Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 16 (1956)

Artikel: The influence of initial stress on the dynamic behaviour of elastic and
viscoelastic plates

Autor: Herrmann, George

DOl: https://doi.org/10.5169/seals-15067

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-15067
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

The Influence of Initial Stress on the Dynamic Behaviour of Elastic and
Viscoelastic Plates

Influence de la temsion initiale dans le comportement dynamique des plaques
élastiques et visco-élastiques

Der Einflufp der Vorspannung auf das dynamische Verhalten elastischer und
viskoelastischer Platten

GeorcE HERRMANN, Department of Civil Engineering and Engineering Mechanics,
Institute of Air Flight Structures, Columbia University, New York 27, N.Y.

Introduction

The influence of initial stress on both the static and dynamic response of
elastic bodies has been studied extensively by a variety of investigators.
For example, the effect of initial axial stress on elastic torsion was dealt with
by M. A. Bror [1] and J. N. Goopier [2] and the influence of initial stress
on elastic waves was considered by M. A. Bior [3]. In these studies, the perti-
nent equations of a three-dimensional solid under initial stress were derived
by linearization of the nonlinear equations of elasticity.

What the influence of initial stress in bodies is concerned, one or two of
whose dimensions are small as compared to the third, such as beams and
plates, the governing equations were derived by considering directly a beam
or plate element and formulating the equations of equilibrium or motion. The
influence of initial stress on equilibrium of plates, uniformly distributed across
the thickness, was established in this fashion by SAiNT-VENANT [4, 5], long
before the general three-dimensional theory of elasticity of a body under
initial stress was formulated by M. A. Bror [6].

The purpose of the present investigation is twofold. The first aim is to
establish a connection between the equations of motion of a plate under
~ initial stress and the general three-dimensional theory. The procedure adopted
-in achieving this aim is analogous to the one used recently by the author [7]
in deriving a nonlinear plate theory, starting with assumption as to displace-
ments and using a variational process. In the course of this process, certain
simplifying assumptions have to be introduced in order to obtain the Saint-
Venant equations, permitting thus to gain a better insight into that theory.
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The second part of the study contains several applications of the derived
equations of motion. The influence of initial stress on the natural frequency
of free transverse vibrations of a rectangular plate is studied for different
loadings, boundary conditions and aspect ratios. In addition, a case of simple
visco-elastic behaviour is considered and related to an associated buckling
problem.

This investigation was carried out at Columbia University under the spon-
sorship of the National Advisory Committee for Aeronautics whose support
is gratefully acknowledged.

Symbels
x, Y, 2 initial coordinates of a particle
& m, final coordinates of a particle
u, v, w displacement components in the x, y, z direction, res-
pectively

Sy components of initial stress
W,y Wy, W, components of rotation, defined by eq. (2)
- components of increment of stress
Tw components of total stress
W, internal strain energy
- components of strain, defined by eq. (6)
u, v, w approximate plate displacements
h plate thickness
Uy, Vg, Wy plate displacements, defined by eq. (8)

: internal strain energy in plate
My, My, My,

Ni, Ni, Ni,, N plate stresses defined by eq. (13)
My, My, My,

n, s coordinates perpendicular to and along the plate boun-
dary, respectively

for fys Io components of boundary force per unit original area

W, work done by boundary forces

F, F,q

My, M, :

NE N external plate forces and moments defined by eq. (20)

M:’ Mns’ Qn

Wy work done by body forces

X, Y, Z components of body force

X, Y components of body force defined by eq. (28)

T kinetic energy

p mass density

U potential energy
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kinetic potential

plate modulus

Young’s modulus

Poisson’s ratio

viscosity coefficient

initial thrust ‘

fraction of critical damping defined by egs. (51), (53),
respectively

circular frequency

circular frequency in the absence of initial thrust

buckling load

plate length and width, respectively

time function

number of half-waves in z, y direction, respectively

fraction of critical loading defined by eq. (58)

