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Sur Pinstabilité de I’équilibre des voiites minces
Uber die Unstabilitit der Schalen

On the tnstability of the equilibrium in thin shells

E. GiaNnGrECoO, Bari

1° Le probléme de la stabilité de 1’équilibre des volites minces, qui a déja
été envisagé par de nombreux auteurs [1, 2, 3, 4, 5, 6, 7, 8] est une question
toujours ouverte aux techniciens qui utilisent de plus en plus ce genre de
structures, et en connaissent bien les dangers conséquents & 1’instabilité.

L’étude est en général entreprise & 1’aide de considérations énergétiques,
conformément au théoreme de DiricHLET [9, 10, 11, 12]: on peut donner a

Fig. 1
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chaque point de la voite un déplacement dont les composantes u, v et w,
selon z, y et z (voir fig. 1), ont I’expression [13, 14]:

u=2A;u;,(xyz); v=2YBv;(xyz); w=2XC,w;(xyz) (1)

ou les coefficients A,;, B; et C; sont inconnus et ou les fonctions u;, v; et w;,
satisfont aux conditions aux extrémités.

On va alors examiner la variation 4 £ de I’énergie potentielle correspon-
dant au passage de la forme initiale (v =v=w=0) & la position finale (u, v, w),
et qui peut s’écrire, en se bornant aux termes du second ordre:

AE =8, E+8,E

ou 8, £ =0, pour que le systéme soit en équilibre, et &, £ =0, pour que I’équi-
libre soit stable. Par suite, I’équation 8, £/ =0 est la condition qui caractérise
I’équilibre indifférent, c’est-a-dire la limite entre 1’équilibre stable et 1’équi-
libre instable [15].

Si ’on appelle W* 1’énergie élastique et P 1’énergie potentielle diie aux
charges extérieures, I’équation (1) se transforme en 1’équation suivante:

8, B = 8, W*+8,P = WegLy*—gLy=0 (2)

ou: W représente 1’énergie élastique correspondant au passage de la forme
initiale & la position finale d’équilibre.

L,* est le travail développé par les contraintes internes pour les compo-
santes du deuxiéme ordre de la déformation (fonctions quadratiques de u,
v et w).

L, est le travail développé par les charges extérieures a cause des compo-
santes du deuxieme ordre des déplacements (fonctions quadratiques de wu,
v et w). :

De I’équation (2) on tire aisément 1’expression symbolique de la charge
critique [16]:

w
QCZW- (3)

29 Dans le cas d’une votite mince, on a, pour ’énergie élastique W :
W=Ww,+W,

ou W, représente 1’énergie élastique extentionnelle et W, 1’énergie élastique
flexionnelle (6).

En ce qui concerne le travail développé par les efforts internes de la voite
correspondant a la forme initiale d’équilibre, nous pourrions poser:

Lz* = L;km +L;<f

ou: L¥, représente le travail développé par les efforts de membrane de la
votte (N,, N,, et N,,) pour les composantes du second ordre de la défor-

mation, et L3, le travail développé par les efforts flexionnels (M,, M ,,et M)
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pour les composantes du second ordre de la courbure (fonctions du deuxieéme
ordre de u, v et w)?l).

Enfin, le travail L, dii aux charges extérieures est nul: il serait différent
de zéro seulement si I’on était en présence d’une pression hydrostatique
appliquée sur la voiite, ou si les déplacements u,v et w étaient choisis les uns
en fonction des autres (7).

Si nous appelons:

(1) (2). (1) (2). _ (2)

Gx = Eg +€x 9 ew = E(P +€(p ) '}/gj(p - ')/wtp +‘y-’E(P
(1) (2). (1) (2). _ (2)
Xe = Xz Tt Xz - Xe = Xo TXo > Xrp = Xuwg T Xxg

les composantes de la déformation et les variations de courbure bornées aux
termes du deuxiéme ordre, les expressions de W,, W,, L¥ , L}, sont les sui-
vantes:

—V

2

D 1
Wez?f(ex2+2vexeq,+eq,2+ yfap)d.@
Q

B
Wf = —2— J‘[Xac2+ 2 VXxXop +X<p2 +2 (1 —V) Xip] s
Q
L;m :Qf(Nx P+ Nq, eq,(z) + Nw,p 'ygfp)) as
L3y =!{ (M xo®+ M x4 My, Xiog) A2
et I'expression de 5, £, en négligeant v, est:
D 2 B
S, B = 5 f (€x2+€<p2+’y2_(p)d'g+'2_f()(x2+x$2+2X92c<p) d+ [(Nx e,®+
Q Q Q
N €4 N o) AR+ (Mo o+ Myt + My X)) A2 (4)

ou D et B représentent la rigidité extentionnelle et la rigidité flexionnelle de
la votite:

s s Es3
D=g_s=Es; B=12(1—v2)g 12
Si I'on appelle N/, N’ ... les efforts dans la voite correspondant & la charge

g=1, 'équation (4) s’écrit:
D ’)/2 B ’ .
8, E =?f(ex2+€¢2+§’)d9+—2~f(xx2+x¢2+2x3¢)d9+gc f(Nx & +
Q Q o

