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The Method of Inversion in the Theory of Plates
La méthode d’inversion dans la théorie des plaques

Anwendung der Inversionsmethode in der Plattentheorie

Professor Dr. W. Orszax and Mgr. Ing. Z. MrOz, Institute of Mechanics of Continuous
Media, Polish Academy of Sciences, Warsaw

1. Introductory Remarks

It is often advantageous to use conformal mapping to solve two-dimen-
sional problems in the theory of elasticity, the inversion type of transformation
being comparatively simple, especially for certain types of boundary conditions.
In addition to the fundamental work by J. H. MicHELL [2], papers by A. TIMPE
[13], P. FrLLunGgER [7] and R. SonNTAG [8] should be mentioned; together
with those by one of the present authors [3, 4, 5], who generalized this method,
giving solutions for some new problems. In the theory of plates, however, this
method is not generally used. It is only in A. E. H. LoveE’s monograph [6]
that an example of the use of this type of conformal mapping is discussed as
applied to the problem of a circular plate clamped at the periphery and loaded
by a concentrated eccentric force.

In the present paper the basic relations of the application of the trans-
formation of inversion to the theory of plates will first be discussed, and this
will be followed by some solutions for circular plates with eccentric holes.

2. Basic Relations for the Transformation of Inversion

The middle surface of the plate will be assumed to be a plane of the com-
plex variable. Let us map every point z of this plane into a point Z of a cor-
responding complex variable plane by means of the relation

12

Z==, (k>0 (2.1)

where z and z are conjugate complex variables.



400 W. Olszak and Z. Mréz

Putting: z=1r-e'9, Z=r-e%, Z =R-¢?,
. 2
we have B.oi® _ Zc_ew
r
] 2
that is R= ’% D = q. (2.2)

It is evident that between the points of the z- and the Z-plane there is a
one-valued correspondence, according to (2.2). Such a method of mapping is
termed ‘“‘inversion mapping’’ or mapping by means of reciprocal (inverted)
radii. Assuming two systems of polar coordinates (r,¢p) and (R,®) having a
common origin, which is also the centre of inversion, the geometrical proper-
ties of this transformation can easily be established. Thus, a region bounded
by a circle of radius r,, the distance of its centre from the origin being A
(h>r;), maps into a region bounded by a circle of radius R, the distance of
the centre from the origin being H, where:

2 2
k H="T 5 (2.3)

R, =-—— _.p
k 2 9 k> 2 2
h%—r, h%—r

In the particular case of circles passing through the origin (h=r,) these
map into straight lines and vice versa; thus, the regions within these circles
are represented on half-planes. If the centre of inversion lies within a circle
(h <ry) its inner region maps into its outer region, in other words, into a plane
having a circular hole. The circle of radius r, =k the centre of which coincides
with the centre of inversion is termed the “‘inversion circle’’. The points of
the periphery of this circle map into themselves. It should be added that
after double inversion (2.2) we return to the initial system.

In the subsequent considerations the system (R,®) will be referred to as
the original system (O), while the system (r,¢) will be referred to as the
inverted system (J).

Let the deflection of an arbitrary point of the plate in the (original) system
O be denoted by W (R,®). The deflection of the corresponding point in the
(inverted) system J will be assumed to be:

w=-—-W. (2.4)

The correspondence between the stress functions in plane problems is of
the same type. This type of correspondence is adopted in view of its funda-
mental property, which is as follows. If in the system O the function W (R,®)
satisfies the biharmonic equation '* W (R, ®) =0, the function

2 k2
w(r,p) = %W(7,<P)

in the system J also satisfies that equation (4w =0). This property, which
can easily be verified, will be extensively used in the paper.
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3. Relations Between the Fields of Moments and Shearing Forces
in the Two Systems

The equations of equilibrium for an element of the plate subjected to a
continuously distributed transverse load ¢ (r,p) are, in terms of polar coordi-
nates, as follows:

0Qep 0 _
. 390 +W(TQ’)—_Q r,
M,—M, oM, oM,
= .1
r or T roe " (3.1)
2Myy  OMy, O0M,
r T or xr = @y
The bending moments M, and M ,, the twisting moment M,,, and the
shearing forces ¢, and @, are expressed by the equations:
> w 1 2w 10w
o= -p| T g )|
w1 2w 1ow
My =D it it )
o (1ow
M, =—D(1—p)—(=2Z .2
re D( V)ET(Ta(p)’ (3 )
Q——Da([ﬁw)——D Fw 1Pw 1ow 2Pw 1 Fw]
T or or3 2 912 2 or 1392 12 Orde?|’
_ 1o(F2w) 1 3w 1 Bw 1 2w |
Qp=—-Do—5 —=-D [73 P +?ar2a¢+ﬁm]’
the notation A represents the (uniform) thickness of the plate, and D = 1_2%’1]13—1;25

its flexural rigidity.

Analogous operations are performed on the function W in the system
(R, D). Using the relations (2.4) and (2.2), we establish the relations between
the moment fields in the two systems in the form:

r2 2 ow
MR — k—zMr—Ez-D(l—l—V) (w—rw) s
r2 2 Jw
7-2
MR¢ == _76_2‘M7.(p.

The shearing forces @ and Q4 are found from the equilibrium equations
(3.1):
Yn="pt %R tRid "B
__2MR¢ aMRq) 3M45_ r 3MR¢ 3M(p
Yo=—% * 3R +R3<D—k_2(2MR¢_T ar T ed )

(3.4)
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The corresponding quantities are shown in Fig. 1.

