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Sur l'instabilite de Pequilibre des voütes minces

Über die Unstabilität der Schalen

On the instability of the equilibrium in thin shells

E. Giangreco, Bari

1° Le probleme de la stabilite de l'equilibre des voütes minces, qui a dejä
ete envisage par de nombreux auteurs [1, 2, 3, 4, 5, 6, 7, 8] est une question
toujours ouverte aux techniciens qui utilisent de plus en plus ce genre de
structures, et en connaissent bien les dangers consequents ä l'instabilite.

L'etude est en general entreprise ä l'aide de considerations energetiques,
conformement au theoreme de Dirichlet [9, 10, 11, 12]: on peut donner ä

n
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chaque point de la voüte un deplacement dont les composantes u, v et w,
selon x, y et z (voir fig. 1), ont l'expression [13, 14]:

u HAiui (xyz); v UB^^xyz); w 2JCiwi(xyz) (1)

oü les coefficients Ai, Bt et Ci sont inconnus et oü les fonctions ui, vi et wi
satisfont aux conditions aux extremites.

On va alors examiner la Variation A E de l'energie potentielle correspondant

au passage de la forme initiale (u v w 0) ä la position finale (u, v, w),
et qui peut s'ecrire, en se bornant aux termes du second ordre:

AE 81E + 82E

oü 81E 0, pour que le Systeme soit en equilibre, et 82E 0, pour que l'equi-
libre soit stable. Par suite, l'equation 82E 0 est la condition qui caracterise

1'equilibre indifferent, c'est-ä-dire la limite entre 1'equilibre stable et 1'equilibre

instable [15].
Si l'on appelle W* l'energie elastique et P l'energie potentielle düe aux

charges exterieures, l'equation (1) se transforme en l'equation suivante:

82E 82 W* + 82P W + gL2*-gL2 0 (2)

oü: W represente l'energie elastique correspondant au passage de la forme
initiale ä la position finale d'equilibre.

L2* est le travail developpe par les contraintes internes pour les composantes

du deuxieme ordre de la deformation (fonctions quadratiques de u,
v et w).

L2 est le travail developpe par les charges exterieures ä cause des composantes

du deuxieme ordre des deplacements (fonctions quadratiques de u,
v et w).

De l'equation (2) on tire aisement l'expression symbolique de la charge
critique [16]:

W
g' L^L?- (3)

2° Dans le cas d'une voüte mince, on a, pour l'energie elastique W:

W We+Wf

oü We represente l'energie elastique extentionnelle et Wf l'energie elastique
flexionnelle (6).

En ce qui concerne le travail developpe par les efforts internes de la voüte
correspondant ä la forme initiale d'equilibre, nous pourrions poser:

Lt*=L*m + L*f
oü: L%m represente le travail developpe par les efforts de membrane de la
voüte (Nx, Ny, et NX(p) pour les composantes du second ordre de la
deformation, et L%f le travail developpe par les efforts flexionnels {Mx,Mq), etMX(p)
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pour les composantes du second ordre de la courbure (fonctions du deuxieme
ordre de u, v et w)1).

Enfin, le travail L2 du aux charges exterieures est nul: il serait different
de zero seulement si l'on etait en presence d'une pression hydrostatique
appliquee sur la voüte, ou si les deplacements u,v et w etaient choisis les uns
en fonetion des autres (7).
Si nous appelons:

_ (1), (2). _ (1) (2). _ (1) (2)
€X ~ €X "T" €x > €cp — €(p "i €qp 5 Yxq) ~ yxcp "T Yxq)

(1) (2). (1) (2). (1) (2)
Xx xx +xx * x<p x<p +x<p ; Xr<p xxv+xx<p

les composantes de la deformation et les variations de courbure bornees aux
termes du deuxieme ordre, les expressions de We, Wf, L$m, L*f sont les
suivantes:

Q

Wf=§j[Xx^^XxX(p + X(p2 + 2(l~v)x2xq)]dQ
Q

L%m mx €w + N(p e^ + NX(p y<£) dQ

Ltf =£(MxXxto + M9x9(2) + MX9$)dQ

et l'expression de 82E, en negligeant v, est:

hE ^j{e^ + e/ +^)dQ + ^-j(x^ +x^ + 2xl)dQ+j(Nxe^ +
Q Q Q

+ Nv*™ + Nxvy™)dQ+£{MxX™ + MvxJ* + MX9i&>)dSi (4)

oü D et B representent la rigidite extentionnelle et la rigidite flexionnelle de
la voüte:

