of eq. (16) are o, 0, u, £ and c.

| l
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~ Fig. 5. Buckling stress diagrams in dimensionless form according to formula (17).

In figure 5 the ratio ¢,/o, is plotted against the dimensionless quantity

)\/TrVUy/y E. At great values of the slenderness ratio, when the buckling stress
is low, the value of the tangent modulus is constant according to (15) and the
buckling-stress diagrams corresponding to different values of ¢ coincide with
Eurer’s hyperbola. With decreasing slenderness ratio the buckling stress
increases, the value of the tangent modulus decreases and the buckling stress
diagrams deviate from EULER’s hyperbola and approach the yield point stress
of the material. How rapidly this will take place, depends on the value of
parameter c. When A=0, o, becomes equal to o, for any value of c.
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3. Double-Modulus Theory of Inelastic Buckling

ENcEssER’s tangent-modulus theory was severely criticized, first by
ConsipERE®) and later by JasiNsky?), on the account that ENGEsSEr had
assumed the material to be perfectly elastic even beyond the proportional
limit and thus had not taken into consideration the effect of permanent
deformations. In fact, when the compressive stress in figure 4 has increased
up to point C' above the proportional limit o, and the column bends, the
decreasing stress on the convex side of the column does not under actual
conditions follow the same curve C' BO along which the stress has increased,
but decreases from point C along the straight line C' E, which has the same
slope as part O B of the stress-strain diagram corresponding to HooOkE’s law.
Thus the phenomenon is irreversible by its nature. A certain strain e cor-
responds to different values of stress depending on whether an increasing or
a decreasing stress is considered. The stress is no more a single-valued function
of the strain.

ExGEssErR now completed his buckling theory by taking into considera-
tion the effect of permanent deformations®). However, his theory did not
receive the attention and acknowledgement it would have deserved, but was
forgotten. The theory became once more known and its applicability stated
in 1910 through the careful buckling tests made by v. KARMAN?).

According to ENGESSER, the effect of permanent deformations in the in-
elastic buckling phenomenon can be taken into consideration by replacing
the tangent modulus in formulas (13) and (14) by the so-called ‘“‘double
modulus’’, which is also called “reduced modulus’’. By employing the symbol
E, for it the formulas

2
F, =ET "r lfr‘] (19)
and
2 F
o, =0 (20)

can be written for determining the buckling force and the buckling stress of
a centrally loaded straight column. In the elastic range E, equals K, while
in the inelastic range X, is variable and depends on o,= F,/A and on the shape
of the cross section. In the inelastic range E, is always greater than E, and,
consequently, the buckling stress will be slightly higher according to the

6) M. ConNsSIDERE, Congrés international des procédés de construction, 1889. Comptes
rendus, Annexe: Résistance des piéces comprimées, p. 381.
«. ”) F. JAsINSKY, Annales des ponis et chaussées, 1894, and Schweizerische Bauzeitung,
Vol. 26 (1895), p. 172.

8) F. ENGESSER, Schweizerische Bauzeitung, Vol. 26 (1895), p. 24.

9) TH. v. KARMAN, Physikalische Zeitschrift, Vol. 9 (1909), p. 136; and Mitteilungen
wuber Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 81, Berlin 1910.
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reduced modulus theory than according to the tangent modulus theory. For
an I-section with infinitely thin web

2EE,
R E,
according to v. KARMAN.
By introducing into this the expression of E, from equation (15) we obtain

oy—0C
1+¢ °
O'y - 9 g

From this it appears that E,—% when ¢—0. E, equals E at any value of
o, if ¢=1. Comparison between the expression (21) of £, and the expression
(15) of E, reveals in the case of the idealized I-section the interesting peculiarity
that, when employing the stress-strain law (5), its tangent modulus and double
modulus are similar in form except that parameter ¢ of the tangent modulus
has been replaced in expression (21) of the double modulus by (1 +¢)/2, which
is greater than c if ¢ < 1.

