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The State of Stress in a Thin Plate Due to the Action of Sources of Heat

L'etat de tension dans les plaques, cause par Vaction des sources de chaleur

Spannungszustände, hervorgerufen in Scheiben infolge von Wärmequellen

Prof. Dr. Witold Nowacki, Warszawa

It is known that the displacement equations of the theory of elasticity
for a plane state of stress and a steady temperature field can be represented1),
by the differential equation

172(720 (l+,)aPT, (1.1)

where 0 is the so-called thermal potential of displacement, T (x, y) the
temperature, v Poisson's ratio and a the coefficient of thermal expansion.

The temperature distribution in the plate is described by the differential
equation

V2T M- ™
W being the intensity of the source, k the coefficient of thermal conduc-

tivity and h the thickness of the plate.
The eqs. (1.1) and (1.2) can be replaced by the single equation

(l+v)<xW
' V*V20 - hk ' (1-3)

The boundary conditions of the problem are as follows. The temperature
at the edge is constant. We can assume, without limiting the generality, that
T 0 at the edge. It follows that V2& 0 at the edge. The stresses due to the
temperature field are related to the function 0 by the following equations, [1]:

d20 d2<P d20

x) E. Melan, H. Parotis: Wärmespannungen stationärer Temperaturfelder, Wien
1953.



374 Witold Nowacki

The second condition is that of the vanishing of the normal or shear stresses
at the edge. Assuming 0 0 the vanishing stresses will be the normal stresses.

In order to eliminate the shear stresses at the edge the stresses

__^2^ _d2F _
32F

Gx^W Gy~Jx^' Txv~~Yx~¥y> (1*5)

must be added to (1.4).
The function F should satisfy the differential equation

pr72^==0 (1 6)

Solving the eq. (1.5) we assume that the normal stresses vanish at the
edge and the shear stresses satisfy the boundary condition rxy — rxy.

The stresses due to the action of the heat are determined by the equations

°rx=^x + crx^ ay °y + °y> rxy Txy + Txy • (l-7)

It should be noted that the differential eq. (1.3) with the boundary
conditions 0 0, V20 0 is analogous to the differential equation of the deflection
surface of a simply supported plate. We have

V*V2w ^ (1.8)

the boundary conditions being w 0, V2w 0.

In the eq. (1.3) W denotes the intensity of the source of heat, and it should
therefore be considered as a function equal to zero outside the neighbourhood
of the source. The function Q in the eq. (1.8) should have an analogous
character. It should be regarded as the intensity of the external load of a plate,
equal to zero outside the neighbourhood of the point being considered. Q can
therefore be treated as a concentrated force.

In this paper the analogy between the eqs. (1.3) and (1.8) is used. The
determination of the function 0 will be based on the known results of the
theory of bending of plates. The prineipal problem will be that of determining
the stress function F.

We shall confine our considerations to the state of stress due to the action
of heat sources in an infinite and a semi-infinite strip of plate and in rectangular

plate.

2. A Strip of Plate of Infinite Length

Let us consider a strip of plate of infinite length and of breadth a, having
a source of heat located at the point (f, 0). This strip will be replaced by a

strip of plate of breadth a, simply supported at the edges and loaded with a
concentrated force Q at the point (£, 0). The deflection of the plate is
expressed2), by the equation:

2) K. Girkmann: Flächentragwerke, Wien 1954, p. 179.
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where oLn mr\a and N is the flexural rigidity of the plate.

-2.
2

wx

Fig. 1

y

-W

(2.1)

From the analogy between the differential eq. (1.3) and (1.8) and from
similar boundary conditions it follows that

2K sr r cc

airh L^x n^ n J (oc,

cos ßydß
(2.2)

where
K (1+v)clW

K
Using the eqs. (1.4) and bearing in mind that the expression (2.2) can be

represented by the series

0 Ka2- yh Li
ß~ocny

n l,2,

we can calculate successively

n°
(1 +<xny) sin ang sin anx for y^O (2.3)

d20 KG
irh

5V -2G8x2

n l
d20 KG y e-^v

n l
d20 KG

2^—-—(l-ocny)sinocn£sinccnx,

K G v^ e~CCnV

(2.4)

t 2G -xv dxdy ah Lj/ t

e~an y sin oin i; cos ocn x.

The eqs. (2.4) are valid for y^O.
The series in the eqs. (2.4) being slowly convergent and for y 0, x %

divergent, it will be convenient to represent them in closed forms

KG/ dcp\ _ KOI dcp\ KG dcp /OKX
Txv '

h *dxl
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where
oo

e-0Cn y
<P -~ 2-i -—-sinan^sina^x,

w l,2,...

oosh^-oos-=:(*-£) (2'5')
___

1 a a v Ä/

_^ n
COSh^ - COS ^ (* + £)'

It is evident that the stresses 5X, öy, fxy vanish at the edge and that all
stresses vanish for y -> oo. In the neighbourhood of the source the stresses
tend to infinity in a logarithmic manner.

For subsequent considerations it will be convenient to represent the
stresses rxy in the form

±KG
air

o
h)ß*inßy\h («n2+ß2)2 )dP (2-6)

following directly from the eq. (2.2).
Bearing in mind that

where

y a„(-l)MsinaMg _
o3

vi(€,ß)

(2.7)

-! K2+i82)2

ß £ sinh A cosh ß (a — £) — A sinh ß $

A2sinh2A

lt 0. jS^sinhAcosh^-AcoshAsinh^ (2.7')^(Lß) raiPÄ '

we have
A ßa,

00

,\x_0 £££fßVl(€,ß)änßydß,
0

00

,\x=a —^L jßii2(£>ß)s™ßydß-

(2.8)

0

The source of heat at the point (£, 0) can be replaced by two sources
symmetrical or anti-symmetrical in relation to the y'-dbxis (fig. 2).