+ N, €, + Na’ctp '}’gp)) dQ+ gcgf (M, x®P+M ) x,®+ nglap ngp)) dsQ. (4"

1) Dans notre cas, en ayant tenu compte du régime flexionnel, d’aprés la théorie
de Finsterwalder, nous avons la contribution au travail L,y du seul moment trans-
versal M(p (17, 18, 19].
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On peut aussi remarquer que D> B, et par conséquent W, est beaucoup plus
grand que W;, & tel point que les valeurs que 1’on trouve pour la charge cri-
tique apparaissent tellement élevées qu’elles perdent toute signification phy-
sique. Pour résoudre cette premiére difficulté, il faudrait toujours choisir pour
les déplacements u, v et w des expressions qui rendent W,=0, c’est-a-dire
qui annulent les composantes du premier ordre de la déformation (e e
e, O =71 =0).

Mais ces expressions mettent en relief la résistance flexionnelle de la votute le
long des directrices, en négligeant presque complétement celles des génératrices,
ce qui, pour des rapports élevés de L/ R, est trés peu admissible?2).

11 faut, sinon, renoncer a la possibilité d’annuler W,, et ensuite le négliger
dans I’expression de 8, : on a, de cette facon, une limitation de la charge
critique qui, bien qu’excessive, peut toujours étre utile a 1’ingénieur [8].

Une autre difficulté consiste dans la détermination des composantes du
deuxiéme ordre de la déformation et de la variation de courbure; les premieres
ont déja été calculées pour une surface quelconque, a 1’aide de I’expression
d’un élément de ligne en coordonnées curvilignes et au moyen de la théorie
des formes quadratiques; les secondes ont été calculées, pour la premiére fois,
dans cet article, en se référant au traité de M. Love [20], comme on le mon-
trera dans les pages suivantes.

30 Considérons une surface quelconque et indiquons par « et 8 deux para-
métres par lesquels on puisse fixer la position d’un point et par y 1’angle formé
par les tangentes aux courbes « = constante, B = constante3), dans un point
quelconque P.

Si 4 et B représentent deux fonctions de « et B, la surface peut etre rap-
portée & un élément linéaire d s:

ds = A% (da)>+ B2(dB)*+2A Beosxydadp. (5)

Fixons maintenant dans le point P un systéme d’axes coordonnés z, y et 2,
avec z selon la tangente & la courbe B = constante, z selon la normale a la
surface, et ¥ normal & z, tels que le systéme d’axes choisi soit dextrogyre.

Si le point P se déplace sur la surface, les directions choisies pour les axes
coordonnés changeront. En introduisant la variable temps ¢, les composantes
de la vitesse du point P paralléles & la position instantanée des axes x, ¥
et 2 sont:

do ap . ag .
AH—t—+Bdt COS X ; E?smx, 0

2) Ce genre de déplacements purement flexionnels, comme M. Krall le fait remarquer
(8), peuvent paraitre légitimes si 1’on considére une plasticisation au milieu de la vote,
et par conséquent une sorte d’agenouillement, ou par des conditions aux extrémités non
parfaitement satisfaites.

3) &« = constante, B = constante représentant des familles de courbes étendues sur

la surface que 1’on examine. Si elles deviennent les lignes de courbure, on a ng.
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tandis que les composantes de la vitesse angulaire rapportées aux axes x, y
et z sont:
ag. ag. da ap
pldt+p2dt Q1dt+2dt g T

ol p,, Py, ete. sont des fonctions de « et B et sont liés entre eux et avec 4 et B*?).

Indiquons ensuite par R; et R,%) les rayons de courbure de ces sections,
qui sont normales & la surface et dont les tangentes en P coincident avec les
axes y et z.

Supposons maintenant que 1’on donne au point P un déplacement dont
les composantes soient u, v et w rapportées aux tangentes et a la normale en
P aux courbes 8 = constante et « = constante. Soit P’ (z’, ¥’, 2’) la nouvelle
position du point P et 2, y’, 2’ un nouveau systéme d’axes choisi dans le
point P’, de méme qu’on avait choisi le systéme z, ¥, z dans le point P. Soient
l;, m; et n; (1=1,2,3) les cosinus directeurs de z, y, z par rapport a x’, y’, 2’.