Tt Es r> Es3 Es*

Si l'on appelle NJ^N^ les efforts dans la voüte correspondant ä la charge
g=l, l'equation (4) s'ecrit:

Q Q Q

+ Nv' €<<*> + N'^ y&>) dQ + gJ (Mx' x<2> + M9' XJ*> + M'xv x%) du. (4')

x) Dans notre cas, en ayant tenu compte du regime flexionnel, d'apres la theorie
de Finsterwalder, nous avons la contribution au travail L2, du seul moment transversal

My [17, 18, 19].
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On peut aussi remarquer que D>2?, et par consequent We est beaucoup plus
grand que Wf, ä tel point que les valeurs que l'on trouve pour la charge cri-
tique apparaissent tellement elevees qu'elles perdent toute signification phy-
sique. Pour resoudre cette premiere difficulte, il faudrait toujours choisir pour
les deplacements u, v et w des expressions qui rendent We 0, c'est-ä-dire
qui annulent les composantes du premier ordre de la deformation (€x(1)

€ (i) (D 0\
Mais ces expressions mettent en relief la resistanee flexionnelle de la voüte le

long des directrices, en negligeant presque completement celles des generatrices,
ce qui, pour des rapports eleves de L\R, est tres peu admissible2).

II faut, sinon, renoncer ä la possibilite d'annuler We, et ensuite le negliger
dans l'expression de 82E: on a, de cette facon, une limitation de la charge
critique qui, bien qu'excessive, peut toujours etre utile ä l'ingenieur [8].

Une autre difficulte consiste dans la determination des composantes du
deuxieme ordre de la deformation et de la Variation de courbure; les premieres
ont dejä ete calculees pour une surface quelconque, ä l'aide de l'expression
d'un element de ligne en coordonnees curvilignes et au moyen de la theorie
des formes quadratiques; les secondes ont ete calculees, pour la premiere fois,
dans cet article, en se referant au traite de M. Love [20], comme on le mon-
trera dans les pages suivantes.

3° Considerons une surface quelconque et indiquons par a et ß deux para-
metres par lesquels on puisse fixer la position d'un point et par x l'angle forme

par les tangentes aux courbes a constante, ß constante3), dans un point
quelconque P.

Si A et B representent deux fonctions de a et ß, la surface peut etre rap-
portee ä un element lineaire ds:

ds A2(doc)2 + B2(dß)2 + 2ABcosxdocdß. (5)

Fixons maintenant dans le point P un Systeme d'axes coordonnes x, y et z,

avec x selon la tangente ä la courbe ß constante, z selon la normale ä la
surface, et y normal ä x, tels que le Systeme d'axes choisi soit dextrogyre.

Si le point P se deplace sur la surface, les directions choisies pour les axes
coordonnes changeront. En introduisant la variable temps t, les composantes
de la vitesse du point P paralleles ä la position instantanee des axes x, y
et z sont:

da ndß ndß

2) Ce genre de deplacements purement flexionnels, comme M. Krall le fait remarquer
(8), peuvent paraitre legitimes si l'on considere une plasticisation au milieu de la voüte,
et par consequent une sorte d'agenouillement, ou par des conditions aux extremites non
parfaitement satisfaites.

3) a constante, ß constante representant des familles de courbes etendues sur
7T

la surface que l'on examine. Si elles deviennent les lignes de courbure, on a x ö*
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tandis que les composantes de la vitesse angulaire rapportees aux axes x, y
et z sont:

da, dß da dß da dß
pijt+p*Jt; qi-di+q*ii; r*ii+r*dt

oü px,p2, etc. sont des fonctions de a et ß et sont lies entre eux et avec A et J34).

Indiquons ensuite par Rx et R25) les rayons de courbure de ces sections,
qui sont normales ä la surface et dont les tangentes en P comcident avec les
axes y et z.

Supposons maintenant que l'on donne au point P un deplacement dont
les composantes soient u, v et w rapportees aux tangentes et ä la normale en
P aux courbes ß constante et a constante. Soit P' (xf, y', z') la nouvelle
position du point P et x', y', z' un nouveau Systeme d'axes choisi dans le
point P', de meme qu'on avait choisi le Systeme x, y,z dans le point P. Soient
lt, mi et ni (i= 1, 2, 3) les cosinus directeurs de x, y, z par rapport ä x', y', z''.