By replacing the tangent modulus %, in eq. (14) by the double modulus Z,
from eq. (21) and by denoting the corresponding buckling stress by o,, we may
write for the buckling slenderness ratio of a column of idealized I-section the
formula

E,=E (21)

2E —

_pm oy =0,
= CTre (22)
Y 2 r

A2

Oy

This corresponds to formula (16) except that parameter ¢ has been replaced by
(1+¢)/2 in formula (22).
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Fig. 6. Buckling stress diagrams for structural steels St 37 and St 52 according to tangent-
modulus, double-modulus and SHANLEY’s theories of inelastic buckling.
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When eq. (22) is reduced, we obtain for the buckling stress o, an equation
of the second degree, the roots of which are

(o)

r:,“(T#:)(;\g)\z(i)l/(ﬂwzlg+%)\2)2—2#ﬂz(l+c)Eoy>\2, (23)

(1+c)2A

A negative sign should be chosen for the square root because the buckling
stress must vanish when A—oc0.

The lower and upper full-line graphs in figure 6 represent the buckling
stress of structural steels St 37 and St 52 according to formulas (16) and (22)
or (17) and (23) by giving to the material constants the values of table 1.
We see that the buckling stress is somewhat higher according to the double-
modulus theory than according to the tangent-modulus theory. The relative
deviation of the two curves is largest at A ~ 96 for steel St 37 and at A ~80
for steel St 52, both about 7,59%,.

4. Shanley’s Theory of Inelastic Buckling

After the double-modulus theory of ENGESSER had become generally known
in 1910 through the investigations of v. KARMAN, the scientists had been
accustomed to consider it the final solution of the problem of inelastic buckling.
Therefore, it was surprising when SHANLEY 19) proved in 1946 that the double-
modulus theory leads to discrepancies which could be removed only by re-
nouncing some of the assumptions made in deriving this theory. In the theory
it is assumed, as in the derivation of EULER’s buckling formula for a perfectly
elastic material, that the column remains straight until the buckling force F,

F
Y
\
l
Ao 7 \
\\
o/
| ;
| Iy
[ N A
4 F[ Fr;vzx E £ F
Fig. 7. Fig. 8.

19) F. R. SHANLEY, Journ. Aeronaut. Sci., Vol. 13 (1946), p. 678, and Vol. 14 (1947),
p- 261.



Buckling Stress 539

is reached, and then suddenly bends. SHANLEY proved, however, that the
column begins to bend already immediately after the buckling force F, ac-
cording to the tangent-modulus theory has been reached and the deflection
increases gradually with increasing compressive force. The phenomenon is
illustrated in figure 7, where the curves present schematically the deflection &
in the middle of the column as a function of the load F according to different
theories. At any value of F < F, the column remains straight. When F equals
F, and when the linearized differential equation for the deflection curve is
used, the deflection 8, according to ENGESSER’s tangent-modulus theory,
remains indefinite and, in addition to the straight form of equilibrium, there
are also other equilibrium positions near that of the straight form under the
same load. Thus the load F, may be defined as the smallest load that can
keep the column in slightly bent shape. ,

The column behaves in the same manner according to the double-modulus
theory as according to the tangent-modulus theory. At any value of the com-
pressive force ¥ < F',, the column remains straight. When F=F,, the equili-
brium of the column is indifferent and, in addition to the straight equilibrium
position, slightly bent equilibrium forms are also possible under the same
load. However, according to SHANLEY an exactly determined value of the de-
flection & corresponds to each value of the load F when the load F,is somewhat
exceeded. The compressive force has a maximum value F,, ., which is greater
than the tangent-modulus load F, but smaller than the double-modulus load F,.

SHANLEY investigated the behaviour of the column in the inelastic range
with the aid of a simplified type of column presented in figure 8. This column
represents an infinitely stiff, straight column having in the middle an elastic-
plastic hinge consisting of two small longitudinal elements. With this ex-
tremely simple model SHANLEY succeeded in elucidating qualitatively the prin-
cipal properties of a column buckling in the inelastic range.

However, for explaining completely the inelastic buckling of a column,
the model shown in figure 8 is not sufficient. In fact, the mathematical theory
of the SHANLEY phenomenon is very complicated in the general case. When
the column bends, the distribution of the stresses in the cross section will
be nonlinear and is variable along the column. A so-called reversion range,
where the contraction decreases with increasing compressive force, is formed
in the middle of the column, on its convex side. When the column bends, the
reversion range will gradually extend toward the ends and the inner parts of
the column. Owing to the combined influence of all these facts, the effective
flexural rigidity of the column depends in an unknown way on the load and
the longitudinal coordinate of the column, thus making it difficult to clarify
the phenomenon accurately.

