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Schwingungen der Brücken aus Stahl und Stahlbeton

Vibrations in steel and reinforced concrete bridges

Vibration dans les ponts metalliques et en beton arme

Ing. Dr. Vladimir Kolotjsek, Professor der Eisenbahnhochschule, Praha

Einleitung

Eines der interessantesten Probleme der Brückendynamik ist die Frage
der periodischen Triebräderwirkung der Lokomotive. Diese Aufgabe wurde
theoretisch von Timoshenko1) und später sehr ausführlich von Inglis2)
gelöst, welcher die Ergebnisse der langjährigen Messungen verarbeitete, die
durch den Ausschuß „Bridge Stress Committee" auf britischen Eisenbahnen
durchgeführt wurden3). Die genannten Autoren halten die Einflüsse der
periodischen Kräfte der Triebräder, die sogenannten „hammer blows", für die
Hauptursache der Brückenschwingungen. Zu ähnlichen Resultaten gelangen
auch andere Verfasser, z.B. B. Brückmann4). Ebenso machen Klöppel und
Lie5) bei Lösung der Hängebrücken Gebrauch von den Ergebnissen von
Inglis. Die sowjetischen Instruktionen für Nachrechnung von älteren
Eisenbahnbrücken6) geben kritische Geschwindigkeiten an, die aus der Resonanz
der Eigenfrequenz mit der Triebräderumdrehungszahl abgeleitet sind. Die
amerikanische Forschung untersucht ebenfalls die Einflüsse der Hammerbio

WS7).

x) S. Timoshenko: Vibration Problems in Engineering, New York 1929.
2) C. E. Inglis: A Mathematical Treatise on Vibrations in Railway-Bridges,

Cambridge 1934.
3) Department of Scientific and Industrial Research. Report of the Bridge Stress

Committee, London 1928.
4) B. Brückmann: Einschwingvorgänge von Brückenhauptträgern, München 1939.
5) Klöppel und Lie : Lotrechte Schwingungen von Hängebrücken. Ingenieur-Archiv

1942, S. 211.
6) Handbuch des Eisenbahners. T. IV. Moskau 1951. S. 615.
7) Ruble: Impact in Railroad Bridges. Proc. Am. Society Civil Engineering VII 1955

J. 81, No. 736.
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Andererseits schreibt eine ganze Reihe von Verfassern diesen Einflüssen
wenig Bedeutung zu. Hartmann8) ist der Meinung, daß diese Kräfte kein
großes Aufschwingen der Brücke bewirken können, da sich die
Eigenschwingungsfrequenz der Brücke bei der Überfahrt der Lokomotive beständig ändert
und deswegen die Resonanz der Umdrehungszahl der Triebräder mit dieser
Frequenz nur sehr kurze Zeit andauern kann. Derselben Ansicht ist P. Del-
puech9). A. A. Ch. Ronsse und R. Desprets10) kommen ebenfalls zum Ergebnis,

daß die Triebräderwirkungen vernachlässigt werden können.
Um die ziemlich großen Unterschiede in den Ansichten über dieses wichtige

Problem zu erklären, führten die tschechoslowakischen Eisenbahnen eigene
Forschungen durch. Es wurden einerseits Stahlbrücken untersucht, wobei
schon frühere fremde Resultate zur Verfügung standen, anderseits
Stahlbetonbrücken, die bisher — soweit uns bekannt — in dynamischer Hinsicht
nicht gründlich behandelt wurden.

Stählerne Eisenhahnbrücken

Wir wollen vorerst sehr kurz die Ergebnisse, zu denen Inglis auf Grund
der britischen Messungen gelangte, wiederholen. Inglis teilt Brücken in drei
Kategorien. Es sind erstens Brücken kleiner Stützweite (etwa bis 15 m), bei
welchen die periodischen Triebräderkräfte ähnliche Einflüsse ausüben wie
wenn sie als statische Belastung wirkten. Zweitens sind es Brücken mittlerer
Stützweite (etwa zwischen 15—80 m), bei welchen die periodischen Kräfte
nicht nur die Brückenkonstruktion, sondern auch die Lokomotive auf ihren
eigenen Federn zum Schwingen bringen.

Endlich sind es Brücken großer Stützweite, über 80 m. Diese Brücken
kann man so berechnen, daß der Einfluß der sich bewegenden Masse der
Lokomotive vernachlässigt und nur die Wirkung der beweglichen, konstanten
Kraft — d.h. des Lokomotivgewichtes — berücksichtigt wird. Mit dieser
Kraft ist eine harmonisch veränderliche Kraft, d.h. die senkrechte Komponente

der Zentrifugalkräfte der Triebräder, verbunden. Die Masse der Loko-

8) Melan-Hartmann : Der Brückenbau. Stahlbrücken, Wien 1951.
9) Delptjech: Flexion dynamique et oscillations des ponts. Annales des Ponts et

Chaussees 1951, No. 1, S. 5.
10) A. A. Ch. Ronsse und R. Desprets : Etude des sollicitations statiques et dyna-

miques des ponts-rails. Bulletin de FAssociation Internationale du Congres de Chemins
de Fer 1929, S. 2558—2562. In diesem Aufsatz wird behauptet, daß die Gesamtgröße
der senkrechten Komponente der periodischen, durch Rotation der Triebräder erweckten
Kräfte, von der gegenseitigen Entfernung und der Zahl der Triebachsen abhängig sei
und daß sich diese Kräfte, z. B. bei Lokomotiven mit drei Triebachsen, in der Regel
aufheben. Gleiche Erwägungen werden von R. Desprets in der Nachricht für
Internationale EisenbahnVereinigung von 1933 und in der Abhandlung ,,Essai sur l'evolution
de la technique des ponts" (Annales des Travaux Publics, Numero Jubilaire, Bruxelles
1948) wiederholt.
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motive wird also von ihrem Gewicht getrennt und stabil in die Mitte der
Spannweite gestellt. — Im Buche von C. E. Inglis11) ist die genaue Berechnung

wiedergegeben, bei welcher auch die Bewegung der Lokomotivmasse auf
der Brücke in Erwägung gezogen wird. Diese Lösung gibt beinahe gleiche
Resultate, wie die angenäherte Berechnung. Die erwähnte Einteilung der
Brücken entspricht den Verhältnissen in Großbritannien in der Zeit der
Durchführung von Messungen. Die Zentrifugalkräfte der Triebräder waren
dort bedeutend größer als bei den kontinentalen Eisenbahnen, wo die Bestimmungen

der „Technischen Einheit" gelten, welche das Vergrößern des
Raddruckes durch Zentrifugalkraft höchstens auf 15% des statischen Druckes
beschränken.

Die Berechnung der Brücken großer Stützweite, mit denen wir uns in
erster Linie beschäftigen werden, kann noch weiter vereinfacht werden. Da
die Länge der Lokomotive gegenüber der Spannweite klein ist, werden die
einzelnen Raddrücke durch ihre Resultierende ersetzt. Die Masse der Brücke
je Längeneinheit ändert sich nur wenig, so daß sie als konstant angenommen
werden kann. Die Änderung des Trägheitsmomentes ist gewöhnlich ziemlich
groß; es ist jedoch möglich, einen Träger mit veränderlichem Querschnitt oder
auch einen Fachwerkträger, angenähert durch einen Träger mit konstantem
Querschnitt, zu ersetzen, welcher in der Mitte der Spannweite dieselbe
Durchbiegung infolge des Eigengewichtes aufweist wie der ursprüngliche. Das
Aufschwingen der Brücke, welches durch das Einfahren der beweglichen Kraft
auf die Brücke verursacht wird, kann vernachlässigt werden, weil es eine
kleine Amplitude hat und ganz abgedämpft wird, bevor die Lokomotive in
die Mitte der Spannweite gelangt, wo ihre statische Wirkung am größten ist.
Wir können also angenähert die dynamischen Einflüsse der beweglichen Kraft
von konstanter Größe vernachlässigen und nur ihre statische Wirkung
berechnen.

Die Dämpfung einer schwingenden Brücke ist durch sehr mannigfaltige
Faktoren bewirkt, und es ist deshalb schwierig, deren Einfluß durch eine
einfache mathematische Formel auszudrücken. Gute Ergebnisse gibt die Annahme,
daß die Größe der Dämpfung von der Geschwindigkeit der Trägerelemente
und von deren Masse abhängt. Auf das Trägerelement von der Masse pudx
wirkt dann eine Dämpfungskraft, welche durch die Formel

dv(x,t)
2fMcobdx—jj-t (1)

ausgedrückt werden kann, wobei v (x, t) die senkrechte Auslenkung des
Querschnittes x in der Zeit t bedeutet. 2ojb ist ein Dämpfungsbeiwert; o)h hat das

11) Siehe Inglis 2). (In der letzten Zeit wurde die Berechnung noch ausführlicher von
K. Nise und S. Ktjnii in „A Theory for the Forced Vibration of Railway Bridge under
the Axiom of the Moving Loads" Quart. Journ. Mech. and Applied Mat. Vol. IX. 1956
durchgeführt.)
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Maß der Kreisfrequenz. Da die Dämpfung klein ist, beeinflußt sie wenig die
erste Eigenfrequenz der Brücke. Diese Frequenz kann man deshalb nach der
Formel

»v-wvir
wie die erste Eigenschwingungszahl eines Trägers von konstantem Querschnitt
bei ungedämpfter Schwingung berechnen. Die erste Eigenkreisfrequenz ist

co(l) 2rrn{1). (3)

