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Schwingungen der Briicken aus Stahl und Stahlbeton
Vibrations in steel and reinforced concrete bridges

Vibration dans les ponts métalliques et en béton armé

Ing. Dr. VLapiMir KoLOUSEK, Professor der Eisenbahnhochschule, Praha

Einleitung

Eines der interessantesten Probleme der Briickendynamik ist die Frage
der periodischen Triebriderwirkung der Lokomotive. Diese Aufgabe wurde
theoretisch von TimosHENKO!) und spiter sehr ausfithrlich von INGLIs?)
gelost, welcher die Ergebnisse der langjahrigen Messungen verarbeitete, die
durch den Ausschufl ,,Bridge Stress Committee“ auf britischen Eisenbahnen
durchgefiithrt wurden?®). Die genannten Autoren halten die Einfliisse der
periodischen Krifte der Triebrider, die sogenannten ,,hammer blows‘‘, fiir die
Hauptursache der Briickenschwingungen. Zu &dhnlichen Resultaten gelangen
auch andere Verfasser, z. B. B. BRUcKkMANN%). Ebenso machen KLOoPPEL und
Lie%) bei Losung der Héingebriicken Gebrauch von den Ergebnissen von
INnGLis. Die sowjetischen Instruktionen fiir Nachrechnung von dlteren Eisen-
bahnbriicken®) geben kritische Geschwindigkeiten an, die aus der Resonanz
der Eigenfrequenz mit der Triebriderumdrehungszahl abgeleitet sind. Die

amerikanische Forschung untersucht ebenfalls die Einfliisse der Hammer-
blows?).

1) 8. TiMmosHENKO: Vibration Problems in Engineering, New York 1929.

2) C. E. Incris: A Mathematical Treatise on Vibrations in Railway-Bridges, Cam-
bridge 1934.

%) Department of Scientific and Industrial Research. Report of the Bridge Stress
Committee, London 1928.

4) B. BrtickmanN: Einschwingvorginge von Briickenhaupttrigern, Miinchen 1939.

5) KroppEL und Lie: Lotrechte Schwingungen von Héngebriicken. Ingenieur-Archiv
1942, S. 211.

6) Handbuch des Eisenbahners. T. IV. Moskau 1951. S. 615.

) RuBLE: Impact in Railroad Bridges. Proc. Am. Society Civil Engineering VII 1955
J. 81, No. 736.
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Andererseits schreibt eine ganze Reihe von Verfassern diesen Einfliissen
wenig Bedeutung zu. HARTMANNS) ist der Meinung, daB diese Krifte kein
groBes Aufschwingen der Briicke bewirken konnen, da sich die Eigenschwin-
gungsfrequenz der Briicke bei der Uberfahrt der Lokomotive bestindig andert
und deswegen die Resonanz der Umdrehungszahl der Triebrider mit dieser
Frequenz nur sehr kurze Zeit andauern kann. Derselben Ansicht ist P. DEL-
PUECH?). A. A. CH. RoNssE und R. DESPRETS'?) kommen ebenfalls zum Ergeb-
nis, daf die Triebriderwirkungen vernachlissigt werden konnen.

Um die ziemlich groBen Unterschiede in den Ansichten iiber dieses wich-
tige Problem zu erkliren, fithrten die tschechoslowakischen Eisenbahnen eigene
Forschungen durch. Es wurden einerseits Stahlbriicken untersucht, wobei
schon frithere fremde Resultate zur Verfiigung standen, anderseits Stahl-
betonbriicken, die bisher — soweit uns bekannt — in dynamischer Hinsicht
nicht griindlich behandelt wurden.

Stihlerne Eisenbahnbriicken

Wir wollen vorerst sehr kurz die Ergebnisse, zu denen INgLiS auf Grund
der britischen Messungen gelangte, wiederholen. INGL1s teilt Briicken in drei
Kategorien. Es sind erstens Briicken kleiner Stiitzweite (etwa bis 15 m), bei
welchen die periodischen Triebriderkrifte dhnliche Einfliisse ausiiben wie
wenn sie als statische Belastung wirkten. Zweitens sind es Briicken mittlerer
Stiitzweite (etwa zwischen 15—80 m), bei welchen die periodischen Krifte
nicht nur die Briickenkonstruktion, sondern auch die Lokomotive auf ihren
eigenen Federn zum Schwingen bringen.

Endlich sind es Briicken groBer Stiitzweite, iiber 80 m. Diese Briicken
kann man so berechnen, dafl der EinfluB der sich bewegenden Masse der
Lokomotive vernachlissigt und nur die Wirkung der beweglichen, konstanten
Kraft — d.h. des Lokomotivgewichtes — beriicksichtigt wird. Mit dieser
Kraft ist eine harmonisch verinderliche Kraft, d.h. die senkrechte Kompo-
nente der Zentrifugalkréifte der Triebrdder, verbunden. Die Masse der Loko-

8) MELAN-HARTMANN: Der Brickenbau. Stahlbriucken, Wien 1951. _

%) DeLPUECH: Flexion dynamique et oscillations des ponts. Annales des Ponts et
Chaussées 1951, No. 1, S. 5. ‘

10) A. A. CH. RoxsseE und R. DEsprETs: Etude des sollicitations statiques et dyna-
miques des ponts-rails. Bulletin de 1’Association Internationale du Congrés de Chemins
de Fer 1929, S. 2558—2562. In diesem Aufsatz wird behauptet, daBl die GesamtgroBe
der senkrechten Komponente der periodischen, durch Rotation der Triebrdder erweckten
Krifte, von der gegenseitigen Entfernung und der Zahl der Triebachsen abhéngig sei
und daB sich diese Krifte, z. B. bei Lokomotiven mit drei Triebachsen, in der Regel
aufheben. Gleiche Erwidgungen werden von R. DEsPRETS in der Nachricht fiir Inter-
nationale Eisenbahnvereinigung von 1933 und in der Abhandlung ,,Essai sur 1’évolution
de la technique des ponts‘“ (Annales des Travaux Publics, Numéro Jubilaire, Bruxelles
1948) wiederholt.
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motive wird also von ihrem Gewicht getrennt und stabil in die Mitte der
Spannweite gestellt. — Im Buche von C. E. Ingris!!) ist die genaue Berech-
nung wiedergegeben, bei welcher auch die Bewegung der Lokomotivmasse auf
der Briicke in Erwigung gezogen wird. Diese Losung gibt beinahe gleiche
Resultate, wie die angenaherte Berechnung. Die erwihnte Einteilung der
Briicken entspricht den Verhiltnissen in GroBbritannien in der Zeit der
Durchfiihrung von Messungen. Die Zentrifugalkrifte der Triebrider waren
dort bedeutend groBer als bei den kontinentalen Eisenbahnen, wo die Bestim-
mungen der ,, Technischen Einheit* gelten, welche das VergréBern des Rad-
druckes durch Zentrifugalkraft hochstens auf 15%, des statischen Druckes
beschrianken.

Die Berechnung der Briicken groBer Stiitzweite, mit denen wir uns in
erster Linie beschiftigen werden, kann noch weiter vereinfacht werden. Da
die Linge der Lokomotive gegeniiber der Spannweite klein ist, werden die
einzelnen Raddriicke durch ihre Resultierende ersetzt. Die Masse der Briicke
je Léngeneinheit d&ndert sich nur wenig, so daBl sie als konstant angenommen
werden kann. Die Anderung des Trigheitsmomentes ist gewohnlich ziemlich
groB; es ist jedoch moglich, einen Triager mit verinderlichem Querschnitt oder
auch einen Fachwerktriger, angendhert durch einen Triger mit konstantem
Querschnitt, zu ersetzen, welcher in der Mitte der Spannweite dieselbe Durch-
biegung infolge des Eigengewichtes aufweist wie der urspriingliche. Das Auf-
schwingen der Briicke, welches durch das Einfahren der beweglichen Kraft
auf die Briicke verursacht wird, kann vernachldssigt werden, weil es eine
kleine Amplitude hat und ganz abgedampft wird, bevor die Lokomotive in
die Mitte der Spannweite gelangt, wo ihre statische Wirkung am groBten ist.
Wir kénnen also angendhert die dynamischen Einfliisse der beweglichen Kraft
von konstanter Grofle vernachlidssigen und nur ihre statische Wirkung be-
rechnen. )

Die Dampfung einer schwingenden Briicke ist durch sehr mannigfaltige
Faktoren bewirkt, und es ist deshalb schwierig, deren Einflu durch eine ein-
fache mathematische Formel auszudriicken. Gute Ergebnisse gibt die Annahme,
daB die GroBe der Dampfung von der Geschwindigkeit der Trigerelemente
und von deren Masse abhingt. Auf das Trigerelement von der Masse udx
wirkt dann eine Dampfungskraft, welche durch die Formel

ov(x,t

ausgedriickt werden kann, wobei v (x,?) die senkrechte Auslenkung des Quer-
schnittes « in der Zeit ¢ bedeutet. 2 w, ist ein Dampfungsbeiwert; w, hat das

11) Siehe INncrLis 2). (In der letzten Zeit wurde die Berechnung noch ausfiithrlicher von
K. N1sE und S. Kuni1I in ,,A Theory for the Forced Vibration of Railway Bridge under
the Axiom of the Moving Loads* Quart. Journ. Mech. and Applied Mat. Vol. IX. 1956
durchgefiihrt.) ‘
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MafB3 der Kreisfrequenz. Da die Diampfung klein ist, beeinflut sie wenig die
erste Eigenfrequenz der Briicke. Diese Frequenz kann man deshalb nach der

Formel |
EJ
N = —27;2 l/—[ (2)

wie die erste Eigenschwingungszahl eines Trigers von konstantem Querschnitt
bei ungedimpfter Schwingung berechnen. Die erste Eigenkreisfrequenz ist

Wy = 27 Ny). (3)

Wenn der Tréger im Querschnitt, der vom linken Trigerende um x=a
entfernt ist, mit einer konzentrierten Masse belastet wird, sinkt seine erste
Eigenfrequenz auf

wl
Mya = n(1)l/ T aa’ (4)
pl+2msin®—

Wenn sich die Masse m auf dem Tréiger mit einer Geschwindigkeit ¢ bewegt,
ist @ =c? und die Eigenfrequenz der Briicke &ndert sich fortwahrend. Bei der
Berechnung der erzwungenen Schwingung der Briicken groBer Spannweite
kann jedoch diese Anderung angenihert vernachlissigt werden!?). Die Eigen-
frequenz wird dann so gerechnet, als ob sich die Masse m stets in der Mitte
der Spannweite befinde, und zwar nach der Formel

’ ' ,LL
n1)=n()1f—,, (5)
(A 1 » .