Euler buckling load

buckling value

specific weight

amplitude

body force parameter defined by eq. (66)

Three-Dimensional Theory of a Body under Initial Stress

A three-dimensional linear theory of elasticity for small deformations in
a material under initial stress was established by M. A. Bior [6]. A particle
of the material is identified by its initial coordinates z, ¥, z, the initial (equi-
librium) state of the material being associated with initial components of

stress

Sye Syy Sys (1)
Szw S 2y S 2z

If the material undergoes additional small deformations, so that the initia,
coordinates z, y, z of a particle of the material become {=x+u, n=y+ vl
{=z+w, the stresses will be changed. It is convenient to refer the components
of stress, in the body deformed additionally, to axes 1, 2, 3 which are given
by the local rotation of the material through an amount defined by

1o o
“z=9\oy T 9z)’
l1/ou ow
“’y‘é(%_%)’ (2)
_1(o0_eu
== 2\ox " ay)-
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Furthermore, the new components of stress will be taken per unit initial
area before deformation and as functions of the coordinates x, y, z. Designating
by t,, the components of increments of stress due to additional deformation,
the total stress 7, for the same state is

T = Sgp+in T1a = Sy +t12 i3 = Sg +his
To1 = Sypttar  Toa = Sy, i Tos = Sy, +lss (3)
731 = Sgp g Toe = Sy 10 733 = Sz +is

It is shown in [6], that the internal strain energy in a body under initial
stress is given by the expression

Wi = %th.vepv_l_zspveuv (4)
and its variation by

OW,;=21t,,0€,+28,,08¢,. (5

The notation S;;, S;,, etec. is used for 8., S
of strain of the linear theory of elasticity,

zy> ©tC. e,, are the components

é = Q_Qf e —1 a__,w + 3?}
@ fx’ v 2\oy  0z)’
ov 1(0u ow
eII?J:@’ ezxz"é(%"—ﬁ)’ (6)
v _1(ew, ou
NP v = o\ex T oy )
€., are the components of strain of a second order theory, taken in the
form [7].

€11 &= ezcw + % (wz2 + wyz)
€20 = €y t+ 3 (w02 +w,?)
€33 = ezz + % (wy2 + w1:2)
— % w

Yz wz

Yy
€31 = €, —F W, W
31 2 2 Yy

— 1
€19 = €py — 3 WLy

Derivation of Equations of Motion of an Initially Stressed Plate

Deformations

A plate of constant thickness A is referred to an z, y, z Cartesian coordinate
system, the x, y-plane being the middle plane of the plate, the z-axis being
hence normal to that plane. The approximate displacements u, 7, w are taken
as those characterizing the plate theory with moderately large amplitudes [7]
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U = uo(“f'ay)—zgx—,
_ ow,
B0 (@y) 250 (8)

w=wy(x,y).
The displacements of the classical plate theory are obtained by letting
’uo = ’[_]0 = O 3

The components of strain of the classical plate theory are obtained, by
substituting the forms (8), with u,=v,=0, into expressions (6)

_ > w,

oz = TR gm0

_ 2w,

Cyy = —z‘@z—’

€, =0, ‘ (9)
€, =0,

e = 0,

T P w,

W “oxoy’

The components of strain of a large deflection plate theory are obtained
by substituting the forms (8) into expressions (7)

_ ouy, Pwy 1 (67,00)2

Ty T2 T2

ox

— 800_282w0+1 dwg\?

=T oy o T2 )

. Liowg\? 1 [0wp)?®

'533*5(8—3/“) +§(3x—) ) (10)
€3 = 0,

€5, =0,

- 1/0vy, Odu, 2w, 0wy 0w,
=224 70 9 .
€12 2(ax Yy  “Fozoy T oy ox

Plate deformations may produce only large rotations w,, w, but not w,.

Thus, in calculating the components of strain from eq. (7), second order terms
with w, were neglected.

