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The State of Stress in a Thin Plate Due to the Action of Sources of Heat
L’état de tension dans les plaques, causé par Uaction des sources de chaleur

Spannungszustinde, hervorgerufen in Scheiben infolge von Wdrmequellen

Prof. Dr. WitorL.p Nowacki, Warszawa

1.

It is known that the displacement equations of the theory of elasticity
for a plane state of stress and a steady temperature field can be represented?),
by the differential equation

72p2d = (1+1)a V2T, (1.1)

where @ is the so-called thermal potential of displacement, 7' (z,y) the tem-
perature, v Poisson’s ratio and « the coefficient of thermal expansion.

The temperature distribution in the plate is described by the differential
equation

/4
am T
PRr = (1.2)
W being the intensity of the source, k the coefficient of thermal conduc-
tivity and 2 the thickness of the plate.

The eqs. (1.1) and (1.2) can be replaced by the single equation

(l+v)a W
epep = — LT/
V2p2o = A

(1.3)
The boundary conditions of the problem are as follows. The temperature

at the edge is constant. We can assume, without limiting the generality, that
T =0 at the edge. It follows that ’2® =0 at the edge. The stresses due to the
temperature field are related to the function @ by the following equations, [1]:
2P _ 2D _ a PP

o =‘—2 — = — —_ = .
o, G@yz : a, 2G3x2 " Tey = 2 oy

(1.4)

1) E. MevLAN, H. PArcus: Wirmespannungen stationdrer Temperaturfelder, Wien
1953.
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The second condition is that of the vanishing of the normal or shear stresses
at the edge. Assuming @ =0 the vanishing stresses will be the normal stresses.
In order to eliminate the shear stresses at the edge the stresses

- ®F - #F - __ &F 1.5}
Og = 8y2, Oy = 8132’ 'Txy— 8%8?/’ C
must be added to (1.4).
The function F should satisfy the differential equation
V2p2F = 0. (1.6)

Solving the eq. (1.5) we assume that the normal stresses vanish at the
edge and the shear stresses satisfy the boundary condition 7,,= —7,,.
The stresses due to the action of the heat are determined by the equations

0, =0,+0,, cry=0'y+ay, Ty

= Ty Ty (1.7)
It should be noted that the differential eq. (1.3) with the boundary con-
ditions @ =0, "'2P =0 is analogous to the differential equation of the deflection

surface of a simply supported plate. We have

Q
Viriw = g (1.8)
the boundary conditions being w=0, 2w =0.

In the eq. (1.3) W denotes the intensity of the source of heat, and it should
therefore be considered as a function equal to zero outside the neighbourhood
of the source. The function ¢ in the eq. (1.8) should have an analogous cha-
racter. It should be regarded as the intensity of the external load of a plate,
equal to zero outside the neighbourhood of the point being considered. ¢ can
therefore be treated as a concentrated force.

In this paper the analogy between the eqs. (1.3) and (1.8) is used. The
determination of the function @ will be based on the known results of the
theory of bending of plates. The principal problem will be that of determining
the stress function F.

We shall confine our considerations to the state of stress due to the action
of heat sources in an infinite and a semi-infinite strip of plate and in rectan-
gular plate.

2. A Strip of Plate of Infinite Length

Let us consider a strip of plate of infinite length and of breadth a, having
a source of heat located at the point (¢, 0). This strip will be replaced by a
strip of plate of breadth a, simply supported at the edges and loaded with a
concentrated force ¢ at the point (£, 0). The deflection of the plate is ex-
pressed ?), by the equation:

?) K. GirekmaNN: Flichentragwerke, Wien 1954, p. 179.



The State of Stress in a Thin Plate Due to the Action of Sources of Heat 375

. ‘2Q iy . OocosByd,B
_aﬂNnZ:ISlnanSSIHanJ‘(—anz—_}_—B—z)—z, (2.1)
0

where «, =n=/a and N is the flexural rigidity of the plate.

Y<

\ L8
Fig. 1

From the analogy between the differential eq. (1.3) and (1.8) and from
similar boundary conditions it follows that

D =— 2K sinanfsinanxfw (2.2)
0

amh (o0, % + B2)E °

n=1

where _(I+v)aW
.K - —-I{—_n

Using the egs. (1.4) and bearing in mind that the expression (2.2) can be
represented by the series
Ka? ' eV

@-———m T(I—Fany)sinanfsinanx for y=0 (2.3)

2 > —an?/

596:*2@2% = f}? (1—a,y)sinea, £sina, x,
2D 7 e —

&y = ~2(¥5;2_ = K}? Z (14 a,y)sinea, £sina, x, (2.4)
20 -

Ty = 2G8x8y }?Z e~n¥Ysina, £ cos o, .

The eqs. (2.4) are valid for y = 0.
The series in the eqs. (2.4) being slowly convergent and for y=0, x=¢
divergent, it will be convenient to represent them in closed forms

K@ 3 _ KG' 8 KG o

Oy = =3

Tay h “ox’
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where
1 e %Y

sine, ésina, x,

(2.5)

cosh%g—cos% (®+§)

It is evident that the stresses ¢,, 6,, 7,, vanish at the edge and that all
stresses vanish for y — co. In the neighbourhood of the source the stresses
tend to infinity in a logarithmic manner.