On the basis of the stress-strain function (5), LaArssox ) has investigated

1) H. LaArsson, Journ. Aeronaut. Sci., Vol. 23 (1956), pp. 867—873.
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the buckling of a centrally loaded straight column in the inelastic range. The
influence of the SHANLEY effect on the magnitude of the buckling force F,, .
of a column of idealized I-section appears from the diagrams in figure 9.
They show how the quantity (F,,,,— F})/(Fr— F,) depends on the ratio F,/F,,
where Fy=o0, A denotes the compressive force at which yielding of the column
begins. By interpolating between the curves belonging to the parameter
values ¢=0.96 and ¢=0.99, the dotted-line curve has been drawn whose
¢=0.977. This curve refers to the structural steels St 37 and St 52 given in
table 1. The buckling stress diagrams in figure 6 represented by dotted lines
have been constructed with the aid of this curve. We see that for an I-section,
Omaz 18 10 the inelastic range always nearer to the buckling stress o, than to
the buckling stress o,. LArRssox has also investigated the influence of the
SHANLEY effect on the buckling stress of a rectangular cross section and found
it to be very little higher than that of an I-section.

Summing up, we can say that the tangent-modulus load F, does not ac-
curately define the buckling load, but it can be regarded as a lower limit of
the actual buckling force F,, ., of the column. The tangent-modulus load F,
should therefore be considered the critical load F ,of a centrally loaded straight column.
For columns of such material that its stress-strain diagram can be presented
by means of the stress-strain function (5), the critical buckling stress is ob-
tained from formulas (16) or (17), where we now can write o,=0, to indicate
that a critical stress is in question.

10
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Fig. 9. Influence of the SHANLEY effect on the buckling force of a column of idealized
I-section according to LARSsON.
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5. Navier-Rankine’s Buckling Formula

The validity of EuLER’s buckling theory was subjected to doubt for a
long time because for short columns it led to too high values of the buckling
stress. Only when LAMARLE!?) in 1845 had established the proportional limit
as the limit of validity of EurLERr’s formula, it was possible to understand
why this formula could not give correct results in all cases. Therefore, before
ExaEssEr had presented his theory of inelastic buckling, attempts were made
to find empirical buckling formulas suitable for the design of columns. One
of the best known is NAVIER-RANKINE’S buckling formula!3).

g, = % (24)

[+ oy 2'
1 +,sz/\

In deducing this formula the column is usually assumed to be always
somewhat eccentrically loaded, because it is not possible to produce a per-
fectly straight column and to have the force centrally applied with sufficient
accuracy. An investigation of the strength of the column under these condi-
tions results precisely in NAVIER-RANKINE’S buckling formula (24).

The same formula is simply obtained as a special case of the buckling stress
formula (16) by introducing ¢=0 or from formula (17) by a limiting process
when ¢— 0. From this it appears that NAVIER-RANKINE’s formula can be
applied to the computation of the buckling stress of only those materials
whose tangent modulus decreases approximately linearly with increasing
compressive stress and will be zero when o=g¢,. According to table 1, concrete
is such a material since its ¢=0.

6. The Required Cross-Sectional Area of the Column

When the column is to be dimensioned with respect to buckling, the fol-
lowing factors are usually known, the buckling force F,=v F where v is the
factor of safety and F the allowable load, the length of the column I, the
constants K, o, and ¢ characterizing the material used, and the coefficient
of restraint u of the column ends. The required cross-sectional area 4 of the
column and the moment of inertia J are to be determined. Formulas (16)
and (17), as all other buckling formulas, are inappropriate for this purpose,

12) E. LAMARLE, Mémoires sur la flexton du bois. Annales des travaux publics de
Belgique, T. IV., p. 1. Brussels 1846.

13) The formula is known by several different names, such as NAVIER’S, RANKINE’S,
ScEwWARZ’s or GOrDON’s formula. For its history cf. E. H. SanmMoN, Columns, Oxford
Technical Publications. London 1921.
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because the slenderness ratio of the column depends on the cross-sectional
area and its moment of inertia, both of which are unknown.