Indiquons par:

€l €lU> + €l(2); €2 eg(l) + £2(2); yu yU> + y<|)

les composantes de la deformation, et par x (cosy/ y12) l'angle forme par
les courbes a constante et ß constante, sur l'element de surface deformee
definie par un nouveau element lineaire d s':

(ds')2 A2(l+e1)(da)2 + B2(l + e2)(dß)2 + 2AB(l+e1)(l + e2)y12docdß (6)

Les expressions des composantes de la vitesse sont encore valables pourvu
que A et B soient remplaces par A (1 4-ejJ et J5(l -he-^ et px, p2, etc. par p±'9

p2, etc.
Les quantites ex, e2 et y12 etant connues, on peut immediatement en deduire

les variations de courbure:

Xl A Rx' X2 B R2' Xl2 A '

4° Pour determiner les composantes de la deformation €l5 e2 et y12, il
suffit se rapporter aux expressions des cosinus directeurs aux lignes ß constante

et a constante, qui sont respectivement ll9 m1 et nx, (l2sinx + ^cos^')?
(m2sin^, +m1cosx'), (^sin^' + ^cosx'). En tenant compte que cosx, yi2

y 2

et siny/^ 1 — ?-~-, on a:

~ A(\+el)ll; 8-t A(l+e1)m1; |^ ^ (l+ei)ni; (7)

4) Voir Love: A treatise on the mathematical theory of elasticity; form. (2) et (3),
chapitre XXIV, page 516.

5) Ils sont fournis comme racines d'une equation du second degre (v. Love, p. 517,

form. (5)); et dans le cas particulier oü x ä (Pi #2 — 0, en consequence des relations
Jj

mentionnees), on a l/R±= —qJA; l/R2 p2/B.
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¦|^ JB(l+e2)[m2(l-^+miyi2j; (8)

11=5(1+^)^(1-^)+^^]

desquelles on parvient facilement, en rappelant les relations entre les cosinus
directeurs li+2 mini+1 — mi+1ni(i 1,2,3), aux expressions des composantes
de la deformation

v 2

-1

d x' d x'Les quantites -j—, — etc. en fonetion de A, B, u, v et w ont les expressions

suivantes:

dx'
_

du v dA Aw. dy' _
dv u dA

#
dz'

_
dw u

~da~= Ja~ + ~BJ~ß~ iV ~da~ " Ja~~~~B~dß' ~Fa~ " T^+ i^'
da'

_ £^_ v d£ dy' - n — _ü dB B^w djS_ _ dw_ Bv^

Tß ~ Jß~^~da~'' Tß~ +¥ß+~ÄJa~~~ll2~; Ta~ ~ ~dj8 +_Ä2"'

On parvient ainsi aux expressions des composantes de la deformation bornees

aux termes du second ordre6).

6) Pour le calcul de e1 et e2 il faut remarquer que, une fois qu'on a mis sous le signe
d xr d x/radical les expressions de ——, —— etc., il faut assembler les termes du premier et du
da dß

second ordre et ensuite developper en serie la racine, en negligeant dans les doubles
produits et dans les carres tous les termes qui sont au-dessus du second ordre. Par
exemple, pour e19 on a, apres avoir effectue les substitutions et assemble les termes du
premier et du second ordre:

-l/l 2 du 2v ldA\ w \ fdu\2 v2 fdA\2 _w^ 2v du,

€l~\ +^d^ + jTB\dß) i?7 + A*[dJ + A2B2\dß) + ^7 + Ä*~B d~*

2v du dA
~Fß

ABB~Tß+~ÄJ\dx~) ^ÄtlPXdj) Ä2Bd^~dJ + ~ÄJ\d^) +^7 + Z^7^"~
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(3ÄV
1 x +€l [A da^AB dß Riy\2A2\da)^2A2B2\dß)

Ja~Tß + YÄ2 [ja^J
u dv dA

A2B
i2 u dw

¦ +2R2 ^ A2 da)'

(1 dv _^_öJB_M f 1 (8u\2 v2 IdBV
~\^Fß+TBj^~^}+[^W\dß) +2A2B2\Ja~)

B 1 (dw\2 v2 v dw)

AB2dß d~a~ + ^B2\Fß) +2~R2^ + ^R2dj];

€2<1> + €2<2>

v du dB

(i) (2) \ l dv l du
7i2 yi2+ri2 \-t^~ +

1 /%8^4 vdB\
- + ¦:(j ^ £W

A da B dß AB\ dß

(-B R1 dß A R2 da \A2 da da B2 dß dß

1 fl dAludu vdv\ 1 dB[vdv udu

1 u dw 1 v dw / 1 du dv 1 du d

)J5\1 1 dw
~a~)yTBJa~dß

-)