Indiquons par:

. . (2)
€ = €1(l)+€1(2), €y = 62(1)‘*'62(2): Y12 = )’12 + v12

les composantes de la déformation, et par x' (cosx =vy;,) 'angle formé par
les courbes o« = constante et 8 = constante, sur ’élément de surface déformée
définie par un nouveau élément linéaire d s’:

(ds')? = A? (1 + &) (do)®+ B2 (1 +€) (dB)*+24A B (L +ep) (1 +e)yiodadp

Les expressions des composantes de la vitesse sont encore valables pourvu
que 4 et B soient remplacés par 4 (1+¢,) et B(l+¢,) et py, p,, etc. par p,’,
Py, ete.

Les quantités ¢, , €, et y,, étant connues, on peut immédiatement en déduire
les variations de courbure:

14

¢ 1. Py 1

Xlz_j_E’ X2 =p R, X12 = 4 -

4

4% Pour déterminer les composantes de la déformation e, €, et y4,, il
suffit se rapporter aux expressions des cosinus directeurs aux lignes 8 = cons-
tante et « = constante, qui sont respectivement /,, m, et n,, ({3sinx’ + 7, cos x’),
(mysiny’ +m, cosx’), (nysiny’+mn,cosx’). En tenant compte que cosy’ =y,

et siny’ ~1 —7;2, on a:
ox’ oy’ 0z’
—=A1+¢)l;; »—y=A(1+€1)m1; — =A(1+¢)n,; (7)

0o oa

) Voir Love: A treatise on the mathematical theory of elasticity; form. (2) et (3),
chapitre XXIV, page 516.
%) Ils sont fournis comme racines d’une équation du second degré (v. Love, p. 517,

form. (5)); et dans le cas particulier ou X:g (p1=¢,=0, en conséquence des relations

mentionnées), on a 1/R,= —¢q,/A4; 1/R,=p,/B.
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8.’1:’ I~ 2

—975? = B(1+e,) _lz(l“%)""lﬂ’m];

oy’ [

—8’?!/3_= B(1+e,) _mz( —%12)-{-17@1')/12}, (8)
82, [ ‘}/%2

B = B(l+e¢) _nz(l'—?)‘*‘nﬂ’m]

desquelles on parvient facilement, en rappelant les relations entre les cosinus
directeurs I, ,=m;n;., —m; 4 n;(¢=1,2,3), aux expressions des composantes
de la déformation

€ = <1>+€<2)_4 8x’2 ﬁf‘/_/z_’_ LAY
1 o da ’

6x\? a'z 07'\2
€ =€ <1>+e<2>——V = %)+(§) —1; (9)

1 ox' ox’ oy oy 02 072
Les quantités 63; , a;l; etc. en fonction de A, B, u, v et w ont les expressions
suivantes:
ox’ ou v 04 w oy’  ov u 04 0z ow u
a7 B B  Ga Gx BB  da Ga R
ox’ _ou v 0B, _@_B_l_av_i_ué)B Bw 32’_8w+Bv
op 0B A oa’ op 0B A o« Rz’ da 0B Ry’

On parvient ainsi aux expressions des composantes de la déformation bornées
aux termes du second ordreS$).

) Pour le calcul de ¢, et ¢, il faut remarquer que, une fois qu’on a mis sous le signe
ox’ ox’
da’ 0B
second ordre et ensuite développer en série la racine, en négligeant dans les doubles
produits et dans les carrés tous les termes qui sont au-dessus du second ordre. Par

exemple, pour ¢, on a, aprés avoir effectué les substitutions et assemblé les termes du
premier et du second ordre:

2 ou 0A w 1 /ou\2 2 0 A\2 w? 2v Oou 0A
a=|t+7 5, +AB(a,e) 27%7+'A—2(£) +A232(a7) t R T BB 5. 58

radical les expressions de ete., il faut assembler les termes du premier et du

Zow 94 1 FA\: 2w 9084 1 [ow\® & 2u ow
~ABR.op T 4T (aa) +A2B2(—/3) T A BdL0p T AT 5“) TRE VAR 7.
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- (1)+ 2) — i 8“+L€é_}£_ + ~1_ ?_v 2+~&2.__ % 2__.
UTATTEAT TNV A G0 T AB B Ry 1242\0a) T242B2\ 0B
_u?_vaA_i_l 8w2+ u2+u@_
A*B dax 03  2A4% 2R2 A2 0a)’

Wy L ov, w 0B w| [l (ou\r w* (OB\®
©=% T% (B TAB i« &K 12BE\eg) T2a B2 \Ga
v QEEB_'_ 1 3w2+ v? . owl
AR 38 9« "2 \eB) T2R: TBR, 28/

(2) 1 ov 1 ou 1 uoA voB
Y12 = Y12 +91% = Zﬁ"‘?b—B-AB ip + +

1 w0 1 » ow (lau(’)v 1 0u 0w

A 60 " BEoB 0B

8u_vav X 1 0B vav u&u
B 0«

+:4—21§[(%%)2+(2—f)2]}+14w3[131 (u@A B&v) 12 (A&u v@&aB)] .’