For subsequent considerations it will be convenient to represent the
stresses 7,, in the form

ry = LEO Bsmﬁy ( Y m“"si?f;?;“””)dﬂ (2.6)

T
=1

following directly from the eq. (2.2).
Bearing in mind that

(s ]

e = TmEn),
me 2.7
5 o, (—1)*sine,§ ad (=7
L e = amER)
where
BésinhAcoshB(a—¢)—Asinh B¢
m(&F) = A2sinh? A ’
BésinhAcoshB € —~ )\cosh)\smhﬁf (2.7')
(6, B) = A2sinh? A
A =Ba,
we have ,
KGa? .
oo = S [ B (€. B sinBy d.
0 (2.8)

KOL [pmepsinpyde.
0

'rxy!x=a =

The source of heat at the point (£, 0) can be replaced by two sources sym-
metrical or anti-symmetrical in relation to the y'-axis (fig. 2).

For two symmetrlcal sources of intensity W/2 (fig. 2a) we have in the
system of coordinates z’, y’:

Wyl o =508 f/s |2(5+8) + s (5~ .8) | sinp ag,
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or
f;s,)y,]x,=% = Igf;:z fﬁp‘s’(#,f')sinﬁy'dﬁ, (2.8)
where ’
6O (, &) = B ¢ cosh sml;ﬁef(;ShéL :inh,u cosh B ¢’ ,

For anti-symmetrical sources of intensity W/2 (fig. 2b) we have

—(‘}), , a=KGa2 . ,
#o e = KL ,jﬁ[nz( +£.8) —m (3~ £.8) | sinpy ap.
or
_:(I:a;/‘ =§=KGG, J‘Bp(a)('ug SlIlBy dﬁ (2.8,’)
where
@ (&) = B € sinh ucoshB ¢’ pcoshpsmhﬁg

p2sinh? p

Let us consider first the case of a symmetrical system of heat sources. In
order to eliminate the shear stresses 7, on the lines ' = +a/2 we should

choose a state of stress 5, 3!, 7). such that the following equation is satis-
fied

Fep2 Fe = 0 (2.9)
together with the boundary conditions

| |2
T e,

- >’ <
inl E’ : Flg 2a
2

w
2
Y, x!
4
| ]-# :
7 £ 9 ¢/
+—l > Fig. 2b
2 £
2
w
2
Y x'
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ot F® 0 =(s) __ 02 F® _ —(s’) )

for 2’ =+-. (2.10)

O = = Ty = — 7 = T

o R

In view of the symmetry of the sources in relation to the y’-axis we can con-
fine our considerations to the edge ' =a/2. The function F® will be assumed

in the form

ee]

F® = % fﬁlz(A(S)coshﬁx’+B<S>[3x’sinh,8x’) cosBy'dp. (2.11)

From the boundary conditions (2.10) we obtain

A®coshu+ B®usinhp = 0,

K G a?

(A®+ B®)sinh p+ B® pcosh u = ~Bp® (1, &)

8

Hence
K Ga p?sinh u p® (u, £)

A® = — _ ,
47 coshusinhp+pu
BO — _ cosh u e
- psinhp

Let us determine the stresses from the eqgs. (1.5)

[¢e]

3 KGa g (€ ) ,u,sinh/ucosh,Bx'—‘Bx’sinhﬁ’x'cosh,u .
4mh ’ cosh usinh p+ p
0
-cosBy'dp,
=(s) _ KGa 0 p® (€ ) (p,sinh,u——Qcosh,u)cosh.,Bx'——Bx'sinhﬁx’coshg .
Y 47h ’ cosh usinh p + p
0
-cos By’ dp, (2.12)
=g KGa 3 (wsinh p — cosh w) sinh B’ — B 2’ cosh B’ cosh
) _ ©® (& M s F |
Ty 4mh f,up (f,,u,)li cosh psinh p+p
0
-sinBy'dp.

Let us consider the case of sources of intensity W /2, which are anti-symme-
trical in relation to the y’-axis.
In order to eliminate the shear stresses on the lines "= +a/2 we choose
the stresses 5%, 5\, 7). so that the differential equation
Ver2Fe =0 (2.13)
is satisfied together with the boundary conditions

w)  EF@ _ 2FO
o = =0 @, - =79, for x=+

= 3?//2 s Ty —W = 'y (2'14’)

[\CTIRNY
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The function F@ will be assumed in the form

o]

F@ = %f%‘a(A(“)sinhﬁ’x’+B(“)Bx’ sinhBz’)cosBy’ dB. (2.15)

0
From the conditions (2.14) we obtain the system of two equations

A@ginh p+ B@pcoshpu = 0,

2
(A®@+ B@) cosh u+ B psinh . = Kgia Bp® (1, &),

from which we have

A@ — _ KGa ’sz(a). (1 €) B — _A(a)_SiihL.
47 coshusinh p—p’ w cosh u
From the eqs. (1.5) we find the stresses
= KGa ] wcosh usinh B’ —sinh u B’ cosh B’
, = (@) 4 .
T axh JHP 1 &) [ coshpusinhp —p
0

-cosBy'df,
KGa 3 , coshu — 2sinh p)sinh B2’ — B a2’ cosh Bz’ sinh
f 1 p® (, £) [(p« 2 p)sinh Bz’ — B B u] _

Qll
I
l

v 47h coshpusinhp—p
‘ .cos By’ dB, (2.16)
- KGa 3 (n cosh p —sinh ) cosh Ba” — B’ sinh usinh Bz’
- (@) ! .
Ta'y 4mh J#P (H«,f)[ coshusinhpy —pu ]

’ sinBy’ dp.

It should be noted that for the two symmetric sources of intensity W/2
the stresses vanish on the lines y'=0 and z'=0. The distribution of normal
stresses is symmetrical and that of shear stresses anti-symmetrical in relation
to the 2'- and y'-axes. On the contrary, for anti-symmetrical sources of inten-
sity W/2 the distribution of normal stresses is anti-symmetrical and that of
shear stresses is symmetrical.