+
(10)

i rj_ ^ /^
+ ¦

da

dB\2'\(8A\2 pm2]) w r i /
'[[dß) +\da) W+abUA

\ 1 dB/vdv uduY] \ 1

; + "5" Ja~\Jß ~ T^jJ + **1J^+
dv\ J_(^^_i^Y\l*r)+lR2\ dß da )\ '

udA Bdv\
R, \ dß +TcA2B2[\dß

Passons tout de suite ä quelques cas particuhers:

ds2 dx2 + R2 (<p) dcp2 (coordonnees cylindriques);

d
_

8

da dx'
d d

_

dß ~ dcp'

A \; B R(a,ß); R± oo;

Si l'on developpe en serie cette expression

1 du v [dA\ w 1 [du\2

R2 R;

~ +Zä^ + Zßrlyi8/ JR1+2^2\daj + 2A2B2\dß) + 2BX2 +

v dudA w du vw dA 1 (dv\2 u2 (d A\
+ Z^B d~a"dj~ AB1 ~da~

~~
ABBX Tß + JA2 \fa) + 2A2B2 \dß)

u dvd^A 1 ldw\2 u2 u dw 1 [ 4 ldu\2
~ Ä^B ~da~ Tß + JA2 \Ja~) +Y^ + T^J^~^lA2\da') +

4v2 ldA\2 ±w2 Sv du, ^ _ _8_ _v_ du 8_ vw_ dAl
_+ ÄJB2 \dj) + Rx2 + ~ÄFb Wa"dJ~Ä:^'da~~ ~ÄB ~B[ Tß\ ~~

et en simplifiant, on a:

_1 dJl 4. v dA
~Ä~da~~^AB dß

'_
¦

\ " w l ldv\2
€i -t^ + Tr ~^~^ + YÄ2 [d^cj + ¦dA\2

2A2B2 \dß)
u dvdA

A2B da dß +

+ __1__ (dw\2
JA2\da) + - + u dw

2B2 ' ABt da
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'x ~~
dx + 2[[dx) +\dx) J;

IR2 \Jhp)
v du dR
R dcp dx

v2 v dw
- + •

2i22 R2 dcp' (11)

.(i) (2)
7l2 — Yxq) — 7x(p + yxq> — 7^" + "TT 7^

dv 1 dw
^'R'dhp

du d

dx dx

v dR v dw 1 dw dw

+

R dx ^ R dx R dx dcp

v 1 du dv 1 [di?/ du dv\
x R2 dcp dcp R2 idx \ dcp dcp]

uv/dR\2 w_/du_ dRY\
TPXjx') +~R2\dx'~VJx~]\'

Si R constante,

_du, l[/dv\2 (dw\2~
€l~€x~ dx + 2[[dx) +\dx) J;

€2-€v-^8^" 5""2Äs'\8^j + 2Ä2\
dw\2 v
0^7 +2ä2

,2 v dw
+ ~R2lhp] {IV)

_ _ dv l du
Yl2 Yxq) - J^ + "p

v dw dw dv ldwdv l dw dw
R dcp R dx dx dx R2 dcp dcp R dx dcp

+
w du
WIx~

lesquelles, si l'on pose^—=( )' et — coincident parfaitement avec

expressions fournies par M. Krall.

ds2 dx2 + dy2 (coordonnees cartesiennes);

_d_ _
d

t l d
_

d
d~a~ ~ ~dx' ~RcYß ~ cTy''

B R-, R1 oo ;4 1;

€l * =e(D + e(2)

_ß2 _B

712

fc2/ ~fc

(1) (2)
Yxy - Yxy -TYxy

_du l[(dv\2 (dwV" dx + 2\\dx~) + \dx~)

v dy^2[\dyj ^\dy) (12)

dv du du dv du dv dw dw
dx dy dx dx dy dy dx dy '



Sur l'instabilite de l'equilibre des voütes minces 263

5° Passons maintenant ä la determination des variations de courbure:
rappelons les expressions des quantites q{, p2 et px' qui interviennent dans
l'expression de Xl, X2 et Xl2:

dmi » dni\.gf ¦

\h8a

p* W
pf (<¦£

+ m3^—i + w3
OOC O OL

dm.

ac)'

+m3^r+%^r h (13)
dß

dm9

dn^X
dß)'
dn^X
da)'

oü les expressions des cosinus directeurs l3, m3 et n3, et des derivees -~:,
dm, dn, dl» dm* dn» dl» dm» dn» 7viH» TT* ä"^ "TT > ^~' äi» 1^r> T77 sont les suivantes7)da C7a da tfa da dß dß dß