In order to determine directly the required cross-sectional area of the
column, we reduce the fraction in the tangent-modulus formula (15) to higher
terms by the cross-sectional area A414). Taking into consideration that c=o,
when buckling occurs, we obtain
Aoy,—F,

£, = EAoy—ch’

(25)

where Ao, means the compressive force at which yielding of the column
begins and F,=A4 o, indicates the buckling force of the column. When the
modulus of elasticity £ in EuLER’s formula (9) is replaced, according to

ENGESSER, by the tangent modulus (25) we obtain

_pmn*EJ Aoy-F,
- B Ao,—cF/

F, (26)
In order to solve this equation for the area A, the moment of inertia J
should be expressed as a function of A. Therefore, we introduce

A2=FJ, (27)

where k is the so-called section number!®). It is a nondimensional quantity
whose value depends only on the shape of the cross section. For geometrically
isomorphic cross sections k is constant. By introducing the expression of J
from (27) into eq. (26) we obtain

kF,l>  Ao,—F,

wBA® " Ao,—cF,

When the fraction at the left-hand side is reduced to higher terms by the

factor F,c,2% the numerator and the denominator of the fraction at the right-

hand side are divided by ¥, and the cross-sectional area corresponding to
the pure compression is denoted by F /o, = 4,, it is possible, by using the abbre-
~viations16) ’ :
A koy?l?

wr EF, 4 (28)

14) The method of determining directly the required cross-sectional area of the
column, to be presented in the following, is general and applicable in connection with
any stress-strain function. Cf. author’s investigation Die Knickfestigkeit eines zentrisch
gedriickten geraden Stabes im elastischen und unelastischen Bereich. Doctor’s thesis. Fin-
land’s Institute of Technology, Helsinki 1939, p. 93.

15) In newer German literature the section number has been denoted by Z. As Z
in the English literature means the section modulus of the cross section, the older German
symbol k has been used here in order to avoid confusion.

16} The quantity w is identical with the buckling number of the German buckling
specifications. Cf. DIN 4114.
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to write the equation in the form ¢/w?=(w—1)/(w —c) or

w—1

¢=w

ey (29)
This equation shows how the relative cross-sectional area w=A4/4, depends
on the quantity ¢ that contains all the quantities given in connection with
the problem of dimensioning. In order to get an idea of this relation, the
function (29) has been represented graphically in figure 10 using ¢ as para-
meter. When ¢=0, w equals 1 at any value of ¢. With increasing ¢ all curves
approach asymptotically the square parabola w?=g¢q, which corresponds to
the required area of the column according to EULER’s buckling formula when
the column is buckling in the elastic range. The influence of the parameter ¢
on the area appears clearly from the slope of the curves. The greater c is,
the smaller is the required area and the faster approaches the corresponding
curve the parabola.

By expressing the quantities in inequality (11) by means of k, I and F,
the inequality may be written in the form

g2 (ﬂ)z. (30)

Op

If this inequality is satisfied, the column buckles elastically and its required
moment of inertia is obtained from Eurer’s formula (9). If the condition
(30) is not fulfilled, the column buckles in the inelastic range and its required
cross-sectional area can be determined with the aid of the nomograms in
figure 9.

If in figure 10 the quantity
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Fig. 10. Required relative cross-sectional area of the column according to formula (29).
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had been used as abscissa, it would have been possible to represent EULER’s
formula (9) by a straight line through the origin. With increasing ¢ the w-
curves would asymptotically approach this line.

By means of the curves in figure 10 it is easy to judge the choice of the
cross section and the suitability of the material for the column.

The quantities on which ¢ depends can be regarded as known in most
cases concerning the design of columns. The value of the nondimensional
quantity g can then be computed and the corresponding ratio 4/4, determined.
If this is large, the column will be heavy, its buckling stress small and the
material of the column poorly utilized. In order to improve the column in
this respect, the attempt should be made to decrease the value of q. This
is best done by choosing a section form in which the material is put as far
as possible from the neutral axis. The section number k£ and, at the same
time, ¢ will decrease. If the result desired is not obtained in this manner,
the change of the material is still possible. The change of material affects
the value A/A4, in two ways since both ¢ and ¢ change, provided the latter
does not happen to be the same for both materials. The conditions at the ends
of the column and thereby the value of pu can possibly also be changed.

For the use of the nomograms in figure 10 the section number for different
shapes of the cross section must be known. As has already been mentioned
earlier, k is constant for geometrically isomorphic cross sections, such as circle
and square. The use of the nomograms presented in figure 10 leads for such
columns direct to the required cross-sectional area of the column?'?).