Wenn der Träger im Querschnitt, der vom linken Trägerende um x a

entfernt ist, mit einer konzentrierten Masse belastet wird, sinkt seine erste

Eigenfrequenz auf

n(1)a n{1) 1/— ^——. (4)
/x/ + 2msin2

Wenn sich die Masse m auf dem Träger mit einer Geschwindigkeit c bewegt,
ist a ct und die Eigenfrequenz der Brücke ändert sich fortwährend. Bei der
Berechnung der erzwungenen Schwingung der Brücken großer Spannweite
kann jedoch diese Änderung angenähert vernachlässigt werden12). Die
Eigenfrequenz wird dann so gerechnet, als ob sich die Masse m stets in der Mitte
der Spannweite befinde, und zwar nach der Formel

^(i) ^(i)]/^ (5)

wobei

/* + -,"• (6)

Entsprechende Eigenfrequenz ist

o>(1)= 2irna). (7)

Der Dämpfungsbeiwert verkleinert sich dabei auf

<V oj&—. (8)

Bei der Berechnung der Einflüsse einer beweglichen Last mit dem Gewicht
G mg wird dann nur die Bewegung der Kraft in Betracht gezogen. Die
Durchbiegung infolge dieser Belastung wird dann angenähert wie die statische

gerechnet. Es ergibt sich im Querschnitte x und in der Zeit t —

v(x, t) v sin oj £ sin-j-, (9)

wobei 77 c /ir.xco=-j- (10)

2) Siehe Inglis 2) S. 87.
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und _ 2G
_

2G^=-^^ -7^F (")

ist die statische Durchbiegung in der Mitte der Spannweite, wenn die Kraft©
an derselben Stelle wirkt.

Wenn sich gemeinsam mit G auch eine harmonisch veränderliche Kraft
PsinQt bewegt, kann diese durch stetige Belastungen nach der Fourierschen
Reihe ersetzt werden13), wobei es genügt, nur das erste Glied

2 P TT X
p(x,t) =—j- sinß^sin-j- (12)

zu erwägen mit
Ü 2ttN, (13)

wobei mit N die Frequenz der Kraft bezeichnet wird, d. h. im gegebenen Falle
die Umdrehungszahl der Triebräder der Lokomotive in einer Sekunde. Die
Bewegungsgleichung eines Trägers bei der gedämpften Schwingung gewinnt
dann die Form

,d2v(x,t) rt ,dv(x,t) _. Td*v(x, t) 2P ~ 7txf 8t2 + 2^a>h'-^f-i + EJ dKJ -j-BmQtsmtot-sm-j-. (14)

Maximale Auslenkungen entstehen bei der Resonanz der Eigenfrequenz der
Brücke mit der Umdrehungszahl der Triebräder, also wennß cx)'{1) oder N n'{1).
Die Gl. (14) hat dann nach Auslassen der kleinen Glieder die Lösung:

P COSU)(i\t r ,„ _. ttXv(x,t) —f -,

v ;
,2 [co(coscot — e-™»l)— cob smojt]sm-=-. (15)

fl' l CO(i) (co2 + a>b l

Wir benutzten die oben erörterte Theorie bei der Untersuchung der gemessenen

Brücken, die verschiedene Spannweiten von 20 m bis 110 m aufwiesen. Bei
Prüfungen der schwingenden Brücken, deren Spannweite größer als 40 m
war, wurde keine Schwingung der Lokomotiven auf den eigenen Federn
beobachtet. Dies wahrscheinlich deswegen, weil die periodischen Kräfte
unserer Lokomotiven kleiner sind als die der britischen, welche bei den
Messungen des „Bridge Stress Committee" gebraucht wurden. Wir benutzten
dann die oben eingeführten Formeln bei der Berechnung der schwingenden
Brücken von größerer Spannweite als 40 m. Die Ergebnisse der Berechnung
und der experimentellen Messung sind im folgenden Beispiel wiedergegeben.

Bei den Messungen wurden mechanische Registriertensometer Meyer
(Trüb-Teuber) und mechanische, registrierende Durchbiegungsmesser
angewandt. Die Resultate wurden ebenfalls durch elektrische Widerstandstenso-
meter (strain-gages) kontrolliert. Es zeigte sich, daß die mechanischen Apparate

zum Aufzeichnen der verhältnismäßig langsamen, durch die periodischen
Triebräderkräfte verursachten Schwingungen völlig ausreichen.

13) Inglis 2) S. 88.
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''

: ¦« 5.7see

a) Tensometer b) Durchbiegungsmesser

Fig. 1. Überfahrt einer Zweizylinderlokomotive über eine Stahlbrücke von 46,86 m
Stützweite. Geschwindigkeit 32 km pro Stunde (in der Tensometeraufnahme auch 10 km

pro Stunde).

a) Tensometer b) Durchbiegungsmesser

Fig. 2. Überfahrt einer Zweizylinderlokomotive über eine Stahlbrücke von 46,86 m
Stützweite. Geschwindigkeit 40 km pro Stunde.

a) Tensometer b) Durchbiegungsmesser

Fig. 3. Überfahrt einer Zweizylinderlokomotive über eine Stahlbrücke von 46,86 m
Stützweite. Geschwindigkeit 49 km pro Stunde.
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TM|llfPIIIP'"M""l""">"" IUI ' I

a) Tensometer b) Durchbiegungsmesser

Fig. 4. Überfahrt einer Dreizylinderlokomotive. Geschwindigkeit 34 km pro Stunde.

5,0 See

a) Tensometer b) Durchbiegungsmesser

Fig. 5. Überfahrt einer Dreizylinderlokomotive. Geschwindigkeit 43 km pro Stunde.

a) Tensometer b) Durchbiegungsmesser

Fig. 6. Überfahrt von zwei Zweizylinderlokomotiven mit drei angehängten Wagen über
eine stählerne Brücke von 46,86 m Stützweite.
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Die durch die Tensometer aufgezeichneten Diagramme sind in den Fig. 1 a
bis 6 a ersichtlich. Sie enthalten die Aufzeichnungen von drei Zeigern. Die
untere ist vom Zeitzeiger, die mittlere ist die Spannungslinie und die obere

zeigt das Einschalten von zwei elektrischen Kontakten, welche auf der Schiene

vor und hinter der Brücke befestigt sind und die durch den Raddruck
eingeschaltet werden. Aus den Diagrammen kann man das Zeitintervall abmessen,
welches der bekannten Entfernung der beiden Kontakte entspricht, und so
die Geschwindigkeit der Lokomotive feststellen. Die Diagramme des

Durchbiegungsmessers sind auf den Fig. lb bis 6 b reproduziert.
Bei den Prüfungen wurde erstens eine Zweizylindertenderlokomotive mit

fünf Triebachsen benützt im Gewicht von ö 97t. Die Lokomotiven dieser
Reihe üben die gesamte Zentrifugalkraft

P 0,24-- 0,30 N2 (16)

aus. Die Umdrehungszahl wird in s-1 eingesetzt, P in Tonnen. (Die untere
Grenze in der Formel (16) entspricht den Angaben des Erzeugers. Bei
Lokomotiven dieser Reihe verschiedenen Alters hestehen jedoch gewisse
Abweichungen.) Der Räderumgang O beträgt 3,96 m.

Außerdem wurden Dreizylinderlokomotiven mit dem Gewicht 97 t mit
einem Tender von 60 t benutzt, deren Triebräder nur ganz kleine periodische
Kräfte erzeugen. Zu den weiteren Prüfungsfahrten wurden zwei Zweizylinderlokomotiven

mit drei angehängten Wagen mit je 40 t gebraucht.
Eine der gemessenen Brücken mit zwei Fachwerkhauptträgern von 46,86 m

Stützweite hat die ständige Last /x^ 3,85 t/m und daher das gesamte
Eigengewicht G0 46,86 -3,85 181 t. Trägheitsmoment J 0,510 m4.

Die theoretische Eigenfrequenz der unbelasteten Brücke ist nach (2)

_W(1) tt /2M0«-0,51-9,81
W(1)-2^= 2.46,86*1/ 3^5 ~ 3'73>

Die wirkliche Eigenfrequenz kann aus der freien Schwingung, mit der die
Konstruktion nach der Überfahrt der Lokomotive schwingt, festgestellt werden.

Aus den Fig. 2 a, 3 a ist ersichtlich, daß 11 Schwingungen in 3 Sekunden
entstehen, so daß

11 „ ~ i
n{1) =y^3,7s-1.

Aus denselben Figuren kann auch der Dämpfungsbeiwert abgelesen werden.
Nach 10 Schwingungen verkleinert sich die Amplitude der freien Schwingung
auf die Hälfte. Das logarithmische Dekrement der unbelasteten Brücke ist
also

# -1^ 0,0693

und a)b w(1)# 3,7-0,0693 0,257 s-1.
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Die Eigenfrequenz der mit einer Zweizylinderlokomotive belasteten Brücke
ist nach (5)

na) n{1)
Gn

G0 + 2G
3,7

181

181+2,97 ^ 2,57 s-

Das entspricht der kritischen Geschwindigkeit der Lokomotive c n[1)0
2,57-3,96ms-1 37 km pro Stunde. Die tatsächliche Geschwindigkeit ist ein

wenig größer, wie aus Fig. 2 ersichtlich, und zwar etwa 40 km pro Stunde,
was der Frequenz w('1} 2,81s-1 und der Eigenkreisfrequenz u>'{1) 17,6 s-1
entspricht. Nach (4) wurde das Ersatzgewicht je Längeneinheit gpJ 6,7 t/m' und
nach (8) der reduzierte Dämpfungsbeiwert errechnet. Diese Werte, mit welchen
weiter gerechnet wird, entsprechen der Lage der Lokomotive nicht in der
Mitte, sondern etwa im Drittel der Spannweite (siehe Fig. 9). Es ist dann

c 2,81-3,96 11,15ms-1

o;=^ 0,748 s-1

wb' 0,148 s"1

und die harmonisch veränderliche Kraft hat nach der oberen Grenze in der
Formel (16) die Amplitude

P 0,3-2,812 2,37 t.