Before we proceed to the discussion of the properties of the moment fields
which are related by the eqgs. (3.3) let us recall that if the inversion is applied
to plane problems, the stress components in the two corresponding systems
are related by the equations:

e 2 of
on=pzortm(i-75)>

r2 2 0
G<P=ﬁo'q) +ﬁ(f—r'a_;): (35)
7-2
TR® = *7057'7‘0):

where f(r,¢) is the stress function in the inverted system J, related to the
stress function ¥ (R,®) in the original system O by the equation:

r2

f=5F. (3.6)

We see that a close analogy exists between the corresponding stress fields
in the plane problems (3.5), and the corresponding moment fields in the theory
of plates (3.3). This results from the fact that bending and twisting moments
are determined by the function W (or w) in a manner analogous to that in
which linear combinations of stresses in the plane problem are expressed by
the stress function F (or f). Thus, for instance, the linear combination:

2 F 1 0F 1 &F
cetvor =i \RoR TR 0p?

corresponds to the bending moment M. The combination ¢+ vog corres-
ponds to the moment Mg, and 754 corresponds to the twisting moment M 5.

J—system ‘ 0 -system

Fig. 1
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The form of the eqs. (3.3) indicates that, for the relations between the
moment fields in the systems O and J, the orientation of corresponding linear
elements is now of no importance; indeed, these equations can be written in
the general form:

r2 ’
M = ﬁMg+E = Mg+ E,
(3.7)
r2 2 ow
Ms=“pMs> where E=—ED(1+v)(w—r57);

thus, we are free from reference to any particular system of coordinates (in
particular its origin and orientation); it must always be borne in mind, however,
that the symbols M, My and M,, M denote the bending and twisting
moments acting on the corresponding elements in the two systems O and J,
respectively.

The eqgs. (3.7) have a simple physical meaning. If we assume that in one
of the systems the bending moments M ,-ds and the twisting moments M;-d s
act on an element ds, the corresponding element in the other system d S

(where the linear element d s is transformed into d S =?ds) will be subjected
2

to the same bending and twisting moments; in other words:
M, ds = MgdSs,
Ms-ds = —Mg-dS,;

the bending moment having to be complemented by the superposition of an
additional moment £, which is the same in all directions. Thus, the trajec-
tories of the principal moments in the system O will map into analogous
trajectories in the system J, and vice versa. It is evident that the character
of the mapping depends solely on the choice of the centre of inversion, whereas
the choice of the auxiliary system of coordinates should be determined by the
possibility of a convenient establishment of the boundary conditions.

A similar physical meaning can be attributed to the eqs. (3.5) relating the
corresponding stress fields in the plane problem. The state of stress in the
corresponding system can be considered to result from the superposition of

the state of stress %z— o,, whereby the forces acting on the corresponding ele-
ments are equal, and a hydrostatic tension k% (f —TS_Z«) , variable with the

coordinates of the point considered. Obviously, this analogy is well founded,
the bending and twisting moments being the results of integrations, over the
thickness of the plate, of normal and shear stresses acting parallel to the
middle surface.

However, the analogy with the plane problem is somewhat less close if the
boundary conditions are considered. In plane problems the contour free from
shear stresses and subjected to a uniform normal tension in one system is
transformed into a contour of the same properties in the other system. In
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plate problems a contour free from twisting moments preserves this property
after transformation, whereas a contour subjected to constant bending moments
is mapped into a contour subjected to bending moments which are, as a rule,
variable. This entails a considerable difficulty in the solution of mixed boun-
dary problems and also of those involving free edges, the shear forces in both
systems being related in a relatively complicated manner.

A complete analogy, as regards boundary conditions, with the plane state
of stress, exists only in the particular case of v=0; it concerns, however, the
“circumferential’’ bending moments. This is because the contour for which
M , = const. (with M, ,=0) is transformed, in the other system, into a contour
for which we have also M = const. (and M pp = 0). This condition is, however,
of little practical importance.

4, The Generalized Inversion

In the above considerations both coordinate systems had a common origin
at the point J,, (fig. 1), which, according to our assumption, was, at the same
time, the centre of inversion. In the general case the centre of inversion does
not coincide, however, with one particular point of the plate (its centre for
instance); this may render cumbersome the establishment of the boundary
conditions. These difficulties will be overcome by an appropriate choice of
the origin of the auxiliary system of coordinates (r,¢). For instance, if the
original sytem O maps in the inverted system into a circle, we choose the
origin at the centre of this circle (J,). The centre of inversion J, itself is
independent of this choice and its position is determined by the required
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mapping function. The distance between these two characteristic points is
J,Jo=h (fig. 2).

Stating the problem in the above manner we think, for instance, of the
problems, for which the solution can be sought by mapping the system exa-
mined into a concentric annular plate. This will be, in such a case, a two-para-
meter family of circular plates with eccentric holes (fig. 3a); a one-parameter
family of semi-infinite plates bounded by straight lines with circular holes
(fig. 3b); and a two-parameter family of infinite plates with two circular holes
(fig. 3¢). Each of these systems can be mapped by inversion into a doubly con-

nected concentric region - - an annulus (r =a,b). Thelocation of the inversion pole

is in each case different. In the first case A {:Z’ in the second case kA= {Z

and in the third case a < <b.

Fig. 3a Fig. 3b Fig. 3¢

The mapping described above constitutes a generalization of the mapping
discussed previously and can be represented in the complex plane by the
relation:

k2

Z=2+k

(k> 0). (4.1)

The elements lying on the periphery of the circle of radius r in the system J
correspond to elements lying on the periphery of the circle of radius R in the
system O. Covering the circular plate in the system J with a net of concentric
circles and radii passing through the origin J, we obtain, in the original
system O, a curvilinear net composed of eccentric circles of variable radii R
and variable centres M, and a family of circles passing through the point J,
and the point corresponding to J,. It is natural, therefore, to associate the
reference system with the variable point M and to determine the state of
stress in the coordinates (R, ®) for each group of elements lying on the peri-
phery of the circle of radius R. Thus, the stress field in the system J, described
in the coordinates (r, ¢), corresponds to a stress field in the system O described
in the coordinates (R, ®).