2
M'=M+Tm- (6)

wobel

Entsprechende Eigenfrequenz ist

Der Dampfungsbeiwert verkleinert sich dabei auf
wb' = wbﬁ, . (8)
%

Bei der Berechnung der Einfliisse einer beweglichen Last mit dem Gewicht
G =m g wird dann nur die Bewegung der Kraft in Betracht gezogen. Die Durch-
biegung infolge dieser Belastung wird dann angenidhert wie die statische

gerechnet. Es ergibt sich im Querschnitte x und in der Zeit t=%

vz, t) =0 Sinwtsinf—;, (9)
wobei w = EZE (10)

12) Siehe INGLIS 2) S. 87.
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d - 2 2 '
" e (1)
plog  plog)

ist die statische Durchbiegung in der Mitte der Spannweite, wenn die Kraft ¢
an derselben Stelle wirkt.

Wenn sich gemeinsam mit G' auch eine harmonisch veridnderliche Kraft
Psin 2t bewegt, kann diese durch stetige Belastungen nach der Fourierschen
Reihe ersetzt werden!3), wobei es geniigt, nur das erste Glied

p(z,t) =¥sin9tsinﬂTx (12)

zu erwigen mit _
2=2xN, (13)

wobei mit NV die Frequenz der Kraft bezeichnet wird, d. h. im gegebenen Falle
die Umdrehungszahl der Triebrider der Lokomotive in einer Sekunde. Die
Bewegungsgleichung eines Trigers bei der gedimpften Schwingung gewinnt
dann die Form
,0%v (x, 1)

o t?

v (x,t) *v(x,t) 2P . . . T
Y +EJ Py lsttsmwt sin —-—. (14)

+ 2”/ wbl

Maximale Auslenkungen entstehen bei der Resonanz der Eigenfrequenz der
Briicke mit der Umdrehungszahl der Triebréder, also wenn® = w;,oder N =n,.
Die Gl. (14) hat dann nach Auslassen der kleinen Glieder die Losung:

P cos w('l)t L

v(x, t) =

@ (cos wt —e='t) — e, sin wt] sin (15)

p'lwzl) (w?+ wp”) l
Wir benutzten die oben erorterte Theorie bei der Untersuchung der gemesse-
nen Briicken, die verschiedene Spannweiten von 20 m bis 110 m aufwiesen. Bei
Priifungen der schwingenden Briicken, deren Spannweite grofler als 40 m
war, wurde keine Schwingung der Lokomotiven auf den eigenen Federn
beobachtet. Dies wahrscheinlich deswegen, weil die periodischen Krifte
unserer Lokomotiven kleiner sind als die der britischen, welche bei den
Messungen des ,,Bridge Stress Committee‘‘ gebraucht wurden. Wir benutzten
dann die oben eingefiihrten Formeln bei der Berechnung der schwingenden
Briicken von grolerer Spannweite als 40 m. Die Ergebnisse der Berechnung
und der experimentellen Messung sind im folgenden Beispiel wiedergegeben.
Bei den Messungen wurden mechanische Registriertensometer Meyer
(Triib-Teuber) und mechanische, registrierende Durchbiegungsmesser ange-
wandt. Die Resultate wurden ebenfalls durch elektrische Widerstandstenso-
meter (strain-gages) kontrolliert. Es zeigte sich, dafl die mechanischen Appa-
rate zum Aufzeichnen der verhiltnismaBig langsamen, durch die periodischen
Triebrdaderkrifte verursachten Schwingungen voéllig ausreichen.

13) Incris 2) S, 88.
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I 22sec : 67sec |
a) Tensometer b) Durchbiegungsmesser

Fig. 1. Uberfahrt einer Zweizylinderlokomotive iiber eine Stahlbriicke von 46,86 m
Stiitzweite. Geschwindigkeit 32 km pro Stunde (in der Tensometeraufnahme auch 10 km
pro Stunde).

1 00m i
h: A A\
i _ S4sec |
a) Tensometer b) Durchbiegungsmesser

Fig. 2. Uberfahrt einer Zweizylinderlokomotive iiber eine Stahlbriicke von 46,86 m
Stitzweite. Geschwindigkeit 40 km pro Stunde.

60m =

[ %44 sec ]

a) Tensometer b) Durchbiegungsmesser

Fig. 3. Uberfahrt einer Zweizylinderlokomotive iiber eine Stahlbriicke von 46,86 m
Stiitzweite. Geschwindigkeit 49 km pro Stunde.
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a) Tensometer b) Durchbiegungsmesser

Fig. 4. Uberfahrt einer Dreizylinderlokomotive. Geschwindigkeit 34 km pro Stunde.

60 m

= — - |

i_ 5,0 sec

a) Tensometer b) Durchbiegungsmesser

Fig. 5. Uberfahrt einer Dreizylinderlokomotive. Geschwindigkeit 43 km pro Stunde.

a) Tensometer b) Durchbiegungsmesser

- 60m -

}_ g 5J3sec -

Fig. 6. Uberfahrt von zwei Zweizylinderlokomotiven mit drei angehiingten Wagen uber
eine stihlerne Briicke von 46,86 m Stutzweite.
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Die durch die Tensometer aufgezeichneten Diagramme sind in den Fig. 1a
bis 6a ersichtlich. Sie enthalten die Aufzeichnungen von drei Zeigern. Die
untere ist vom Zeitzeiger, die mittlere ist die Spannungslinie und die obere
zeigt das Einschalten von zwei elektrischen Kontakten, welche auf der Schiene
vor und hinter der Briicke befestigt sind und die durch den Raddruck einge-
schaltet werden. Aus den Diagrammen kann man das Zeitintervall abmessen,
welches der bekannten Entfernung der beiden Kontakte entspricht, und so
die Geschwindigkeit der Lokomotive feststellen. Die Diagramme des Durch-
biegungsmessers sind auf den Fig. 1b bis 6b reproduziert.

Bei den Priifungen wurde erstens eine Zweizylindertenderlokomotive mit
finf Triebachsen beniitzt im Gewicht von G'=97t. Die Lokomotiven dieser
Reihe iiben die gesamte Zentrifugalkraft

P =0,24 = 0,30 N2 (16)

aus. Die Umdrehungszahl wird in s~ eingesetzt, P in Tonnen. (Die untere
Grenze in der Formel (16) entspricht den Angaben des Erzeugers. Bei Loko-
motiven dieser Reihe verschiedenen Alters bestehen jedoch gewisse Abwei-
chungen.) Der Raderumgang O betriagt 3,96 m.

Auflerdem wurden Dreizylinderlokomotiven mit dem Gewicht 97 t mit
~einem Tender von 60 t benutzt, deren Triebrider nur ganz kleine periodische
Krifte erzeugen. Zu den weiteren Prifungsfahrten wurden zwei Zweizylinder-
lokomotiven mit drei angehingten Wagen mit je 40 t gebraucht.

Eine der gemessenen Briicken mit zwei Fachwerkhaupttrigern von 46,86 m
Stitzweite hat die stindige Last png=3,85 t/m und daher das gesamte Eigen-
gewicht G,=46,86-3,85=181 t. Trigheitsmoment J =0,510 m*.

Die theoretische Eigenfrequenz der unbelasteten Briicke ist nach (2)

gy s 21-106.0,51-9,81 -
n(l) '_\ 2 - 246,862 ‘I/‘ 3,85 = 3,738 .

Die wirkliche Eigenfrequenz kann aus der freien Schwingung, mit der die
Konstruktion nach der Uberfahrt der Lokomotive schwingt, festgestellt wer-
den. Aus den Fig. 2a, 3a ist ersichtlich, daB 11 Schwingungen in 3 Sekunden

entstehen, so daf3

11
n =5 5 3,7s71.