These cross-sectional shapes with constant section number occur, however,
seldom in practice. In order to save weight and material and for constructional
reasons it is attempted to use cross sections whose area is dispersed far from
the neutral axis. The isomorphism of two such cross sections presupposes,
in addition to the isomorphism of the external form, that also the corresponding
ratios between the wall thicknesses and the external dimensions of both
cross sections are the same. The sections used in practice belonging to the
same category but different in size, do not fulfil, in general, this condition.
Consequently, their section number is a variable quantity which is a function
precisely of the ratio between the wall thickness and the external dimensions
of the cross section. The use of the nomograms in figure 10 for such cross
sections does not lead directly, in general, to the required cross-sectional
area of the column. It should be checked by means of eq. (27) that the section
number of the cross section obtained is actually the same as that used in
connection with the diagrams in eq. (27). If that is not the case, the procedure
should be repeated by using the new value k obtained from (27). This iteration
method converges, however, very rapidly and often already the first deter-
mination of the cross section will be the final one.

17) See author’s paper in Schweizerische Bauzeitung, Vol. 119 (1942), p. 85.
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Table 2. Section number k of various cross sections

545

Sectron k Section kA
1 é
1A b:h=7 6 'JI— 4
i -
2 9
L_ benzis |7 | [ ¢
- {
3 10 }
bih=1:2 ][
L 77 ! ‘/)1:‘// 12
4 7
|3 6=26 | 75 {I} 18
~p =
5 12
_L b=h 5 % 72
(- 13
4,25 %Iﬁ h>b 726ﬁ
| ~ip b
7 74
Lo .

The above table 2 presents the section number k£ of some shapes of cross
sections. In the cross sections 1 to 11, the influence of the wall thickness has
been left out of consideration. Their k numbers are therefore rough approximate
values only which correspond to average ratios, occurring in practice, between
wall thicknesses and the external dimensions of the cross section.

When the required cross-sectional area of columns made of a certain ma-
terial is to be determined, the previous method can still be considerably
simplified in the following way. We introduce into the expression of the
variable ¢ in eq. (28) F,=v F, where v is the factor of safety and F the allowable
compressive force and write as follows

ke
- m2vE uF’

The first factor indicates the quantities characterizing the properties of the
material and the second the known quantities of design. By selecting for the
latter quantity k?/u F a sequence of suitable values and by multiplying
them by the factor o,%/n?v E, the magnitude of the variable ¢ is obtained.
The buckling numbers « corresponding to these values of ¢ can be taken from
the nomogram of the material in question in figure 10. By choosing v=2
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as the factor of safety, the buckling numbers in table 3 are obtained in this
way for structural steel St 37. For the sake of clearness it would also have
been possible to add the slenderness ratios A, but since the knowledge of them
is not necessary in connection with this method of dimensioning, they have
been left out.

Table 3. Buckling numbers of structural steel St 37 when v=2 and allowable
compressive stress o, =o,[v=1200 kg/cm?

kl2 kl2
pl w pF w
cm?/kg cm?/kg

0 1 7 1,094
1 1,003 8 1,136
2 1,009 9 1,182
3 1,017 10 1,230
4 1,027 11 1,284
5 1,042 11,25 1,295
6 1,064

When w has been determined from table 3, the required cross-sectional
area of the column is calculated from the formula

w F
A kg
cm? 1200 (31)

After determining the cross-sectional area, the section number used in cal-
culating the area must be checked with the aid of formula (27) k=A42/J.
If it is not the same as assumed at the beginning of the procedure, the deter-
mination of the cross section should be repeated by starting with this new
section number obtained from formula (27). Because the value of k changes
very slowly with the size of cross section, already the first approximation
of the cross section is often sufficiently accurate.

Introducing the expression of ¢ from eq. (28) and F,=v F into inequality
(30) and solving this for the quantity k2/u F we obtain

k2 m*vE

wF = g7

(32)

If this condition is fulfilled, the column buckles in the elastic range and its
necessary moment of inertia is obtained from EvuLEr’s formula (9). If the
condition (32) is not fulfilled, the column buckles in the inelastic range.
Table 3 includes only those values of columns that fulfil the condition kI2/u F <
<11.25 cm?/kg for inelastic buckling.
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As an example of the application of this method we determine the required
cross-sectional area of a column made of steel St 37 when F =270 000 kg
and =325 cm. The column ends are assumed to be hinged so that u=1.
As the cross-sectional shape of the column we choose an I-section of wide
flange DIN IP, for which k = 4.25 according to table 2. On the basis of the
given quantities we obtain

k12 cm?
ﬁ - 1.66@—.