In order to find the relation between the corresponding moment fields we
should proceed in a manner similar to that used previously. We express the
bending moments in the system O:
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2w 1 W W
Me == D[aRﬁ"(ﬁra“@?*‘R‘—R)]’
2w 1 2W 1 W]

M¢=—D[v———+———+ —

oR2 " R2 02 " R OR|’ (4.2)

o (1 oW
Mro=-D0-0% (% 75):
where 200 k?
W_—k—zR T 2t 2hrcosgthE

The differential operations can be performed in the system .J writing:
8W_8W3¢+8W8<;o. EW _8_r_i+_£z£_éﬁ_ _Qj_g_v_tf+a<paw
6B~ or oR " 69 0R’ @R: \oRor eRop)\oR or " or og
oW _oWor oW ep  @W _(or o 0 0)(0r oW igoW
66 or 90 T op o®° 902 \ad ar 90 9g)\o® or T80 29

The derivatives of the coordinates in the system J, with respect to the
coordinates of the system O, can easily be determined by considering the
geometrical relations. Introducing the relations:

k> k>

R=E‘2—_r—27', H=mh, (h>7‘),
k? k2

R=m’r, H=mh, B (h<7'),

and taking into account small increments 4 R and 4® of the coordinates R
and @, respectively, we obtain, after determining the increments of the coor-
dinates r and ¢ and passing to the limit, the relations:

or | rq? or
A - HT A .l
e _ o G _ M (43)
oR 00~ T hE—r®
Performing the operations indicated, we have:
2 2
My =701§M,,——2D(1+v)-0',
" y,-2D
My = e = (1+v)- @G, (4.4)
r.2
Mpo = e

12 e
where

ow owh .
G = W= (r+n COS(p)-{-% S sine.

The shearing forces will be obtained, as before, from the conditions of
equilibrium (when %> r: positive sign; h <r: negative sign):
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My— Mg 3MR+8MR¢ _

“e=—"f  *+t%r tRio

N s r2oMy, r?2oMgze

_i[ k2r (MR_M¢)+7CE or  k2r op |’ (4.5)
®~R R T Ro0D

_ . 2 (h?—1r2) +7128MR¢_ r? 0Mgp

B Y RO G2 Ty T kEr o |

The equations obtained are similar to those in (3.3). Substituting 2 =0 we
obtain the case considered beforel). All the properties of the transformation
described in the case of concentric inversion retain their validity and will
not be discussed again.

In particular, the general equations (3.7) retain their validity indepen-
dently of the orientation of the system of coordinates, provided that the
function E (r,¢) is replaced by the more general function G (r,¢) which, for
the substitution =0, becomes E (r, p).

The advantage of the generalized inversion of essential meaning, for the
cases considered here, consists in the possibility of direct establishment of
actual boundary conditions. These conditions can be expressed for the system
O in a simple manner. The circles mapping in the system J into concentric
circles constitute, in the system O, a family of eccentric circles. This family
includes the contours of the plate considered (e.g. in the form of an eccentric
ring). It is sufficient, therefore, to substitute r = const. to determine the
required quantities on the edges of the plate in the system O.

Thus, the inverted system J, operating as an auxiliary figure, makes it
possible to -analyse the states of stress and strain in the original system O.
If this system consists, for instance, of a circular plate with an eccentric hole,
it can be reduced by the transformation of inversion to a simple system in
the form of a plate bounded by concentric circles; all the required quantities
concerning the states of stress and strain in the system O are then related
(by means of the quoted relations) to the coordinates (r,¢) of the system J;
thus, the boundary conditions are expressed in a simple manner.

Let us now examine the transformation of the external loads. Consider
a transversal load ¢, (R, @) in the system O; the basic differential equation of
the plate problem has the form:

s - 2o
i =8 (4.6)

Applying the transformation (2.4) to the function W we find at the same
time q;(r, ) for the auxiliary system J, in which the basic equation can be
written as:

') The discontinuity of @p and @, when passing from values A >r to values h<r,
is caused by the discontinuous change of orientation of the coordinate system (R, @).



408 W. Olszak and Z. Mré6z

Ww=%. (4.6a)

The deflections W and w can be represented as a sum of integrals of the
biharmonic equation and of particular integrals, that is:

w = wy+wyg (4.7)
where Piw, = 0, Viw,, = %, (4.7a)
and - ]:22 1]:221011 W, (4.8)
where PiW, =0, FiW,, = % (4.8a)
Since

-
we, therefore, obtain
B _1 (0 (4.9)

%= 78 % = i3 (r2+2hrcos @+ h2)3

5. The Case pt W =0

The deflection of the plate is expressed by a biharmonic function in the
system O and in the system J as well.

The general integral of the biharmonic equation can be expressed in the
form: |

w=f, (2)+f, &)+ (@ +y?) [f5(2) + /1 (B)],

where f, (k=1,2,3,4) are symbols of harmonic functions, i:_ ”;'_Hy} being
conjugate complex variables.

The character of the geometrical form of the systems considered implies
the necessity of using polar coordinates (r,¢). Any function satisfying the
biharmonic eq. (4.7a) can be represented in the form

w = f5+72f67

where f; and f; are (plane) harmonic functions. Thus, w will be obtained as
- the sum of particular integrals: '
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W= W+ W, ; W, = ay+byInr+cyr2+dyr2lnr +
+(a,r+b,7r3+c,;r1+dyrinr)cosep+

+ 22 (@, r"+b,r"t2+c, r"+d,r"*t2)cosn e,

n=

(5.1)

Wy = (aly+b_1r3+61r‘1+Jlrlnr)sin(p+
+ 2 (%T"+5n7‘"+2+5n7—"+JnT_"+2)Sinn¢-
2 _

n=

The asymmetric function, w,,, will appear in that case only when the
external load is not symmetric with respect to the axis @ =0 (or ¢=0).