Strain Energy

Inserting the approximate expressions for the strains (9) and (10) into the
expression for the strain energy (4), an approximate expression for the strain

energy W, is obtained
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Pw, 1 2w *w,
fff[ bz O—ét 33/20 he? o ]dxdydz

[ [l T (52))

vy Pw, 0w,

+S”(8—y T T2 (ay)) (1)
0w, 1 /0w,

+Ss3(z (W) +§(7x—))

0vy  Ou, PPw, dwy dw,
+Sl2(3x + 7y -2z 8xay+ 7y du dedydz.

Since the z-dependence of all the components of strain has been made
explicit through the assumptions (8), an integration through the thickness A

of the plate from g= —= to z—g
result

1 Pw, 1., 2w, % w,

ﬂ[ Mg Mgy ~Mug 7, |dedy

Uy 1 dwe\?\ _ 1y s P W
o ] G2 ) -
0vy 1 [0wgy)? ; PPw,
(7 +a(E)) -5 02
1(0we)* | 1(0wq)?
2\ oy 2\ oz

i (0vy 0wy 0wy 0w, i Pw,
+M2(8 + oy + oy ox 2M12'8x8y dzdy

can be performed immediately, with the

7
2
T

+N
+ N,

the integration being extended over the initial surface S, of the plate. In this
process the following plate stresses are defined automatically

hJ2 hi2 h/2
M1=ftnzdz; M2=ft222dz; M12=ftlzzdz;
—h/2 —h/2 —h/2
R/2 h/2 Ri2 h/2
Ny =fsndz; Ny =j822dz; o= [ Spdz; Ny =fs33dz; (13)
—h/2 —h/2 —h/2 —h/2
3 h/2 h/2

M = fSnzdz; M, = fszgzdzs f2 = mezdz.
—h/2 —n/2 —h/2



The Influence of Initial Stress on the Dynamic Behaviour of Plates 281

The variation of strain energy is then given by the expression

ﬂ[ Msaw" M58;° 2M1283w°]dxdy

0

is 0% ; 0Wo o OWy
+ff[N188x+ 1" 69588:4: — M 83.962
Sy
2w,
oy*

+ N, 8-8?;°+N 8“"’033”’0 M5 7 Yo
0wy  0W, N auosauq (14)
ox  ox ' ° oy

+N&, (8

+ N

0 v, 0uq 8w0 ow, 0wy, 0w,
8x+8 8y+3y86x+8x86y

0*w,
Bxﬁy] dxdy.

Since 6 61;" Suo, 3 %;‘;" —Swo, ete., the factors dwu,y, dv, 6w, may

be brought out in the above expressmn by partial integration, obtaining

T e oMy M,
5, = ﬂ[ e T aay‘éwo]dxdy

81\” 0 .0
ﬂ [ “a—x(Nl

o N, & (s

oy 8”"_55(1\72 y

——(Nlaw")swo (N;aw")szoo (15)
9

-
_E My S g
——2 8w

x
0

°)8w0
)Swo

a 2
0* M}
3y2

ox oy
3N12 8M2 i 8w0 0 i 8w0
T Tox v, oy 8’“0—%( 128—y— Swo—a—y‘ 1275 8w

02 M,
520y SwO] dxdy

+§§[an'3un+zv:;saus+zvni L0 g+ Ny 2

-2

on " 0s °8w0

i i
- M @88w°+2(8M"8+ aM")8wo] ds.

on 0s 0s

Thereby use has been made of

; 0 o M;
- fﬁms%Swods = § asmb‘wods (16)

In the sequel, the stress N, and initial moments M,i, M,i and M?, will
be neglected.
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Work of External Forces

Let f,, f,, f, denote x, y, 2 components, respectively, of the external force
(traction), per unit original area, acting at the boundary. The (virtual) work
~ done by these external forces will be, in all generality,

SWesz(fx8u+fy80+f28w)ds (17)
) s

the integral being extended over the whole surface of the body.
In the case of a plate, the total surface consists of the two plane faces

2= ig and the cylindrical surfaces bounding the plate. The expression for

the work is therefore

W= [[[Gabursporramazag]
h/2 (18)
+§f (fnsu’n_{‘fssus"_fzsw)dst.