Nach Einsetzen in (15) ergibt sich für die Auslenkung in der Mitte

l
(17)

x Vp (Lit\ cos 74,011 0,00540 r,^JTTa .-0,625
cos-y—e fj-0,00107 sin^lm.

Dazu ist noch die Durchbiegung infolge der Belastung durch önach (9)
zuzurechnen, welche in der Mitte der Spannweite

M2'7 ^si 77 X
sintü£ 0,0196 sin-y-m (18)

ist. Die Summe der beiden Werte (17) und (18) ist in Abhängigkeit von der
Lage der Last in Fig. 7 dargestellt. Das Diagramm entspricht bis auf den
Maßstab der Aufzeichnung des Durchbiegungsmessers Stoppani in Fig. 2 b.

Cb

46,86 mc^ JL-

Fig. 7. Theoretische Durchbiegungslinie.
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In den Fig. 1 bis 3 sind die Fahrten der Zweizylinderlokomotive bei
verschiedenen Geschwindigkeiten aufgezeichnet. Links ist das Diagramm der
Spannung im Untergurt, rechts das der Durchbiegung in der Mitte der Spannweite.

Es ist ersichtlich, daß die dynamischen Einwirkungen bei kleinen
Geschwindigkeiten klein sind, mit der wachsenden Geschwindigkeit fortschreitend

ansteigen und ihr Maximum im Resonanzgebiet erreichen (Fig. 2). Bei
noch größeren Geschwindigkeiten als der kritischen sinkt die dynamische
Einwirkung und gleichzeitig erscheint die Interferenz zwischen der erzwungenen

Schwingung (mit der Frequenz N) und der Eigenschwingung der
Konstruktion (Fig. 3).

Die bei weiteren Fahrten benutzte Dreizylinderlokomotive hatte mit dem
Tender das Gesamtgewicht von 153 t; ihre Triebräder sind gut ausgewuchtet,
so daß die bei der Fahrt entstehende Zentrifugalkraft gering ist. Die dynamischen

Wirkungen einer solchen Lokomotive auf die Brücke sind klein, wie es
aus den oszillographischen Aufzeichnungen in den Fig. 4 bis 5 ersichtlich ist.

Die an die Lokomotiven angehängten Wagen verkleineren die dynamischen
Einflüsse; das zeigt sich in Fig. 6, wo die Fahrt von zwei gekuppelten
Zweizylinderlokomotiven mit 3 Wagen aufgezeichnet ist. Die vorne fahrenden
Lokomotiven brachten am Anfang die Brücke in ziemlich starke Schwingung;
nach der Einfahrt der Wagen auf die Konstruktion wurde das Schwingen
unregelmäßig und die Amplitude der Auslenkungen verkleinerte sich bedeutend.

Diese Erscheinung ist dadurch verursacht, daß die Wagen auf ihren
verhältnismäßig weichen Federn schwingen und deren starke Dämpfung dann
die Schwingung unterdrückt11).

Die Aufnahme des Spannungsverlaufes im Untergurt einer anderen gemes-

Fig. 8. Tensometeraufnahme bei Überfahrt einer Zweizylinderlokomotive über eine
stählerne Brücke von 75 m Stützweite mit Geschwindigkeit 43 km pro Stunde.

4) Vergleiche Inglis 2) S. XXIII.
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senen Brücke von 75 m Spannweite ist in Fig. 8 wiedergegeben. Hier erreicht
die dynamische Vergrößerung fast die Hälfte der Spannungen bei der
statischen Belastung.

Es ist ersichtlich, daß die Resultate der Messung gut mit der Theorie
übereinstimmen. Diese Übereinstimmung wurde bei allen gemessenen Brücken,
deren Zahl bedeutend war, festgestellt. Es ist daher auffallend, daß die Timo-
shenko-Inglis-Theorie verhältnismäßig oft einer ablehnenden Kritik
unterworfen wird.

Der Grund dafür hegt erstens darin, daß der Einfluß der Eigenfrequenz-
änderung der Brücke während der fortschreitenden Belastung der Brücke
durch eine Lokomotive überschätzt wird. Diese Frequenz kann sich in weiten
Grenzen ändern, wie es aus Fig. 9 a ersichtlich ist, wo der Verlauf der
Eigenfrequenz der Brücke im numerischen Beispiel in Abhängigkeit von der Lage
der Lokomotive aufgetragen ist. Diese Frequenz ändert sich jedoch am meisten,
wenn sich die Lokomotive in der Nähe der Stützen befindet, und dann ist, wie
aus Fig. 9 b ersichtlich, die Größe der harmonisch veränderlichen Ersatz-
belastung am kleinsten. Wenn sich die Lokomotive in der Mitte der Spannweite

befindet und die Belastung den größten Wert erreicht, ändert sich die
Eigenfrequenz wenig. Die Bewegung der Masse der Lokomotive längs der
Brücke hat deshalb einen verhältnismäßig kleinen Einfluß auf die dynamische
Vergrößerung der maximalen statischen Durchbiegung. Die Änderung der
Eigenfrequenz verursacht die Verkleinerung der dynamischen Auslenkungen
hauptsächlich, wenn sich die Lokomotive dem Brückenende nähert. Das ist in
den Fig. 2 b und 7 ersichtlich. Beide Diagramme stimmen in der maximalen
Amplitude überein; die gerechnete freie Schwingung nach der Überfahrt der
Lokomotive ist jedoch ein wenig größer als die gemessene.

Zweitens wird der Einfluß der stufenweisen Belastung der Brücke durch
einzelne Lokomotivachsen überschätzt. So begründet sich z.B. die Behaup-

a)

Psinfttsincjr

l 4-6.66

b)

Fig. 9 a. Änderung der Eigenfrequenz einer Brücke bei Überfahrt einer Lokomotive.

Fig. 9b. Verlauf der senkrechten periodischen Belastung.
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tung der in Fußnote 10 erwähnten Abhandlung auf einem Irrtum. Wenn wir
berücksichtigten, daß die Räderpaare der Lokomotive sukzessiv in den

Intervallen - auf die Brücke einfahren, wobei A die Entfernung der Triebachsen

und c die Geschwindigkeit der Lokomotive bedeutet, dann hätte der
Ausdruck (12) die Form

2P TTX
p (x, t) —r- sinL? t sm—

n L L
sin o) t -f sin oo

Ismo) (<-t) + -hsmcü

H)
K)

+
(19)

wobei n die Zahl der Triebachsen bedeutet. Dabei wird einfachheitshalber
vorausgesetzt, daß alle Triebräder mit der gleichen periodischen Kraft wirken.

Da bei größerer Spannweite der Wert — ^- gering ist, kann man den ganzen

Ausdruck in Klammern durch n sin cot ersetzen, wobei t vom Zeitpunkt
gemessen wird, wenn der Schwerpunkt der Lokomotive sich am Anfang der
Brücke befindet, d.h. man kann sich alle Triebachsen in einem Punkt
konzentriert denken, wie es in der Berechnung vorausgesetzt wurde. Im Aufsatz
der Fußnote 10 wird jedoch irrtümlicherweise mit der Belastung

2 P ttx
p (x, t) —j sin -=- sin co t | sinß t + sinß

n b v
sinßJ-r-sinßjj j+sinßH +

gerechnet. Die Verfasser des Aufsatzes setzen die Phasenverschiebung bei den

periodischen Kräften der einzelnen Triebachsen voraus. Der Wert — -£-
ist nicht mehr gering und die Verfasser gelangen zur unrichtigen Behauptung,
daß die periodischen Kräfte der Triebachsen sich gegenseitig stören und sich
z.B. bei Lokomotiven mit drei Triebachsen praktisch vollkommen aufheben.

Tatsächlich bewegen sich jedoch die Gegengewichte aller Räder auf jeder
Seite der Lokomotive angenähert in derselben Phase und ihre Einflüsse
addieren sich einfach und die Einflüsse von beiden Seiten dann vektoriell.
Die Entfernung der Achsen hat bei längeren Brücken nur sehr geringen
Einfluß.

Schließlich werden wahrscheinlich oft bei den Messungen Lokomotiven
gebraucht, welche keine großen periodischen Kräfte erzeugen. Auch bei
Zweizylinderlokomotiven können die rotierenden Massen gut ausgewuchtet werden,

Fig. 10. Freie Schwingung einer Brücke mit zwei nebeneinanderliegenden einfachen
Feldern.
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so daß die vertikalen periodischen Kräfte gering sind. Das hat dann zur Folge,
daß auch kein Aufschwingen der Brücken beobachtet werden kann.