For two symmetrical sources of intensity W/2 (fig. 2 a) we have in the
System of coordinates x', y':

00
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or

where

f«o

P(8)(M,f)

/*

^-f =^LJßpfß)M)'*nßv'*ß.
0

ß £' cosh fi sinh ß£' —/jl sinh /x cosh ß £'

(2.8')

ßa
/*2cosh2/z

For anti-symmetrical sources of intensity TT/2 (fig. 2b) we have
00

_ KGa*
Tx y \x= —

or

where

0

oo

&|*--f ^^jßP^(^$')Bmßy'dß,
o

ß £' sinh fi coshj8 ^' — /x cosh A4 sinh ß £'

(2.8")

/»(o)(/*»n
jjL2smh.2fjL

Let us consider first the case of a symmetrical System of heat sources. In
order to eliminate the shear stresses ¥£)y, on the lines x' ±aj2 we should
choose a state of stress 7?£)y 5^, ^*)y, such that the following equation is satisfied

V2V2F^ 0 (2.9)

together with the boundary conditions

y

I '"

X
+y Fig. 2 a

yrx.x'

' 2

-r -+»y Fig. 2 b

^'x,*'
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£2 p(s)

dx' dy'
r% for *' +-. (2.10)

In view of the symmetry of the sources in relation to the ?/'-axis we can con-
fine our considerations to the edge x' a\2. The function F(s) will be assumed
in the form

00

iW l I — (A^coshßx' + B^ßx'sinhßx') cosßy'dß. (2.11)
o

From the boundary conditions (2.10) we obtain

A(s) cosh p + B(s) [isinh/jl 0,

(A& + B^) sinh fx + B^fi cosh fi l^Lßptofag').
Hence

A(a) KOafi2änhfip^(fjL9f)
4 77 cosh /x sinh xx + /x

™ x
cosh ix

/jl sinh jjl

Let us determine the stresses from the eqs. (1.5)

OV
KGa f /„\ />, x4„J^>) ~/x sinh xx cosh ßx' —ßx' sinh /? #' cosh /x~

cosh /x sinh /x -1- /x

•cosß;?/'d/3,

äW

00

~(/x sinh fi — 2 cosh /x) cosh ßx' — ßx' sinh ßx' cosh x*T

°V ~ cosh /x sinh /x + /x

=(s) KGa!?W- ri

cosßyfdß, (2.12)

(fi sinh /x — cosh /x) sinh ßx' —ßx' cosh /3 #' cosh xt~

cosh xx sinh /x + xt

-sinßy' dß.

Let us consider the case of sources of intensity TT/2, which are anti-symmetrical

in relation to the ^/'-axis.
In order to eliminate the shear stresses on the lines x' ±aj2 we choose

the stresses ö%\ äffi, T{x)y, so that the differential equation
r/2 r/2 F(a) 0 (2.13)

is satisfied together with the boundary conditions

crv ——— xi
dy"'

=(«>,__ü^l-_;#>. for x-+^ (2 14)xy 8x'8y'~ xv X -2- l> >
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The function F^a) will be assumed in the form
00

1 f 1
FW t -^(A^sinhßx' + B^ßx'sinhßx^cosßy'dß. (2.15)

o

From the conditions (2.14) we obtain the System of two equations

A^ sinh /x + BW /x cosh /x 0,

(A^ + B^)coshfjL + BW nsinhiJL ^^Lßptofag'),
8 77

from which we have

AW KGa /*V°W') B(a) A«* Sinh^
4 77 cosh xx sinh xx — xt' xx cosh /x

*

From the eqs. (1.5) we find the stresses

oo ' xx cosh /x sinh ßx' — sinh /x j8 #' cosh ß x'~\KGa
ov

0
cosh /x sinh xx — /x J

cosßy' dß,

"(/x cosh xx — 2 sinh xx) sinh ßx' —ßx' cosh jS^ sinh /x'

KGaGa L v >r,

cosh xt sinh /x — /x

cosßy'dß, (2.16)

(/x cosh xt — sinh xx) cosh ßx' —ßx' sinh xx sinh /3 x'l
cosh xi sinh xx — xx

sinßy' dß.

It should be noted that for the two Symmetrie sources of intensity W/2
the stresses vanish on the lines y' 0 and x' 0. The distribution of normal
stresses is symmetrical and that of shear stresses anti-symmetrical in relation
to the x'~ and y'-Sbxes. On the contrary, for anti-symmetrical sources of intensity

W/2 the distribution of normal stresses is anti-symmetrical and that of
shear stresses is symmetrical.

For a source W at the origin of the System x', y' the stresses ~ä$\ ~vya\ ^x"yr
vanish.

For a source W located in an asymmetrical manner the thermal stresses
will be expressed by the equations
__ — i_—(s) j_ —(a) — i ~(s) \_—{a) _ — _i_—(s) \~(a) /£> i 17\

The Solutions for a source at the point (£, 0) can be used to determine the
stresses due to a heat source distributed in an arbitrary manner along the
segment (£2 — |x) of the x-Sbxis. If W (£) denotes the intensity of this source per
unit length, the function expressing the thermal potential of displacement
will take the form
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0 20

where

C

anh

(l+v)a
k '

V f cc

n l y *"
cos ßydß

'¦+ß*f (2.18)

a» / W(£)sin<xn£dg.
fei

In the case of a source of intensity W (g, rj) per unit area of the plate,
distributed over the area of the plate ß the function 0 can be expressed in
the form

0 ~^ttT Ssina^J (a 2 + j32)2 ijWi^^sin^^cosßiy-^d^drj) dß.