For a source W at the origin of the system a’, ' the stresses 5, 3\, 7.4,
vanish. |

For a source W located in an asymmetrical manner the thermal stresses
will be expressed by the equations

Op =Gptos tous o, =o,t00 Yoy,  Tay = Tyt rertT. (2.17)
The solutions for a source at the point (£, 0) can be used to determine the

stresses due to a heat source distributed in an arbitrary manner along the

segment (£, — £,) of the z-axis. If W (€) denotes the intensity of this source per
unit length, the function expressing the thermal potential of displacement
will take the form



380 Witold Nowacki

e

20 . cosBydf
D =— St L : 2.18
anh n=1an sin ocnxof (@2 1 fi)? (2.18)

where

o (“;c”)“, a5 =§f§2W(§)sinan§d§.

In the case of a source of intensity W (£,7) per unit area of the plate,
distributed over the area of the plate £ the function @ can be expressed in

the form
(2.19)

o 2C nzsin anxfm [ﬂmg,n)sinangcosﬁ(y_n)dgdn)] dp.

If, in an analogous manner, o (z,y; £, 9) =0 (2, ¥y; &, ) +0 (z,y; £, n) denotes
the stress at the point (z,y), set up by a concentrated source W =1, the stress
o*(x,y) due to a source of intensity W (£, ) distributed over the area (2, will

be expressed by the integral
o* (x,y) =({?{ W& n)o(x,y; &n)dédny. (2.20)

Let us consider, in addition, an infinite plate in which sources of uniform
intensity W are located in a periodic manner (fig. 3).

Y<

a
716§
JFJ:——_————)]/
'3 53 p " *”
2% 25 2% 2%
Yx!
Fig. 3

It will be convenient to express the solution of eq. (1.3) in the form of a
double trigonometrical series, the right-hand side of eq. (1.3) being expressed
in the form

- © (2.21)
K (14v)aW 2K . . 4 K . .
5= e = abkn=1s1nan§smanx-}—m;smangsmanxcosﬁmy,
nm mr
W=y PBm=
and the function @ by the series
®= ) A,sine,x+ > B, ,sine,xcosf,,y. (2.22)
n=1 n, m
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These series satisfy all the boundary conditions along the lines x=0, x=a
and y = + b. Substituting (2.21) and (2.22) in the eq. (1.3) we obtain

2K | sino, Esine, & 4K sin o fsmoc xeosﬁmy
abh ot abh = o, + BL)?

n=1

®=—

(2.23)

This function can also be represented in the form of a single trigonome-
trical series

®© . .
K a? Z sine, ésinax

¢ = T 2hw & - [e=n¥ (1 + o, y) + R, ()], (2.24)
where
1 . 8,, €%
R, (y) = Sismhs (cosh e, ¥ — o, 4 sinh ocny)—l—sinh8 cosho,y],
3, =o,b.

The stresses 6,, 6,, 7,, can be determined from the egs. (1.4)

Y2

2 ’ =
G =—2Ga—2 = K& [(p—y@-l-g yae— anaag"],

v 0 x> h oy oy
2d K@ @
5 = = 2.2
Gy 2G3y 5 [qp-l-yay—l-ﬁ-}- =+ Z n 5§ ] (2.25)
. 20  KG[ dp 20 b\ sin«, § cos a, xsinh «,, y
Tay = 2G8x8y ~h [y%“Ly%‘J“EnEI sinh2§,, ]

The function ¢ is identical with the function expressed by the eq. (2.5’) and
the function 6 is determined by the rapidly convergent series

S 1\ sin o, £ 8in o,  cosh
f = Zenz_;ng nY (2.26)

nedrsinh §,,

n=1
It is evident that the discontinuity of the logarithmic type is connected with
the function ¢, the function 6 having no singularity. For b — o0 we have
6 — 0 and the equations (2.25) become (2.5).

It will be convenient for the subsequent considerations to determine 7
directly from eq. (2.23).

Ty

We have
= _oq 2P _ 8KQ i oy, B COS 01, X SIN o fsmﬂm (2.27)
¥ Towdy abh L3 (et +Bm)? '
Using the eqs. (2.7) we find
_ 2KGa ,
Twy|w=0 - Zﬁmnl g :Bm Slnﬁm?/:
QKGa
Tacy‘acza = ZBm’% (€. Bm) sinB,, v,
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where the functions 7,, 7, are taken from the eqs. (2.7'), introducing 8,, and
A, =B, a instead of B and A=fa.

Proceeding as in the case of a strip of plate with one source we shall con-
sider separately the case of two sources of intensity W/2 which are symme-
trical in relation to the y’-axis and that of two anti-symmetrical sources of the
same intensity.