Zum Schluß soll eine zwar nicht wichtige, aber interessante Erscheinung
erwähnt werden, welche immer bei Brücken von zwei oder mehr Feldern mit
einfachen Hauptträgern beobachtet wurde. Nach Überfahrt der Brücke klingt
die Schwingung auf die in Fig. 10 ersichtliche Art ab. Benachbarte Felder
der Brücke arbeiten wie gekoppelte Oszillatoren. Ein Feld übergibt seine
Energie dem Nachbarfeld mittels der Schienen.

Die Eisenbahnbrücken aus Stahlbeton

A. Allgemeines

Die im ersten Abschnitt enthaltene Theorie kann auf kompliziertere
Systeme erweitert werden15)16). Anstatt der harmonischen Analyse kann man
die Entwicklung nach den Eigenschwingungsformen anwenden.

Bei einem System mit krummen Stäben entsteht das Schwingen nicht nur
in senkrechter, sondern in ganz allgemeiner Richtung. Wenn der Querschnitt
veränderlich ist, ändert sich auch das Trägheitsmoment und die Masse des
Stabes. Gl. (14) kann deshalb nicht angewendet werden.

Nehmen wir ein Längeelement des Stabes mit der Länge d s im Querschnitt s

und in der Zeit t in Betracht, das die Masse pi(s)ds besitzt. (Die Masse pu(s)
ist von der Lage des Querschnittes s abhängig.) Das Element sei aus seiner

&^p>'&
I39e

6*
x>

r^£
hS?

ba?
St?

-P
-<*

o.
u s,t

Fig. 11. Das Element eines krummen Stabes.

15) S. T. A. Ödman: Differential equation for calculation of vibrations produced in
load-bearing structures by moving loads. Preliminary Publication. Third Congress
IABSE. Liege 1948.

16) V. Kolottsek: Baudynamik der Durchlaufträger und Rahmen. Leipzig 1953.
S. 110—128.
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Gleichgewichtslage um w(s,t) ausgelenkt. (Die Vektoren werden mit fetten
Buchstaben bezeichnet.) Dabei wirkt auf das Element eine elastische

Rückstellkraft R(s,t)ds, welche ihm eine Beschleunigung w^9 erteilt. Es gilt
dann nach dem d'Alembertschen Prinzip für freie ungedämpfte Schwingung
die vektorielle Bewegungsgleichung

-p,(s)dsd2wd^t]+R(s,t)ds 0. (20)

Wenn man die Gültigkeit des Hookeschen Gesetzes und kleine Auslenkungen

voraussetzt, kann ein System mit krummen Stäben in unendlich vielen
Eigenformen harmonisch schwingen. Die Amplitude der Auslenkung im
Querschnitt s bei beliebiger (?-ter) Eigenschwingungsform sei mit w^) (s) bezeichnet.
Auf das Längeelement wirkt dabei die elastische Rückstellkraft R(j)(s) und
das System schwingt in dieser Form harmonisch mit der Eigenkreisfrequenz
co(ß. Es gilt dabei

w (s, t) W(j) (s) sin w{j) t (21)

R(s,t) R(j)(s)8inaj(j)t (22)

Nach Einsetzen in (20) ergibt sich

-f*(s)ajij)2wij)(s) R(j)(s). (23)

Wenn das System durch eine äußere, in der Zeit veränderliche Belastung
beansprucht wird, entsteht die erzwungene Schwingung. Die Bewegungsgleichung

eines schwingenden Elementes mit der Länge ds im Querschnitt s

und in der Zeit t, auf welches die Belastung p (s, t)ds wirkt, kann in der vek-
toriellen Form wie folgt geschrieben werden:

ti(s)dsd2w8^t) + 2cobfi(S)8W8(St,t)ds-R(s,t)ds =p(a,t)d8. (24)

Die Belastung p(s,t) kann nach den Eigenschwingungsformen in eine unendliche

Reihe entwickelt werden
00

j»(M) 2 Pü>(0M*)w(fl(«) (25)
7 1

wobei p(j) (t) eine in der Zeit veränderliche generalisierte Belastungskoordinate
bedeutet und die rechte Seite des Ausdruckes (25) eine vektorielle Summe

ist. Die Werte p(j) (t) errechnen sich nach der Formel:

{t)Bi2M^^Lt (26)

wobei My) (s) das Modul von w(j) (s) bezeichnet. Das Vektorprodukt im Integral
des Zählers ist skalar. Der Ausdruck (26) ergibt sich aus Gl. (25), wenn beide
Seiten mit w(i)(s) skalarweise multipliziert und für alle Stäbe des Systems
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integriert werden. Mit Rücksicht auf die Orthogonalität der Eigenschwingungs-
formen gilt

$^(s)w(j)(s)-w(i)(s)ds 0

für alle i 4= j.
Ebenfalls können die Auslenkungen und die elastischen Kräfte durch

Reihen entwickelt werden
00

»M) 2 <M0«>w(*)» (27)

CO 00

R (*, t)= 2 gy, (0 Rö) (*) - Z ?(,•> (0 /* 4)«»(*)> (28)
j 1 7 1

wobei g^.) (£) generalisierte Koordinaten der Auslenkung bezeichnen. Nach
Einsetzen der Formeln (25), (27) und (28) in die Gl. (24) ergibt sich

d2q(j)(t) 0 d^(t) 2

Aus dieser Gleichung kann man die generalisierten Koordinaten g^) (t) errechnen

und nach Einsetzen dieser Werte in (27) die Auslenkungen w (s, t) ermitteln.
Bei der Lösung der statisch unbestimmten Systeme der Eisenbahnbrücken

ist weiter notwendig, den Einfluß einer Masse m (z.B. der Masse einer
Lokomotive), welche sich im Querschnitt s a befindet, auf die Eigenschwingungs-
zahl festzustellen. Ähnlich wie bei dem einfachen Balken kann eine solche
Masse angenähert durch stetig verteilte Masse ersetzt werden, um die sich die
eigene stetig verteilte Masse jjl (s) vergrößert. Die konzentrierte Masse m wirkt
bei der Schwingung mit der inertialen Kraft. Setzen wir voraus, daß das

System in der ersten Eigenschwingungsform schwingt und nehmen wir
angenähert an, daß sich diese Form nicht ändert, wenn die Masse m hinzugefügt
wird. Die inertiale Kraft der Masse m ist dann nach (27)

d2w(a,t) d2q{1)(t)
~m—^r^ ~m dt2

™(1)(a)' (30)

Diese inertiale Kraft wirkt auf den Stab wie eine konzentrierte Last im
Querschnitt s a und kann durch eine Reihe ähnlich wie die stetige Belastung
p(s,t) nach den Formeln (25) und (26) entwickelt werden. Mit Rücksicht auf
die Voraussetzung, daß sich die erste Eigenform, in der das System schwingt,
nicht ändert, genügt es in der Formel (25) nur das erste Glied der Reihe zu
erwägen, welches nach Einsetzen von (26) und (30) den Wert

_me^ ^Ua) s) (31)
dt $n(s)wa)(s)ds

erreicht. Die Formel (31) stellt jedoch die inertiale Kraft einer stetig verteilten

Masse u (s) m ~ dar. Das System schwingt dann so, als ob über

ihm eine Gesamtmasse
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li'(s) =[i(8) 1 + m-
w{1)(a)

$fi(s)wa)(s)ds]
(32)

stetig verteilt wäre. Für den einfachen Träger, der mit der Masse m in der Mitte
2mder Spannweite belastet wird, geht (32) in die Formel (6) //,' =/x + -y- über

B. Die Lösung eines eingespannten, durch Rahmen versteiften Bogens

Die im vorhergehenden Abschnitt eingeführte Methode wurde bei Berechnung

einer Stahlbetonbrücke nach Fig. 12 a mit 15 gleichen Feldern von
51,5 m Lichtweite angewendet. Die Brücke trägt zwei Gleise, von denen jedes
auf einer selbständigen Konstruktion liegt; die Pfeiler sind für beide
Konstruktionen gemeinsam. Die Tragkonstruktion wird von einem eingespannten,
durch Rahmen versteiften Bogen gebildet. Zuerst wurde dieses System so

gerechnet, als ob beide Widerlager des Bogens vollkommen eingespannt und
unverschieblich seien.

Die erste Aufgabe, d.h. die Ermittlung der Eigenfrequenzen und
Eigenschwingungsformen des Systems, wurde durch die Methode der schrittweisen
Näherung gelöst. Zu diesem Zwecke wurde das System in 30 Elemente geteilt.
Es sind in jeder Hälfte 15 Elemente mit den Massen m1? m2 bis m15 (Fig. 12a).
Für die Schwerpunkte aller dieser Teile wurden Einflußlinien der Durchbie-

12 3 4-56 789 10

E0 13*

*)

Ö 0'f10

C) o'r
i o

Fig. 12 a. Ein durch Rahmen versteifter Bogen.

Fig. 12b. Einflußlinie der senkrechten Durchbiegung des Gewölbescheitels für senkrechte
Belastung.

Fig. 12 c. Einflußlinie der waagrechten Durchbiegung des Punktes 1 für senkrechte
Belastung.

Bemerkung: Die volle Linie bezeichnet den Balken, die strichlierte den Bogen.
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gung ermittelt. Es sind in jedem Punkte 4 Einflußlinien, und zwar für die
senkrechte, bzw. waagrechte Durchbiegung infolge der senkrechten, bzw.
waagrechten Belastung. Die Einflußlinien wurden mit der Methode Beggs-
Blazek durch Messung auf einem Zelluloidmodell gewonnen und rechnerisch
mit der Deformationsmethode kontrolliert. Der Unterschied der gerechneten
Koordinaten gegenüber den gemessenen ist kleiner als 2%. Das Elastizitätsmodul

wurde mit ^ 4200000 t/m2 in die Berechnung eingeführt. In Fig. 12b
ist die Einflußlinie der senkrechten Durchbiegung in der Gewölbemitte für
senkrechte Belastung aufgetragen und in Fig. 12 c die Einflußlinie der
waagrechten Durchbiegung im Punkte 1 ebenfalls für die senkrechte Belastung.