If, in an analogous manner, a (x,y; g, rj)=ä(x, y; g, r))+ä(x, y; |, rj) denotes
the stress at the point (x,y), set up by a concentrated source W=l, the stress

a*(x,y) due to a source of intensity W(£,rj) distributed over the area Q, will
be expressed by the integral

v*(x,y) jfW(g,ri)<7(x,y; Lr))d£dl'
(Q)

(2.20)

Let us consider, in addition, an infinite plate in which sources of uniform
intensity W are located in a periodic manner (fig. 3).

2b- -2b

V-

-2b -2b

Fig. 3

It will be convenient to express the Solution of eq. (1.3) in the form of a
double trigonometrical series, the right-hand side of eq. (1.3) being expressed
in the form

(2.21)
K {l+v)*W 2K v • > • 4iT v •

h hK n l
U7T

ßn
mir

and the function 0 by the series

0= Z Ansinanx+ 2 Bntmsmanxcoaßmy.
n l n,m

(2.22)
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These series satisfy all the boundary conditions along the lines x 0, x a
and y= ±b. Substituting (2.21) and (2.22) in the eq. (1.3) we obtain

0 2K y sin ocn£ sin otnx 4K y sin otn£ sin <xnx cos ßmy2K yabh Li OL,

4A yabh L (2 23)
1 ~* abh La ((v24-ß2)2

This function can also be represented in the form of a single trigonome-
trical series

where

0

Rn{y)

Ka2 sr sin an f sin a #£

1

e%n sinh 8^

S^ cc„b.

[c-«^(l + any) + 22n(y)], (2.24)

3 e8* 1

(coshocny-ccnysmhawy) + ^j^-coshawy\

The stresses öx, uy, rxy can be determined from the eqs. (1.4)

d20
5« ~2G^

-2ö

'#2/ 2ff

d20
_

d20

dxdy

Jy> ' xy

KG
h

KG

dw

dy n l uunJ

h

dw a de v* 0 0J
(2.25)

Ä

$99

''äs d# a E
n l

7y_i_4_7/lf +
6 V sin an I cos anx sinh an?/]

sinh2 S„

The function 99 is identical with the function expressed by the eq. (2.5') and
the function 6 is determined by the rapidly convergent series

e -2X-4E sin ocn £ sin ocn x cosh ocn y
n e%n sinh S„

(2.26)
n 1 w 1

It is evident that the discontinuity of the logarithmic type is connected with
the function cp, the function 6 having no singularity. For b -> 00 we have
6 -> 0 and the equations (2.25) become (2.5).

It will be convenient for the subsequent considerations to determine fxy
directly from eq. (2.23).

We have

f 20-xv dxdy
d2(£

_
%KG y <xnßmcos<xnxsin(xn^sinßmy
ab

2L VT La K2+Ä)2
(2.21)

Using the eqs. (2.7) we find

' xy\x 0
2KGa2

bh 2j^^i(r^m)sin^m2/,
m l

2KGa2
bh

Yjß™r)2(Z'>ßm)sinßmy,
771 1
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where the functions rj1,rj2 are taken from the eqs. (2.1'), introducing ßm and
hm ßma instead of ß and X=ßa.

Proceeding as in the case of a strip of plate with one source we shall
consider separately the case of two sources of intensity Wj2 which are symmetrical

in relation to the ?/'-axis and that of two anti-symmetrical sources of the
same intensity.

For two sources of intensity W/2, which are symmetrical in relation to
the y'-axis we have

00

f^'l*' l ^F I>m/>(sWnsin/3m2/', Mm =^ (2.28)
ra l

and for anti-symmetrical sources

,„>, a_KGa*
ibh YißmR(aHlMm,n^ßmy' (2-29)

m l
where /><*> and />(a) are taken from (2.8') and (2.8"). For symmetrical sources
we assume

oo

F(S) l H ^ (A% cosh ßmx' + B%ßmx'sinh ßmx') cos ßmy', (2.30)

where
n

Ais) _¦A-m —
KGa ^sinh/xmp<«>(xxm,£')

2 6 cosh /xm sinh pm +pm

n(«) Gtgh[im a(s)

Pn

The additional stresses can be calculated from

=(s) KGa
ov ~ ^^(/Xm-O^2b.,

771 1

/xm sinh ^m cosh ßmx'-ßmx' sinh ftm s' cosh /xm^cosh /xm sinh p,m + /xm

m l (2.31)

(xxm sinh xxm - 2 cosh /txm) cosh ßm #' — j8m #' cosh ja sinh jSm sc'

cosh /xm sinh pm + pm

=(S) KGa

cosßmy',

2bY l^P^iPm^lPn
771=1

(Mm sirm Mm ~ CQSn Mm) sinh ftm x' ~ ßm x' C°sh Pm CQSn ßm X' ^ g /

cosh xtm sinh xxm + jxm
Sm Pm y '

In the case of two anti-symmetrical sources of intensity W/2 the following Airy
function will be taken to determine the stresses 7&!\ o^\ ^i?Lx y x y
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00

FW i S ^(^smhßnX' + B^ßnX'coshßnX') cosßmy', (2.32)
771 1 Pmßi

where

Aa) _ KG timp{a)(pm,t;')