~h/2
The line integral is to be taken around all (external and internal) cylindrical
boundaries of the plate. Subscripts n and s indicate components referred to
co-ordinates n and s measured normal to and along the boundary.
Substituting for the displacements u, v, w their approximations %, v, w
from (8), the work of boundary forces acting on the plate is given by

_ z="h/2
SW,= [ff [fx (Suo——zB%)+fy(800—z8—wg)+fz8wo] dxdyJ
oy z=—h/2

(19)
%J‘[ (Su(m n°)+fs(8u08 257 )+fz8w0]dzds
Employlng the notatlon
h/2 h/2 h/2
szfx_h/2! y— y_h/2; quz—h/Q’
_ e _ 2
Mz = Rla| My = 2fo|_pge’
n/2 h/2 (20)
Nn*szndz; N::sszssz
~n/2 —h/2
h/2 h/2
Mn*:ffnZdZ; anffzdz
—1/2 ~n/2
expression (19) may be rewritten as
SW, =ff [FxBuO—mxS%—lEQ+FySvO—myS%%—l—quO} dxdy
(21)

8w0 8w0

(N *Sug, — M, *5——= +N,";8 —M¥S '+, Swo)
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Noting that

(22)
: 8w0
J 3—— dady = dm, Swyds— ) sw,dady
the work of boundary tractions may be expressed as
W, = [[ | F.5ug+ 7,500+ (g4 amv Swy|dzdy
(23)
%
+§(Nn*8u0n+N7’fsSus——Mn*Sa—w9 agﬁ“Bwo—km dwy+ @, Bwo)ds

In addition to the work done by increments of boundary tractions, work
will also be done by increments in body forces. Let X, Y, Z designate the z, y, 2
components, respectively, of the body force per unit original volume

SWB=fff(X8u+Y3u+ZSw)dxd_ydz. (24)

Substituting for the displacements u, v, w again their approximations
u, v, w from (8) we obtain

SWB—ffJ[ (Suo—-zB P )+Y(8@0—287)+Z8w0]dxdydz (25)

Assuming, for the sake of simplicity,

R/2 R/2 /2
Jdez:O; szdz=O; jZdz=0 (26)
—h/2 —n/2 —n)2

the expression (25) reduces to

5W3=H[X3uo+ YSv,)dady (27)
where
R/2 n/2
X =fXdz; Y:dez. (28)
—h/2 —h/2

Kinetic Energy

The kinetic energy 7' of a body occupying before the deformation a
volume V, and having a mass density p is given by

_%fffp(u2+vz+w2)dxdydz (29)

The dot indicates dlfferentlatlon with respect to time, ¢. Using for the velo-
cities the approximate expressions based on displacements (8), we obtain an
approximate form of the kinetic energy 7' in a plate
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"RE SN2 .
w“) +(z%£y°) +w02]dxdydz (30)

A

which can be integrated through the thickness % of the plate, yielding, under
the simplifying assumption that p is independent of z

71 H[ (a;i) k;(%zg—’)z—{—hzboz]dxdy. (31)

The two terms Wlth — represent the rotatory inertia and will be omitted in the

sequel. The Varlatlon of the kinetic energy 7,8 T is then found to be

ST;ffph@boéBu}odxdy. (32)

We may integrate the above expression by parts with respect to time,
setting, as usual, the variations at the beginning and end of the time interval
equal to zero,

§T = — Upwbosmodxdy. (33)

Equations of Motion

Hamilton’s principle is now applied to derive the equations of motion.
The principle states that for an arbitrary time interval ¢, —t,