Als Ausgangslinie für die Ermittlung der ersten symmetrischen
Eigenschwingungsform wurde die Durchbiegungslinie infolge des Eigengewichtes
gewählt. (Diese Wahl zeigte sich nicht sehr zweckmäßig, da die Näherungen
langsam konvergierten.) Die senkrechten Koordinaten 1vk dieser Linie sind in
Fig. 13 a und die waagrechten 1uk in Fig. 13 b aufgetragen. Diese Koordinaten
wurden mit den Massen der zugehörigen Elemente mk multipliziert und mit
den so gewonnenen Lasten mk1vk, mkruk werden die Einflußlinien belastet
und dadurch eine neue Durchbiegungskurve (2. Näherung) mit Koordinaten
2vk, 2uk gewonnen. Der Fortgang wurde solange wiederholt, bis sich die letzte
Näherung nvk,nuk von der vorletzten n~1vk,n~1uk in ihrer Form nicht mehr
unterschied. Die erste Eigenkreisfrequenz ist dann durch die Formel

2
(33)

gegeben. Die Linie nv vil)(s), nu uil)(s) stellt die erste Eigenschwingungs-
form dar. Die Gesamtverschiebung w{1)(s) ist die vektorielle Summe der
vertikalen und horizontalen Auslenkung (%>(s) und u{1)(s)).

f o 0'/'

1 0 OTb)

Fig. 13. Durchbiegung infolge Eigengewicht,

a. Senkrechte Koordinaten, b. Waagrechte Koordinaten.

Bemerkung: Die tatsächlichen senkrechten Durchbiegungen sind positiv in Richtung
von oben nach unten. In den Abbildungen sind jedoch in Zusammenstimmung mit den
Aufzeichnungen des Durchbiegungsmessers die positiven Durchbiegungen in umgekehrter

Richtung von unten nach oben aufgetragen. Die tatsächliche waagrechte
Durchbiegung wird positiv im Sinne von links nach rechts angenommen.
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Die senkrechten Koordinaten der letzten drei Näherungen sind in Fig. 14 a

ersichtlich, die waagrechten Koordinaten der letzten Näherung nuk sind in die
senkrechte Richtung umgedreht und in Fig. 14b aufgetragen. Es ist ersichtlich,
daß die waagrechten Koordinaten im gegebenen Falle von kleiner Bedeutung
sind. Aus dem Verhältnis der Koordinaten der letzten zwei Näherungen in
einem Punkte (z.B. im Punkte k= 10 in Fig. 14a) ergibt sich

2
n—lr>

^10

^10

2386

2,19
1090 s~2,

d.h. cü(1) 33,0s x.

Aufähnliche Weise wird die erste Eigenform der antimetrischen Schwingung

gewonnen, man geht dabei jedoch von einer antimetrischen Durchbiegungs-
kurve aus. Die senkrechten Koordinaten der letzten Näherung, die gleichfalls
die erste antimetrische Eigenschwingungsform vorstellt, sind in Fig. 15 a

aufgetragen, dagegen die umgedrehten waagrechten in Fig. 15b. Für die erste

Eigenkreisfrequenz der antimetrischen Schwingung ergibt sich ^*)= 16,6 s-1.

3) <\i.

0'/I 0

b)

0' i
t\0

Fig. 14. Erste symmetrische Eigenschwingungsform eines durch Rahmen versteiften
Bogens.

a) Senkrechte Koordinaten bei den letzten drei Näherungen.
b) Waagrechte Koordinaten (in die senkrechte Richtung umgedreht).
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Aus der Einflußlinie der Durchbiegung in Fig. 12 b kann man die statische
Durchbiegung in der Mitte der Spannweite infolge Belastung durch eine
Lokomotive in ungünstigster Lage ermitteln. Für die bei den Messungen
gebrauchte Zweizylinderlokomotive von 97 t Gewicht ergibt sich die
Durchbiegung v 3,0 mm.

Die Brücke wurde dann gemessen und es zeigte sich, daß die Ergebnisse
der theoretischen Untersuchung mit den gemessenen nicht übereinstimmen. Die
errechnete Grundfrequenz der symmetrischen eigenen Schwingung war
offensichtlich höher als die auf experimentelle Weise festgestellte Grundfrequenz,
während die gemessene Durchbiegung in der Mitte der Spannweite unter der
Lokomotive (v 2,0mm) bedeutend kleiner war als die gerechnete
Durchbiegung. Dies, obwohl sich eine verhältnismäßig große Nachgiebigkeit der
Widerlager zeigte, welche im Gegenteil die Vergrößerung der Durchbiegung
verursachen sollte. Es zeigte sich, daß die Stahlbetonkonstruktion selbst
zweimal so steif ist als in der statischen Berechnung vorausgesetzt wurde,
und zwar in erster Linie deswegen, weil die ziemlich mächtigen Parapetmauern
vollkommen monolithisch mit der Tragkonstruktion zusammenwirken. Die
Erhöhung der Steifigkeit der Tragkonstruktion hat dann zur Folge, daß alle
Felder der Brücke vielmehr als ein durchlaufendes System wirken. Die Steifigkeit

des Untergrundes unter den Pfeilerfundamenten hat sich zwar absolut
nicht verkleinert, aber im Verhältnis zur erhöhten Steifigkeit der Konstruktion
sank sie auf die Hälfte. Es ist also nicht möglich die Nachgiebigkeit der Pfeiler
zu vernachlässigen, und die ganze Konstruktion muß als durchlaufend berechnet

werden.

C. Berechnung eines durchlaufenden, durch Rahmen versteiften Bogens

Bei der statischen, mittels der Deformationsmethode durchgeführten
Berechnung wurde vorausgesetzt, daß drei Felder mitwirken, und zwar das

0'
1 0

*)

0'1

'" i

Fig. 15. Erste antimetrische Eigenform.

a) Senkrechte Koordinaten,
b) Waagrechte Koordinaten.
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belastete und die beiden benachbarten. Die Belastung der weiter entfernten
Felder hat unbedeutende statische Einflüsse. In Fig. 17 b ist die Einflußlinie
der Durchbiegung in der Mitte des mittleren Gewölbes aufgezeichnet. Diese
Einflußlinie wurde durch die Achsdrücke einer Lokomotive von 97 t Gewicht
in verschiedenen Lagen belastet. Die so ermittelten Durchbiegungen sind in
Abhängigkeit von der Lage des Schwerpunktes der Lokomotive in Fig. 17 c

aufgetragen. Diese Kurve entspricht den Aufzeichnungen der registrierenden
Tensometer in der Mitte des mittleren Gewölbes bei langsamen Fahrten der
Lokomotiven (Fig. 22a, b).

Es ist selbstverständlich, daß die Nachgiebigkeit des Untergrundes bei der
dynamischen Untersuchung noch viel klarer zum Ausdruck kommen muß
als bei der statischen. Bei der statischen Nutzlast eines Feldes in einem Gleis
entsteht eine waagrechte Kraft nur im Kämpfer eines Gewölbes. Bei der
Schwingung der Konstruktion nach Fig. 16 wirken jedoch auf den Pfeiler mit
zusätzlichen waagrechten Kräften gleicher Richtung alle vier Gewölbe (in
beiden Feldern und beiden Gleisen), die sich an den Pfeiler stützen. Das Neigen
des Pfeilers bei der Schwingung der Brücke ist deshalb verhältnismäßig groß.

Die erste Aufgabe bei der dynamischen Lösung ist wieder das Feststellen

1 ' sf \X |

\K [ \M

i

i

1 •uj j ^J
\N 1 \p

Fig. 16. Schema der ersten Eigenschwingungsform eines durchlaufenden, durch Rahmen
versteiften Bogens.

P T

r 5/'/ /'/

Fig. 17 a. Schema eines durchlaufenden Systems.

Fig. 17 b. Einflußlinie der Durchbiegung in der Mitte des mittleren Feldes.

Fig. 17 c. Durchbiegung in der Mitte des mittleren Feldes unter einer fahrenden Loko¬
motive von 97 t Gewicht.
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der eigenen Frequenzen und Schwingungsformen. Die Deformationsgleichungen
eines kontinuierlichen Systemes mit n gleichen Feldern sind zyklisch

symmetrisch17. Es folgt daraus, daß anstatt der ersten Eigenfrequenz der
symmetrischen Schwingung hier eine ganze Gruppe von n Grundfrequenzen
erscheint, welche zueinander sehr nahe liegen. Ebenso entspricht der ersten
antimetrischen Eigenform eines vollkommen eingespannten Gewölbes eine
Gruppe von n Eigenformen des durchlaufenden Systems. Wir beschränken uns
jedoch weiter nur auf die Eigenformen der „symetrischen" Gruppe, weil wir
uns hauptsächlich mit den Schwingungen des Gewölbescheitels befassen. (So
z.B. schwingt ein gerader, durchlaufender, in beiden Randstützen vollkommen
eingespannter Träger von 4 Feldern mit 4 ersten Eigenfrequenzen

n(1)
1,83, /EJ 2,45 /EJ 3,16
P \/1T' %2)

V- \'If-' U(3) - £2

./EJ 3,56.,/EJ

die niedrigste von diesen Frequenzen ist sehr nahe bei der ersten
Eigenschwingungszahl eines einfachen Trägers, während die höchste der ersten
Eigenfrequenz eines auf beiden Enden vollkommen eingespannten Trägers
gleich ist.)