±>m — &¦¦

2 b cosh/xm sinh/xm-xxm'

(a)^Pm
Pn

The stresses will be found from the eqs. (1.5)

Ha) KGa
~2b ~ ^^(^f)^

fim cosh /xm sinh ßm x' - sinh /xm ßm x' cosh ßm x'
cosh /xm sinh pm-pn

vosßmy',

Ha) KGa
2bh 2^PmP(a)(Pm^f)'

m =1 (2.33)

(Pm cosh Pm ~ 2 sinn Mm)sinn ßm£' - sinh p,m ßmx' cosh ßm x'
cosh xxm sinh pm-pn

eosßmy',

Ha) KGa
26^" lmJPmP(a)(Pm^f)'

771 1

(/xm cosh /xm - sinh xtJ cosh /3m x' - sinh ^xm ftm x' sinh ftm a;'
• :—= sm pm ycoshixms\nhlxm-iim

For sources of intensity W located in a periodic manner over a strip of plate
(fig. 3) the thermal stress will be obtained by the superposition

rr — ~ M ~<S) -I- ~<a) Afpax — Gx + <7x +Oa: > eT}C*

It should be noted that for 6 -> oo the equations (2.31) and (2.33) become
(2.12) and (2.16). The Solution given here for the case of heat sources W
uniformly spaced by 2b, can be considered as Green's function. It can be used
to determine the stresses due to linear or surface sources of heat located in
a periodic manner over the area of the plate.

T

7=7'
i'

Fig. 4

y
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3. A Semi-infinite Strip of Plate

The case of a semi-infinite strip of plate is equivalent to a strip of plate of
infinite length with a source at the point (£, 77) and a sink at the point (£,-77).

(Fig. 4). In this case we have T 0 at the edge y 0.

Using the eq. (2.2) we express the function 0 by the relation

or

oo a

2K v • • f
äVh 2jsma*£sma»a:

71= 1 X

00 a

0 ~~a~^nh S sinan^sinans
71= 1 X

cosß(y-r))-cosß(y + rj)
(«wa+j8»)2

sinftrjsinfty
K2+£2)2 p-

dß, (3.1)

(3.2)

The function 0 can also be expressed by a simple trigonometrical series3)
00

Ka2 \r e-^yr0 Ka* y ¦ [(1 + ocn y) sinh ocnr] — anr] cosh an 77] sin an | sin a^ #. (3.3)

This equation is valid for rj < y < 00. In the interval 0 <y <rjy should be replaced
by 7] in the eq. (3.3) and vice versa.

On the basis of the eqs. (1.4) the stresses 5X, äy) fxy can be calculated.
We have

KG

KG
Jy h

vi - 9z+(y- v) -jy- - (y+v) -fy j
(3.4)

where

1 cosh^(y-ii)-cos-(«-!)
9l=-ln

cosh- (y- rj) - cos - (x + f)a a

1 cosh^ (y + 77) - cos l(x~€)
(3.5)

92 T-ln
477 cosh^ (y + rj)-cos ~(x + i)

It can easily be verified that at the edges x 0, x a we have öx 0 and at
the edge y 0 we have 6^ 0. The only stresses different from zero at these
edges are the shear stresses fxy.

The following formula for the shear stresses fxy will be convenient for
subsequent considerations.

d20 SKG
fxy~20dx~d^ airY XXSma^COSan*j ^ 2^R^2*dß- (3'6)

n=l
^cosßy

3) A. Nadai: Elastische Platten, Berlin 1925, p. 160.
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Bearing in mind that

i aMsina„£ _
a3 y «TO(-l)sin«w£ _

a3

--4V1&P), L^ K2 + /S2)2 -T1»2^'^'^K2 + j82)2

and
00

f ß sin ßri ln 77

the stresses f^ on the edges of the semi-infinite strip of plate can be expressed
by the equations

2KGa2
°°

'#2/|# 0

' xy\y 0

KGa2 f
—^— \ßsinßr]rjl(£,ß)cosßydß,

0

00

——^— \ßsinßr)r]2(£,ß)cosßydß,
0

2#ö y-^- 2Jl9,K^)sman|cosanx,

(3.7)

where

Here also it will be convenient for the determination of the additional stresses

to replace the heat source of intensity W at the point (£, rj) by two sources of
intensity W/2 first symmetrical and then anti-symmetrical in relation to the
y'-a,xis.

Let us consider first of all the two symmetrical sources. In the System of
coordinates x', y' (see fig. 5 a) we have

-7-7

Fig. 5 a

"x,x'

y

-?/'
-7-7-

Fig. 5 b

Jx.x'
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00

¦f= " t^t jß8inß v'p(s) {fl'n oosßy'dß'
0

(3.8)
00

TiY^o -^- 2Li *K^ )COSanl sinana;.
71 1,2,...

The corresponding stresses o^f}, 7^*\ ¥^ will be obtained by solving the Airy
equation

V2V2F^ 0, (3.9)

with the boundary conditions

a*~0y'»~U' xy ~ dx'By'" Txv torx-2'
={s) a«#w

n a«jw _(s) n
(3J0)

These conditions will be satisfied assuming the function F(s) in the form

F<S) \ E A(^ + 5»<a>an 2/') ^^ COS an x' +
^7i l73,...a^

00

+ i fi [>!<«> cosh j8 z' + #8>j8s'sinhß*'] sinßy'dß.
o

The boundary conditions (3.10) lead to the relations

A^ 0, (a)

A^ cosh n + ^n sinh /x 0, /"* 2 ' ^
00 00

2 ^(s)sina^' - J [(A^ + £<s>) sinh/3;z' + B^ßx' cosh j8<]d/3
"-1''-" °

(0) (3.12)
2KG y Q /x «.,

/_. ^(an,)|)cosanf smanai,
77 r—i

71= 1,3,...