For two sources of intensity W/2, which are symmetrical in relation to
the y’-axis we have

_ KGa* \ Y i B Bna
T;s)yfng = mmZIBmP(S) (> € ) s B, ', Pm =4  (2.28)
and for anti-symmetrical sources
i KGa® \ s ,
Tgr%'{x’=§ = 4bh Zﬁmp(“) (/‘Lm>§ )sin B,y (2.29)
m=1

where p® and p@ are taken from (2.8’) and (2.8"). For symmetrical sources
we assume

F® = 1 Z iz A cosh B 2’ + B B, «’'sinh B, ') cos B, y', (2.30)

m
where

2 . ’
A(S) _ KGa Mm sinh Hamn P(S) (:““m7 é: )
m — T . ’
2b  coshp,,sinhpu,, + u,

tgh
Bg,sz) - _ ctg /J“mAgrSL)_
Hm

The additional stresses can be calculated from

s KGa v ,
U(x')z 207 ZP(S)(IU’m'é:)H’m
m=1

Pm Sinh u,, cosh B, " — B, " sinh B,, 2’ cosh ,,

cosh u,, sinh u,, + u,, o8By’
:(6:) ~_KG(I - ) , .
oy = 265 Z_P (I‘Lm,f)/*’“m (23])
m=1
(4 sinh ., — 2 cosh u,,) cosh B,, " — B,, ' cosh usinh B, «’ cos B, o
cosh u,, sinh u,, + u,, mY
=(s) _ KGa % (s) , .
Ty y = Qbk ,'nZ:lps (Iu’mﬂg)lu’m
(e sinh p,,, —cosh w,,) sinh B, «” — B,, &’ cosh u,, cosh B, «’ i ,
cosh u,, sinh w,, +p,, sin g, y'.

In the case of two anti-symmetrical sources of intensity W/2 the following Airy

function will be taken to determine the stresses 0%, o'%, %),
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F@ — % Z - (AP sinh B, &' + B\ B,, @ cosh B,,2') cos B,,y',  (2.32)

where

4@ _ _KG  pnp® ()
" 2b coshp,sinh p, —u,,’

The stresses will be found from the eqgs. (1.5)

o KGaNy o0 oy,
5= L ”;pa (Ho> €) o
tim 008h p, inh B, &’ —sinhp,, B, 2" cosh B2’ o
COSh Hm Slnh Mm — Mm
=0 _ _KGa \ (@) )
(pm cosh u,, — 2sinh p,,) sinh B,, 2" — sinh ,, B,,«" cosh B,, =’ cos B, o'
cosh u,,, sinh u,, — .., e
:(q)’__KGa S (@) Y.
Ty = Q_bﬁmz;lﬂmpa (s £)
. (”‘m cosh oy, — sinh ‘LL,m) cosh Bm x' —sinh Mm B’m 2’ sinh Bm x’ sin Bm y/'

coshp,, sinhpu,, —pu,,

For sources of intensity W located in a periodic manner over a strip of plate
(fig. 3) the thermal stress will be obtained by the superposition

0y = o+ o +5, ete.

It should be noted that for b — oo the equations (2.31) and (2.33) become
(2.12) and (2.16). The solution given here for the case of heat sources W uni-
formly spaced by 2b, can be considered as Green’s function. It can be used
to determine the stresses due to linear or surface sources of heat located in
a periodic manner over the area of the plate.

7
_______ - >
71 ¢
— >V
¢ 5 ¢
-w _72 ?=,7/ w
________ Y __
Yxx




384 Witold Nowacki
3. A Semi-infinite Strip of Plate

The case of a semi-infinite strip of plate is equivalent to a strip of plate of
infinite length with a source at the point (£, ) and a sink at the point (£, —9).
(Fig. 4). In this case we have 7'=0 at the edge y=0.

Using the eq. (2.2) we express the function @ by the relation

D = _ 2K ‘sinocnfsinocnmf COSB(y—n)_COSB(y+n)d}9, (3.1)

amh = (o, + B2)?
or
4K O y msinﬁnsinﬁy
@——aﬂhnglsmanfsmanxf (@, 1 PO dg. (3.2)
0

The function @ can also be expressed by a simple trigonometrical series?)

Ka? (" ey . .
b = ~ 5 1 T [(1+«,y)sinha, n—a, ncosha, n]sina, ésina, x. (3.3)
n =
This equation is valid for n <y < co. In the interval 0 <y < n y should be replaced
by 7 in the eq. (3.3) and vice versa.
On the basis of the eqs. (1.4) the stresses ¢,, ¢,, 7,, can be calculated.

We have

Gy = K;lG [% +(y—1) aay —(y+m) 83(;2]
) K B (3.4)
By = | - S e 5.
where
| coshZ(y—n)—cos T (z—¢)
<pl=4—ﬂ_ln
cosh” (= n)—cos—(w+§)
(3.5)
1 coshz(y+n)—cosz(x—-§)
<p2=4—7;1n

cosh” 5 (y+n)—cos— (x+§).

It can easily be verified that at the edges x=0, x=a we have 6,=0 and at
the edge y =0 we have 6,=0. The only stresses different from zero at these
edges are the shear stresses 7,

The following formula for the shear stresses 7,

subsequent considerations.

2 = o
o lP _ _8KG ansinanfcos%xfﬁsm'enGosﬁydﬁ. (3.6)
0

, Will be convenient for

w ox 0y amh =, (e, 2+ B2)?

3) A. Napar: Elastische Platten, Berlin 1925, p. 160.
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Bearing in mind that

S o, sina, &

= (2 + B%)°

-Tmen, Y et T,

and

(“n2 +B2)2 40‘7»

fMdB =_7_T_7)B—om7)
; .

the stresses 7,, on the edges of the semi-infinite strip of plate can be expressed
by the equations

Faloms = — 8 fﬁsmﬁnm(sﬁeosﬁydﬁ

Farlema = “f,ff“ fﬁsinx%m(f,ﬁ)cosﬁydﬁ, (3.7)

0

2KG Zﬁ «,,n)sine, £ cosa, x,

;7_'xy|y=0 -

h
where 8 (a7 = Zeo.