The moments M,, M ,, and M,, in the system J will be determined by
using the eqs. (3.2) and the moments My, Mg, and M e in the system O by
using the eqs. (4.4). We assume that A=k=1, which by no means restricts
the generality of the treatment and is equivalent to an appropriate choice
of the unit of length. |

For the symmetric terms of the function w we have:

a) in the inverted system:
M, = —D{[—byr—2(1—v)+2¢4(1+v) +2dyInr (1 +v) +do (3+v)] +
+[2b;7(B+v)+2¢;r3(1—v)+d;r 1 (1+v)]cosp+
+ 3 nn—1)(1—v)a, "2+ [n?(1—v)+n(3+v)+2 (L +)]b, 7"+
+:L?nz+1)(l—v)cnr'"‘2+[n2(1—v)—n(3+v)+2(1+v)]dnr—"}cosn<p};
M, = —D{[bor2(1—v)+2¢o(1+v)+2dyInr (1 +v)+do (1+3v)]+
+[2b;7(14+3v)—2¢,r3(1—v)+dyr 1 (14+v)]cosp+ (5.2)
+ iz{—n(n—1)(1—v)anr"—2+[—n2(1—v)—l—n(1+3v)+(2+v)]bnr"+
—-:L(n+l)(1—v)cn7*‘"*2+[——n2(1—v)—n(1+3v)+2(1+v)]dnr—n}cosn?p};
M,,=—-DA—v){(—2byr+2¢c;r3—dyr')sing+
+ c}2012[—77,(71——1)61&,27""“’2—77,(7?,+1)!’7,ﬂ’"+
+Z(n+l)cnr"“2+n(n-—l)dnr—"]sinn:p};
b) in the original system:
My =—D[(agog+byBo+CoyotBoSg+ara” +b,B:" +cry)" +d,18,")+

x ’ 14
+ Z (an—l Xp—1 T @y oy + Ay g X1+
n=1

+ bn—l lgn-—l +bn lgn + bn+1 Ign-l-l + (5'3)
+ €1 Y1+ €0 Vn+ Cop1 Yns1 +
+ dn—l 8;—1 + dn Sn + dn+1 8';:4-1) cosn ‘P] .
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The values of the coefficients appearing in the series (5.3) are:
for n=0: |
2 = 2(1+v), By =2Inr(14+v)—(3+v)—r2(1—-v),
Yo = 2(1+4v), 8 =2Inr(1+v)+r2(1—v)+3+v (5.3a)
" =—2(1+v), B,/=2r2(1-v), y,"=2r2(1-v), 8,"=—-2Inr(l1+v);

forn=1:
oy =0, By = —4r1, vo =0,
o0, =0, By =2r3(1—v)+2r(3+v), y; =2r13B+v)+2r3(1—-v),
o =—2(1+3v)r, By =6(1—v)r3, ve = 6(1—v)r1,
5, = 4, (5.3b)
6, = —r(1+v)+r1(l+v),
8, = —2(1+3v)r;
for n=2:

o _1=(m—1)(n—=2)(1—v)r*2, B, =(m—1)[n1-v)+2(1+v)]r",

Yoa=m—=1) [0 (1L=v)+2(1+)]r ™2 &, =(n—1)(n-2)(1-v)r™,

«, =m-1Dn1-v)—2(1+v)]r*"+nn—1)1—-v)r"2

B, =nr+1)1—v)r"24+n+1)[n(l—-v)+2(1+v)]r",

Yo = @+D)nA-v)+2(1+v)]lr"+nn+1)(1—v)rm-2

S, nn—1)(1—v)r"24+m—-1)[n(l—-v)—2(1+v)]r ™, (5.3¢)

@ = (1) [0 (1=v) =2 (L+¥)]r,

Briy= (n+1)(n+2) (1 —v)rme,
)
)

I

Ynsr = (0 +1)(n+2)(1—v)r=m,

pir= (m+1)[n(1—v)=2(1+v)]rm+2,

Mep=—D[(agly+bymg+cobot+doro+ar {;" +bym" +¢1 6" +dyiy")+

+ X (@bt 0 Lt G bt b bt by i+ (5.4)

n=
+Cp f’:b—l +cy fn T Cpt1 ‘f’:’b-l'l + dn—-l K;L—l + dn Ky + dn+1 K;;-H) cos nq)]'
The values of the coefficients appearing in the series (5.4) are now equal to:

for n=0:
o = 2(1+4v), mo =2Inr(1+v)—(1+3v)+r2(1—-v),
&0 = 2(1+v), kg =2Inr(1+v)+(1+3v)—r2(1—-v), (5.44a)

;" =-2(1+v), n"=-2r2(1-v), &"'=—-2r2(1—-v), k'"=-2Inr(1+v)



Thé Method of Inversion in the Theory of Plates 411

for n=1:

L' =0, my'=—4vrl, £'=0, k/=4vr,

G =0, m=—281—v)+2r(1+3v), &=2r1(1+3v)—2r3(1—v),
=—r(l+v)+r1(1+v),

L' =—203+v)r, my'=—6(1—v)rd, &"=—6(1—v)rl, x'=—2(3+v)r,

(5.4b)

for n = 2:

Lioi=—(—=1)(n—=2)(1=v)r"2, 5, ;= —(n—1)[n(l—v)=2(1+y)]r",

’