> B^e-^v'(l -a^') gin _ J [(^L(«)+2>«))sinh/x+£(s)xxcosV]eosßy'dß
ts,... 2 0

00

^~Jß^ßv'pis)^,ncosßy'dß. (d)

0

Using the relations (3.12a,b) and substituting the relations
00 00

sinhjS^'= 2 Enßsin(Xnx'i jSx'coshjSx' 2 Fn^B\xi(x.nx\
71=1,2,... 71=1

oo

e-«»*(l-«ny') $Cnßcosßy'dß
o
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in (3.12 c, d) we obtain the System of two equations
00 2 KG

B^-$A^[r(riEnß-g(p)Fnß\dß #(aw, v') cos«mf,
0 TT

2 Z^C^gsin^ + ^O") ^!j8sin/Sr,V>(M,n,
(3.13)

where /x sinh/x — cosh/x cosh/xr^)= ..Li... > ?M
/x sinh /x

' * yr/
jul sinh /x'

lx + sinh \l cosh /x
*(m)

Bearing in mind that
M sinh M

¦K» ß

F„ o

±ß cosh fji sin

are2+^'2 >

sm

« *n* + ß2

OL 2-ß2
fx sinh jj, -\—^—~ cosh ju,

«n2+|S2

r -4 «M/32

77 (a/ + i82)2"

we can represent the eqs. (3.15) in the form
00

32^2 72,77 f .4^coshVd/x
^ti(s) + 5-smn air2 v

lÖM2^ V »
77

fc l,3,...

J si

2Z<? -¦rtTTf) titt
sinhi 4/*V(»!+t)

-77'e a cos f.a a

ksm^-
(3.14)

/ 4^2+^(s)^(M) =-öZ~Msm-^-^)(/x,r),

ßa

Let us eliminate from this System the function J.(s)(/x). We obtain the infinite
System of equations

B <s>-
512

- n* sm -

00 ^
U7T ^ (s) &77 f

fc 2 J

/x3 cosh2 /X rf /X

(w2+-^r)(&2 + -Jr) (sinh xt cosh xx+ lx)

low2 utt
—tt- sm xieJ

/x2 cosh2 /x g{s) (/x, |') sin —— rf xx

+ :

0 (^2 + "^j (M + sinn M cosn M)

^r(if)e ¦ ~

¦ + (3.15)

KG
cos-

ra 1,3,5,

After the determination of the integrals in a numerical manner we obtain
a System of equations containing the unknown coefficients Bn. From the
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second of the eqs. (3.14) we determine the parameter A (/x). Thus all the
quantities appearing in the function F^s) are determined. The stresses will be

determined from the equations

ax'~~dy^' a»"~~0^~' Tx'v'~ WJy1 (3J6)

Consider now the case of two sources of intensity W/2 anti-symmetrical in relation

to the 2/'-axis (fig. 5b). In the System of coordinates x',y' we obtain

=<«> I a _
KGa

Tx' y'\x' —
a
2 477

0

^jßsinßrj'p^^^cosßy'dß,
(3.17)

-(«) I 2 KG \^ Q u,- ' - ^~ 2j *K,i) )sma^ cosocnxTx'y'\y' 0 —

71=271,..

The stresses o^\ offi, r^y, corresponding to this state will be found by solving
the differential equation

V2V2F^ 0 (3.18)

with the boundary conditions

={a)_d2F® ={a) _ d2F^ _(a) a
°x' ~~WY= Tx'y' ~ ~^W= ~Tx'v' 2' (3-19)

=(a) d2F^a) zz d2F^a) _/a\and °y ~IxT2~ °' T** ~Jx~FW ~^xy' f°r V' °*

The Airy function will be taken in the form
00

F(a)= i E -\(An™ + Bn«»ocny')e-°'»v'smxnx' +
n=2,4,... n

00

1 f 1

+ T — (A^sinhßx' + B^ßx' coshßx')sinßy' dß.hj ß*
o

The boundary conditions (3.10) lead to the System of equations

A^ 0, (a)

A^ sinh xx + Ra) xx cosh xx 0, (b)

2 B^cos^x' +f[(AW + BP>) coshjga/ + BP>ßx' sinhßx']dß
»«2,4,... 0

(c) (3>21)

(3.20)

2#£
2j &(<xn,r)')sinan£' cos <xws',

77
71 2,4,...

00 ™ -_ CO

2 £n(a)e^^(l-any')cos —+J[(^a)+J5(^)cosh/x+J?^/xsinh/x]cosjSt/'rf^
7i 2,4,... 2 0

(d)
Zffaä

477
o

[ß sinß r)'PW{^£) cos ßy'dß.
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Using the eq. (3.21b) and introducing the series

where

cosjSx' 2 ^nßCOSocnx^ j8x'sinhj8^' 2 ^7ißc°sanx',
71 1 71 1

a„ sm-

G^-cosh,.-^

H„
2ßain sin -

"J+ßn* L

we obtain the System of two equations

sinh u —
4/3 cosh xx

« («n2+j82)2J'

oo 2 KG
BnM+$AW[c(n)Gnß-dMHnB]dß & («n,v') sin «J',

0 ^ ' 77

| Bia)cos^Ckß-A^f(f,)
fc l z r

Z^o2
477

(3.22)
ßfsmßv'pW(fL,?),

where

c(/x)
xx cosh a — sinh xx 7/ si
- £b: ~> rf(M) —:

sinh M

/x cosh /x /x cosh /JL
' /(m)

sinh fji cosh xx — xx

icosh M

The quantities 6?nß, Hnß being equal to zero for n 2,4,. the integral
in the first equation of the group (3.22) vanishes and the System of eqs. (3.22)
can be represented in the form

^7i(a) * K > l) sin a„ f',

T3 £ «
fc 2,4,...