Here also it will be convenient for the determination of the additional stresses
to replace the heat source of intensity W at the point (¢, ) by two sources of
intensity W/2 first symmetrical and then anti-symmetrical in relation to the
y'-axis.
Let us consider first of all the two symmetrical sources. In the system of
coordinates z’, y’ (see fig. 5a) we have
‘y

[
¢ AT
4{-—‘1‘ ; —Y Fig. 5a
< _._77-77’————<L%

vx,x’

N

2 l W
7| 6 _é" 2
_g_J(: é > Fig. 5b
< — 77— &

Yx, x'
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Y P S fﬁsmﬁn o9 (u, £) cos By’ d B,
(3.8)
# o = 2—'771%9- Z ﬁ(amn')cos%g’sinocnx'.
) n=1,2,.

The corresponding stresses ¢, o), 7o) will be obtained by solving the Airy
equation

V2p2 Fe = 0, (3.9)
with the boundary conditions
Yy
= 02 F® = 02 F® . , a
oy = Ty =0, T:(A:S)y =_3x'8y T(wS)y for x =5
=(s) 82 F(s) =(s) 82 F(s) —(s) ’ (3. 10)
O-y’ = axl2 =O, T;c’y' =—a$,8y Txy fOI' y =O-

These conditions will be satisfied assuming the function F©® in the form

1 1
F® = h Z ;— (4,9 + B,®a, y')e ¥ cos a, &' +

b (3.11)

9]

+s f 7 [A®cosh B '+ B®Ba sinh Ba']sin By’ dB.

The boundary conditions (3.10) lead to the relations

A,® =0, (a)
A®coshu+ B®pusinhp = 0, po= %@, (b)
Z B L9 sin a, —f[ (49 + B®)sinh B2’ + B®Bx" coshBa']ldp =
nebs ) (c) (3.12)
= — 2EG Z P (x,,,n')cosa, ¢ sina, 2/,
T n=Tg3,...
Z Bn@e“"‘n V(1 —a,y’)sin ﬁf— — fm[(A<8)+ B®)sinhu+ B®ucoshu]cosfy'dB=
=1,3,.. 0 .
2
KG“ fﬁsmﬁn PO (1, ') cos By’ dB. )
Using the relations (3.12a, b) and substituting the relations
sinhBz’ = =122 E, gsina, 2, Bz’ coshBa' = iangsinocnx’,

eV (1—oa,y')=[C,gcosBy dp
0
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n (3.12c,d) we obtain the system of two equations

o 2K @G
Bn@—jA(s)[r(/u) nB— g(,u,)FnB]dB_—————ﬁ(an, "Yeos e, &,

(3.13)
KG —Bsinfn’ PO (1, &),

cosh u
® sinh 2é ’

z 1#”0K3mnfL~+A®t()

where sinh u — cosh
rip) = Bt 2k
wsinh u

t(uw) =

g(pn) =

w -+ sinh p cosh 3

psinh p
Bearing in mind that

h s nm
4p coshpusin 5

EMQ: a o, %+ B2 ’
sin 27
4 2 2
—ﬁ-——ﬁ[ el

4 o, B
Onﬁ = 2_,_,32

we can represent the egs. (3.15) in the form

0 ’
32n2 . nw [ A®cosh?udpu 2KG , -*70 ,
2S1__2___ 4:22=— 7]6 aCOS——g,
am ¢ sinhp (n2+—i) 4
w
(3.14)
16u2a fosin - KGa %
1 Z B, 4 p2\ 2 +A®t (u) = P Sin PP (s &),
T k=T33 (kz—}--f—-)
-3
_Ba
2

Let us eliminate from this system the function 4® (1). We obtain the infinite
system of equations

[e 0]

2
B (s)___nzsnln'n Z B(s)ksln f w COS}: nwd _
; ( 2+ )(k2 ‘;2") (sinh wcosh p + )

16 n2 u? cosh? g(s)(,u §)sm~——d,u
=_[ sin kGf + (3.15)
,LL-}—Slnh,U, cosh u)
K@ ( ) L nwg]
+ = e @ cos ,
T \ a a
n=1235...

After the determination of the integrals in a numerical manner we obtain
a system of equations containing the unknown coefficients B,. From the
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second of the eqs. (3.14) we determine the parameter A (u). Thus all the
quantities appearing in the function F©® are determined. The stresses will be
determined from the equations
=(s) _ 32 F(s) =(8) __ 82 F(s) =(s) __ 82 F(s)
Ox" = — 75 Oy = iz TXY T T s
oy ox' ox' oy
Consider now the case of two sources of intensity W /2 anti-symmetrical in rela-
tion to the y'-axis (fig. 5b). In the system of coordinates z’,y' we obtain

(3.16)

. KGafp . o0 0 :
Tyl -2 = ‘mfﬁsmﬁn P9 u, &) cos By’ dp,
0
(3.17)

2KG
—( N o ’ ’
'rm%'[y'=0= B Z P (o, ,m')sine, & cosa, x’.
n=2,4,...
The stresses 6%, 5.9, 7%, corresponding to this state will be found by solving
the differential equation

p2p2 F@ = 0 (3.18)
with the boundary conditions '
=(a) _ O* F® =) _ _ OF9 —(a) ) _ @
o'x? = 3y'2 = O, Tm(’zy' = —ax,ay, = —Txt'l,y' for 2’ = —2', (319)
= 02 F@ = ?F@
and 5 = =00 Ty = gy =~y fory'=0.