Bdet -0 (34)

where L is the kinetic potential, in general
L=T-U. 7 (35)

U being the potential energy. In the present case of the plate, the potential
energy consists of the two parts, namely, the internal strain energy W, and
the potential of the external forces — W,— W . Hence

SL=3T-3W,+3W,+3Wj. (36)

This variation of the kinetic potential 6 L must be equal to zero for arbitrary
values of 8 u,, etc. Using eqgs. (33), (15), (23) and (27) for § T, 8 W,, 8 W, and
8 W 5 respectively, we obtain three equations from the integrand of the double
integral in the expression for 8 L, by equating to zero the coefficients of §u,,
ete.
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ONy oNi,

ox oy P+ X =0,
i ¢ _
oy ox (37)
BM, @#M, _#M, & [, 2wy @ ié)wo)
GaE e +28x8y+% NlW oy N oy

0 i 8w0 0 i 8?,00 Bmx ﬁmy_ ##
+6x(N12 8y)+537(N12—87)+Q+ ox + oy = phw.

From the integrand of the line integral we obtain, apart from identities, a
relationship between the transverse shear force @, and other plate stresses
oM, oM,

@ = in | s

+m,. (38)

The first two equations of the system (37) represent the equilibrium equa-
tions to be satisfied by the initial plate stresses N,¢, N,i, Ni,. The third equation
describes the transverse motions of the initially stressed plate. For equilibrium
(wy=0) and in the absence of surface moments m,, m, the system (37) was
derived, in quite a different fashion, by SAINT-VENANT [4, 5].

Stress-Displacement Relations

In a purely elastic material the plate moments M,, M,, M,, are connected
with the plate displacement w, by the well known relations

B Pw,  Pw,
Ml—_D(ﬁxz +v 3y2)’
2w Pw
MZ:-D(ayz"—Fvaxzo), (39)
0% w,
M, = _D(l_v)éxay'
D is the plate modulus
Eh?
D= 12(1—»%) (40)

Where E is Young’s modulus and v Poisson’s ratio. The initial plate stresses
N,i; N,i, Ni, are not related to plate displacements w,, on the basis of what
was said above.

If the material exhibits internal damping (creep), or retarded elasticity,
it may be assumed to consist of Voigt (or Kelvin) elements, that is elements
made of spring and dashpot in parallel. Uniaxial Hooke’s law, o = E €, where

e is the strain, is then replaced by Stoke’s law, o= E e+ e, where 7 is the

coefficient of viscosity and e is the strain rate. To pass from the elastic to the
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viscoelastic case described above it is only necessary, in the uniaxial state
of stress, to replace £ by (E.+ n%) We shall suppose presently, that for a
plate of Voigt-type viscoelastic material it is sufficient to replace £, in the
plate modulus D, by (E +n£) without altering Poisson’s ratio » in the rela-

tions (39). The precise assumptions underlying this simplified treatment will
be discussed in a separate report.

Plate under Initial Thrust

As a first application of the equations derived above, we investigate free
vibrations of a visco-elastic rectangular plate, simply supported along all
four edges and subjected to initial uniformly distributed uniaxial thrust,
say — N;%. We shall assume that this thrust has been acting for a sufficiently
long time, such that creep caused by it may be neglected. In the absence of

forces F, X s By Y , ¢, Noi, N§2 and moments m,, m,, the first two equations
(of equilibrium) of the set (37) are satisfied identically and the third becomes,
with — N/ =P,,

M, PMy PMy o, Py

ox? = 0y? oxoy T oax? = phty. (41)

For a plate material exhibiting retarded elasticity, the displacement eqgs. of

motion are

D (V*wy) = Px—a?--}-ph'&)o (42)
where
= "7}"3 —Q—
D =D+ 5 (43)
and . .
4 4 4
pa_ @ d 8 (44)