Z.2 ^7r
l(a)

COS ~2~
| A,a)

sinh /x cosh p-p
4/i2\2 jUCOShjLA(**+¥)

(3.23)

KGa 2fjLT)'
~^zr^ sm-^x» (xx, |),Z 77 tt

^ 2, 4, oo.

The additional stresses will be obtained from the equations

Ha) _
£2 jp(a)

WT9
=üa) _

£2 jP(«)

dx'2 '
=(o) £2 ^(a)

'

dx'dy'
(3.24)

The stresses provoked by the action of a source of heat W located at the
point (£, 77) will be obtained as the sum of the stresses obtained from the
eqs. (3.4), (3.16) and (3.24).
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4. A Rectangular Plate

Let a source of heat of intensity W be located at the point (tj,rj) (fig. 6).

Using the known Solution for the deflection of a rectangular plate subjected
to the action of a concentrated force at the point (£, rj)4), the function 0 can
be represented in the form

—> 1

i

a
z

fx <

>
$'

1

-1?'-*>»,

}

a
i

b h
Z 2

1*'

Fig. 6

Oü

4 K v^ sin 0Ln £ sin ßm -n _0 rj- ——7p^-lsmocnxsmßmy,ahh L^ / o ^2 vo n rmv >

(*n2+ßm)2
717T o =m7T

Pm b
•

(4.1)

This function can also be represented by a simple trigonometrical series

oo

Ka2 V1 1
• >- • sinha^ (6 — ri)

71 1 n

•{[l+an6ctghan6-an(6-7?)ctghari(6-7?)]sinha^i/-an^/coshan^}, (4.2)

O^y^rj.
Using the eqs. (1.4), we find the stresses 5X, öy, fxy from eq. (4.2). It will be

convenient for subsequent considerations to represent the stress fxy in the
form

00

T =pp w »KGy
xv dxdy abh ^* n,m

%KG y *nßmsinocn€sinßmr)
(«n2+Ä)2

cos an a: cos/?m ^/ (4.3)

following directly from eq. (4.1).
It can easily be found that the shear stresses do not vanish at the edge of

the plate. In order to find the additional stresses Hx, ^y, ^xy the single source
of intensity W will be replaced by four sources of intensity W/2 Symmetrie
or anti-symmetric in relation to the x' and y' axes (fig. 7a-d).

4) K. Girkmann: Flächentragwerke, Wien 1954, p. 195.
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Let us first consider the case of symmetry in relation to the x' and y' axes.
For a single source of intensity W, at the point (f, 77), we obtain from

eq. (4.3)

-o —ZJfi- X! ßmWßmynnßmV Yl <*™(-irsina„£
m l n.= l \an +P«

—l~Y~ l^ßm^ißm^)cosßmysmßmr], (4.4)
m= 1

2KGb2
Txy\y b

1x0* v^
^— 2ja^2(an'^sinan^cos-»OS OC™ tXV

71=1

where 772 should be taken from the eq. (2.7').
For four sources TT/4 located as in fig. 7 a we have in the coordinates x', y'.

x'y'\x
KGa2

\ ~ 2b)

x'y'lv =0 2 6

00

Un^mU + ^'j+sin^mU-^'jl cosßm(- + y'\,

i>2 v r (b > \ (b • w
Y Li a» ^l2~+ ^ 'a») + ^ l2~~ ^ ' a»J '

(4.5)
isTöft2

• I sm «„ (| + f) + sin <x„ (| -fj I cos ocre (| + x'j
After some simple transformations we have

w w
m4 4 * "5"

-r
r

m W V'
» *% k

*

1 t*'

-f
777

\ rx'

?/

7^a^

X,Jfl

'? -f
-? — 7l_ fw

4

' f*'

-y d

Fig. 7 a—d
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KGa*
Tx'y'\x' - 4fcy X! ß™p(s) ^' ?)cos ßm vsin a» ?/''

m= 1

KGb2
b —

(4.6)

;- 2ja^^)(S^'^,)COSa^^Sina^^'
71=1

n,m 1, 3, 5,

where

} /3m|'coshxxm sinh ßm€'-pm sinh xxm cosh ßm fP vMm b >/ ~

Mm ~~

/i^COSh2^

5w2cosh2Sn

ßma * __
*nb

2 ' n ~ 2

(s) aw 7/ cosh Sn sinh anrj'-8n sinh Sn cosh ocn 7/
9 [n,V) 82cosh2S„

In order to determine the stresses ox, etc. the following Airy equation should
be solved

V^V2F 0, (4.7)
the boundary conditions being

d2F „ zz d2F _ a
"Tc'v* for X =!>>a-' dy^= ' ' x'y

T / r

da'dy' ^ 2'
02-F _ 6

¦ä^ä7 "T^' for2/ =2'
(4.8)

(4.9)