£ =—n-1n1=—v)=2(14+v)]r"2 «,_,=—(n—-1)n-2)1-v)rm,

o =—(—1)[n(l=y)=2(1+v)]r—n(n+1)(1-v)r 2,

kK, =-—-nn—1)1—=v)r*P2—n-1)[n(1-v)+2(1+v)]r 7, (5.4c¢)
Ny =-—-nn+1)1—v)r*2—(n+1)[n(l~-v)—2(1+v)]r*,

(&, =—-m+)[n—v)=21+v)]r"—n(n+1)(1—v)r "2

Gr=—m+D)[n1—v)+2(0+v)]r", 7, =—(r+1)(n+2)(1—v)r+2

”

bpp1=—(+1)(+2)A1=9)r ™ sy = —(+1) (n(1=v)+2(1+v)]r"F2

The moment M 4 can be represented in a s1mp1er form without havmg
recourse to Fourier series:

Mpp=—D(1—v){—2bsine (r3+2r2cosp+r)-2¢,sinp(—r1-2r-2cosp—r—3)-
—d;singp(r+2cosp+r1)+

+ Z sinne[—a,n(n—1)@"+2r"1cosp+r"-2)—

(5.5)
+c,n(n+1)(r"+2r " lcosp+r"2)+

) (r

~b,n(n+1) (2427 cosp +1r") +
)

+d,n(n—1)

( —n+2 + 2 ¢—n+1 CcoS @ + r,'n :l}.

For the asymmetric function w,, the moments M,, M s ng can be
obtained by replacing cos¢ and cosne in eq. (5.2) by sing and sinn ¢,
respectively, and vice versa, taking M,, with the opposite sign.

On the other hand, we have for the asymmetric statical quantities M,
My, Mpo:

MR =—-D Z [(an—lan“l+anan+dn+lan+1+

+zn—15n—1 + Bnlgn +5n+18n+1 + (56)
+En 1')7n 1+6n'}7n+6n+1'}7n+1+

+d,  Sn 1 +d, S, +d,,18,11)sinng].

For this case the values of the coefficients are:
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for n=1:
@, =0, Bol =0, 7o =0,
@, =0, By =2r3(1—v)+2r(3+v), y, =2r1(3+v)+2r3(1—v),
% =—2(1+3v)r, By =6(1—v)rd, 7y = 6(1—v)r i,
5, = 0, (5.6a)
8, = —r(1+v)+r1(1+v),
8y = —2(1+3v)r;

for n = 2 all coefficients are expressed by the relations already derived in (5.6).

x =/

M(D =—D Z [(ﬁn——l Z;—1+a/nzn+an+1gn+l+

n=1
+b—n——1 'F)n-l +l_)n ﬁn+5n+1 ﬁn+1 + (5'7)
+6n—1 ‘:E’n—l +En En +6'n+1 gn+1 +

+d_n_1 En—l +d_,n En +d_n+1 ET’H—I) Sinn(P].

For n=1:
Zo’ = 0, "70' = 0,
Z, =0, 7 =—2r3(1—v)+27(1+3v),
0"=—23+v)r, 7' =-6(1-v)rd
é—:o, _o, z =0, (5.7a)
E =2 1(143v)—2r3(1—v), & =—r(1+v)+ri(1+v),
& =—6(1—v)r, ' 7y = —2(3+v)r.

Whereas for n = 2 all coefficients are given by relations as represented in (5.4c).
The moment M 5 is given by (5.5) when sing and sinng are replaced
by cose and cosng, respectively, and changing the sign.
The expressions for the shearing forces in the system O are not derived
here, their form being somewhat cumbersome.

6. Circular Plate with an Eccentric Hole

The problem of a circular plate with an eccentric hole has, so far, only
been solved for the case where both edges are clamped. The solution of this
case, using a curvilinear system of coordinates, is to be found in the book by
YA.S.UrLAND [11], some particular cases being treated by N. W. KubpRIAVTZEV
[9], S.WoiNnowsKY-KRIEGER [12] and CHIN-Bing Ling [10]. In the present
paper different cases of loads on such a plate will be considered for a wider
class of problems, assuming one edge to be clamped and the other simply
supported. Reference to the solutions of those cases which were treated by
the above mentioned authors will allow a comparison to be made between
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the method of inversion and the approach to the problem by the use of curvi-
linear coordinates.

A plate with an eccentric hole can be characterized by two dimensionless
parameters:

p = Elg (0<p=<1)  (the ratio of radii),

{ = (o=sis1) (the eccentricity).

In addition, one of the absolute dimensions of the plate should be given.
Since (according to the assumption) =%k, the value of k can be determined,
starting from the absolute dimensions g,¢,d of the plate, provided that the
eccentric plate will map, after transformation, on a concentric annulus in the
system J:

Bi,  K(,+?)

=T Gerep—d

Dividing the linear dimensions by k£ we obtain the dimensionless qualities
e,c,d equivalent to the assumption of k=1.

The concentric annulus into which the primary eccentric system is mapped,
is determined by the two radii: interior @ and exterior b, which can be obtained
from the data characterizing the eccentric system, using the relations:

0-system
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azl_..l_[(1+p)—§2(l~p)—l/§],
2p-¢ (6.1)
b :%21[(1+p)—C2(I—P)~V§Z]a
where St = (1+L+m) (1+L~n) (1=L+n) (L~L =),
n=Vp(L-1).

It can easily be seen that, after the transformation of inversion, a clamped
edge in one system corresponds to a clamped edge in the other system. This
follows from the following simple relations. For example, in the system J,

let w=0 and aa—?: 0, for r=b.