Aus denselben Figuren kann auch der Diampfungsbeiwert abgelesen werden.
Nach 10 Schwingungen verkleinert sich die Amplitude der freien Schwingung
auf die Halfte. Das logarithmische Dekrement der unbelasteten Briicke ist
also

In0,5
10

und wp = Ny = 3,7-0,0693 = 0,257 s71,

19’:

= 0,0693
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Die Eigenfrequenz der mit einer Zweizylinderlokomotive belasteten Briicke
ist nach (5) ’

/ G, © 181
= _ = —_— 2 57 _1.
1) = l/G0+2G 3’7‘/181 2,97 0%0¢

Das entspricht der kritischen Geschwindigkeit der Lokomotive ¢=mn, O =
=2,57-3,96m s 1 =37 km pro Stunde. Die tatsichliche Geschwindigkeit ist ein
wenig groBer, wie aus Fig. 2 ersichtlich, und zwar etwa 40 km pro Stunde,
was der Frequenz n;,=2,81s! und der Eigenkreisfrequenz w;,=17,6s1 ent-
spricht. Nach (4) wurde das Ersatzgewicht je Léngeneinheit g1’ =6,7 t/m’ und
nach (8) der reduzierte Dimpfungsbeiwert errechnet. Diese Werte, mit welchen
weiter gerechnet wird, entsprechen der Lage der Lokomotive nicht in der
Mitte, sondern etwa im Drittel der Spannweite (siehe Fig. 9). Es ist dann

¢c=2,81-3,96 =11,15ms!

w = fl—c — 0,748 51

w, = 0,148 571
und die harmonisch veridnderliche Kraft hat nach der oberen Grenze in der
Formel (16) die Amplitude

P =0,3-2,812 = 2,37t.

Nach Einsetzen in (15) ergibt sich fiir die Auslenkung in der Mitte (17)
7
l a

a
=35 vp (% t) = €0574,0~ [0,00540 (eosil‘f—e‘ﬁ’6257> —0,00107 sin %‘-‘] m.
Dazu ist noch die Durchbiegung infolge der Belastung g‘urch G nach (9) zuzu-
rechnen, welche in der Mitte der Spannweite

va(%,t) o 5sinwt=0,01968in7-7l~5§m (18)
ist. Die Summe der beiden Werte (17) und (18) ist in Abhéngigkeit von der
Lage der Last in Fig. 7 dargestellt. Das Diagramm entspricht bis auf den
MafBstab der Aufzeichnung des Durchbiegungsmessers Stoppani in Fig. 2b.

3
e

46,86 m o

Fig. 7. Theoretische Durchbiegungslinie.
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In den Fig. 1 bis 3 sind die Fahrten der Zweizylinderlokomotive bei ver-
schiedenen Geschwindigkeiten aufgezeichnet. Links ist das Diagramm der
Spannung im Untergurt, rechts das der Durchbiegung in der Mitte der Spann-
weite. Ks ist ersichtlich, dall die dynamischen Einwirkungen bei kleinen
Geschwindigkeiten klein sind, mit der wachsenden Geschwindigkeit fortschrei-
tend ansteigen und ihr Maximum im Resonanzgebiet erreichen (Fig. 2). Bei
noch grofleren Geschwindigkeiten als der kritischen sinkt die dynamische
Einwirkung und gleichzeitig erscheint die Interferenz zwischen der erzwun-
genen Schwingung (mit der Frequenz N) und der Eigenschwingung der Kon-
struktion (Fig. 3).

Die bei weiteren Fahrten benutzte Dreizylinderlokomotive hatte mit dem
Tender das Gesamtgewicht von 153 t; ihre Triebrider sind gut ausgewuchtet,
so daf} die bei der Fahrt entstehende Zentrifugalkraft gering ist. Die dynami-
schen Wirkungen einer solchen Lokomotive auf die Briicke sind klein, wie es
aus den oszillographischen Aufzeichnungen in den Fig. 4 bis 5 ersichtlich ist.

Die an die Lokomotiven angehiingten Wagen verkleineren die dynamischen
Einfliisse; das zeigt sich in Fig.6, wo die Fahrt von zwei gekuppelten Zwei-
zylinderlokomotiven mit 3 Wagen aufgezeichnet ist. Die vorne fahrenden
Lokomotiven brachten am Anfang die Briicke in ziemlich starke Schwingung;
nach der Einfahrt der Wagen auf die Konstruktion wurde das Schwingen
unregelmifig und die Amplitude der Auslenkungen verkleinerte sich bedeu-
tend. Diese Erscheinung ist dadurch verursacht, dall die Wagen auf ihren
verhidltnismiBig weichen Federn schwingen und deren starke Dampfung dann
die Schwingung unterdriickt ).

Die Aufnahme des Spannungsverlaufes im Untergurt einer anderen gemes-

Fig. 8. Tensometeraufnahme bei Uberfahrt einer Zweizylinderlokomotive iiber eine
stihlerne Briicke von 75 m Stiitzweite mit Geschwindigkeit 43 km pro Stunde.

1) Vergleiche Incris 2) S. XXIIT.
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senen Briicke von 75 m Spannweite ist in Fig. 8 wiedergegeben. Hier erreicht
die dynamische Vergroflerung fast die Hilfte der Spannungen bei der stati-
schen Belastung. :

Es ist ersichtlich, dal die Resultate der Messung gut mit der Theorie
iibereinstimmen. Diese Ubereinstimmung wurde bei allen gemessenen Briicken,
deren Zahl bedeutend war, festgestellt. Es ist daher auffallend, da die Timo-
shenko-Inglis-Theorie verhaltnismafig oft einer ablehnenden Kritik unter-
worfen wird.

Der Grund dafiir liegt erstens darin, da der Einflu} der Eigenfrequenz-
dnderung der Briicke wiahrend der fortschreitenden Belastung der Briicke
durch eine Lokomotive iiberschéitzt wird. Diese Frequenz kann sich in weiten
Grenzen dndern, wie es aus Fig. 9a ersichtlich ist, wo der Verlauf der Eigen-
frequenz der Briicke im numerischen Beispiel in Abhéngigkeit von der Lage
der Lokomotive aufgetragen ist. Diese Frequenz éndert sich jedoch am meisten,
wenn sich die Lokomotive in der Nihe der Stiitzen befindet, und dann ist, wie
aus Fig. 9b ersichtlich, die GroBe der harmonisch veridnderlichen Ersatz-
belastung am kleinsten. Wenn sich die Lokomotive in der Mitte der Spann-
weite befindet und die Belastung den grof3ten Wert erreicht, éndert sich die
Eigenfrequenz wenig. Die Bewegung der Masse der Lokomotive lings der
Briicke hat deshalb einen verhiltnismiBig kleinen EinfluBl auf die dynamische
VergréBerung der maximalen statischen Durchbiegung. Die Anderung der
Eigenfrequenz verursacht die Verkleinerung der dynamischen Auslenkungen
hauptsichlich, wenn sich die Lokomotive dem Briickenende nihert. Das ist in
den Fig. 2b und 7 ersichtlich. Beide Diagramme stimmen in der maximalen
Amplitude iiberein; die gerechnete freie Schwingung nach der Uberfahrt der
Lokomotive ist jedoch ein wenig gréfler als die gemessene.

Zweitens wird der Einflull der stufenweisen Belastung der Briicke durch
einzelne Lokomotivachsen iiberschitzt. So begriindet sich z. B. die Behaup-
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Fig. 9a. Anderung der Eigenfrequenz einer Briicke bei Uberfahrt einer Lokomotive.
Fig. 9b. Verlauf der senkrechten periodischen Belastung.
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tung der in FuBlnote 10 erwidhnten Abhandlung auf einem Irrtum. Wenn wir
beriicksichtigten, dal3 die Rédderpaare der Lokomotive sukzessiv in den Inter-

vallen 2 auf die Briicke einfahren, wobei A die Entfernung der Triebachsen

und ¢ die Geschwindigkeit der Lokomotive bedeutet, dann hitte der Aus-
druck (12) die Form

2P . . mx] . . A
p(x,t) = Wsm!)tsm—l— [smwt%—smw(t—z) +

. 22 . nA
+smw(t—7 +--FSsinw t—7

wobei n die Zahl der Triebachsen bedeutet. Dabei wird einfachheitshalber
vorausgesetzt, dafl alle Triebrider mit der gleichen periodischen Kraft wirken.

(19)

Da bei groBerer Spannweite der Wert %A = "TA gering ist, kann man den ganzen

Ausdruck in Klammern durch nsinwt ersetzen, wobei ¢ vom Zeitpunkt
gemessen wird, wenn der Schwerpunkt der Lokomotive sich am Anfang der
Briicke befindet, d.h. man kann sich alle Triebachsen in einem Punkt kon-
zentriert denken, wie es in der Berechnung vorausgesetzt wurde. Im Aufsatz
der FuBinote 10 wird jedoch irrtiimlicherweise mit der Belastung

p(x,t) = %I;Sinflfsinwt [sith-}—sinQ (t-—z}\) +sin {2 (t—%/—\) + - ]

gerechnet. Die Verfasser des Aufsatzes setzen die Phasenverschiebung bei den

. qs " . . QX 272
periodischen Kriften der einzelnen Triebachsen voraus. Der Wert -~ = —011—

ist nicht mehr gering und die Verfasser gelangen zur unrichtigen Behauptung,
daB} die periodischen Krifte der Triebachsen sich gegenseitig stéren und sich
z. B. bei Lokomotiven mit drei Triebachsen praktisch vollkommen aufheben.