The Airy function will be taken in the form

e o]
1 1 ;.
F@ = E — (4, @+ B,@ o, y’') e * ¥ sina, x’ +
an

b,
'no—o2,4,... (3.20)
+ % (Elz—(A(‘”sinth’ + B@Bx' coshBx')sinBy’ dp.
0
The boundary conditions (3.10) lead to the system of equations
4, =0, (a)
A@ginh p + B@ pcoshpu = 0, (b)
S B,@cosa,z + [(A®+ B@)cosh Ba’ + B@ B2’ sinh fa'|df =
n=24,... 0 (¢) (3.21)
2 [ce]
= I;'G Z (e, , ') sin e, € COS o), 7,
n=24,...

> B @e=a¥ (1-a,y") cos %{ [(A@+ B@) cosh u+ B® usinhp]cosBy’ df =

\ (@
2
= 52 [sing 5 ) cospy ap.

0
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Using the eq. (3.21b) and introducing the series
cosBa’ = nil G, pCc08 0, X', Bz’ sinh Bz’ = 721}]"3 cosa, &',
where
o, Sin’o"
G.p= 2005}1“%217227
2B, sin ="
o= "oiag [ ]
we obtain the system of two equations
B,@ +0f°°A<a> [c(p) Gpg—d(pn) H,gldB = Eijﬁ P (a,,m')sine, &,
kilBgfa)cos%zOkﬂ_A(a)f(P«) KB -

1 BsinBn o (w,€),

where

cosh u —sinh
o(u) =F—"FL #

Sinhp,
peoshp  ° d(p’)_p,coshy’ F e

__ sinhp cosh u—pu
B wcosh p )

The quantities G, g, H,p being equal to zero for n=2,4,... the integral

in the first equation of the group (3.22) vanishes and the system of eqgs. (3.22)
can be represented in the form

B,@ = ﬁﬁ (et , ') sine, &,
— T

( . A(a)sinh pcoshu —p

= 3.23)
m 2, 4p?\? w cosh p (
k=2,4,... (k + ”2)
KGa . 2uxn ,
= S psin=E T p@ (u, &),
n=24,...,0.

The additional stresses will be obtained from the equations

x ’ s v
oy'?

_ & F@
Frel Ty = — 27 0y (3.24)

The stresses provoked by the action of a source of heat W located at the

point (£,7n) will be obtained as the sum of the stresses obtained from the
eqgs. (3.4), (3.16) and (3.24).
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4. A Rectangular Plate

Let a source of heat of intensity W be located at the point (¢, ) (fig. 6).
Using the known solution for the deflection of a rectangular plate subjected
to the action of a concentrated force at the point (¢, n)*%), the function @ can
be represented in the form

Y<

a
2
Yx %
By
— 7’ w g_
i A
1 &
Z 2
Yx!
Fig. 6
i 4K \sin sin .
= —hZ % § 'ansmanxsmﬁmy,
,m n2+/8m ' (4 1)
n mar )
W= =g

This function can also be represented by a simple trigonometrical series

Ka* v 1, . sinh a,, (b — 7)
@ = _mn=1n_381nanfslnanx*’ 'W'

-{[ﬂl +oa,betgho,b—o, (b—n)ctghe, (b —n)]sinho, y —«, ycosha, y}, (4.2
Osy=n

Using the eqs. (1.4), we find the stresses &, ¢,, 7., from eq. (4.2). It will be
convenient for subsequent considerations to represent the stress 7,, in the
form

7, =26 =

\ 4
- 50y abh & (02 1 L2 cosa,xcosfB,y (4.3)

&b 8K(@ ianﬁmsinanfsinﬁmn

following directly from eq. (4.1).

It can easily be found that the shear stresses do not vanish at the edge of
the plate. In order to find the additional stresses 5., 5,, 7,, the single source
of intensity W will be replaced by four sources of intensity W/2 symmetric
or anti-symmetric in relation to the 2’ and y’ axes (fig. 7a-d).

4) K. GiremaNN: Flichentragwerke, Wien 1954, p. 195.
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Let us first consider the case of symmetry in relation to the 2’ and y” axes.
For a single source of intensity W, at the point (£, 7n), we obtain from
eq. (4.3)

_ _ 8KG@G ?sin «, &
szl‘lx:a = - abh Z BmCOSBmySIDBm’I) Z 2+Bm
QKGa
= - Z Bm N2 (Bm? GOSﬁmySH’l an’ (4.4)
2 K Gb2 * .
Foyly—p = —— Z o 72 (ety > m) Sin e, ECOS )y T,

n=1

where 7, should be taken from the eq. (2.7').
For four sources W /4 located as in fig. 7a we have in the coordinates z’, y'.

i e[ repa) (e )]

[smBm 7})+s1n[3m (é—n )] cos f,, (§b+y'),

. _ K6 § b, b
Tewt =3 T T2k [ \2 T ) T g T )|

. [sin o, (g + _{f’) +sin e, (% - S’)] cos «,, (% + x') .

After some simple transformations we have

(4.5)

w w w w
a 17 % "7
1 ’
a ;' >/ ; " b
w 7' 'w w 7’ w
*% 7 *% Z
yx' . Yx'
i Lud w w
o w w A
4 *% *Z =%
c >V’ y o d
—lél /
W : w
¥ |y _w L op
4 — M 4
yx' X

Fig. 7a—d
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8

fm’y’lﬁ' zg = l"’m f )COSBm n Slnley s
w_ (4.6)
fx,y'y,zﬁ = o, p® (8 )cos o, &' sin e, 2,
2
=1,3,5,...
where
o n _ Bm& coshu,sinhB, & —u, sinhy, cosh B,Lg’
PO (B> €) = ? o Pms
pmcosh?
@, ') = a«, 1’ coshd, sinh o, " — 3, sinh §,, cosh «,, 5’
A5 5 = 3,2 cosh?d ’
B @
Pm = _’rg_’ Sn = 2