Passons tout de suite & quelques cas particuliers:

suv|

ds® =dax®+ R?(p)de? (coordonnées cylindriques);

e _9o. 9 _ 8
da  0x’ 0B~ 09’
4 B:'R(O‘:IB); R1=OO; R2=R;

Sil'on développe en série cette expression
1 ou v (0A w 1 [ou\? 2 oA\ 1 w?
fl—1+zza—+*ﬁ(w)‘7e;+z—ﬁ(£) +ﬂz—Bz(‘a’§) toRE T
v Gudd  w du_ ow 04 Lo, w(0d)_
T B oo 08 AR, da ABR, o ' 242 \0 2A42B2\9R
u oJvoA 1 /ow u? u ow 174 (Ou
TATB b« 08 T 247 (a—a’) TeRETAR, 5 B[A2 (_) +
L () phury Bo fudd 8 o du_ 8 wwid)
Asz(zT,é o -

+ REVA*B 3,08 A B, 90 AB R, 0F

et en simplifiant, on a:

1 ou v 04 w 1 [ov\? u, (0A\?2 u o0voA
ZEZJ“Z‘E?E_EJ“TM(%) +5aeml55) ~IF e 58T

€ =

J__(LW)Z W, u fw
toar\en) TR T AR, 5.
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av\e | (ew\)

ox ox) |’

— 1) 4 (%-i@__?ﬁ_kiﬁlj_}_i gz_l'z_i_i @2_
2T T % T T Ro R R ix 2R \op) " 2R2\0z

_pouphk 1 fdw\® & . v 0w
Rop 0x 2R*\og 2R?  R? 0¢’ (11)

D
R
DO| =

W, @_0v 10w v oR v ow 1 ow ow

Ve = Yap = Ve TV = 5o T Rep R éx | R 0w | R 0w dp

ou ov 1 ou ov 1 [BR( ou av)+

TGxox Riogop B |ox\"dp “og

LMV (ORNE  w (ou  OR
r\oz) TR \ez Yoz |
ou  L[(0w)*  (0w)*].
o ox ox] |’

Loy w 1 (0w 1 (fw)\ v v 0w gy,
2R2\dg 2R " R? 9¢°

NS
]
DO | =

ov 1 ou v ow 0ou ov 1 ou ov 1 ow ow

Ve =Yeo S5, T Rog TR oz twix REdp dp | R 0w Gg

LB G
R20x’

lesquelles, si 1’on pose %=( ) et %:( ), coincident parfaitement avec les

expressions fournies par M. Krall.

ds? =dx?+dy* (coordonnées cartésiennes);

o _9o. 18 9.
do  Ox’ RoB oy’
A=1; B=R; R, = 0; R,=R;
ou 1[[ov\2 ow\>
€& =€, =V+e,® = B + ) [(%) + (%) ] ;
ov 1[[ou\2 ow\?
€y = €, = ey(1)+ey(2) = 3—?; + 3 [(5?;) + (’a*y—) ] ; (12)

1, @ _0v du oudv Judv Jw dw

Y12 = Yoy = Ve ¥V = Gt Gy T w dx  ay oy T ow oy
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5% Passons maintenant a la détermination des variations de courbure:
rappelons les expressions des quantités q,’, p,” et p,’ qui interviennent dans
I’expression de x;, x2 et x12:

, oly om, on,\ .
h —_(l33a+m3 du T aZ)’
, ol, omy omn,
== —_— _— —: 1
Do (l38,8+m38[3’ +n38,8)’ (13)

,_ (l dly m 8m2+n 0 My
P oa 3 0 2oa)’

\ . . . . ol
ou les expressions des cosinus directeurs l;, m; et ng, et des derivées 5—1,
gmy omy Ol Omy Ony Oly Omy OMy on4 eg suivantes?) i
0o > o’ 0a’ @a ' Oa’ OB’ OB ’. 0B ‘ ,

b= Ao RS ™~ Bg B TV
ol, _1Modfov w o4\ 1 (0w Awu

o  ABloB\ea B3 R \9a ' R,

bm, 2 (1 0v w 24} 1 24

0o 0o \A 0a AB éB B ¢B’

o _ 0 (10w w) 4

dae Oa\Ad O« R, E’

ol _ 0 (_Lov, w 04y 104 A(1 ow v).
da Qo A oo AB 0B B o8 R, \B ¢B R,)’
gmy 1 0A(dv u 94\, (14)
8a_ABﬁﬁ oa B oB)’

ong _ 0 (L ow, v) 1 (0v udd)

doo  Jda\B 0 R, R, \ea B oB)’