Tatsichlich bewegen sich jedoch die Gegengewichte aller Rader auf jeder
Seite der Lokomotive angenihert in derselben Phase und ihre Einfliisse
addieren sich einfach und die Einfliisse von beiden Seiten dann vektoriell.
Die Entfernung der Achsen hat bei lingeren Briicken nur sehr geringen Ein-
flull. '

SchlieBlich werden wahrscheinlich oft bei den Messungen Lokomotiven
gebraucht, welche keine groflen periodischen Krifte erzeugen. Auch bei Zwei-
zylinderlokomotiven kénnen die rotierenden Massen gut ausgewuchtet werden,

Fig. 10. Freie Schwingung einer Briicke mit zwei nebeneinanderliegenden einfachen
Feldern.
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so dafl die vertikalen periodischen Krifte gering sind. Das hat dann zur Folge,
daBl auch kein Aufschwingen der Briicken beobachtet werden kann.

Zum Schlufl soll eine zwar nicht wichtige, aber interessante Erscheinung
erwihnt werden, welche immer bei Briicken von zwei oder mehr Feldern mit
einfachen Haupttrigern beobachtet wurde. Nach Uberfahrt der Briicke klingt
die Schwingung auf die in Fig. 10 ersichtliche Art ab. Benachbarte Felder
der Briicke arbeiten wie gekoppelte Oszillatoren. Ein Feld iibergibt seine
Energie dem Nachbarfeld mittels der Schienen. :

Die Eisenbahnbriicken aus Stahlbeton
A. Allgemeines

Die im ersten Abschnitt enthaltene Theorie kann auf kompliziertere
Systeme erweitert werden15)16). Anstatt der harmonischen Analyse kann man
die Entwicklung nach den Eigenschwingungsformen anwenden.

Bei einem System mit krummen Stében entsteht das Schwingen nicht nur
in senkrechter, sondern in ganz allgemeiner Richtung. Wenn der Querschnitt
verdanderlich ist, dndert sich auch das Trégheitsmoment und die Masse des
Stabes. Gl. (14) kann deshalb nicht angewendet werden.

Nehmen wir ein Lingeelement des Stabes mit der Lange d s im Querschnitt s
und in der Zeit ¢ in Betracht, das die Masse u(s)d s besitzt. (Die Masse wu (s)
ist von der Lage des Querschnittes s abhingig.) Das Element sei aus seiner

v (st)

| u(st) &

Fig. 11. Das Element eines krummen Stabes.

15) 8. T. A. Opman: Differential equation for calculation of vibrations produced in
load-bearing structures by moving loads. Preliminary Publication. Third Congress
TABSE. Liége 1948.

16) V. KoLousEK: Baudynamik der Durchlauftriger und Rahmen. Leipzig 1953.
S. 110—128.
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Gleichgewichtslage um w (s,t) ausgelenkt. (Die Vektoren werden mit fetten
Buchstaben bezeichnet.) Dabei wirkt auf das Element eine elastische Riick-

stellkraft R (s,t)ds, welche ihm eine Beschleunigung 67(:2, ) erteilt. Es gilt

dann nach dem d’Alembertschen Prinzip fiir freie ungedimpfte Schwingung
die vektorielle Bewegungsgleichung

—p(s)dsﬁtg—t(:’—t)‘—}—R(s,t)ds:O. (20)

Wenn man die Giiltigkeit des Hookeschen Gesetzes und kleine Auslenkun-

gen voraussetzt, kann ein System mit krummen Stdben in unendlich vielen

Eigenformen harmonisch schwingen. Die Amplitude der Auslenkung im Quer-

schnitt s bei beliebiger (j-ter) Eigenschwingungsform sei mit wy; (s) bezeichnet.

Auf das Lingeelement wirkt dabei die elastische Riickstellkraft Ry (s) und

das System schwingt in dleser Form harmonisch mit der Eigenkreisfrequenz
wg. Es gilt dabei

w(s t) = wg) (s)sinwgt (21)

R(S t) = R(]) smw(J)t ) (22)

Nach Einsetzen in (20) ergibt sich

—H (3)“’(9')2 W(;) (s) = R(j) (s)- (23)

Wenn das System durch eine #uBere, in der Zeit veranderliche Belastung
beansprucht wird, entsteht die erzwungene Schwingung. Die Bewegungs-
gleichung eines schwingenden Elementes mit der Linge ds im Querschnitt s
und in der Zeit ¢, auf welches die Belastung p (s, t)d s wirkt, kann in der vek-
toriellen Form wie folgt geschrieben werden:

2
,L(.s)dsa—'gt(%’tuzww(s)a_“’a(;’—t)ds_la(s,t)ds =p(s,t)ds. (24)

Die Belastung p (s,t) kann nach den Eigenschwingungsformen in eine unend-
liche Reihe entwickelt werden

81) = 3 2o (6 (5) iy () (25)

wobei p; (t) eine in der Zeit verinderliche generalisierte Belastungskoordinate
bedeutet und die rechte Seite des Ausdruckes (25) eine vektorielle Summe
ist. Die Werte p; (f) errechnen sich nach der Formel:

fp St W(j)( )dS, (26)
Jr(s) w(y) (s)ds
wobei wy; (s) das Modul von wy; (s) bezeichnet. Das Vektorprodukt im Integral

des Zahlers ist skalar. Der Ausdruck (26) ergibt sich aus Gl. (25), wenn beide
Seiten mit wy(s) skalarweise multipliziert und fiir alle Stibe des Systems

p(])( )
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integriert werden. Mit Riicksicht auf die Orthogonalitit der Eigenschwingungs-
formen gilt
Ju(s)wg (s)-we(s)ds =0
fir alle ¢ =+ j.
Ebenfalls konnen die Auslenkungen und die elastischen Krafte durch
Reihen entwickelt werden

(8 t qi) )w(j) (‘9): (27)

Cl)

95 () Ry (s) = — 2 GI(])( ) (8) wipy wi (8), (28)

?_

R(s,t) = i

wobei ¢, (t) generalisierte Koordinaten der Auslenkung bezeichnen. Nach
Einsetzen der Formeln (25), (27) und (28) in die Gl. (24) ergibt sich

d2q. (t d
%2—(*)%-2(% q;)()"' (9)Q(j)(t)=p(,-)(t). (29)

Aus dieser Gleichung kann man die generalisierten Koordinaten g (¢) errech-
nen und nach Einsetzen dieser Werte in (27) die Auslenkungen w (s, ¢) ermitteln.
Bei der Losung der statisch unbestimmten Systeme der Eisenbahnbriicken
ist weiter notwendig, den EinfluBl einer Masse m (z.B. der Masse einer Loko-
motive), welche sich im Querschnitt s =a befindet, auf die Eigenschwingungs-
zahl festzustellen. Ahnlich wie bei dem einfachen Balken kann eine solche
Masse angenihert durch stetig verteilte Masse ersetzt werden, um die sich die
eigene stetig verteilte Masse u (s) vergroBert. Die konzentrierte Masse m wirkt
bei der Schwingung mit der inertialen Kraft. Setzen wir voraus, dafl das
System in der ersten Eigenschwingungsform schwingt und nehmen wir ange-
nihert an, da sich diese Form nicht dndert, wenn die Masse m hinzugefiigt
wird. Die inertiale Kraft der Masse m ist dann nach (27)
2 2
R e L) (30)
Diese inertiale Kraft wirkt auf den Stab wie eine konzentrierte Last im Quer-
schnitt s=a und kann durch eine Reihe #hnlich wie die stetige Belastung
p (s,t) nach den Formeln (25) und (26) entwickelt werden. Mit Riicksicht auf
die Voraussetzung, dafl sich die erste Eigenform, in der das System schwingt, -
nicht dndert, geniigt es in der Formel (25) nur das erste Glied der Reihe zu
erwigen, welches nach Einsetzen von (26) und (30) den Wert

Pqy () p(s)wi (@)
—m— ) wm) dswm(s) (31)

erreicht. Die Formel (31) stellt jedoch die inertiale Kraft einer stetig verteilten
w (@)
Wiy

J. p(s w(l) (s)
ihm eine Gesamtmasse

Masse p(s)m dar. Das System schwingt dann so, als ob iiber
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2
s wa) (@)
PR [Hmm(s)w?u(s)ds] (32)

stetig verteilt wére. Fiir den einfachen Tréger, der mit der Masse m in der Mitte

der Spannweite belastet wird, geht (32) in die Formel (6) pu'=pu +27m iiber.

B. Die Lésung eines eingespannten, durch Rahmen versteiften Bogens

Die im vorhergehenden Abschnitt eingefithrte Methode wurde bei Berech-
nung einer Stahlbetonbriicke nach Fig. 12a mit 15 gleichen Feldern von
51,6 m Lichtweite angewendet. Die Briicke trigt zwei Gleise, von denen jedes
auf einer selbstdndigen Konstruktion liegt; die Pfeiler sind fiir beide Kon-
struktionen gemeinsam. Die Tragkonstruktion wird von einem eingespannten,
durch Rahmen versteiften Bogen gebildet. Zuerst wurde dieses System so
gerechnet, als ob beide Widerlager des Bogens vollkommen eingespannt und
unverschieblich seien.

Die erste Aufgabe, d.h. die Ermittlung der Eigenfrequenzen und Eigen-
schwingungsformen des Systems, wurde durch die Methode der schrittweisen
Naherung gelost. Zu diesem Zwecke wurde das System in 30 Elemente geteilt.
Es sind in jeder Halfte 15 Elemente mit den Massen m,, m, bis m,; (Fig. 12a).
"Fir die Schwerpunkte aller dieser Teile wurden EinfluBllinien der Durchbie-

;

=

[

-
!

3 /0_5mf !

2

Fig. 12a. Ein durch Rahmen versteifter Bogen.

Fig. 12b. EinfluBllinie der senkrechten Durchbiegung des Gewdslbescheitels fiir senkrechte
Belastung.