In order to determine the stresses o, etc. the following Airy equation should
be solved

V2P2F = 0, (4.7)
the boundary conditions being
= _azF_O = _ 2 F _ = for ' g
a’ oy’ 7’ Ty T ox' oy Ty Ty
__ aF . 2P p Y
WTgwr =" Tev = Tggay = Tev MY =3
The function F will be chosen in the form of the series
1 v 1 :
F= - ——[4,,coshB, '+ B,, B,,x sinh B,, "] cos B,, y +
hm=1,3,...B12n (4 9)

1 .
4= Z — [Cpcosha,y' + D, a,y sinhe,y' ] cosa, x.
n=1,3,5,...%n

The boundary conditions (4.8) lead to the system of equations

A, coshu,+ B, p,sinhy, =0, (a)
C,coshs, +D,5,sinhd, =0, (b)
mf; (Aot By)sinh i+ By oy cosh pysin B,y +
+ nil[(Cn +D,)sinha,y’'+D,a,y cosha, y'] sin%z = (¢) (4.10)
K Ga

Z B P (1> €') cOS By " sin B,,, 4/,

> [(4,,+ B,)sinh g, «"+ B, B, «’ coshﬁmx]smTw—i— i [(C,+D,)sinh$, +
m=1

=1
@ (d)
KGb
np() 8y, 1m’) cOSa, & sina,, '

+D,,8, coshd, |sine, x’
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Expressing the following functions by trigonometrical series

o
sinhe, y’ = > En’msiany’, o,y cosho, y Z ansmﬁmy,
m=1 m=1
[o0]
sinf,x' = > G, ,sina,2, B X coshﬁmx = Z H, ,sine,x’,
n=1 n=1
where
sin 7
4 2
E, . b" — coshs,,,
2% +/8m
4y SN . -
F, === Snsthn—"—’BmcoshS ,
’ b o24g 2, g2 n
&, + Pm & +/8m

we reduce the system of equations (4.10) to the system of two equations

N i sin %7—7 cosh?§,,
(i bz B 2 wet. (0,24 Br)?sinh §,

KGa2 ,
= - BmP(S) /"’m? )Cosﬁmn s

. . mm 4.11
16 . sin —-cosh?® u,, ( )
C,t(5,)+—5 a,2sin-— Z A, =

a? 2 m= 1,1"),.,. (an2+183n)2 sinh Mo

K G'b2

= =g P @n, ) cos o, &

n,m=1,3,5,...,

where

t +sinh p,, cosh [.Lm
:u’m Slnh f’Lm

8, +sinhd, coshd,
t0n) = 8,sinhJ, )

() =

We have obtained an infinite system of equations. Confining our attention
to r terms of the series (4.6) we obtain 27 equations (4.11). By solving these
equations we obtain the coefficients 4,,,...,D,, which, when substituted in
the function (4.9), will enable us to find apprommate expressions for the
additional surfaces @, etc.

In the particular case of a square plate and a single source W at the origin
we obtain for A4,,=C, the following system of equations
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© . nNmw 2@
mm+sinhma 16 m sm?cosh 2
Am_——~:’n—~ +—~m2$ln—9‘— An m =
m  sinh =~ La " n=T3.. (n®+m??sinh ="
- (4.12)
K¢ teh—%
=——————2 P m=1,3,5,..

cosh—2—

For four sources of intensity W/4 located as in fig. 7b the eq. (4.7) with the
boundary conditions (4.8) should be solved. We have

- KGa> < ) o ,
#vle =5 = T4bh Y. Bup® (s €) 08By sin B,y
Kszm::o’&"' (4.13)
T = —— () AW ’ '
’T:c’y"y’:% iah n:;““anp (8,5 m')sina, & cosa, &',
where
0@ (&) = Bw & sinhu,, cosh B, &' —p,, cosh u,, sinh B, &'
p.mSthzp,m
We assume the Airy function in the form
1 = 1 ) ’ , / ’
F = 3 Z ~—[A4,sinh B, x" + B, B, x’ coshB,, x']cos B,y +
m=1,3,...Bm
» | (4.15)
1 1 ) .
tz Z ~— [Cpcosha,y’ + D, o,y sinhe, y']sina, .
n=214,.. %

From the boundary conditions (4.8) we obtain the system of equations

nw

C, cosh?38, cos—-

Y 2
A, + msm =
$ (1) + 32 ’3 ; a2+ B%)2sinh 8,
KG(I/ ’ ’
B P (ttn €') COS By 7', (4.16)
2
C,t5,) = HEGD a, p®(8,,n')sina, &,
n=2:4,6>-°': m=1)3755--
where 5 (1) = sinh u,, cosh u,, — P

Pom ©OSh 1,

From this system we find the values of 4,,, C,, the remaining coefficients,
B,, and D,,, being determined from the relations

sinh u,, D —-_0 coshs,,

B = - ", coshp,,’ " "8, sinhsg,
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For four sources of intensity W/4 located as in fig. 7c¢ the Airy function will
be taken in the form

e o]

F= 1 Z 2 [A cosh g, x’ + B,, B,, %" sinh B, &' | sinh B,, " +
m

m 2,4,... (4.17)

}IL Z wf [0 sinhea, 9y + D, «,y cosha,y']cose, x’.
n=1,3,...

The boundary conditions (4.8) lead to the system of equations

K Ga? . ,
Amt(ﬂm) - 4:b Bmp(s (/J’mi )Slnﬂmn 2

16 nr o Apcosh?p, cos %3
C,s(3,)+—5« 2s1n~? Z — - (4.18)
o m=2,4,... (Oln2+,3m)2 Slnhp,m

K@

10 %P Gns ') cos e, €.