Ein kontinuierliches Gewölbe von 15 Feldern wird deshalb 15

Grundfrequenzen aufweisen, von denen die niedrigste sich der niedrigsten
Eigenfrequenz eines kontinuierlichen Bogens von unendlich vielen Feldern nähert,
während die höchste der ersten Eigenfrequenz eines Gewölbes mit vollkommen
starren Stützen gleichkommt.

Wenn wir die niedrigste Frequenz einer Konstruktion mit unendlich vielen
Feldern ermitteln wollen, genügt es, nur ein Feld in Betracht zu ziehen. Dies

Fig. 18. Einflußlinie der Durchbiegung für ein System nach Abb. 16.

17) V. Kolousek: Baudynamik der Durchlaufträger und Rahmen, Leipzig 1953.
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folgt aus Fig. 16, wo die erste Eigenschwingungsform schematisch dargestellt
wird. Zur schwingenden Tragkonstruktion werden die anliegenden Pfeilerhälften

gerechnet. Dieser Teil des Systems ist in Fig. 16 voll ausgezogen
(£ 57,5 m).

Es wurden wieder Einflußlinien der Durchbiegung festgestellt, und zwar
für den Scheitel des Gewölbes, für 15 Schwerpunkte der Längenelemente und
für das Neigen des Pfeilers. Die Einflußlinie der Durchbiegung im Gewölbescheitel

für die senkrechte Belastung des Feldes und waagrechte Belastung
der Pfeiler ist in Fig. 18 aufgetragen. (Die Einflußkoordinaten sind positiv im
Sinne gegen die Wirkung der Kräfte.)

Die erste Eigenschwingungsform und die erste Eigenfrequenz werden wieder

durch schrittweise Näherungen ähnlich wie beim eingespannten Bogen im
vorhergehenden Abschnitt bestimmt. Die senkrechten Koordinaten im Felde
und die waagrechten für Pfeiler der ersten Eigenform sind in Fig. 19 a
aufgetragen. Aus dem Verhältnis der beiden letzten Näherungen ergibt sich jetzt
die Eigenkreisfrequenz oj(1) 23,1s-1, d.h. nil) 3,68s-1.

Die letzte (d. h. die fünfzehnte) Eigenform der ersten Gruppe ist in Fig. 19b
dargestellt. Sie ist angenähert dieselbe wie die erste Eigenform des eingespannten

Gewölbes nach der Fig. 14. Da die Steifigkeit der Konstruktion in
Wirklichkeit ungefähr zweimal so groß ist als ursprünglich vorausgesetzt wurde,
entspricht dieser Eigenform eine viel größere Eigenkreisfrequenz als bei der
Berechnung des starr eingespannten Bogens, und zwar 6ü(15) 46,6s_1, d.h.
W(15) 7,4s-1. Zwischen den Frequenzen w(1) und n^15) gibt es weitere 13

Eigenschwingungszahlen, mit denen das System harmonisch schwingen kann.
Wir wollen noch angenähert nach (32) die vergrößerte Ersatzmasse errechnen,

wenn sich in der Mitte eines Gewölbes die Masse einer Lokomotive im

7 1V \

Fig. 19 a. Die senkrechten Koordinaten der Durchbiegung im Felde und die waagrechten
Koordinaten des Neigens der Pfeiler bei der ersten Eigenschwingungsform.

Fig. 19 b. Die senkrechten Koordinaten der Durchbiegung bei der höchsten Eigen¬
schwingungsform der ersten Gruppe.
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Gewicht von 97 t befindet. Die Auslenkung bei der ersten Eigenform nach

Fig. 19a ist in der Mitte des Feldes w(1)(a) v{1) Q =0,314. Durch numerische

Integration wird für ein Feld und beide Gleise

30

$n(s)w2a)(s)ds 22 ™*[4)(^)+4)(^)] I2,3tm~is2 (34)

gewonnen. Wenn jedoch gleichzeitig alle 15 Felder schwingen, ist diese Summe
15mal so groß und es ergibt sich nach (32)

fi(s)
/ 970,3142 \ 1 AAK 1

PWW 7 /_x_ 2 /_x j_ - ^„^_ r..2 /„ x ..2 ,Ä vT ^D'

Man kann also die Masse der Lokomotive vernachlässigen. Dieses Resultat
gilt natürlich nur unter der oben angenommenen Voraussetzung, daß sich die
erste Eigenform bei Belastung durch eine Lokomotive nicht ändert.

Die Berechnung der Eigenfrequenzen und Eigenformen durch die Methode
der schrittweisen Näherung ist zeitraubend. Noch viel mühsamer wäre jedoch
die Berechnung der erzwungenen Schwingung unter einer fahrenden
Lokomotive, die periodische Kräfte erzeugt. Man kann dabei die Gleichungen (24)
bis (29) benützen.

Es bewege sich auf dem Träger eine senkrechte, harmonisch veränderliche
Kraft PsinßJ mit einer konstanten Geschwindigkeit c. Wenn wir die Zeit
vom Eintritt der Kraft auf das Feld messen, ist diese Kraft im Zeitpunkt t

um a ct vom linken Ende des Feldes entfernt. Es gilt dann nach (26) und (34)

P sinQ t V(j) (a) _
P sinQ t v(j) (a)

J(jl (s) w%) (s)ds 2n^mk[v2{1) (sk) + u%) (sk)]
k

Dabei bezeichnet v(j) (a) die Auslenkung des Balkens bei ?'-ter Eigenschwingungs-
form an der Stelle a, wo sich die Last befindet; w= 15 ist die Zahl der Felder
der Konstruktion. Den Ausdruck (35) kann man in die Gl. (29) einsetzen und
durch numerische oder graphische Integration die Werte q{j) (t) errechnen. Die
Auslenkungen im beliebigen Querschnitt kann man dann nach der Formel (27)
ermitteln.

Wenn Q co^ und wenn die Eigenfrequenzen nicht nahe beieinander liegen
würden, könnten wir voraussetzen, daß an der Schwingung nur die erste
Eigenschwingungsform teilnimmt und es genügte dann nur p(l) (t) zu ermitteln
und in Gl. (27) mit dem ersten Glied allein zu rechnen. Da jedoch bei einem
kontinuierlichen System die Eigenfrequenzen sehr nahe beieinander liegen,
ist es nicht möglich, auch im Falle der Resonanz, die höheren Glieder in (27)
zu vernachlässigen. Es handelt sich nämlich nicht um die Berechnung einer
Amplitude der stationären Schwingung, sondern um ein allmähliches
Aufschwingen, bei dem die höheren Eigenformen eine wichtige Rolle spielen.
Wenn wir diese höheren Eigenformen vernaehlässigen würden, bekämen wir
unvergleichlich kleinere Auslenkungen als bei einer genauen Berechnung. Der
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Ausdruck (35) verkleinert sich nämlich bedeutend, wenn n im Nenner eine

große Zahl ist. Die Berechnung der erzwungenen Schwingung würde also

erfordern, vorerst alle n Grundfrequenzen und die zugehörigen Eigenschwingungsformen

zu ermitteln und die Gl. (29) für alle j=l bis n zu rechnen. Da
diese Arbeit nicht durchgeführt werden konnte, war es nötig, die Aufgabe nur
angenähert zu lösen. Dabei beschränkten wir uns auf den Resonanzfall Q o>(1)

und stellten die Durchbiegung nur im Scheitel des Gewölbes fest.
Wie aus der Formel (35) ersichtlich ist, sind die Belastungsglieder bei

einem durchlaufenden Bogen von n Feldern 7i-mal kleiner als bei einem Bogen,
der von den übrigen Feldern isoliert wäre. Die Zahl der Belastungsglieder ist
im Gegenteil w-mal so groß, weil sich die Zahl der Eigenfrequenzen n-mal
vermehrte. Bei einem Gewölbe, das durch die bewegliche Kraft unmittelbar
belastet wird, addieren sich die Einflüsse der Belastungen fast aller
Eigenformen, mindestens wenn sich die Last in der Nähe der Feldmitte befindet.
Wir werden deshalb dieses Gewölbe angenähert so rechnen, als ob es von den
anderen Feldern isoliert wäre und allein durch die Kraft P sinQt zum Schwingen

gebracht würde, und zwar von der ersten Eigenform. Dadurch vergrößert
sich n-mal die Größe des Belastungsgliedes (35), andererseits wird jedoch nur
eines von n Belastungsgliedern in Erwägung gezogen. Die Energie, die zum
Aufschwingen der benachbarten Felder verbraucht wird, werden wir
angenähert wie eine durch Dämpfung verlorene Energie behandeln. Es wird deshalb
weiter mit einem vergrößerten Dämpfungsbeiwert o)b gerechnet. (Ähnliche
Annahmen sind der Baudynamik nicht ganz fremd. Z.B. werden die
Maschinenfundamente häufig ohne Rücksicht darauf gerechnet, daß mit dem Fundament

gleichzeitig die Masse des umliegenden Bodens mitschwingt; das
Mitwirken der Umgebung wird jedoch durch einen erhöhten Dämpfungskoeffizienten
in Betracht gezogen.)