Fig. 12¢. EinfluBlinie der waagrechten Durchbiegung des Punktes 1 fiir senkrechte
Belastung.

Bemerkung: Die volle Linie bezeichnet den Balken, die strichlierte den Bogen.
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gung ermittelt. Es sind in jedem Punkte 4 EinfluBlinien, und zwar fiir die
senkrechte, bzw. waagrechte Durchbiegung infolge der senkrechten, bzw..
waagrechten Belastung. Die Einflullinien wurden mit der Methode Beggs-
Blazek durch Messung auf einem Zelluloidmodell gewonnen und rechnerisch
mit der Deformationsmethode kontrolliert. Der Unterschied der gerechneten
Koordinaten gegeniiber den gemessenen ist kleiner als 29,. Das Elastizitéts-
modul wurde mit £ =4200000 t/m? in die Berechnung eingefiihrt. In Fig. 12b
ist die EinfluBllinie der senkrechten Durchbiegung in der Gewolbemitte fiir
senkrechte Belastung aufgetragen und in Fig. 12¢ die Einflufllinie der waag-
rechten Durchbiegung im Punkte 1 ebenfalls fiir die senkrechte Belastung.

Als Ausgangslinie fiir die Ermittlung der ersten symmetrischen Eigen-
schwingungsform wurde die Durchbiegungslinie infolge des Eigengewichtes
gewidhlt. (Diese Wahl zeigte sich nicht sehr zweckmiBig, da die Naherungen
langsam konvergierten.) Die senkrechten Koordinaten v, dieser Linie sind in
Fig. 13a und die waagrechten !u, in Fig. 13b aufgetragen. Diese Koordinaten
wurden mit den Massen der zugehdrigen Elemente m, multipliziert und mit
den so gewonnenen Lasten m,lv,, m;lu, werden die EinfluBlinien belastet
und dadurch eine neue Durchbiegungskurve (2. Naherung) mit Koordinaten
vy, 2u;, gewonnen. Der Fortgang wurde solange wiederholt, bis sich die letzte
Naherung ™v,,"u, von der vorletzten "~lv,,7 1y, in ihrer Form nicht mehr
unterschied. Die erste Eigenkreisfrequenz ist dann durch die Formel

9 n—-lvk n—luk

W) = Ty T = g (33)

gegeben. Die Linie "v=uv(s), "u=wuq(s) stellt die erste Eigenschwingungs-
form dar. Die Gesamtverschiebung wg(s) ist die vektorielle Summe der
vertikalen und horizontalen Auslenkung (v (s) und %) (s)).

1234567 mm

Fig. 13. Durchbiegung infolge Eigengewicht.

a. Senkrechte Koordinaten. b. Waagrechte Koordinaten.

Bemerkung: Die tatséchlichen senkrechten Durchbiegungen sind positiv in Richtung
von oben nach unten. In den Abbildungen sind jedoch in Zusammenstimmung mit den
Aufzeichnungen des Durchbiegungsmessers die positiven Durchbiegungen in umgekehr-
ter Richtung von unten nach oben aufgetragen. Die tatsichliche waagrechte Durch-
biegung wird positiv im Sinne von links nach rechts angenommen.
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Die senkrechten Koordinaten der letzten drei Ndherungen sind in Fig. 14a
ersichtlich, die waagrechten Koordinaten der letzten Naherung ", sind in die
senkrechte Richtung umgedreht und in Fig. 14b aufgetragen. Es ist ersichtlich,
daBl die waagrechten Koordinaten im gegebenen Falle von kleiner Bedeutung
sind. Aus dem Verhiltnis der Koordinaten der letzten zwei Nidherungen in
einem Punkte (z. B. im Punkte k=10 in Fig. 14a) ergibt sich

s "y, 2386

= - — 109052
YO T T, T 2,19 "

d.h. wgy = 33,0571,

Auf dhnliche Weise wird die erste Eigenform der antimetrischen Schwingung
gewonnen, man geht dabei jedoch von einer antimetrischen Durchbiegungs-
kurve aus. Die senkrechten Koordinaten der letzten Naherung, die gleichfalls
die erste antimetrische Eigenschwingungsform vorstellt, sind in Fig. 15a auf-
getragen, dagegen die umgedrehten waagrechten in Fig. 15b. Fiir die erste
Eigenkreisfrequenz der antimetrischen Schwingung ergibt sich wfj,= 16,6s7".
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Fig. 14. Erste symmetrische Eigenschwingungsform eines durch Rahmen versteiften
Bogens.

a) Senkrechte Koordinaten bei den letzten drei Néherungen.
b) Waagrechte Koordinaten (in die senkrechte Richtung umgedreht).
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Aus der EinfluBllinie der Durchbiegung in Fig. 12b kann man die statische
Durchbiegung in der Mitte der Spannweite infolge Belastung durch eine
Lokomotive in ungiinstigster Lage ermitteln. Fiir die bei den Messungen
gebrauchte Zweizylinderlokomotive von 97 t Gewicht ergibt sich die Durch-
biegung v = 3,0 mm.

Die Briicke wurde dann gemessen und es zeigte sich, dall die Ergebnisse
der theoretischen Untersuchung mit den gemessenen nicht iibereinstimmen. Die
errechnete Grundfrequenz der symmetrischen eigenen Schwingung war offen-
sichtlich hoher als die auf experimentelle Weise festgestellte Grundfrequenz,
wihrend die gemessene Durchbiegung in der Mitte der Spannweite unter der
Lokomotive (v=2,0 mm) bedeutend kleiner war als die gerechnete Durch-
biegung. Dies, obwohl sich eine verhiltnismiBig groBe Nachgiebigkeit der
Widerlager zeigte, welche im Gegenteil die Vergroferung der Durchbiegung
verursachen sollte. Es zeigte sich, dafl die Stahlbetonkonstruktion selbst
zweimal so steif ist als in der statischen Berechnung vorausgesetzt wurde,
und zwar in erster Linie deswegen, weil die ziemlich méchtigen Parapetmauern
vollkommen monolithisch mit der Tragkonstruktion zusammenwirken. Die
Erhohung der Steifigkeit der Tragkonstruktion hat dann zur Folge, dafl alle
Felder der Briicke vielmehr als ein durchlaufendes System wirken. Die Steifig-
keit des Untergrundes unter den Pfeilerfundamenten hat sich zwar absolut
nicht verkleinert, aber im Verhéltnis zur erh6hten Steifigkeit der Konstruktion
sank sie auf die Halfte. Es ist also nicht moglich die Nachgiebigkeit der Pfeiler
zu vernachlissigen, und die ganze Konstruktion muf} als durchlaufend berech-
net werden. '

C. Berechnung eines durchlaufenden, durch Rahmen versteiften Bogens

Bei der statischen, mittels der Deformationsmethode durchgefiihrten
Berechnung wurde vorausgesetzt, dafl drei Felder mitwirken, und zwar das

S ar

|
|
0 i
Fig. 15. Erste antimetrische Eigenform.

a) Senkrechte Koordinaten.
b) Waagrechte Koordinaten.
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belastete und die beiden benachbarten. Die Belastung der weiter entfernten
Felder hat unbedeutende statische Einfliisse. In Fig. 17b ist die EinfluBlinie
der Durchbiegung in der Mitte des mittleren Gewolbes aufgezeichnet. Diese
Einflullinie wurde durch die Achsdriicke einer Lokomotive von 97 t Gewicht
in verschiedenen Lagen belastet. Die so ermittelten Durchbiegungen sind in
Abhéngigkeit von der Lage des Schwerpunktes der Lokomotive in Fig. 17¢
aufgetragen. Diese Kurve entspricht den Aufzeichnungen der registrierenden
Tensometer in der Mitte des mittleren Gewdlbes bei langsamen Fahrten der
Lokomotiven (Fig. 22a, b).

Es ist selbstverstandlich, dafl die Nachgiebigkeit des Untergrundes bei der
dynamischen Untersuchung noch viel klarer zum Ausdruck kommen muf
als bei der statischen. Bei der statischen Nutzlast eines Feldes in einem Gleis
entsteht eine waagrechte Kraft nur im Kéampfer eines Gewolbes. Bei der
Schwingung der Konstruktion nach Fig. 16 wirken jedoch auf den Pfeiler mit
zusitzlichen waagrechten Kréften gleicher Richtung alle vier Gewélbe (in
beiden Feldern und beiden Gleisen), die sich an den Pfeiler stiitzen. Das Neigen
des Pfeilers bei der Schwingung der Briicke ist deshalb verhiltnismaBig grof3.

Die erste Aufgabe bei der dynamischen Losung ist wieder das Feststellen

/\
H , | .
[ A :

[N Jr =
AN : P , =0
rl \ \ \\\ | //// " i RS ! -, - ( /’7
v \l, S~oL-” r" ~o '_/ £l 1
. r o | 1 A
- | - ! [ oy
K L 1M I L e

Fig. 16. Schema der ersten Eigenschwingungsform eines durchlaufenden, durch Rahmen

versteiften Bogens.
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Fig. 17a. Schema eines durchlaufenden Systems.
Fig. 17b. EinfluBlinie der Durchbiegung in der Mitte des mittleren Feldes.