The function .F will be chosen in the form of the series
00

1 v^ 1

F * Zj W tA™cosh^X, + Bmßmx' smh0mru'] cos0my +
' m=l,3,...POT

00
1 V i+ L Ij —2 [^n COSh an V* + ^n an 2/' Sinh 0Cn y'] COS an X

The boundary conditions (4.8) lead to the System of equations

Am cosh lxm + Bm p,m sinh pm 0, (a)

C71 c°sh S^ + Dn Sn sinh 8^ 0, (b)
00

2 i(Am + -ßm) sinh /xm + £m jxm cosh /xj sin /3m 1/' +
m 1

+ 2 [(C« + X>J sinh an y' + X>nony'cosh «ny'] sin-s- (c) (4.10)

IG«2 X! A»/^(/*»»n cos&» V's™ßmy',46
/ft x

m77

m 1 2 n~^ i

m 1

2 [(^m + -Bm)sinhßmx' + Bmßmx'coshßm<]sin^+ 2 [(Cn + AJsinh8w +
(d)

+ Dn hn cosh 8J sm <xn x' ^ an P(s) (K, v')cos «n £' sin <xn x'.
±a

71= 1
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Expressing the following functions by trigonometrical series

00 CO

sinhany' Z En,msinßmyf, <xny'coshocny' 2 Fn,msinßmyf,
m 1 77i= 1

CO oo

Sinßma/ 2 ^Ti.mSina,^', ß^'coshß^' 2 Hn,m*m*nx'>
71 1 71 1

where

4a„. SmlT
n'm 6 a 2 o2 n'

a7i * Pm

F
rrnr

4oc SmT~ r a 2-ß22
8. sinh 8. -^ ^ cosh 8."m b „s + ft l+ßi

we reduce the System of equations (4.10) to the System of two equations

00

a ±i \ l6o2 • m7T V r\16,2 mrr V- „ sin^cosh2S,

71=1,3,... (a^2 + ßm)2sinhS^

KGa2
-ßtnft"Hfhn>f)°OaßmV'>46

^(SJ+^-a^sin-^ ^ ^
mir

16 ,.,.»*¦ X- sin^-coshV
D2

(4.11)

where

m =173, • • •
(a7i2 + ßm? sinh fln

KGb2 /cv

-^-«nP(Ä)(Sn^)cosanf

n,m 1, 3, 5,

/xm + sinh fim cosh /x,
^m

Mm sinh/xm

*/a \ 8,+sinh 8, cosh 8,
§71 sinh Sn

We have obtained an infinite System of equations. Confining our attention
to r terms of the series (4.6) we obtain 2r equations (4.11). By solving these
equations we obtain the coefficients Am,. .,Dn, which, when substituted in
the function (4.9), will enable us to find approximate expressions for the
additional surfaces öx etc.

In the particular case of a square plate and a single source W at the origin
we obtain for Am Cn the following System of equations
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nn t £> nrc^ IV TT >> 2
m77 + sinhm77 16 9 mw v A

sm-^-cosn -^
Am h-^m2sm—— > A„m _„^i™» tt2 2 __Lum77sinh^ 7T" ^ w i,3,... (w2 + m2)2sinh^

(4.12)
T 97171 v '

KG^T
~2 TW «=1,3,5,...

cosh-^-

For four sources of intensity W/4 located as in fig. 7 b the eq. (4.7) with the
boundary conditions (4.8) should be solved. We have

KGa2
T

2 ^Ulv m l,3,...

az vY h ß™ P(a) ^, £') cos ßm 77' sin ßm y',

KGb2
T \ b

(4.13)

*W ä 4a>.
w I-^- 2j «n P(s) (§n, V') sin an f' cos ocn x',

where

_ ßm £' sinh /xm cosh ßm g - /xm cosh /xm sinh ffmfP \Pm> b ; — 2 TV^ '
/xwsmh2xxm

We assume the Airy function in the form
00

1 V 1

F= h Li tf-[AmSinhßmX' + BmßmX'C0$hßmx']C0sßmy' +
"'m l,3,...Pm

oo
1 V i

+ £ 2_, ~ [^»cosöa«y' + A^a»^'sinha«/]sma»a;'•
rtn=27*,...a»

From the boundary conditions (4.8) we obtain the System of equations

x
16 o2 mTr -o C«cosh28»cos¥

^m*(^m)+T2^mSin— ^j

(4.15)

62 2
„ tt...K2 + Ä)2sinhS„

KGa2,
46 -ßmP™(nm,ncosßmV', (4.16)

/T^ 62
Cn^SJ =-4^-^P(s)(87i^,)sina^^,

rc 2,4,6,... m 1,3,5,

where sinh xxm cosh /xm - xxm
5 \Pm) —

/xmcosh/xm

From this System we find the values of Am, Cn, the remaining coefficients,
Bm and Dn, being determined from the relations

_ sinh/xm _ coshSn
nlxmcoshixm' n w8„sinhS;
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For four sources of intensity TF/4 located as in fig. 7 c the Airy function will
be taken in the form

00
1 \7 1

F
h 2-1 W ^Am C°Shß™X' + B™ß™X' Sinhßm<l SinhßmV' ¦

m— 2,4,... Pm
oo

1 V i+ T 2_j ~~2" Wn sinh <xny'+Dnocn y' cosh ocn y'] cos ocn x'.
^7i=l73,...a^

The boundary conditions (4.8) lead to the System of equations

KGa2
AmHPm) Ah ßm Pi&) (Pm > f) sm ßm rj',

(4.17)

46

^ti * (8W) + -ä- an2 sm — ^ 2 ~2,2
(4-X 8)

a Z 771=274,... (aw2+/?~t2«mh,f.

a7iP(a)(87i^')cosan|'.