9ly, 9 ( 1 0ov w 024y 1B

oB  op Ao AB 0B A oa’

by _ _ L1 (2w Buy 1 éhjdv u 24

6B ~  R,\ef " R,)] 4?2 2x\éa B oB)’

omg _ 0 (1 6w v) B

o8 ~ ¢B\B o8 "R,) " R,"

Apres les substitutions, et en ayant séparé aussi ¢q,’, p," et p,’ en termes du
- premier et du second ordre, nous avons:

) Voir LovE, A treatise on the mathematical theory of elasticity, chapitre XXIV,
page 523.



264 E. Giangreco

, A 0 (1 @ u 18A 1 6w v
ql=—‘}3—+————+ + = +—2 +

H{ofe vyl L 2800 W %
B 98 " R,)|AB dB 80: B 0B
Nous pouvons ainsi déterminer les expressions du premier et du second ordre
des variations de courbure:

X1:X1(1)+X1(2)={i_3_(i—aiv+ u) : ( )}
A e \A da AB&B B
1/1 6w u 1 04 u 0A 8w Au
—{z(ZWJrR)[AB‘a’E(%’"FaB) ( )]
+i(i@+_”_)[a (iﬁf__i M)]}
A\B 98 " R,) |ox\4A 60 AB 38|’
W oo | Lo (Low vy 1 0B(1ow, u
X2 = X2 't Xz —{Bglg(B 3B+R2)+AB 3a(A 306+F1)}+
1 (1 dw w\[d 1 9v  u 04
~w(a et a) lop(-ainden) "
B\B o8 "R, |R,\2p8 T R,) T 4® 9x\6a B 38)]|’

) 42 lf_l%+” _ 1 ov 1 84 ow
Xiz = Xi2 +X17 = Aox\B o8 R,) AR, 0a A2B 2B oa

L(_Low w\[o( 1ov, u 24)
14\ 4 éa ' R,)|0x\ A da AB B

A 18w+v +i_i 8w+v)[*lﬁé ov u 04
R, \B 98 " R, A A AoB  R,]|AB 2B a‘;‘fﬁ ’
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En coordonnées cylindriques, pour A=1, B=R(«a,f); By=00; R,=0

X1= Xz —x‘1’+x‘2’“82w—i82w 0% v);
1 ox? R ox®\op :

— =y @4 (2)_ii _l_aw_'__?_)_ _}_i@@_i_iﬁy_)ﬂ_'_
Xe=Xo =X TXe" = R oo \Rop ' B)" R ox 0x ' R oz 0xog
1
+

— aw_i_v 2_]_._1_@@ @_}.v M

R3\oe R? 0x 0x \og ’
M., @ 0 (1 ow w ow %v

iz = Xop = Xop TXow =53 \R 59 T R) T 0w oat

(17)

Si R = constante

02 1 ¢?w (0w
Xl:xw:&xz_—ﬁaxz(@x_i_v);

1 0 (0w 1 ow &*v 1 [ow 2 ,
0= gy (o0 +?) R os oty T w ap ) 0 A7)

1 0 (ow ow v
X12=Xx<p=§%‘(a—?;+v)—%%§-

En coordonnées cartésiennes:
Pw 0%v ow
X1 =Xz = g‘x—z‘i‘a—x‘z W;
Pw ow Pv
o0y? Y oxoy’
2w 0w %v
X12=quo=m—“3';w'

(18)

X2 = Xy =

6% L’étude a été poursuivie en donnant différentes formes & 1’expression
des déplacements:

mwTX ar
a) u=0; v=20; w—cos2—lcosk<p, (k—‘}’?_o)

cette expression est la plus simple du point de vue des développements ana-
lytiques et elle correspond suffisamment au comportement réel de la voftte,
laquelle, & cause de sa longueur, présente des déplacements w normaux a la
surface de la voftite, beaucoup plus grande que les autres. L’expression donnée
est en partie non-extensionnelle car on a:

ou
N =_""=09
e ox ’
1 ¢ w w,
o___ - _~Z_ _70 .
€ Rip R R 2zc°Sk"”
o (1 ow w w, m . wx
ah _ ¢ (- oW (i}
wp =32\ R <P+_R) R<p0*2l lsmkq)
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tandis qu’elle est complétement flexionnelle.

2w 2 T
N =" = .
X TE = A wocoszlcoskqo, |
Xe” =R op R a(p R T R Vg2 21 L
(1) i 1 Wy a2 T
Xap = 5 ( ) R py 2ls1n2ls1nk<p
b) L’expression:
u=0; vzﬁ‘lsinkgo; w = wycoske

k

qui correspond & des conditions aux extrémités qui ne sont pas parfaitement
satisfaites8); cette expression n’est pas du tout extensionnelle.