Fig. 17c. Durchbiegung in der Mitte des mittleren Feldes unter einer fahrenden Loko-
motive von 97 t Gewicht.
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der eigenen Frequenzen und Schwingungsformen. Die Deformationsgleichun-
gen eines kontinuierlichen Systemes mit n gleichen Feldern sind zyklisch sym-
metrisch!?”. Es folgt daraus, daBl anstatt der ersten Eigenfrequenz der sym-
metrischen Schwingung hier eine ganze Gruppe von = Grundfrequenzen
erscheint, welche zueinander sehr nahe liegen. Ebenso entspricht der ersten
antimetrischen Eigenform eines vollkommen eingespannten Gewdlbes eine
Gruppe von n Eigenformen des durchlaufenden Systems. Wir beschrianken uns
jedoch weiter nur auf die Kigenformen der ,,symetriséhen“ Gruppe, weil wir
uns hauptséchlich mit den Schwingungen des Gewdlbescheitels befassen. (So
z. B. schwingt ein gerader, durchlaufender, in beiden Randstiitzen vollkommen
eingespannter Triager von 4 Feldern mit 4 ersten Eigenfrequenzen

L _L83.JEJ 245 /EJ 316 /EJ 356 [EJ
1) = 2 A > 2 = 2 f"‘ ’ 3) = I2 1 s W — 2 P 2

die niedrigste von diesen Frequenzen ist sehr nahe bei der ersten Eigen-
schwingungszahl eines einfachen Triagers, wihrend die hochste der ersten
Eigenfrequenz eines auf beiden Enden vollkommen eingespannten Trigers
gleich ist.)

Ein kontinuierliches Gewolbe von 15 Feldern wird deshalb 15 Grund-
frequenzen aufweisen, von denen die niedrigste sich der niedrigsten Eigen-
frequenz eines kontinuierlichen Bogens von unendlich vielen Feldern nihert,
wahrend die hichste der ersten Eigenfrequenz eines Gewolbes mit vollkommen
starren Stiitzen gleichkommt.

Wenn wir die niedrigste Frequenz einer Konstruktion mit unendlich vielen
Feldern ermitteln wollen, geniigt es, nur ein Feld in Betracht zu ziehen. Dies

M N
L

Fig. 18. EinfluBlinie der Durchbiegung fiir ein System nach Abb. 16.

17) V. KoLousEk: Baudynamik der Durchlauftriger und Rahmen, Leipzig 1953.
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folgt aus Fig. 16, wo die erste Eigenschwingungsform schematisch dargestellt
wird. Zur schwingenden Tragkonstruktion werden die anliegenden Pfeiler-
hilften gerechnet. Dieser Teil des Systems ist in Fig. 16 voll ausgezogen
(L=57,5m). ,

Es wurden wieder EinfluBllinien der Durchbiegung festgestellt, und zwar
fiir den Scheitel des Gewdlbes, fiir 15 Schwerpunkte der Lingenelemente und
fir das Neigen des Pfeilers. Die EinfluBlinie der Durchbiegung im Gewolbe-
scheitel fiir die senkrechte Belastung des Feldes und waagrechte Belastung
der Pfeiler ist in Fig. 18 aufgetragen. (Die Einflufkoordinaten sind positiv im
Sinne gegen die Wirkung der Krifte.) ‘

Die erste Eigenschwingungsform und die erste Eigenfrequenz werden wie-
der durch schrittweise Ndherungen dhnlich wie beim eingespannten Bogen im
vorhergehenden Abschnitt bestimmt. Die senkrechten Koordinaten im Felde
und die waagrechten fiir Pfeiler der ersten Eigenform sind in Fig. 19a auf-
getragen. Aus dem Verhiltnis der beiden letzten Néherungen ergibt sich jetzt
die Eigenkreisfrequenz wq) = 23,1571, d. h. ng=3,68s"1.

Die letzte (d. h. die fiinfzehnte) Eigenform der ersten Gruppe ist in Fig. 19b
dargestellt. Sie ist angenédhert dieselbe wie die erste Eigenform des eingespann-
ten Gewolbes nach der Fig. 14. Da die Steifigkeit der Konstruktion in Wirk-
lichkeit ungefahr zweimal so grof} ist als urspriinglich vorausgesetzt wurde,
entspricht dieser Eigenform eine viel groBere Eigenkreisfrequenz als bei der
Berechnung des starr eingespannten Bogens, und zwar wgg=46,6s"1, d.h.
ngs = 7,451, Zwischen den Frequenzen ng, und nq; gibt es weitere 13 Eigen-
schwingungszahlen, mit denen das System harmonisch schwingen kann.

Wir wollen noch angenihert nach (32) die vergréferte Ersatzmasse errech-
nen, wenn sich in der Mitte eines Gewolbes die Masse einer Lokomotive im

N /\ P J
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Fig. 19a. Die senkrechten Koordinaten der Durchbiegung im Felde und die waagrechten

Koordinaten des Neigens der Pfeiler bei der ersten Eigenschwingungsform.

Flg 19b. Die senkrechten Koordinaten der Durchbiegung bei der héchsten Eigen-
schwingungsform der ersten Gruppe.
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Gewicht von 97 t befindet. Die Auslenkung bei der ersten Eigenform nach

Fig. 19a ist in der Mitte des Feldes w (@) =) (%) = 0,314. Durch numerische

Integration wird fiir ein Feld und beide Gleise
30 .
f(s)wh)(s)ds = 2]2]1 my, [V (8i) + ity (sy)] = 12,3tm—1s2 (34)

gewonnen. Wenn jedoch gleichzeitig alle 15 Felder schwingen, ist diese Summe
15mal so grofl und es ergibt sich nach (32)

p(s) 97.0,3142
wis) 9,81-15-12,3

)~_— 1,005 ~ 1.

Man kann also die Masse der Lokomotive vernachlissigen. Dieses Resultat
gilt natiirlich nur unter der oben angenommenen Voraussetzung, daB sich die
erste Eigenform bei Belastung durch eine Lokomotive nicht dndert.

Die Berechnung der Eigenfrequenzen und Eigenformen durch die Methode
der schrittweisen Naherung ist zeitraubend. Noch viel mithsamer wire jedoch
die Berechnung der erzwungenen Schwingung unter einer fahrenden Loko-
motive, die periodische Krifte erzeugt. Man kann dabei die Gleichungen (24)
bis (29) beniitzen. f

Es bewege sich auf dem Triger eine senkrechte, harmonisch veréinderliche
Kraft PsinQt¢ mit einer konstanten Geschwindigkeit c. Wenn wir die Zeit
vom Eintritt der Kraft auf das Feld messen, ist diese Kraft im Zeitpunkt ¢
um a =ct vom linken Ende des Feldes entfernt. Es gilt dann nach (26) und (34)

PsinQtvy(a) PsinQtvg(a)
fu@)why(s)ds  2n Xm [05) (S) + %Gy (82)]

Dabei bezeichnet v (@) die Auslenkung des Balkens bei j-ter Eigenschwingungs-
form an der Stelle @, wo sich die Last befindet; n=15 ist die Zahl der Felder
der Konstruktion. Den Ausdruck (35) kann man in die Gl. (29) einsetzen und
durch numerische oder graphische Integration die Werte g, (t) errechnen. Die
Auslenkungen im beliebigen Querschnitt kann man dann nach der Formel (27)
ermitteln. '

Wenn 2 = w(, und wenn die Eigenfrequenzen nicht nahe beieinander liegen
wiirden, kénnten wir voraussetzen, daBl an der Schwingung nur die erste
Eigenschwingungsform teilnimmt und es geniigte dann nur p) (f) zu ermitteln
und in Gl. (27) mit dem ersten Glied allein zu rechnen. Da jedoch bei einem
kontinuierlichen System die Eigenfrequenzen sehr nahe beieinander liegen,
ist es nicht moglich, auch im Falle der Resonanz, die hoheren Glieder in (27)
zu vernachlissigen. Es handelt sich ndmlich nicht um die Berechnung einer
Amplitude der stationdren Schwingung, sondern um ein allméhliches Auf-
schwingen, bei dem die hoheren Eigenformen eine wichtige Rolle spielen.
Wenn wir diese hoheren Eigenformen vernachlidssigen wiirden, bekiimen wir
unvergleichlich kleinere Auslenkungen als bei einer genauen Berechnung. Der

(35)

Py (8) =
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Ausdruck (35) verkleinert sich nidmlich bedeutend, wenn » im Nenner eine
groBe Zahl ist. Die Berechnung der erzwungenen Schwingung wiirde also
erfordern, vorerst alle » Grundfrequenzen und die zugehorigen Eigenschwin-
gungsformen zu ermitteln und die Gl. (29) fiir alle j=1 bis » zu rechnen. Da
diese Arbeit nicht durchgefiihrt werden konnte, war es nétig, die Aufgabe nur
angenihert zu 16sen. Dabei beschrinkten wir uns auf den Resonanzfall 2=,
und stellten die Durchbiegung nur im Scheitel des Gewdlbes fest.