2 .
ot Yo oyt

Designating the edge lengths by a (along z-axis) and b (along y-axis),
respectively, the solution may be assumed in the form

w, (2, y,t) = T (t) sin%E sinf[—):—q. (45)

The substitution into the equation of motion (41) yields

/4 4 4 2 .
p(;—4+2&-}’b—2+%)T=ngz-T+phT (46)
or
2 b2t b a\®:
phae Lo P Tt i e, o Tg)) T4 =0- (4
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P, . stands for the critical buckling load of the purely elastic plate, assuming
the instability to occur in one half-wave in each direction, that is assuming

a —
Z)_é V2;

w2 (b a\*

The problem is thus reduced to free, damped, linear vibrations of a single
mass, since the factors of 7' and 7' are constants in time. Rewriting eq. (47),
for convenience, as

T+2*wT+w?T =0 (49)

where w is the circular frequency of the undamped vibration and B* is the
fraction of critical damping, defined by
w2

w? = ha (Pyer—P,), (50)

n h? 7t (—g + %)2

B* =24(1—V2)a2b2pw (51)

the motion may be readily discussed.

The well-known fact is noted, first, that the frequency of undamped
vibration w? decreases with increasing compression P, and approaches zero
as P, approaches the buckling load P,,,.

In the presence of damping, <0, it may be of particular interest to de-
termine that value of the initial thrust P,, which separates periodic motions,
B* <1, from aperiodic motions, f* =1, that is which separates stable from
unstable equilibrium (buckling load). Setting 8* =1, we obtain the following
expression for P, from eqs. (50) and (51)

B _ 12 hS 78 b a\t
= Paor 576 (1 —v2)2a2btp a+b ) (52)

P

x

Designating by B, the fraction of critical damping of the plate in the
absence of any initial loading, P, =0, one obtains from eq. (51)

Bo= a5 ‘ (53)

where w, is the natural frequency for P,=0

,  Dnt (b a)z.

_,ohotzb2~ E+b_ (54)

Wy

Relation (52) may then be put into the more compact form

Pa; = chr(l _BOZ)' (55)
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Thus, in the presence of a dissipation mechanism represented by a Kelvin
element, the buckling load is decreased as compared to the corresponding
elastic buckling load. This decrease depends on the fraction of critical damping
in precisely the same fashion as the decrease of the square of the natural
frequency (in the absence of initial stress).

Dropping now the restricting assumption concerning the buckling shape

of one half-wave length in the direction of the thrust, any aspect ratio % is

considered. For the sake of simplicity, only an elastic plate shall be investigated.
Seeking a solution in the form
mwx . nwy

wy (2, y,t) = Asinwtisin L sin— (56)

for a given aspect ratio % and a given initial thrust P,, the lowest natural

frequency w of free vibration shall be determined.
Substitution of the form (56) into the equation of motion (41), together
with the relations (39), results in

2 2\ 2 2,2
m n)_merr (57)

Phw2:D74(—d—2-+ﬁ az

It is apparent that the lowest frequency will occur with n =1, but not ne-
cessarily with m =1, as in the case of zero initial thrust. It is convenient to
express the initial thrust P, as a fraction of the lowest buckling load (P,,)

Px=l"(Pcr)

min (58)
and p may be given the name “fraction of critical loading’’, by analogy to
the concept of the fraction of critical damping. In stability investigations of
plates it is customary to express the buckling load as a multiple of the Euler

buckling load P,, of a plate strip of unit width. In the present case this load is
w* D v

—z > such that
2D
(Pcr)min = kmznsz = kmzn Pe (59)
and

by eq. (48). The frequency w, from eq. (57), may then be given in the form

Dnt b a\?
2 —m24—) — , 2
w ohatb? [(am +b) ;Lkmmm]. (61)

It is thus seen, that the lowest natural frequency cannot be related directly
to the buckling load, because for large values of the aspect ratio the mode
shape of the lowest frequency, determined by the number of half-waves m,
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a

will depend on the fraction of critical loading p. For aspect ratios

4 and 5, the square of a nondimensional frequency

=1, 2, 3,

2 2

w w

w2 4Dt pha®b?

is plotted as a function of the fraction of critical loading u, for various values
of the mode shape m (fig. 1). While for small enough values of initial thrust,
the lowest frequency is obtained always with m =1, whatever the aspect ratio,
for a large thrust, near the buckling load, the mode of vibration associated
with the lowest frequency is always the same as the buckling mode.