¢) L’expression

wyk k?

u=0; v=—l‘L’B——cosIcq>; w—woRxcoskqa, (x=1)
wok
u=0; v= - (2l—x)cosko; wzwo—ﬁ(Ql—x)coskq;; (x=1)

est aussi purement flexionnelle, ce qui est confirmé par 1’observation expéri-
mentale, qui fait apparaitre une sorte de flambage plastique de la votte, en
correspondance du milieu.

d) L’expression

U = UySin -~ xcoskcp, vV =10,C08-5LCosSk¢p; Wy = Wy COS =+ xcoskcp

7
2] 21 27

est ’expression la plus compléte (extensionnelle et flexionnelle) et dépend de
trois paramétres, u, v et w. La charge critique sera, dans ce cas, donnée par
la plus petite racine ou par la seule racine réelle d’une équation d’un troisiéme
degré.

79 En ce qui concerne les efforts, on a considéré, & c6té de ceux qui cor-
respondent au régime de membrane (11)

N, R(l x2) cos @ S pdcospCos,T

N(pz——chos,qo——4g£cos<pcos2;c, (19)
161

N,p,=—2gxsing = ——W—gsm(psm 2l

8) On peut toujours chercher & satisfaire & ces conditions en superposant une
distribution d’efforts localisés & proximité des extrémités.
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les efforts qu’on détermine en tenant compte de la flexion (12)

N, = et [ A + 4{9) c0s By o + (B + B0 sinfy o] e-oseo 4
+ [(C{@ + C1®) cos By w + (D® + D,;®) sin Byw] e~*2«} cos 29; ;
N,= _ 1 [e—‘"lw (A,® cos By w+ B{¥sin B, w) +
+e 2w (0@ cos B; w+ D Psin B, w) ]coszl, (20)
Now = — 77_2 l2 {eTae [(4,0+4,®) cos By w+ (B + B®) sin B w] +
+e 2@ [(0,D + 0)®) cos By w + (D;V + D;®) sin B, w]} sin == 2l ;
M, = [e=1© (A, cos B, w+ By sin B, w) + e~ (C; cos By w + D, sin B, w)] cos 7;—?

I1 faut remarquer que, pour déterminer le travail du second ordre di aux
efforts de flexion:

LY, = 4f f[N &P+ N, e, @+ N, v+ M, x, P Rdxd e

o Xo
il faut calculer des intégrales du type:

T
—x1w 2™ 2
)\je cos 3; w cos - dchoszlsm 2ldx

en échangeant «; avec «,, et 8, avec fB,, soit en considérant toutes les combi-

. . . . . 2 mw . mw
naisons possibles entre sinf; w, cosf; w, sinByw, cosByw et sin2——, sin?—,
Po Po

cos? T2 :
0
8% Considérons maintenant une volte qui ait les dimensions suivantes:
et 1’angle de demi-ouverture variable, en prenant les valeurs de

2] =40m, R =10m, s = 0,06 m.

a) L’expression de la charge critique est:
Dl<p0+ 1BRy, Bl B
_ 160° ' Rigg® ' dgoRIl
JeT BalS, 2oy 138l 1 GLO
37T2 (P02 2 37T(Po 3 Wy 8w0

(21)

ou

sin(2k+1)p, sin(2k—1)¢, . )
1 4[ Sh+1 T gk—i  T2Sneo)s

S
Sy = singy— 8y 3
S

: 1{[008(4k+1)% P 20osp| - [ 2 )

8 4k+1 4k—1 4k+1 4k-—1
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b) Bltn (1 k22
e = Ic4+1lS u}O aazgiw
) (L=l (5 + 1)
Te = 256 A (Sy+ k2 S)+4llc2[(1‘—§) 3R2(k4+1)]8' i
kR (1—k2) g, (%_1)
L (1= 1?)(m—2) 8, —;0!;381;{;2)'

(22)

(23)

d) Dans ce cas, nous sommes en présence d’une équation du troisiéme
degré, en g.; on donne les valeurs numériques obtenues en annulant la contri-

bution extensionnelle de 1’énergie élastique.

9° A l’aide des trois premiéres expressions, on a étudié aussi l’influence
de la précontrainte sur la charge critique: cette influence n’est pas aussi
avantageuse que 1’on pourrait croire. En effet, tandis que le travail du second
ordre des efforts correspondant au régime flexionnel, moment transversal
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compris, éléve, bien que trés peu, la charge critique, I’effet de la précontrainte,
réalisée soit par des cibles rectilignes logés dans les génératrices de naissance,
soit par des cibles paraboliques placés dans les poutres de rive, abaisse tres
peu la valeur de la charge critique en la reportant & peu prés & la valeur
correspondant au régime de membrane.