Rechnen wir jetzt unter diesen Bedingungen das Schwingen des Scheitels
des Gewölbes MN, vorausgesetzt, daß sich in diesem Felde eine harmonisch
veränderliche Kraft PsinQt bewegt. Das Belastungsglied Pd)(t) hat nach (35)
den Wert

m(t)= ^ P^Otn^ia) (36)

k

Die senkrechte Durchbiegung %> (a) des Balkens bei der ersten Eigenschwingungsform

(Fig. 19 a) kann durch die Fouriersche Reihe entwickelt werden,
wobei die Koeffizienten dieser Reihe mit Hilfe der numerischen Integration
ermittelt werden. Es ergibt sich

v{1)(a) ^sin^+^sin^. • 0,272 sin^-0,032 sin~ + • • •, (37)

wobei a vom Punkte 1 gemessen wird und die Spannweite Z 54,3 m die
doppelte Entfernung des Punktes 1 zur Gewölbemitte vorstellt (Fig. 12a). In der
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Formel (37) hat das zweite Glied geringe Bedeutung und kann vernachlässigt

werden. Nach Einsetzen von (37) in (36) und dann in (29) ergibt sich
mit Rücksicht auf (34)

d*q(1)(t) 0.. tlvM +^q^t) APfänßtBincjtdt*
- + 2coh dt (38)

ira rrC t
wobei cot -=- —y— und A B1 0,272

0,0221.
2 Imfc[t>(i)(^) + wu >(**)] 12'3

k

Die Gleichung (38) hat eine partikulare Lösung

(Z(i) (*) ^i sinß t sin co t + C2 sinß t cos co t + (73 cosß / sin cvt-rC^ cosüt cos co £ (39)

wobei G Konstanten sind, die aus der Formel (38) ermittelt werden können,
wenn (39) in (38) eingesetzt wird. Die Gleichung (38) wird nun nur dann
erfüllt, wenn die Gleichungen der Tabelle I gelten.

Tabelle I
G1 c, c, c,

CO^)2 — Q2 — CO2

2 co ü)b

2Qcob
2Qco

— 2 co cob

CO(!)2 — Q2— CO2

-2Qco
2Qcob

-2Qcob
-2Qco

co^f — Q2 — co2

2 co cob

2Qw
-2Qcob
— 2 co cob

Ö>(i)2 — Q2 — CO2

AP
0
0
0

Diese Gleichungen vereinfachen sich noch, wenn man berücksichtigt, daß
ß cü(1) ist und daß co und a>b gegenüber co(1) unbedeutend klein sind.

Es gilt dann
A

Co coh -f C* CJÜ

C^oj -CA
2w(D

p,

C1ojb — C2a) 0,
C1 a> + C2 cob 0,

und daraus
c2 o

°'-2
2a>(1)

A n

CJÜ2 + wb2 '

2 *

(40)

(41)

(42)
: cuq) cd* + cjüb*

Das allgemeine Integral der Gl. (38) besteht aus der partikularen Lösung (39)
und aus dem allgemeinen Integral der verkürzten homogenen Gleichung. Mit
Rücksicht auf (40) bis (42) und nach Einsetzen ß co(1) ergibt sich

<7(i) (l) ^3 cos w(i) ^sm u>t + C± cos cü(1) t cos cd £ + q0 e~Wb l sin (co(1) t + <p0) (43)

wobei q0 und (p0 die Integrationskonstanten bezeichnen.
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Wenn das System im Zeitpunkt t 0, in dem die Last auf den Träger
aufgebracht wird, sich in Ruhe befindet, sind die Anfangsbedingungen q (0) 0

und q, =0. Nach Einsetzen dieser Werte in die Gl. (43) und in ihre Ableitung,

ergibt sich

<P0=J> ?0 -C4- (44)

Die Auslenkung der ersten Eigenschwingungsform in der Mitte der Spannweite

sei %)(ö)- Wenn wir diesen Wert für w{1)(s) in die Gl. (27) einsetzen,

folgt mit Rücksicht auf (40) bis (44) für die senkrechte Durchbiegung des

Scheitels im Zeitpunkt t:

*(^)=^(o%)(|)
«\ (45)

i^ypcoswiD«
—ö r~2~,—2T~- [^ (cos <*>l - e~mt) - ^b sin w fl •

2 cu(l) (cd* + cV)
Diese Gleichung entspricht Gl. (15), die für einen geraden Träger von
konstantem Querschnitt gilt.

Wenn die Lokomotive das Feld verläßt, schwingt das System noch mit
einer freien Schwingung weiter. Diese Eigenschwingung klingt jedoch viel
schneller ab, als es nach der angenäherten theoretischen Untersuchung erfolgte.
Wenn sich nämlich die Lokomotive dem Feldende nähert, ist der Anteil aller
Eigenformen nicht mehr positiv. Dies ist aus Fig. 19b ersichtlich. Die Koordinaten

der dort dargestellten Eigenform werden in der Nähe der Stützen
negativ. Wir dürfen deshalb die restliche freie Schwingung überhaupt
vernachlässigen.

Eine Lokomotive bringt nicht nur das Feld, welches sie eben befährt, sondern
auch die benachbarten Felder in Schwingung. Die Amplituden müssen jedoch
im Nachbarfeld kleiner sein als im belasteten. Das ist wieder aus Fig. 19

ersichtlich. Im belasteten Felde addieren sich die Durchbiegungen fast aller
Eigenformen, während im Nachbarfeld z.B. die Auslenkung der Eigenform
von Fig. 19b eine entgegengesetzte Richtung hat. Der genaue Verlauf der
Durchbiegung bei der Belastung des Nachbarfeldes könnte wieder nur durch
eine genaue Berechnung festgestellt werden. Bei einer angenäherten Berechnung

werden wir voraussetzen, daß das Aufschwingen im Nachbarfelde ähnlich
wie im belasteten Felde verläuft, daß jedoch dabei die Auslenkungen &-mal
kleiner sind. Vom Reduktionsbeiwert k wissen wir jedoch bloß, daß er kleiner
als Eins ist. Wenn ein noch weiter entferntes Feld belastet wird, werden die
Auslenkungen noch stärker reduziert. Es wird dabei wieder ein ähnlicher
Verlauf der Schwingung angenommen wie in den vorhergehenden Fällen, aber
es wird ein Reduktionsbeiwert k2 eingeführt.

Der auf eine angenäherte Weise errechnete Verlauf der Schwingung ist
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also von der ziemlich willkürlichen Wahl der beiden Koeffizienten — des

Dämpfungsbeiwertes a>b und des Reduktionskoeffizienten k — abhängig. (Bei
der strengen Lösung war nur ein Wert a>b unbekannt, den man überdies ziemlich

leicht auf experimentellem Wege bestimmen konnte.) Glücklicherweise
hat die Wahl der beiden Beiwerte, wie aus der weiteren Berechnung ersichtlich,
einen verhältnismäßig kleinen Einfluß auf die dynamische Vergrößerung der
maximalen statischen Durchbiegung, zumindest im Gewölbescheitel.

Bei den experimentellen Messungen wurde die Brücke wieder mit einer
Zweizylindertenderlokomotive von 97 t Gewicht belastet. Die Zentrifugalkraft
der Triebräder wurde mit

P 0,3iV2t

in der Berechnung eingeführt. Der Triebradumfang ist 0 3,96 m. Weitere
Fahrten wurden mit einer Dreizylindertenderlokomotive von 124 t Gewicht
mit Triebradumfang 0 5,1 m durchgeführt.

Bei einer kritischen Geschwindigkeit von

c n{lV0 3,68-3,96 14,55 ms-1 52 km pro Stunde

erzeugen die Triebachsen der Zweizylinderlokomotive eine harmonisch
veränderliche Kraft, deren Amplitude

P 0,3-3,682 4,06 t
ist. Weiter ergibt sich

und

^(i) l 2ttI
c

ITC

0

tt-14,55
l 54,3

86,3

0,842 s"1.

Außerdem wurde das logarithmische Dekrement auf # 0,3 geschätzt, so daß

a/x/w"

J^*^y^&i&&s^ ^-^fflMTOy^---w

a*Sg«ZtfyW5ÄftZS g»

^AA/WWWV .^WWWWWVvv.X^AAA/WVVW^'

Fig. 20a. Das Aufschwingen des Gewölbescheitels des belasteten Feldes.

Fig. 20 b. Das Aufschwingen bei Belastung der Nachbarfelder.

Fig. 20 c. Das Aufschwingen bei Belastung der weiteren Felder.

Fig. 20 d. Theoretische dynamische Durchbiegungskurve.
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*»b &n(ti 0,3-3,68 1,104s-1.

Wenn man diese Werte und A 0,0221 sowie v(1) Q =0,314 in'die Formef(45)

einsetzt, ergibt sich nach einer kleinen Umformung

4') COS! 3->Sl
/ Tra -4,12—\ ^»(cos-. e ' i I -0,0,000 266 jcos^- e~4' 000 349 sin ira

T (46)

Man mißt dabei a vom Punkte 1 des Feldes MN und Z 54,3 m ist die
zweifache Entfernung vom Punkte 1 zur Feldmitte. Der Ausdruck (46) ist
graphisch in Fig. 20 a dargestellt.