Wie aus der Formel (35) ersichtlich ist, sind die Belastungsglieder bei
einem durchlaufenden Bogen von n Feldern n-mal kleiner als bei einem Bogen,
der von den iibrigen Feldern isoliert wire. Die Zahl der Belastungsglieder ist
im Gegenteil n-mal so grol, weil sich die Zahl der Eigenfrequenzen n-mal
vermehrte. Bei einem Gewdlbe, das durch die bewegliche Kraft unmittelbar
belastet wird, addieren sich die Einfliisse der Belastungen fast aller Eigen-
formen, mindestens wenn sich die Last in der Nihe der Feldmitte befindet.
Wir werden deshalb dieses Gewolbe angenihert so rechnen, als ob es von den
anderen Feldern isoliert wire und allein durch die Kraft P sin{2¢ zum Schwin-
gen gebracht wiirde, und zwar von der ersten Eigenform. Dadurch vergroert
sich n-mal die GroBe des Belastungsgliedes (35), andererseits wird jedoch nur
eines von n Belastungsgliedern in Erwidgung gezogen. Die Energie, die zum
Aufschwingen der benachbarten Felder verbraucht wird, werden wir ange-
nihert wie eine durch Ddmpfung verlorene Energie behandeln. Es wird deshalb
weiter mit einem vergroBerten Diampfungsbeiwert w, gerechnet. (Ahnliche
Annahmen sind der Baudynamik nicht ganz fremd. Z. B. werden die Maschi-
nenfundamente héufig ohne Riicksicht darauf gerechnet, daBl mit dem Funda-
ment gleichzeitig die Masse des umliegenden Bodens mitschwingt; das Mit-
wirken der Umgebung wird jedoch durch einen erhhten Dampfungskoeffizienten
in Betracht gezogen.)

Rechnen wir jetzt unter diesen Bedingungen das Schwingen des Scheitels
des Gewolbes M N, vorausgesetzt, dal sich in diesem Felde eine harmonisch
verdnderliche Kraft Psin{2¢ bewegt. Das Belastungsglied p, (f) hat nach (35)

den Wert
PsinQtvy (a
P (&) = w (®)

= . (36)
25 m [0 (Sk) + uin) (k)]

Die senkrechte Durchbiegung v, (a) des Balkens bei der ersten Eigenschwin-
gungsform (Fig. 19a) kann durch die Fouriersche Reihe entwickelt werden,
wobei die Koeffizienten dieser Reihe mit Hilfe der numerischen Integration
ermittelt werden. Es ergibt sich

3ma

l

mTa

l 37ma  _ 0.272sin™% — 0,032sin

v (@) = B, sin—+ B,sin ] 7 + -, (37)

wobei @ vom Punkte 1 gemessen wird und die Spannweite /= 54,3 m die dop-
pelte Entfernung des Punktes 1 zur Gewdlbemitte vorstellt (Fig. 12a). In der
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Formel (37) hat das zweite Glied geringe Bedeutung und kann vernach-
lassigt werden. Nach Einsetzen von (37) in (36) und dann in (29) ergibt sich
mit Riicksicht auf (34)

d?qq (1) dqqy (t)

. 0,272
wobelwt=”7“=7—776—tundA= : B, ; — o =0,0221.
2 ; my, [V(1) (Sg) + %1y (Sg)] ;

Die Gleichung (38) hat eine partikulare Losung
9o () =C1sinQ tsin wt+ CysinQicos w i+ Cycos2isinwit+CycosLicoswit (39)
wobei C' Konstanten sind, die aus der Formel (38) ermittelt werden kénnen,

wenn (39) in (38) eingesetzt wird. Die Gleichung (38) wird nun nur dann
erfiillt, wenn die Gleichungen der Tabelle I gelten.

Tabelle 1
01 02 C13 04
g — 2% — w? — 2w wy —2Qw, 20w = A4P
2 w wy w(l)z_gz_wz —20uw — 20w, =0
202 w, —2Qw ) — 2% — »? —2wawy =0
20w 2.wa 2wwb w(l)Z—Qz—wz =0

Diese Gleichungen vereinfachen sich noch, wenn man beriicksichtigt, daf3
0 =w ist und daB w und w, gegeniiber w, unbedeutend klein sind.
Es gilt dann

Crwp—Chw =0,

und daraus
C,=Cy=0 | (40)
A wy
Cg = 2wy wPtap?’ (#1)
Oy=-2 P (42)

- 2w wtw?’

Das allgemeine Integral der Gl. (38) besteht aus der partikularen Losung (39)
und aus dem allgemeinen Integral der verkiirzten homogenen Gleichung. Mit
Riicksicht auf (40) bis (42) und nach Einsetzen 2 =w ergibt sich

g (t) = Ozcos wyytsinwi+ Cycoswqytcoswt+qoe v tsin (wyyt+ @) (43)

wobei g, und ¢, die Integrationskonstanten bezeichnen.
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Wenn das System im Zeitpunkt ¢=0, in dem die Last auf den Tréiger auf-
gebracht wird, sich in Ruhe befindet, sind die Anfangsbedingungen ¢ (0)=0
dq(0)

und —a =0 Nach Einsetzen dieser Werte in die Gl. (43) und in ihre Ablei-

tung, ergibt sich
Po = g’ 9 = —C4 (44)

Die Auslenkung der ersten Eigenschwingungsform in der Mitte der Spann-
weite sei v, (%) Wenn wir diesen Wert fiir w, (s) in die Gl. (27) einsetzen,
folgt mit Riicksicht auf (40) bis (44) fiir die senkrechte Durchbiegung des

Scheitels im Zeitpunkt ¢:

v (%,t) = g () v (%) =

A vy (%) P cos wyyt

2 w) (w?+ wy?)

(45)

[w(coswt—e ) —w, sinwt].

Diese Gleichung entspricht Gl. (15), die fiir einen geraden Triger von kon-
stantem Querschnitt gilt.

Wenn die Lokomotive das Feld verliflt, schwingt das System noch mit
einer freien Schwingung weiter. Diese Eigenschwingung klingt jedoch viel
schneller ab, als es nach der angeniherten theoretischen Untersuchung erfolgte.
Wenn sich ndmlich die Lokomotive dem Feldende nihert, ist der Anteil aller
Eigenformen nicht mehr positiv. Dies ist aus Fig. 19b ersichtlich. Die Koordi-
naten der dort dargestellten Eigenform werden in der Néhe der Stiitzen
negativ. Wir diirfen deshalb die restliche freie Schwingung iiberhaupt ver-
nachlissigen.

Eine Lokomotive bringt nicht nur das Feld, welches sie eben befahrt, sondern
auch die benachbarten Felder in Schwingung. Die Amplituden miissen jedoch
im Nachbarfeld kleiner sein als im belasteten. Das ist wieder aus Fig. 19
ersichtlich. Im belasteten Felde addieren sich die Durchbiegungen fast aller
Eigenformen, wéhrend im Nachbarfeld z. B. die Auslenkung der Eigenform
von Fig. 19b eine entgegengesetzte Richtung hat. Der genaue Verlauf der
Durchbiegung bei der Belastung des Nachbarfeldes konnte wieder nur durch
eine genaue Berechnung festgestellt werden. Bei einer angeniherten Berech-
nung werden wir voraussetzen, dal das Aufschwingen im Nachbarfelde #hnlich
wie im belasteten Felde verlduft, daB jedoch dabei die Auslenkungen k-mal
kleiner sind. Vom Reduktionsbeiwert k& wissen wir jedoch blof3, da3 er kleiner
als Eins ist. Wenn ein noch weiter entferntes Feld belastet wird, werden die
Auslenkungen noch stirker reduziert. Es wird dabei wieder ein #hnlicher
Verlauf der Schwingung angenommen wie in den vorhergehenden Fillen, aber
es wird ein Reduktionsbeiwert k2 eingefiihrt.

Der auf eine angendherte Weise errechnete Verlauf der Schwingung ist
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also von der ziemlich willkiirlichen Wahl der beiden Koeffizienten — des
Déampfungsbeiwertes w, und des Reduktionskoeffizienten k¥ — abhingig. (Bei
der strengen Losung war nur ein Wert w, unbekannt, den man iiberdies ziem-
lich leicht auf experimentellem Wege bestimmen konnte.) Gliicklicherweise
hat die Wahl der beiden Beiwerte, wie aus der weiteren Berechnung ersichtlich,
einen verhiltnismaflig kleinen EinfluB auf die dynamische Vergroferung der
maximalen statischen Durchbiegung, zumindest im Gewdlbescheitel.

- Bei den experimentellen Messungen wurde die Briicke wieder mit einer
Zweizylindertenderlokomotive von 97 t Gewicht belastet. Die Zentrifugalkraft

der Triebrider wurde mit
P =03N2t

in der Berechnung eingefiihrt. Der Triebradumfang ist O=3,96 m. Weitere
Fahrten wurden mit einer Dreizylindertenderlokomotive von 124 t Gewicht
mit Triebradumfang O = 5,1 m durchgefiihrt.

Bei einer kritischen Geschwindigkeit von

¢ =my 0 = 3,68-3,96 = 14,56 ms~! = 52 km pro Stunde

erzeugen die Triebachsen der Zweizylinderlokomotive eine harmonisch ver-
anderliche Kraft, deren Amplitude

P=03-368 =406t
ist. Weiter ergibt sich

und =28 _ 14585 0,842s°1,
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Fig. 20a. Das Aufschwingen des Gewolbescheitels des belasteten Feldes.
Fig. 20b. Das Aufschwingen bei Belastung der Nachbarfelder.

Fig. 20c. Das Aufschwingen bei Belastung der weiteren Felder.
Fig. 20d. Theoretische dynamische Durchbiegungskurve.
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Wenn man diese Werte und 4 =0,0221 sowie v, (%) =0,314 injdie Form61:(45)

einsetzt, ergibt sich nach einer kleinen Umformung

v (ét) = cos 86,3% [0,000 266 (cosflﬁ~ 6_4’12%) —0,000349 sin’TT“] . (46)
Man mif3t dabei @ vom Punkte 1 des Feldes M N und /= 54,3 m ist die zwei-
fache Entfernung vom Punkte 1 zur Feldmitte. Der Ausdruck (46) ist gra-
phisch in Fig. 20a dargestellt.