In the system O we have, for r=50

W = R2w =0,
1

oW 9(;1?w)rz _dw_2(r+cosg) o

oR ~  or ' 0or 7,2 -

In the case of a simply supported plate, however, we have, for instance,
for r=b, when reasoning in an analogous manner,

oW  ow
w = 0, W = 0; E) AT

This means that a simply supported edge in one system transforms into a
simply supported edge in the other system, the deflection angles being, at
corresponding points, the same.

Let us now pass to the general solution for a given load and given boundary
conditions. The particular integral w;; (in the system J) of the biharmonic
equation can be expressed in the coordinates (r,¢) and represented in the
form of a Fourier series:

w; = L, (r)+nZIKn (r)sinn e+ Zan (rycosme. (6.2)
= n =

The integral of the biharmonic equation w; can be assumed according to the
expression (5.1).

Thus, the deflection of the plate will be represented in the form of a sum
of two Fourier series

w = wy (r,p) +wyy (r, ). (6.3)

Let us consider two cases of edge support.
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A. Both edges clamped

In this case the boundary conditions (for » =a and r=»5) will be written:

w = w1+wII = O,

dw odwp 0wy (6.4)

or  Or or 0.

Substituting here the expressions (5.1) and (6.2) we obtain, for every =, four
equations for the coefficients of cosng and sinn¢. The equations are:

For n=0:

%+200b+d0(2lnb+l)b = — Ly (b),

(6.5a)
ay+byIna+cya+dyatlna = — Ly(a),
%+260a+d0(2lna+ l)a = — Ly (a).

For n=1:
a,; b+ b, 03+¢;b71+d,bInb = — L, (b),
a, +3b;0%2+¢c;b2+d,(Inb+1)= — L, (b),
a,a+ byad+ca+dyalna = — L (a), (6.5b)
a, +3ba?—c,a2+d,(Ina+1)=— L, (a).
Forn>2:
a,b”+b,b"2+c, b~"+d, b—"t2 = — L, (b),
na,b" "+ (n+2)b, b —ne, bt —(n—2)d, b=+ = — L, (b),
a,a"+b,a"?+c,a"+d, a "2 =—L,(a), (6.5¢)
na,a" '+ (n+2)b,a"tt—nc,a "1 - (n—-2)d,a "=~ L, (a).

The values of the coefficients @,,, b,, ¢,, d, for n=1 and n=2 will be
obtained from the relations analogous to the above equations, replacing the
coefficients L; and L, by K; and K, , respectively.

If, therefore, for a given load, the deflection w;; can be expressed in the
form (6.2), the problem of the plate clamped along both edges is solved.

B. The case of one (e.g. exterior) edge clamped, the other (interior) being simply
supported

The boundary conditions can be written as:
ow
or

for r=a w =0, My =0.

0 (6.6)
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We see that the first three conditions are identical with those in the preceding
case, the 3 constants ¢, , b, , ¢, can be therefore determined for each n expressed
as a function of the fourth d,. We can write:

A, = An’ +An”dn>
b, = w, tw,"d,, (6.7)
Cn = an +Xn”dn'
We can determine the coefficients A,, w,, x,, from the three first equa-
tions of (6.5a), (6.5b), (6.5¢).
The condition M =0 can be written as follows (we confine our conside-

rations to deflections determined by a symmetrie function w,; for an asym-
metric function analogous results can be obtained):

For n=0:

Agog+byBo+Coyotdodytayy” +b, 8" +e vy +dy 8" =+ M,. (6.8)
Forn=>1: .
Ay @y g+ 0y 1 By1 FCu1 V1 + 18,1+

+a,o0,+b,8,+c,y,+d,0,+ (6.9)
F @1 %1 b Bt F Cni1 Vg1 T ni18p = + M,
Here M,, M, denote the Fourier coefficients for a moment calculated from
Wyg-

Substituting the relations (6.7) in (6.8) and (6.9) we obtain the following
system of equations with the unknown coefficients d,,d,,d,,....d

sy e o
$o°do + 8o dy = P,
810d0+811d1+812d2=P1,

n—1 n n+1 —
s td, y+spd, +sp 7 d, =P,

where

I

=y A B @n 1 Vi1 X1+ 001
7B+ 3”45
%1 A0 11 Bt 1 Pt 1 F Va1 Xms1 F 00115
n = (1 A F B 1 @ F Vg Xn1 oA+ B @,
+ ¥ Xn %1 A1 F Bt D1+ Vnr1 Xnr1 — M),
Py = —(ogAy' +Bowy +7ox0 + 1" A +B1" w1 +y1" x1" — My).

I

+
[u

I

@ »n @»

hU?:::SSS:

(6.10a)

If the characteristic determinant of the system satisfies the Koch con-

ditions (the necessary condition in our case being that > [s{—1| and 2. P

1=0 t=0
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be bounded) we can determine the values of the roots in an approximate
manner by ‘“‘cutting’’ from the infinite system of equations a determinant of
the order n and calculating the unknowns to the n-th order inclusively.

Let us now consider some different cases of loading.

1. For a circular plate, with an eccentric hole, clamped along both edges
direct solutions can be found for those types of loads which, after transfor-
mation, lead, in the system J, to cases already known, for which the function
w can, therefore, be written directly.

Let us assume, as an example, the following type of loading of the plate
in the system O

Go = Igﬁ g(r®+2rcosp+1)3 (9 = const.). (6.11)

Then, in the system J we obtain:

g;=q = const., (6.12)
and the function w takes the well-known form:
qrt
w=a0+bolnr+corz+d0r2lnr+64D. (6.13)

The fulfilment of the boundary conditions leads to the coefficients given
by the eqs. (6.5a), where
qrt
64D

Ly =

After transformation into the system O we have

1
= R2w = . 6.14
W= Eiw r2+2rcos¢+1w (6.14)

A. E. H. Love [6] proceeds in an analogous manner, mapping a plate
loaded by a concentrated force at its centre into a plate loaded by an eccen-
tric force.