7
: a
_..:5
& m=1
— 2 4pm?
TN % S$hao®b?
6 m=2 P
m=3
5
g.4 \
b
\J =1
m=4
q
w? m=2
w32
3 Q.3
\ m=1
K\ m=3 m=5
2
3:2 m=2\ m=4
* m \
o — .
1 b =1 m=3
\ m=1
—— m=2
00 0.25 0.50 0.75 : 1.00
. .. . P,
Fraction of critical loading p = 5%
(Pgler

Fig. 1. Influence of initial thrust P, on the lowest natural frequency o for plate aspect

ratios % =1,2, 3,4, 5.

Heavy Plate under Edge Thrust

As a second problem, we shall investigate the influence of a body force,
in addition to uniaxial compression, on the dynamic behaviour of an elastic,
rectangular, simply supported plate. The body force, which is assumed to
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be acting in the direction of the thrust, may be due to the influence of the
weight of the plate, in case it is in vertical position, or else it may arise in
case the plate is accelerated in its own plane. Since for this initial loading,
the differential equation governing the bending cannot be readily solved,
Rayleigh’s method shall be used to calculate the first approximation to the
fundamental frequency of free vibration. The initial forces in the plate will
be given by

Nyi=Ni,=0, Nyi=-P,—yhx (62)

such that the first two equations of the set (37) are satisfied. y is the specific
weight and P, is the compressive force at the upper edge of the plate.
Assuming the motion to consist merely of free transverse, harmonic
vibration, e. g.
Uy = Yy = 0,
Wy = Asinwtsin%afsinlg. (63)

b

The maximum strain energy, by eq. (12), will then be given by the expression

W 7sz

imax=_8a z

2 140 2 1)\2
2_ T g T @ me,

P.m lﬁykbm +g D(a,2 + b2) . (64)

The maximum kinetic energy, by eq. (31), neglecting rotatory inertia

terms, is

- 1

= — 27~

T 2phw i (65)

max

No work is done by surface forces. For convenience, the ratio

_ yha
is introduced, where the numerator is the weight of a vertical element of unit
width and the denominator is EULER’s buckling load P,.

Equating W, t0 T, and solving for w? we obtain

Dt b a\? 3
o = pharge (4 5) — (bt 5) o

It is observed that in the absence of the body force, {=0, the above
approximate expression coincides with the exact expression for the frequency
given by eq. (61). It is thus concluded, that for not too large values of the body
force parameter £, the expression (67) will yield results of reasonable accuracy.

Furthermore, it is noted that if w?=0, u=1 and k,;, is replaced by £,
eq. (67) yields a first approximation to this buckling value k and is identical
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to the one given by H. FAVRE [8], who studied the influence of its own weight
on the stability of a rectangular plate.
By eq. (67), the lowest natural frequency depends upon three parameters,

namely the aspect ra‘mo , the fraction of critical loading n (taken the same as
in the precedlng problem) and the body force parameter ¢. In fig. 2, the di-
mensionless frequency m was plotted for ~——3 and £=0, 1, 2, 3

as a function of y, and again with k,,;, =4. In first appr0x1matlon, the linear
term yhx is thus being replaced by its average value yha/2.

Just as in the previous example, it does not appear possible to express the
lowest natural frequency in terms of the buckling load, for an arbitrary aspect
ratio of the plate. For aspect ratios for which buckling occurs with one half-
wave length, (m =1), however, the frequency may be expressed, in the present

loading case, in the same form as given by eq. (50).
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Fig. 2. Influence of initial thrust P, and body force £ on the natural frequency « for a

plate aspect ratio % = 3.