Since this is smaller than 11.25 cm?/kg, the column buckles in the inelastic
range. According to table 3, the buckling number w=1.007 corresponds to

the value k12/u F =1.66 cm?/kg. From formula (31) we now obtain the required
cross-sectional area of the column

wF 9 1.007-270 000
cm? =

2 2
1900 1200 cm? = 226.8 cm?2.

A =

The cross section next in magnitude is IP 45, whose 4 =232 ¢m3,J =12 640 cm*
and k= A2%/J=4.26. Since this section number is almost the same as the
assumed k=4.25, the computed cross-sectional area is sufficiently accurate.

Summary

The author presents a new stress-strain function (5), which contains three
parameters E, o, and c. The first two, the modulus of elasticity £ and the
yield point stress ¢,, have a quite determined physical meaning. The third
parameter ¢ depends primarily on the proportional limit o, of the material
and some other quantities in the way shown by formula (7). The stress-strain
functions corresponding to different values of ¢ have been presented in a
dimensionless form in figure 2. The first derivative of the stress-strain function
with respect to the strain is very simple, it being a linear fraction of stress.

It follows from the stress-strain function (5) the simple expression (15)
for ENGESSER’s tangent modulus Z,. For an I-section with an infinitely thin
web an equal expression (21) for the double modulus is obtained, where the
parameter ¢ is replaced by the value (1+¢)/2. Formula (16) is valid for the
buckling stress according to the tangent-modulus theory. The formula is
simplified to NAVIER-RANKINE’s buckling formula (24) when ¢=0. Fig. 5
shows the buckling stress curves of different materials in the dimensionless
form. According to the double-modulus theory, formula (22) is obtained for
the buckling stress of a column of idealized I-section. This formula is exactly
equal to (16) with the only exception that parameter c is replaced by (1 +c¢)/2.
The influence of the SHANLEY effect on the buckling stress of a column of
idealized I-section has been presented according to LArRssoN’s investigations.
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The buckling-stress diagrams of structural steels St 37 and St 52 according
to different theories are given in figure 6. The buckling stress according to
SHANLEY’s theory lies slightly higher than that according to the tangent-
modulus theory but is smaller than that according to the double-modulus
theory and always nearer to the former. The buckling stress according to the
tangent-modulus theory should be considered the critical stress of the column.

The investigation presents finally a method of determining the required
cross-sectional area of the column without conventional trial and error. This
new method which is quite general and applicable in connection with any
stress-strain function is based on the fact that the buckling number « of the
column is given as a function of the quantity %%/u F. This quantity includes
all the factors known in the given problem of design. The buckling numbers w
for structural steel St 37 appear in table 3. A numerical example illustrates
the application of the method of dimensioning.

Résumé

L’auteur présente une nouvelle loi de déformation (5) sous la forme d’une
équation qui comprend trois parameétres K, o, et c¢. Les deux premiers, le
module d’élasticité K et la limite d’élasticité o, , ont une signification physique
bien déterminée. Le troisieme parameétre ¢ dépend en premier lieu de la limite
de proportionnalité o, et de certains autres facteurs, comme le montre la
formule (7). Les fonctions de déformation correspondant aux différentes
_valeurs de ¢ sont présentées sous une forme non dimensionnelle sur la figure 2.
La premiere dérivée de la fonction de déformation par rapport & la tension
est une fraction linéaire de cette derniére.

De la fonction de déformation, peut étre déduite une expression simple
pour le module de la tangente d’ENGESSER (15). Pour une section I dont
I’ame est extrémement mince, une expression semblable du module double (21)
est obtenue, dans laquelle le parameétre ¢ est remplacé par (1+c)/2. D’aprés
la théorie du module de la tangente, la formule (16) est valable pour la tension
de flambage. La formule est réduite a celle de NAVIER-RANKINE (24) quand
on y fait ¢=0. La figure 5 représente les courbes de la tension de flambage
des différentes matiéres, sous une forme non dimensionnelle. Suivant la théorie
du module double, on peut obtenir la formule (22) pour la tension de flambage
d’une section I. Cette formule est identique & (16), la seule exception étant que
le parameétre ¢ est alors remplacé par (1 +c¢)/2. L’influence de Ueffet de SHANLEY
sur la tension de flambage d’une section I est présentée d’aprés les recherches
de LArssoN. La figure 6 représente les courbes de la tension de flambage,
d’aprés les différentes théories, pour les aciers spéciaux St 37 et St 52 utilisés
en construction. La tension de flambage d’aprés la théorie de SHANLEY est un
peu plus grande que d’aprés la théorie du module de la tangente; mais elle
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est plus petite que d’aprés la théorie du module double et toujours plus proche
de la précédente. La tension de flambage d’aprés la théorie du module de la
tangente doit étre considérée comme la tension critique de la barre.