2. As the next example let us consider a plate mapping into a concentric
plate in the system J, clamped at the exterior edge and simply supported on
the interior edge and loaded by constant moments M,=M along the latter.

Taking the function w in the form

w = ay+bylnr+cyr2+dyr2inr, (6.15)

the constants a,, by, ¢y, d, can be found from the egs. (6.5a) and from the
condition:

M,=—-D[-byja?(1—v)+2cy(1+v)+dy(2Ina+2Inav+3+v)] =M

In the system O the eccentric plate will have the edges supported in the
same manner, the moments along the interior edge being: :
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Mp=—-D{2ay(1+v)+bo[2Inr(1+v)—(B4+v)—r2(1—v)]+
+2¢o(1+v)+do2Inr(1+v)+7r2(1—v)+(3+v)]+ (6.16)
+ ( —;b(,+4rd0) cos p}.

3. Consider a plate with an eccentric hole, subjected to a constant load 9o-
The function W;; in the system O can be assumed in the form:

_ 9 R14.

Wi =i (6.17)
it obviously satisfies (in the system (R,®)) the condition:
V4 WII = % .
Transforming this into the system (r, ) we obtain:
2
wy =r?Wy = B f”_ o . (6.18)

T 64D ~ 64D r24+2rcosp+1’

The expression (6.16) can be represented in the form of a Fourier series

wr = Lo+ > L,cosne, (6.19a)
n=1
where
1 1
L°=k1—72 L°=kr2—l
9 for r<1 5 7 for r>1 (6.19b)
r’ﬂ
L= (=1"k 5 Ly=(=1km—g
64D

Substituting the coefficients L,, L, obtained (for » <1) in the expressions
(6.5a) and the following, we have definitely determined the function w;. Thus,
our problem is solved. ' ‘

The special case of a=0 will furnish the solution for a plate without a
hole clamped along the exterior edge and at one additional point.

4. A circular plate with an eccentric hole loaded by a concentrated force
at any point.

In the case of a concentrated force the deflection surface of the plate can
be represented in the form of a biharmonic function containing a singular

term Wp:
W=WI+WP, V4W=O.

Let us assume that the plate is loaded by a concentrated force P at the point
Sy. The term W, in the system O can be assumed in the form:
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8= DF (6.20)
= ooy [Ry?—2 By 8y 008 (B; ~ D)) + 821 In [Ry? 2 By 8 008 (B; ~ By) + 557,

where p, denotes the distance of the point of application of the force from the
point considered 7', (fig. 5).
Transforming the function W, we obtain in the system J

o — P8
167D

P,
= wapzzlnpz-*-lll(’r, ‘P):

[r2+ 52 —27rscos(p—qg)]In[r2+s2—2rscos (p—qy)l+¢(re)
(6.21)

where i (r,p) is a biharmonic function (having no singularity) in the domain
~ of the plate.

We see that the concentrated force P at the point S, in the system O
corresponds to the concentrated force P S;% at the point §; in the auxiliary
system oJ.

The expression (6.21) can be represented, after rejecting the function
Y (r, p), in the form of a Fourier series

wy (r,p) = Ly+ ) L,cosne+ ) K,sinne. (6.22)
n=1 n=1

Fig. 5
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The values of the coefficients are:

for 7
| P =;<1
Ly=FEk[2Ins(r2+s?)+ 27,

L, = k( +4rslns+2rs) COS @g ,

3
K1=—k(%+4rslns+2rs)sinqo0, (6.22b)

L, =k[rs(M, ,+M, ;)—(r*+s?) M,]cosne,,

Kn = k[TS(Mn+1+Mn—1)_(7'2+82) Mn]Sinn(PO’

For p =7 < 1, on the other hand, we obtain M 6 = 2 (s ", All the re-
S n n \r

maining quantities will be obtained replacing » by s and vice versa.

The solution for this case represents Green’s function for the plate con-
sidered.

5. A semi-infinite plate with a circular hole. This problem is contained in
the foregoing and constitutes its limit case. Indeed, if we choose the centre
of inversion so that

h=b=1,

the circle of radius r =56 in the system J will map into a straight line in the
system O. A semi-infinite plate with a circular hole maps, therefore, into a
concentric plate in the system J.

The case of such a plate subjected to a concentrated force at any point
can be solved by substituting b=1 in the eqs. (6.5a) and the following.

Thus, Green’s function is also found for this case.

However, we cannot pass to this limit in the case of a uniformly distributed
load ¢, = const., for the coefficients of the Fourier series given in (6. 19b)
tend to mﬁmty, although the function w;;, determined by the eqs. (6.18), i
bounded for every ¢, except ¢ =.

Final Remarks

It is obvious that the above examples do not cover the whole class of
problems that can be solved by using the method of inversion. As an example,
plates mapping into rectangles, wedges or circular sectors in the system J
should be mentioned. It was found that many problems which can be de-
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scribed in bipolar coordinates can be generalized to new problems, not yet
known, by transforming known solutions and adapting them to new systems
obtained from the first by the inversion method.

The advantage of this method is the possibility of obtaining a simple
physical interpretation concerning the relations between the two corres-
ponding systems (which leads, for instance, to the possibility of direct trans-
formation of trajectories of principal moments from one system to the other).
In addition, there is a possibility of easy determination of particular integrals
W, in problems connected with concrete systems of loads, the auxiliary
system adopted of coordinates being a polar reference system. The facility of
establishing the commonly encountered boundary conditions should be
stressed.

Some other problems, for which solutions have been found by applying the
method of inversion will be discussed separately. Such solutions refer, for
instance, to the infinite plate with two circular holes and loaded by an isolated
force.