Plate with one Free Edge

Finally, let us change the boundary conditions and consider a plate, under
the action of a uniaxial, uniformly distributed thrust, simply supported along
three edges, one edge, parallel to the loading, being free. These particular
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boundary conditions have been selected for consideration, because in this
case of support the buckling occurs always in one half-wave length (see, for
example [9]), and the lowest natural frequency may thus be related to the
buckling load for any aspect ratio.

Using, again, Rayleigh’s method and assuming the transverse displacement
in the form

w = Asin (wt)ysin%gf (68)

the maximum strain energy is calculated to be, using again relation (12),

= P, b xn* A:D[b3n*a n? ab
. =—_%42__ _ 4L | = )=
Wimae = =5 A* 3 55+ 5 [3a4 5215 2] (69)
and the maximum kinetic energy, by eq. (31)
= b3a
1 2 42—

The buckling load (P,),, is obtained by equating to zero the right-hand side
of eq. (69)

2
(PL)e = P, [(wab-) +6(1—V)] . (71)
The frequency is obtained by equating the right-hand sides of eqs. (69) and (70)
w2=i[(P) —-P,]. (72)

phaz x/er x

Indicating by w,? the natural frequency in the absence of any initial thrust,
e.g., P,=0,

2 7 P
wy :W( wer (73)

w? may also be expressed in the form

P
2 _ ., 2171_ x | _ .. 2(1_
w? = w, [1 (Px)cr] w2 (1—p) (74)
which holds for any aspect ratio %
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Summary

Starting with the general three-dimensional equations, governing the
dynamic behaviour of a deformable body under initial stress, plate equations
are derived in a rigorous manner by means of a variational process.

These equations, which describe the dynamic behaviour of an initially
stressed plate, are solved for a freely vibrating rectangular plate for several
loading and boundary conditions. Particular attention is given to the influence
of the internal damping (or creep) characteristics of the plate material and
of the aspect ratio of the plate on the deflections and on the frequencies of
vibration. The connection to the associated stability problem of the plate is
worked out in some detail.

Résumé

En partant des équations tri-dimensionnelles générales, qui régissent le
comportement dynamique d’un corps déformable soumis & une tension initiale,
on déduit d’une fagon rigoureuse les équations de la plaque au moyen d’un
procédé de variation.

Ces équations qui décrivent le comportement dynamique d’une plaque
initialement sous tension, sont résolues pour le cas d’une plaque rectangulaire
vibrant librement et pour une variété de conditions de charge et aux limites.
On s’attache particuliérement & l’'influence des caractéristiques de fluage du
matériau de la plaque et du rapport de sa largeur & sa longueur sur les dé-
formations et les fréquences de vibration. La relation avec le probléme de
la stabilité associée de la plaque est traitée en détail.
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Zusammenfassung

Ausgehend von den dreidimensionalen Gleichungen iiber das dynamische
Verhalten eines deformierbaren Korpers unter Vorspannung, werden die
Plattengleichungen in strenger Weise mit Hilfe eines Variationsverfahrens
abgeleitet.

Diese Gleichungen beschreiben das dynamische Verhalten einer vorgespann-
ten Platte und werden geldst fiir eine freischwingende Rechteckplatte bei ver-
schiedenen Lastfillen und Randbedingungen. Besondere Aufmerksamkeit
wird dem Einfluf der inneren Dampfungs- (oder Kriech-) Eigenschaften des
Plattenmaterials geschenkt, ferner dem EinfluB des Seitenverhéltnisses der
Platte auf die Durchbiegungen und Schwingungsfrequenzen. Die Verbindung
zu dem verwandten Problem der Plattenstabilitit wird besonders herausge-
arbeitet.
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