16 0 .7177 y ^m cosh2/xm cos^
2

77i 27t,... (ocn2+ßm)2sinhfin

KGb2
±a

The constants Bm and Z)n are found from the equations

_ cosh^ _ sinhSn
^xxmsinh,xm' "»" °»8ncoBh8n" l ' yj

Finally, for four sources of heat, of intensity TF/4, located in an anti-symmetrical

manner in relation to the x'- and ?/'-axes (fig. 7d) the Airy function
should be assumed in the form

1 V 1

F
h L ^2"^ sinh P™ x'+ B™ ß™ x'cosh Ä» »1sin ßm 2/' +

(4.20)
m 2, 4,... Pm

00
1 v^ i+ h Ij -^[°n sinh a7i V' + ^ti «Ti ^cosh an y'] sin ocn x'.

» 2,4,... »

The boundary conditions are as follows

82F
_ _ _o ,_ 6

~dxdy~ Tx'v' X ~ 2' V ~2'
~&x, 0 for x' -, V 0 for y' -,

(4.21)

2'

where

KGa2
*** "2 46Ä m^

i?(?62

£ ßmP^^m^^^^ßm-n'COS ßmy',

(4.22)

-=—IÖT 2_i «»P(0)(S„,'?)sman^ cos«««.x y\y ^ 71=2,4,...
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The coefficients Am,. Dn, can be determined directly from the conditions
(4.21).

We have
KGa2

Ams(nm) -j^-ßmP<aH(im,i')sinßmr)',

KCh2
C»*(8») =-T^-«»P<a>(§«^')sinaTOf, (4.23)

sinhjLim ^ „ sinh S„

Pm cosh/xm' n n8TOcosh8w"

Summing up the stresses due to the states represented in the figs. 7a-d
we obtain the additional stresses äx. which, together with the stresses

öx, determine the state of stress in the plate due to the action of a source
of heat of intensity W, located at the point (£, 77).

The Solutions described in this paper can be used in the case of plane
strain. The heat sources at the level h will be replaced by linear sources parallel
to the z axis.

The differential equation of the thermal potential of displacement take
the form

1 —v k

The stresses 5X, öy, fxy are found from the relations (1.4). For a plane state
of deformation where the stresses are independent of the variable z we have

fxs O,fvs O,az=-2GF20.
The additional state of stress (a, r) is obtained by solving the Airy function,

using the relations

_
d2F _d2F _

d2F
(Tx ~dy2' Gi'~Jx^' Txy~~Ix~dyJ

r=0 r 0 a vV2 F.1 xz v' ' yz w' kjz v v j.

Summary

A formal analogy can be observed between the differential equation of the
thermal potential of displacement for a steady temperature field due to a

source of heat and that of the deflection of a thin plate due to a concentrated
force. This analogy is used in the present paper to determine the thermal
potential of displacement and the stresses (ö,f).

The normal stresses at the edges are found to be zero, whereas the shear
stresses are other than zero. In order to eliminate the shear stresses at the
edges, on additional state of stress (ä, r) (obtained by solving the boundary
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problem for a plane state of stress by means of the Airy function) must be

superposed on the state (ö, f).
The state of stress due to the action of heat sources is treated in detail for

the following cases:

a) a strip of plate of infinite length

b) a semi-infinite strip of plate

c) a rectangular plate.

Resume

L'equation differentielle du potentiel thermique de deplacement est for-
mellement analogue a celle exprimant la deflection d'une plaque mince causee

par l'action d'une force concentree. Dans le present memoire on emploie cette
analogie pour determiner le potentiel thermique de deplacement et les
contraintes (5, f) dans une plaque. On trouve que les tensions normales sur le
contour de la plaque disparaissent tandis que les tensions tangentielles sont
differentes de zero.

Pour annuler les tensions tangentielles au contour de la plaque il faut
superposer a l'etat de tension (ä, f) l'etat (a, f) qu'on obtient par la Solution
du probleme aux limites pour l'etat plan de tension en employant la fonetion
d'Airy.

L'etat de tension provoque par l'action des sources de chaleur a ete etudie
pour les plaques suivantes:

a) une bände indefinie,

b) une bände semi-indefinie,

c) une plaque rectangulaire.

Zusammenfassung

Zwischen der Differentialgleichung des thermischen Verschiebungspotentials
für stationäre Temperaturfelder, hervorgerufen durch Wärmequellen,

und der Differentialgleichung für die Durchbiegung einer dünnen Platte,
hervorgerufen durch die Wirkung einer Einzellast, besteht eine formale Analogie.
In der vorliegenden Arbeit wurde diese Analogie zur Bestimmung des
thermischen Verschiebungspotentials und der Spannungen (ä,f) benützt; es wurden

hierbei an den Rändern der Scheibe Nullwerte für Normalspannungen,
jedoch von Null verschiedene Werte für die Schubspannungen gefunden.
Zwecks Beseitigung dieser Schubspannungen auf den Scheibenrändern muß
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auf den Spannungszustand (ö,f) ein zusätzlicher Spannungszustand (ä,r)
überlagert werden, welcher aus der Lösung des ebenen Randwertproblems
durch Benutzung der Airyschen Spannungsfunktion hervorgeht.

In der Arbeit wurden eingehend die Spannungszustände behandelt, die
durch das Auftreten von Wärmequellen verursacht werden:

a) im unendlich langen Scheibenstreifen,

b) im scheibenartigen Halbstreifen,

c) in einer rechteckigen Scheibe.
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