Wenn die periodische Kraft die Nachbarfelder KM und NP belastet,
schwingt der Scheitel des Gewölbes MN wiederum nach der Gl. (46), deren
rechte Seite jedoch mit dem Reduktionsbeiwert k multipliziert wird. Es wurde
k mit 0,5 abgeschätzt und der so gewonnene Verlauf der dynamischen Aus-

lenkung graphisch in Abhängigkeit von a dargestellt (Fig. 20b). a wird jetzt
vom Punkte 1 des Feldes KM, bzw. N P gemessen. Analog wurde der Verlauf
der Auslenkung bei der Belastung des Feldes IK und PR ermittelt. Die
rechte Seite des Ausdruckes (46) wurde dabei mit &2 0,25 multipliziert
(Fig. 20c). Die Kurven in Fig. 20a, b, c sind auf die Kurve der statischen

Durchbiegung unter einer fahrenden Lokomotive (Fig. 17 c) superponiert. Die
so gewonnene Kurve (Fig. 20 d) entspricht den Aufzeichnungen eines
registrierenden Durchbiegungsmessers in den Fig. 22 d, e und 23.

Um den Einfluß der Wahl der Beiwerte co& und k auf die Lösung zu zeigen,
wurde noch eine Berechnung für ein halbes logarithmisches Dekrement und
für & 0,4 durchgeführt. Das Ergebnis ist in Fig. 21 aufgezeichnet.

In den Fig. 22a,b,c,d, e,f sind die gemessenen Durchbiegungen in der
Mitte des Feldes MN bei verschiedenen Geschwindigkeiten der Zweizylinderlokomotive

dargestellt. Es ist ersichtlich, daß bei langsamen Fahrten die

dynamischen Einflüsse klein sind. Bei einer Geschwindigkeit von ungefähr 47 km

pro Stunde entsteht zum ersten Male die Resonanz. Die theoretische kritische
Geschwindigkeit liegt ein wenig höher bei 52 km pro Stunde. Die
Übereinstimmung ist jedoch verhältnismäßig gut, wenn man erwägt, wie sehr die

/wvAAAAAA/ —-wvwvW^V «-v^/vxv/xAAAAAA/v^'

r K M | N

Fig. 21. Theoretische dynamische Durchbiegungskurve bei geänderten Voraussetzungen
für die Dämpfung und für das Mitwirken der Felder.
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Durchbiegungen von der Nachgiebigkeit des Untergrundes unter den
Pfeilerfundamenten abhängen, dessen Elastizität unvollkommen ist und in der Berechnung

nur angenähert berücksichtigt werden kann. Bei größerer Geschwindigkeit
sinken wieder die dynamischen Auslenkungen. Auf manchen Abbildungen

(Fig. 22) kann man eine elastische Hysteresis beobachten. Diesen Einfluß,
welcher übrigens nur klein ist und bei größeren Geschwindigkeiten sich nur
wenig geltend macht, kann man eben der unvollkommenen Elastizität des

Untergrundes zuschreiben. Im ganzen verhält sich aber das System sehr elastisch.
Die Fig. 23 zeigt deutlich den Einfluß der Belastung in weiter entfernten

Geschwindigkeit
33 km pro Stunde.

Geschwindigkeit
38 km pro Stunde.

Geschwindigkeit
42 km pro Stunde.

Geschwindigkeit
47 km pro Stunde.

I. * "i""fc 1 i

Geschwindigkeit
51 km pro Stunde.

w\MT

Geschwindigkeit
62 km pro Stunde.

n

V-L 1 L J. L _J

Fig. 22. Aufzeichnungen eines registrierenden Durchbiegungsmessers im Scheitel des
mittleren Gewölbes bei verschiedenen Geschwindigkeiten der Zweizylinderlokomotive.
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Feldern. In Fig. 24 ist der Verlauf der Spannung im Gewölbekämpfer
aufgezeichnet, der mit Hilfe eines Straingage-Tensometers aufgetragen wurde.

Tn Fig. 25 a, b sind die Durchbiegungen bei der Fahrt einer Dreizylinderlokomotive

aufgezeichnet. Es wurden bei keiner Geschwindigkeit Schwingun-

\—»^™~—-^AAj\[g\|Wf7^

Fig. 23. Einfluß der Kontinuität des Systemes (Geschwindigkeit 52 km pro Stunde).

^kv-^MJliw^

r~!

Fig. 24. Spannung im Gewölbekämpfer (Strain-gage). Geschwindigkeit 47 km pro Stunde.

Geschwindigkeit
50 km pro Stunde.

Geschwindigkeit
75 km pro Stunde.

Fig. 25. Aufzeichnungen des registrierenden Durchbiegungsmessers bei Überfahrt einer
Dreizylinderlokomotive.
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gen beobachtet, welche die Frequenz auswiesen, die der Umdrehungszahl der
Triebräder gleich wäre. Es zeigte sich jedoch bei einer Geschwindigkeit von
ungefähr 50 km pro Stunde, d.h. bei N 2,1 s~x, eine ziemlich starke Schwingung

(Fig. 25a) mit einer Frequenz von etwa 7,7 «s-1. Das ist ungefähr gleich
der Eigenfrequenz w(15), mit welcher die Gewölbe mit unnachgiebigen Widerlagern

schwingen (Fig. 19b). Diese Frequenz ist ungefähr dreimal so groß als
die Umdrehungszahl der Triebräder. Die Ursachen dieser Schwingungen sind
bis jetzt nicht ganz klar. Bei einer Geschwindigkeit von 75 km pro Stunde
sind die dynamischen Einflüsse wieder gering.

Zusammenfassung

In der Beurteilung der dynamischen Einflüsse auf Eisenbahnbrücken
herrscht keine Einheit. Ein Teil der Forscher (Timoshenko, Inglis usw.) sieht
deren Ursache in erster Linie in den periodischen Kräften der Triebräder der
Lokomotiven, während die anderen diese Einflüsse nicht für wichtig halten.
Die dynamischen Einflüsse auf Brücken aus Stahlbeton wurden bis jetzt wenig
untersucht. Die Ergebnisse der Messungen und theoretischen Untersuchungen,
die in dieser Abhandlung wiedergegeben sind, sollen zur Klärung der erwähnten

Probleme beitragen.
Im ersten Kapitel sind die Einflüsse auf stählerne Brücken behandelt. Die

theoretischen Resultate werden mit den Aufzeichnungen der verschiedenen
Meßapparate verglichen. Es zeigt sich eine gute Übereinstimmung der Theorie
mit den Messungen. Weiter wird auf einige Fehler hingewiesen, welche sich
oft in der Literatur in Beurteilung der dynamischen Einflüsse wiederholen.

Im zweiten Kapitel sind die dynamischen Einflüsse auf die Brücken aus
Stahlbeton untersucht. Zuerst werden die Eigenschwingungsformen und
Eigenschwingungszahlen eines Bogens, der durch Rahmen versteift wird, gerechnet.

Weiter werden die Eigenformen und Eigenzahlen eines kontinuierlichen
Gewölbes ermittelt. Die Ergebnisse dienen zur Feststellung der erzwungenen
Schwingungen dieser Brücken unter sich bewegenden Fahrzeugen. Die Ergebnisse

sind mit denjenigen der Messungen verglichen und es zeigt sich eine gute
Übereinstimmung.

Summary

There is no agreement among the different ways of estimating the dynamic
effects in railway bridges. Some of the investigators (Timoshenko, Inglis, etc.)
impute the vibrations mainly to the periodical loading due to the driving
axles of the locomotives while others are of the opinion that this loading is
unimportant. The dynamic effects in reinforced concrete bridges have, up to
now, been very little investigated. The experimental and theoretical results
presented by the author should contribute to solve those problems.
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The dynamic effects in steel bridges are studied in the first chapter. Theoretical

results are compared with graphs obtained with different measuring
apparatus. There is good agreement between theoretical and measured values.
Errors frequently found in the litterature dealing with dynamic effects are
reported.

The second chapter deals with dynamic effects in reinforced concrete bridges.
Forms and frequencies of natural vibrations in a frame-stiffened arch are
calculated. Forms and frequencies of continuous arches are then determined.
These results enable determining the vibrations in these bridges, caused by
the passage of vehicles. Measured and calculated results are compared, a good
agreement being found.

Resume

II n'existe pas d'unite dans la maniere d'apprecier les effets dynamiques
dans les ponts de chemin de fer. Certain chercheurs (Timoshenko, Inglis, etc.)
attribuent les vibrations principalement ä la sollicitation periodique exercee

par les roues motrices des locomotives, tandis que d'autres affirment que cette
sollicitation n'a pas d'importance. On a peu etudie, jusqu'ä present, les effets
dynamiques sur les ponts en beton arme. Les resultats des mesures et des

etudes theoriques, communiques par l'auteur doivent contribuer ä resoudre
ces problemes.

Dans le premier chapitre, l'on etudie les effets dynamiques dans les ponts
metalliques. On compare les resultats theoriques et les graphiques obtenus au
moyen des differents appareils de mesure. II existe une comeidence satisfai-
sante entre la theorie et les valeurs mesurees. On indique encore quelques
erreurs frequemment rencontrees dans la litterature concernant les opinions
au sujet des effets dynamiques.

Dans un second chapitre on traite des effets dynamiques dans les ponts
en beton arme. On calcule d'abord les formes et les frequences de vibrations
propres d'un are raidi par des cadres. On determine ensuite les formes et les

frequences de voütes continues. Ces resultats permettent de determiner les
vibrations de ces ponts, causees par le passage des vehicules. En comparant les
resultats mesures avec ceux que l'on a calcule, on constate un aecord satis-
faisant.
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