Wenn die periodische Kraft die Nachbarfelder KM und N P belastet,
schwingt der Scheitel des Gewolbes M N wiederum nach der Gl. (46), deren
rechte Seite jedoch mit dem Reduktionsbeiwert k multipliziert wird. Es wurde
k mit 0,5 abgeschitzt und der so gewonnene Verlauf der dynamischen Aus-
lenkung graphisch in Abhéngigkeit von a dargestellt (Fig. 20b). a wird jetzt
vom Punkte 1 des Feldes KM, bzw. N P gemessen. Analog wurde der Verlauf
der Auslenkung bei der Belastung des Feldes /K und P R ermittelt. Die
rechte Seite des Ausdruckes (46) wurde dabei mit k2=0,25 multipliziert
(Fig. 20¢). Die Kurven in Fig. 20a,b,c sind auf die Kurve der statischen
Durchbiegung unter einer fahrenden Lokomotive (Fig. 17¢) superponiert. Die
so gewonnene Kurve (Fig. 20d) entspricht den Aufzeichnungen eines regi- '
strierenden Durchbiegungsmessers in den Fig. 22d,e und 23.

Um den EinfluBl der Wahl der Beiwerte w, und k auf die Losung zu zeigen,
wurde noch eine Berechnung fiir ein halbes logarithmisches Dekrement und
fir k= 0,4 durchgefiihrt. Das Ergebnis ist in Fig. 21 aufgezeichnet.

In den Fig. 22a,b,c,d,e,f sind die gemessenen Durchbiegungen in der
Mitte des Feldes M N bei verschiedenen Geschwindigkeiten der Zweizylinder-
lokomotive dargestellt. Es ist ersichtlich, daB bei langsamen Fahrten die
dynamischen Einfliisse klein sind. Bei einer Geschwindigkeit von ungeféhr 47 km
pro Stunde entsteht zum ersten Male die Resonanz. Die theoretische kritische
Geschwindigkeit liegt ein wenig hoher bei 52 km pro Stunde. Die Uberein-
stimmung ist jedoch verhidltnisméBig gut, wenn man erwigt, wie sehr die

! | | 1
I K M i N P R

Fig. 21. Theoretische dynamische Durchbiegungskurve bei gednderten Voraussetzungen
fur die Dampfung und fir das Mitwirken der Felder.
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Durchbiegungen von der Nachgiebigkeit des Untergrundes unter den Pfeiler-
fundamenten abhéngen, dessen Elastizitit unvollkommen ist und in der Berech-
nung nur angendhert beriicksichtigt werden kann. Bei groerer Geschwindig-
keit sinken wieder die dynamischen Auslenkungen. Auf manchen Abbildungen
(Fig. 22) kann man eine elastische Hysteresis beobachten. Diesen Einfluf3,
welcher iibrigens nur klein ist und bei groferen Geschwindigkeiten sich nur
wenig geltend macht, kann man eben der unvollkommenen Elastizitiat des
Untergrundes zuschreiben. Im ganzen verhilt sich aber das System sehr elastisch.

Die Fig. 23 zeigt deutlich den Einfluf} der Belastung in weiter entfernten

3 mm

Geschwindigkeit
33 km pro Stunde.

Geschwindigkeit
38 km pro Stunde.

Geschwindigkeit
42 km pro Stunde.

Geschwindigkeit
47 km pro Stunde.

Geschwindigkeit
51 km pro Stunde.

Geschwindigkeit \ f)
62 km pro Stunde.

LL_.I._L_J._L_.I

Fig. 22. Aufzeichnungen eines registrierenden Durchbiegungsmessers im Scheitel des
mittleren Gewdlbes bei verschiedenen Geschwindigkeiten der Zweizylinderlokomotive.
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Feldern. In Fig. 24 ist der Verlauf der Spannung im Gewdlbekampfer auf-
gezeichnet, der mit Hilfe eines Straingage-Tensometers aufgetragen wurde.

In Fig. 25a,b sind die Durchbiegungen bei der Fahrt einer Dreizylinder-
lokomotive aufgezeichnet. Es wurden bei keiner Geschwindigkeit Schwingun-

| L L L L l

Geschwindigkeit
50 km pro Stunde.

Geschwindigkeit
75 km pro Stunde.

Fig. 25. Aufzeichnungen des registrierenden Durchbiegungsmessers bei Uberfahrt einer
Dreizylinderlokomotive.
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gen beobachtet, welche die Frequenz auswiesen, die der Umdrehungszahl der
Triebrider gleich wire. Es zeigte sich jedoch bei einer Geschwindigkeit von
ungefihr 50 km pro Stunde, d.h. bei N =2,7s71, eine ziemlich starke Schwin-
gung (Fig. 25a) mit einer Frequenz von etwa 7,7s71. Das ist ungefihr gleich
der Eigenfrequenz ngy, mit welcher die Gewolbe mit unnachgiebigen Wider-
lagern schwingen (Fig. 19b). Diese Frequenz ist ungefihr dreimal so groB als
die Umdrehungszahl der Triebridder. Die Ursachen dieser Schwingungen sind
bis jetzt nicht ganz klar. Bei einer Geschwindigkeit von 75 km pro Stunde
sind die dynamischen Einfliisse wieder gering.

Zusammenfassung

In der Beurteilung der dynamischen Einflilsse auf Eisenbahnbriicken
herrscht keine Einheit. Ein Teil der Forscher (Timoshenko, Inglis usw.) sieht
deren Ursache in erster Linie in den periodischen Kriften der Triebrider der
Lokomotiven, wihrend die anderen diese Einfliisse nicht fiir wichtig halten.
Die dynamischen Einfliisse auf Briicken aus Stahlbeton wurden bis jetzt wenig
untersucht. Die Ergebnisse der Messungen und theoretischen Untersuchungen,
die in dieser Abhandlung wiedergegeben sind, sollen zur Kldérung der erwahn-
ten Probleme beitragen.

Im ersten Kapitel sind die Einfliisse auf stdhlerne Briicken behandelt. Die
theoretischen Resultate werden mit den Aufzeichnungen der verschiedenen
MeBapparate verglichen. Es zeigt sich eine gute Ubereinstimmung der Theorie
mit den Messungen. Weiter wird auf einige Fehler hingewiesen, welche sich
oft in der Literatur in Beurteilung der dynamischen Einfliisse wiederholen.

Im zweiten Kapitel sind die dynamischen Einfliissse auf die Briicken aus
Stahlbeton untersucht. Zuerst werden die Eigenschwingungsformen und Eigen-
schwingungszahlen eines Bogens, der durch Rahmen versteift wird, gerechnet.

Weiter werden die Eigenformen und Eigenzahlen eines kontinuierlichen
Gewolbes ermittelt. Die Ergebnisse dienen zur Feststellung der erzwungenen
Schwingungen dieser Briicken unter sich bewegenden Fahrzeugen. Die Ergeb-
nisse sind mit denjenigen der Messungen verglichen und es zeigt sich eine gute
Ubereinstimmung. :

Summary

‘There is no agreement among the different ways of estimating the dynamic
effects in railway bridges. Some of the investigators (Timoshenko, Inglis, etc.)
impute the vibrations mainly to the periodical loading due to the driving
axles of the locomotives while others are of the opinion that this loading is
unimportant. The dynamic effects in reinforced concrete bridges have, up to
now, been very little investigated. The experimental and theoretical results
presented by the author should contribute to solve those problems.
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The dynamic effects in steel bridges are studied in the first chapter. Theore-
tical results are compared with graphs obtained with different measuring
apparatus. There is good agreement between theoretical and measured values.
Errors frequently found in the litterature dealing with dynamic effects are
reported.

The second chapter deals with dynamic effects in reinforced concrete bridges.
Forms and frequencies of natural vibrations in a frame-stiffened arch are
calculated. Forms and frequencies of continuous arches are then determined.
These results enable determining the vibrations in these bridges, caused by
the passage of vehicles. Measured and calculated results are compared, a good
agreement being found.

Résumé

Il n’existe pas d’'unité dans la maniére d’apprécier les effets dynamiques
dans les ponts de chemin de fer. Certain chercheurs (Timoshenko, Inglis, etc.)
attribuent les vibrations principalement & la sollicitation periodique exercée
par les roues motrices des locomotives, tandis que d’autres affirment que cette
sollicitation n’a pas d’importance. On a peu étudié, jusqu’a présent, les effets
dynamiques sur les ponts en béton armé. Les résultats des mesures et des
études théoriques, communiqués par 'auteur doivent contribuer & résoudre
ces problémes.

Dans le premier chapitre, 'on étudie les effets dynamiques dans les ponts
métalliques. On compare les résultats théoriques et les graphiques obtenus au
moyen des différents appareils de mesure. Il existe une coincidence satisfai-
sante entre la théorie et les valeurs mesurées. On indique encore quelques
erreurs fréquemment rencontrées dans la litterature concernant les opinions
au sujet des effets dynamiques.

Dans un second chapitre on traite des effets dynamiques dans les ponts
en béton armé. On calcule d’abord les formes et les fréquences de vibrations pro-
pres d’'un arc raidi par des cadres. On determine ensuite les formes et les
fréquences de votites continues. Ces résultats permettent de determiner les vi-
brations de ces ponts, causées par le passage des véhicules. En comparant les
résultats mesurés avec ceux que l'on a calculé, on constate un accord satis-
faisant.
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