The constants B,, and D,, are found from the equations

_ cosh u,, _ sinh g,
By =—4 Dn=- "§,coshs,

4.19
" " o S0 g1, 7 (=59

Finally, for four sources of heat, of intensity W /4, located in an anti-sym-
metrical manner in relation to the 2’- and y’-axes (fig. 7d) the Airy function
should be assumed in the form

1 = 1 . ’ ’ ’ 4 ’
P Y ik By e cosh B in fy +

m=24,... m _ (4.20)
1 ]- . ’ ’ ’ L4 !
+5 Z —5 [ sinho,y' 4D, o, y'cosh o, y']sin o, 2.
n=24,... N
The boundary conditions are as follows
T __&F _ for o =2 b
YV T Togoy OV 2 YT
(4.21)
= 0 f " a = f ’ b
Oy = or x =g, o,=0 tor y =3
where
_ KGa> v N / .
Fogly 8 = =T 2 Buf® (. )sin B’ cosBuy’,
m=2,4,...
- (4.22)
_ K G b2 "o ,
Tx,y,ly,:g =~ dah Z o, P9 (8,,,n')sina, & cos a,, .
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The coefficients 4,,,...,D,, can be determined directly from the conditions
(4.21).
We have
KGa? , N . ,
Ams(y’m) = 1b IBmP(a)(V‘mag)Slnlgmn s
2
C,s(3,) = K:Zb o, P93, ,n ) sina, &, (4.23)
_ sinh u,, _ sinh 3,
B = Am,um coshp,,’ Dy = - "8, coshd,’

Summing up the stresses due to the states represented in the figs. 7a—d
we obtain the additional stresses @, ..., which, together with the stresses
G, - .. determine the state of stress in the plate due to the action of a source
of heat of intensity W, located at the point (£, 7).

The solutions described in this paper can be used in the case of plane
strain. The heat sources at the level - will be replaced by linear sources parallel
to the z axis.

The differential equation of the thermal potential of displacement take
the form
l+vaW
1—v k °

V22 = —

The stresses &, G,, 7., are found from the relations (1.4). For a plane state
of deformation where the stresses are independent of the variable z we have
Tre=0,7,=0,6,=—-2G1%0.

The additional state of stress (,7) is obtained by solving the Airy func-
tion, using the relations

= 2r -  0*F — 2r

(rz:”a?, O‘yz'ﬁ, Twz_ax(’)y’

ixzzo; iyzzoa gz:VV2F'
Summary

A formal analogy can be observed between the differential equation of the
thermal potential of displacement for a steady temperature field due to a
source of heat and that of the deflection of a thin plate due to a concentrated
force. This analogy is used in the present paper to determine the thermal
potential of displacement and the stresses (&, 7).

The normal stresses at the edges are found to be zero, whereas the shear
stresses are other than zero. In order to eliminate the shear stresses at the
edges, on additional state of stress (o,7) (obtained by solving the boundary
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problem for a plane state of stress by means of the Airy function) must be
superposed on the state (¢, 7).

The state of stress due to the action of heat sources is treated in detail for
the following cases:

a) a strip of plate of infinite length
b) a semi-infinite strip of plate

c) a rectangular plate.

Résumé

L’équation différentielle du potentiel thermique de déplacement est for-
mellement analogue a celle exprimant la déflection d’une plaque mince causée
par I’action d’une force concentrée. Dans le présent mémoire on emploie cette
analogie pour déterminer le potentiel thermique de déplacement et les con-
traintes (G,7) dans une plaque. On trouve que les tensions normales sur le
contour de la plaque disparaissent tandis que les tensions tangentielles sont
différentes de zéro.

Pour annuler les tensions tangentielles au contour de la plaque il faut
superposer a 1’état de tension (&,7) ’état (,7) qu’on obtient par la solution
du probléme aux limites pour l’état plan de tension en employant la fonction
d’Airy.

L’état de tension provoqué par I’action des sources de chaleur a été étudié
pour les plaques suivantes:

a) une bande indéfinie,
b) une bande semi-indéfinie,

¢) une plaque rectangulaire.

Zusammenfassung

Zwischen der Differentialgleichung des thermischen Verschiebungspoten-
tials fir stationdre Temperaturfelder, hervorgerufen durch Wéirmequellen,
und der Differentialgleichung fiir die Durchbiegung einer diinnen Platte, her-
vorgerufen durch die Wirkung einer Einzellast, besteht eine formale Analogie.
In der vorliegenden Arbeit wurde diese Analogie zur Bestimmung des ther-
mischen Verschiebungspotentials und der Spannungen (G,7) beniitzt; es wur-
den hierbei an den Réndern der Scheibe Nullwerte fiir Normalspannungen,
jedoch von Null verschiedene Werte fiir die Schubspannungen gefunden.
Zwecks Beseitigung dieser Schubspannungen auf den Scheibenréindern mufl
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auf den Spannungszustand (6,7) ein zusitzlicher Spannungszustand (c,7)
iiberlagert werden, welcher aus der Losung des ebenen Randwertproblems
durch Benutzung der Airyschen Spannungsfunktion hervorgeht.

In der Arbeit wurden eingehend die Spannungszustinde behandelt, die
durch das Auftreten von Wirmequellen verursacht werden:

a) im unendlich langen Scheibenstreifen,
b) im scheibenartigen Halbstreifen,

¢) in einer rechteckigen Scheibe.
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