Le tableau ci-dessous contient les résultats obtenus, dont quelques-uns
ont été mieux encore mis en évidence sur les diagrammes des figures 2, 3 et 4.

10° On peut donc conclure, pour le cas étudié, que, en ce qui concerne
Peffet de la flexion, on a une augmentation de la charge critique, mais telle-
ment petite qu’elle ne justifie pas cette seconde approximation. La précon-
trainte abaisse le multiplicateur critique en le reportant a peu pres a la valeur
qu’il avait, sans tenir compte de LJ;. Ces résultats étaient prévisibles d’ail-
leurs, si ’on pense d’une fagon trés approximative a la volite comme a une
poutre soumise & une charge transversale g (poids propre) et & un effort normal
excentré N (précontrainte) [21].

On a: g (V A e)
=——|VN2—N(Ngp+Np)+NpgNpy—N— 24

9e Vm (Ng 7) FHT p (24)

t 040 040

2 N

B \ N
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Fig. 3. Cables rectilignes. Fig. 4. Cables paraboliques.
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ou: ¢, est la valeur critique, en P’absence de charge axiale,
N, et N, la charge critique flexionnelle et torsionnelle,
p est le rayon d’inertie maximum,
e D’excentricité de la force NV ?).

Dans notre cas, on trouve facilement que N, N,>N?—N (N,+N,), ainsi que
I’expression de g, devient:
gc=—'g—‘€__(l/NFNT—NE‘) :_c(].———_]\:f‘—_/‘_p—__),
VNyNp P
On a donc certainement
g <9e

11° On pourrait donc dire en conclusion de cette étude que pour une
volite mince cylindrique & profil circulaire, la charge critique diminue au fur
et & mesure que ’angle d’ouverture augmente, ce qui pourrait étre expliqué
d’une fagon trés approximative par le fait que si I’angle d’ouverture diminue
indéfiniment le comportement de la volite est toujours plus prés de celui
d’une poutre fléchie pour laquelle on ne peut plus parler d’instabilité.

On peut encore remarquer que la contribution apportée a la valeur critique
de la charge par les termes qui tiennent compte du travail L}, du deuxieme
ordre di aux efforts de flexion est trés peu sensible; il faut pourtant faire
reférence dans le calcul du travail L,* seulement aux efforts N,, N, et N,
correspondant au régime de membrane; tandis que pour ce qui concerne
D’énergie élastique correspondant au passage de la position initiale & la nou-
velle position d’équilibre (caractérisée par les déplacements u, v et w donnés
a chaque point de la vofite) il vaudrait la peine de choisir toujours des expres-
sions flexionnelles, de telle fagon que 1’on a plus le terme trop élevé correspon-
dant & I’énergie extensionnelle et qui enléve & la charge critique toute signifi-
cation physique.

Pour ce qui concerne la précontrainte il faut remarquer que son influence
sur la stabilité de la volte est presque nulle?); dans notre cas la précontrainte
baisse tres peu la valeur critique de la charge en la reportant a celle qu’on a
trouvé en negligeant la partie flexionnelle du travail L} ; dans d’autres cas [14]
la charge critique est élevée, bien que trés peu, par la précontrainte.

Les conclusions données sont evidemment valables pour le profil de la
volte et la position des cables qu’on a étudié.

Bibliographie
1. BRAZIER, ,,On the flexure on thin cylindrical shells and other ,thin‘ sections*. Pro-

ceedings of the Royal Society. Series A, vol. 116, n° 773, septembre 1927.

%) Pour un céble parabolique, on pourra prendre la valeur de 1’excentricité corres-
pondant au milieu de la vofite.
19) Cela est confirmsé par les diagrammes des figures 3 et 4 qui sont présque coineidents.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Sur l'instabilité de ’équilibre des vottes minces 273

. FLuagGE, ,,Statik und Dynamik der Schalen*, Cap. IX, Springer, Berlin 1934.
. BErLuzzl, ,,La stabilitd dell’equilibrio delle volte a botte inflesse secondo le genera-

trici*“. Ricerche di Ingegneria, vol. I, ne 4, 1934.

. — ,,Sulla stabilita dell’equilibrio delle volte Zeiss e Dywidag¢¢. Ricerche d’Ingegneria,

vol. ITlI, n° 2, marzo-aprile 1935.

. GaLL, ,,Stabilitd nell’equilibrio di una volta trave. Rend. Acc. di Scienze Fis. e

Mat. di Napoli. Serie 4, vol. XTI, 1941/42.