Finally, using the same method, we shall investigate problems of the ulti-
mate load-carrying capacity of plates of eccentric shapes considered in the
present paper. These limit analysis problems will be treated as problems of
limit equilibrium of the theory of plasticity, with the introduction of a suitably
formulated yield criterion.
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Summary

In this paper the application of the method of inversion to the theory of
plates is considered. This method is based on the following two operations:

1. The transformation of inversion of the plate; the plane of the complex
variable is assumed to coincide with the middle plane of the plate; two
corresponding systems, the original system O, and the inverted system ./,
are thus obtained.

2. The determination of correspondence between the functions W and w
representing the deflections of the plates in the two systems mentioned
above.

This correspondence between the functions W and w is assumed to be
analogous to that between the stress functions in the inversion method as
applied to plane problems of the theory of elasticity. The “‘generalized inver-
sion’’, introduced by one of the authors in 1934 and 1935, is used. The relations
between the fields of the bending and twisting moments in the two systems
are derived. These exhibit close analogy with the relations of the plane pro-
blems. (This concerns, in particular, e.g., the trajectories of the principal
moments etc.) This analogy ceases, however, to be valid if the boundary con-
ditions are considered.

Next, some examples are presented. Solutions for a plate with a circular
eccentric hole are derived for different loads and different boundary conditions
(clamped or simply supported at the edges). The possibility of transition to
limit cases is indicated (e.g. to the case of a semi-infinite plate with a circular
hole, etc.).

The paper is intended to constitute a basis for further investigations con-
cerning the ultimate load-carrying capacity of such plates examined as a
problem of the theory of plasticity.

Résumé

Le présent mémoire est consacré a 1’application de la méthode d’inversion
a la théorie des plaques. Cette méthode est basée sur deux opérations fonda-
mentales:

1. La représentation de la plaque par inversion, le plan moyen de la plaque
étant choisi comme plan de la variable complexe; on obtient ainsi deux
systemes correspondants: le systéme original O et le systéme inversé J.

2. La détermination de la correspondance entre les fonctions W et w expri-
mant la fleche de la plaque dans les deux systémes.
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La correspondance entre les fonctions W et w est introduite en analogie
a celle entre les fonctions de tension dans la méthode d’inversion pour les
problémes plans de la théorie de 1’élasticité. On part des relations de base
établies, pour le cas de ,l’'inversion généralisée’’, par un des auteurs en 1934
et 1935. On deduit les relations entre les champs de moments de flexion et de
torsion dans les deux systémes en mettant en evidence une étroite analogie
avec les relations dans les problémes bidimensionnels. (Ceci concerne, en
particulier, p.e. les trajectoires des moments principaux, etc.). Toutefois cette
analogie n’est plus valable lorsqu’on passe aux problémes aux limites.

On considére ensuite plusieurs exemples en présentant quelques solutions
pour une plaque circulaire percée d’un trou excentré pour différentes charges
et différentes conditions aux limites (plaque encastrée ou simplement appuyée
sur son contour). On indique la possibilité de passage aux cas limites (p.e.,
pour une plaque semi-indéfinie percée d’un trou circulaire, etc).

Le présent travail constitue une base pour des recherches concernant la
capacité portante (la charge limite) de telles plaques traitée comme probléeme
de la théorie de la plasticité.

Zusammenfassung

Die Arbeit behandelt die Anwendung der Inversionsmethode in der Plat-
tentheorie. Diese Methode besteht aus zwei grundlegenden Operationen:

1. Einer geometrischen Inversionsabbildung der Platte, wobei die Ebene der
komplexen Verdnderlichen mit der Mittelfliche der Platte zusammenfillt;
auf diese Art erhdlt man zwei einander zugeordnete Systeme: das Original-
system O und das invertierte System .J.

2. Einer gegenseitigen Zuordnung (in den beiden Systemen) der Funktionen
W und w, die die Durchbiegung der Platte darstellen.

Diese gegenseitige Zuordnung der Funktionen W und w wurde in analoger
Art wie die gegenseitige Zuordnung der Spannungsfunktionen bei Anwendung
der Inversionsmethode in der Theorie der zweidimensionalen Probleme der
Elastizitdtstheorie vorgenommen.

Es wird hierbei von den Zusammenhingen der ,,verallgemeinerten Inver-
sion* (angegeben von einem der Verfasser 1934 und 1935) Gebrauch gemacht.

Es werden die Zusammenhénge, welche zwischen den Feldern der Biege-
und der Drillmomente in den beiden Systemen bestehen, abgeleitet. Diese
sind durch eine weitgehende Analogie mit Zusammenhingen, die fiir zwei-
dimensionale Probleme charakteristisch sind, gekennzeichnet. (Dies betrifft
insbesondere z. B. die Trajektorien der Hauptmomente usw.) Diese Analogie
bricht jedoch beim Ubergang zu den Randbedingungen ab.
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Weiterhin wurden einige Beispiele behandelt. Es wurden die Losungen fiir -
eine Kreisplatte mit einer exzentrischen Offnung, beim Auftreten von ver-
schiedenen Typen von Belastungen, angegeben. Es werden dabei Platten mit
verschiedenen Randbedingungen untersucht (Rédnder eingespannt, Rénder
frei gestiitzt). Es wurde auf Moglichkeiten betreffend den Ubergang zu Grenz-
fallen hingewiesen (Platte in Gestalt einer Halbebene mit kreisférmigem Aus-
schnitt usw.).

Die Arbeit wird als Grundlage fiir weitere Untersuchungen iiber die Grenz-
tragfihigkeit derartiger Gebilde, die als Probleme der Plastizitédtstheorie be-
handelt werden, betrachtet.
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