L’étude expose enfin une méthode pour déterminer la section & prévoir
pour la barre, sans recourir 4 une expérimentation conventionnelle. Cette
nouvelle méthode, qui est tout & fait générale, est basée sur le fait que le
taux de flambage (10) de la barre est donné sous forme de fonction de la
quantité kl2/ul. Cette quantité comprend tous les facteurs connus dans le
présent probléme de construction. Les taux de flambage (10) pour l’acier
spécial St 37 sont indiqués dans le tableau 3. Un exemple numérique illustre
Papplication de la méthode.

Zusammenfassung

Der Verfasser stellt ein neues Formédnderungsgesetz (5) mit drei freien
Parametern E, ¢, und ¢ dar. Die zwei erstgenannten, der Elastizitdtsmodul #
und die Stauchgrenze o, des Materials, haben eine genaue physikalische Be-
deutung. Der Wert des Parameters ¢ héngt in erster Linie von der Propor-
tionalititsgrenze o, des Materials und von einigen anderen Faktoren ab, wie
genauer aus der Formel (7) hervorgeht. Die den verschiedenen Werten des
Parameters ¢ entsprechenden Druckstauchungsdiagramme sind in Fig. 2
in dimensionsloser Form dargestellt. Die erste Ableitung der Forménderungs-
funktion ist eine lineare gebrochene Funktion.

Von der Formanderungsfunktion (5) folgt fiir den ENxcEssErschen Tangen-
tenmodul der Ausdruck (15). Fiir einen I-Querschnitt mit unendlich diinnem
Steg erhdlt man einen #hnlichen Ausdruck (21) des Knickmoduls, der sich
nur dadurch von Gl. (15) unterscheidet, dafl an Stelle des Parameters ¢ in
Formel (21) der Wert (1 +c¢)/2 steht. Fiir die Knickspannung nach der ersten
ExcEessErschen Knicktheorie gilt die Formel (16). Wenn ¢=0, vereinfacht
sich diese Formel zu der Knickformel (24) von NAVIER-RANKINE. Die Knick-
spannungsdiagramme von verschiedenen Materialien sind in Fig. 5 in di-
mensionsloser Form dargestellt. Fiir die Knickspannung eines Stabes mit
idealisiertem I-Querschnitt erhilt man nach der ENGESSER-KArRMANschen
Knicktheorie die Formel (22), die dieselbe mathematische Form hat wie
Gl. (16), nur mit dem Unterschied, dal in Gl. (22) der Parameter ¢ durch den
Wert (1+c¢)/2 ersetzt ist. Die Wirkung des SHaANLEY-Effektes auf die Knick-
spannung des idealisierten I-Querschnittes ist nach den Untersuchungen von
Larsson dargestellt. Die Knickspannungsdiagramme der Baustéhle St 37 und
St 52 sind in Fig. 6 nach den verschiedenen Knicktheorien wiedergegeben.
Die Knickspannung nach der Knicktheorie von SHANLEY liegt etwas hoher
als die ENcEssErsche Knickspannung, ist aber immer kleiner als die ENGESSER-
KArmANsche Knickspannung. Als kritische Spannung soll die ENGESSERsche
Knickspannung betrachtet werden.
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Am Ende des Aufsatzes wird ein Verfahren fiir die direkte Bestimmung
des erforderlichen Querschnittes des Stabes dargestellt. Das Verfahren, das
ganz allgemeingiiltig und in Zusammenhang mit jedem Formé#nderungsgesetz
anwendbar ist, griindet sich darauf, daBl die Knickzahl w als Funktion der
GroBe kl?/u F dargestellt wird. Diese GroBe enthilt alle Faktoren, die bei
den auf die Knickstabe beziiglichen Konstruktionsaufgaben als bekannt an-
gesehen werden konnen. Die Knickzahlen w fiir den Baustahl St 37 sind in
der Tabelle 3 gegeben. Als Beispiel fiir die Anwendung dieses Verfahrens
wird die erforderliche Querschnittsfliche eines Knickstabes bestimmt.
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