. — ,,Complementi analitici utili per la trattazione effettiva dei problemi di stabilita

dell’equilibrio elastico‘‘. Rend. di Mat. Serie V, vol. ITI, Fasc. 2—3, giugno-sett. 1942.

. Krarr e Carrco, ,,Moltiplicatore critico A, di una distribuzione di carico su una

volta autoportante‘. Rend. Ace. dei Lincei, dlC 1946, gen. 1947.

. GIANGRECO, ,,Stabilitd dell’equilibrio delle volte sottili autoportanti¢. Atti dell’ Ist

di Scienza delle Costr., Napoli, n° 11.

. Dir1CHLET, ,,Uber die Stabilitit des Gleichgewichts*. Jour. f. r. u. angewandte Math.,

Bd. 32, 1846.

LIAPOUNOFF, ,,Sur instabilité de I’équilibre dans certains cas ou la fonction de force
n’est pas maximum¢. Journ. de Liouville, Ve Série, 1897.

Levi, CiviTa e AMALDI, ,,Meccanica Razionale‘“. Vol. IT, parte I. Ed. Zanichelli, 1926.
KraLL, ,,Meccanica tecnica delle vibrazioni‘‘. Parte I. Ed. Zanichelli, 1940.

GaALLI, ,,Lezioni di Scienza delle Costruzioni¢“. Vol. ITI, pag. 35. Ed. Pellerano e del
Gaudio, Napoli.

GIANGRECO, ,,Statica e stabilitd delle strutture scatolari precompresse‘‘. Gior. del
Genio Civile. Vol. 92, n° 6, giugno 1954.

— ,,Instabilité de I’équilibre des voltes polygonales‘“. Assoc. Intern. des Ponts et
Charpentes. Vol. XIII, Zurich 1953.

KraLL, ,,Stabilitd dell’equilibrio elastico*. Manuale dell’Ingegnere Civile. Ed. Perrella,
Roma.

FINSTERWALDER, ,,Die Theorie der kreiszylindrischen Schalengewdlbe‘t, Ingenieur
Archiv, 1930.

LunNDGREN, ,,Cylindrical shells“. Vol. I. The Danish Technical Press. Ist Edition.
Copenhagen.

ISSENMANN-PILARSKI, ,,Calcul des voiles minces en béton armé<. 2* Edition. Paris,
Dunod, 1952.

Loveg, ,,A treatise on the mathematical theory of elasticity*‘. Ed. Cambridge 1952.
GIANGRECO, ,,Association d’équilibres instables en présence de charges excentrées‘:,
Ass. Int. des Ponts et Charpentes. Vol. XTIV, Zurich 1954.

Résumé

L’auteur étudie & l’aide de la méthode energétique I'instabilité de 1’équi-

libre dans les votlites minces en tenant compte, & c6té des efforts de membrane,
également des efforts de flexion; il établit pour une surface quelconque, au
moyen de la théorie des formes quadratiques, les expressions du seconde
ordre des variations de courbure qui interviennent dans 1’expression plus
générale de ’énergie potentielle. Il étudie ensuite l'influence que la précon-
trainte, réalisée par des cables disposés directement dans la votite le long des
génératrices de naissance ou dans les poutres de rive, apporte a I'instabilité
de la votte.
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On reporte enfin sur diagrammes les valeurs trouvées pour la charge cri-.
tique pour la méme voute avec différents angles d’ouverture.

Zusammenfassung

Der Autor untersucht mit Hilfe der Energiemethode die Unstabilitit der
Schalen unter Beriicksichtigung sowohl der Membran- als auch der Biege-
spannungen. Fiir irgendeine Fliche werden mit Hilfe der Theorie der qua-
dratischen Netze die Ausdriicke zweiter Ordnung der Krimmungsvariation
aufgestellt, die im -allgemeinsten Ausdruck der Potentialenergie auftreten. Der
Verfasser untersucht anschlieBend den EinfluB der Vorspannung auf die
Unstabilitat der Schale, die durch Kabel hervorgerufen wird, welche entlang
der Erzeugenden, in den Kampfern oder in den Randtrigern angeordnet sind.

Es werden schliellich Diagramme aufgestellt, die die Werte fiir die kri-
tische Belastung fiir den gleichen Bogen mit verschiedenen Offnungswinkeln
darstellen.

Summary

The author considers the instability of the equilibrium in thin shells, using
the strain-energy method, and taking into account, not only the membrane
state of stress, but also the bending stresses; by means of the theory of qua-
dratic forms, he derives, for any given surface, second-order expressions for
the variations in curvature which enter into the more general expression for
the potential energy. He then examines the effect which prestressing, brought
about by cables arranged directly in the shells along the generating lines of
the abutment, or in the stringers, exerts on the instability of the shell.

The values for the critical load found for the same arch with different span
angles are plotted on graphs.
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