__
1 dw u _

1 dw v _ls==~^ja~~~R~1'' m* ~~Bjß~ir2'' Us==i;

dli _ _JM _d4 /_ßt; _ ^ 8A\
_ J^ (dw_ Au\

Ja~ ~~ Zi? \fß [da~ ~ ~B Jß) ~ ~R[ \Jä + ~R[)

dm1 _ _±_(2_ll_J^^\ 1 d4
~d^~ " Ja~\AJa~~'ÄBTß) ~~B~dß]

dnx d ll dw u\ A
Ta~ ~da~ \Ä Ta~ + ~RJ + ~R['

dra2 _
1 dA/dv__udA\ (14)

~d^" " 31? ~d/3 \d^
~~

2J "dßy '

~da~ Ja~\BJß+^2)~^\^~~B ~dß) '

dl2 _
d / l dv u dA\_J_dB

Jß " ^8\ T^ + l5^) ~T1^'

^ _ J_ /#w Bv\
_ J_ dB Idv^ _ j^ ^U\

"0^S~ *" ~
~R~2 \Jß + iZJ ~ Ä2 ~da~ [da~ ~ ~B ~8ß) '

dn2 ' d ll dw v \ B
Tß Fß\BTß+'R2)+^2'

Apres les substitutions, et en ayant separe aussi g/, p2 et p{ en termes du
premier et du second ordre, nous avons:

7) Voir Love, A treatise on the mathematical theory of elasticity, chapitre XXIV,
page 523.
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^ ~te+^
+

U 1 dw ju\[l Ta~ + li
dw

(J^dtv ju\ J^f^l/1 dw _v_\\
[~A Ta~+ BJ + ~B Tß \B Tß + B~J] +

l-\ [_L 1A (ll _ E 1A\ _ J_ (iE /i JLY
JlAB dß\Ta ~B~Tß)~ B1\da+ Bj +

(1
dw v \ 8 / 1 dv

~BTß+'Bz)¥oc\A8~a"

Vi
B^
R9

u 8A\\
TßJß)]1
1 dB I 1 dw

+

d l\_dw^ _v_\ - - i -+
00 \1? "dß" + i?J + T ~d^~ \A Ta~ + i?

w dA
ÄBTß
1 d^/dv

ö) +

+ \\ITa~Jr~R~1) [jß\~A¥a~ + Ä^BJj)\ + (15)

/ 1 dw _v\ r 1 tdw_ Bv\
\B~dß+~R2~) \R~2 \dß + T^J + A2 da \da

u dA
~B~dß

1 dA 11 dw

)]}'

_
i d ll dw v \

_
1 70«

_ jw_ j>J.\ _ J_ _8J. /J_ _dw _v_\\ _1 ~ [d^\BJß+B~2)~B^[dlc~^ Tß) ~ ~B Tß[~A Ti+ B~)\ ~

Kl dw u \ [_£_ /_ _L_ d'V _w_ 8A\
_ A_ / 1_ dw_ jv_\~]

~A~ TZ + Wj \pZ \ ~Ä ~da~+ AB Jß) B~^\BTß + i^/J +

+(~ +
dw

KB~c~ß

1 dA tdv_ _ u dA
[TocAB dß B dß )])¦

Nous pouvons ainsi determiner les expressions du premier et du second ordre
des variations de courbure:

1 dJ3 /J_ dw_ u,
+ Ä~B Ja~\ÄTa~ + R

u 8AY\
+ AB dß)\ +

91

(i) (2)_Ü_ JL(Ä.lE jl\ J_lA(~LlfE AUX1-X1 +Xi -\a d*\A 8* + Bj+ ABdB\B 8ß+ Bj\ +

_ IJ_(JL iE JL\ LA dÄ(ll _ E 1A\ A(iE AuW
\A \ÄTa~ + B^)[AB 'dß [da B 8ß) + B1\da + B1)\
1 (fL iE JL\ [A / * ll ?L_ 1A\] \+ ~A\ßTß+B~) [j^\J¥a~AfBJß)\l;

— (l) (2) _ I * 8 / 1 dw v \
X2-X2 +X2 - [b Yß\B Tß + TJ

_ LL LL JA JL\ \8 (- — ll~ [B [~Ä~ Ta~ + B~) \ßß \~ 1 d~^

fL(fLlE jl\ \_L (iE ^i\ _L 1Ä (ll+ B\B dß
+ B2) [B2\8ß + B2)+ A2 8a [da

(1) (2)_|J_A/J_1^ JL\Xl2~Xl2+Xl2 ~\A da[ß dß+B2) AB1da A^Bdßda
fi/ 1 dw _l\\_l_(_f}_li u 8A\~ [A [~ 1 Ta~ + B^) [da' [ A da+ AB 8ß)
A / 1 crw jv_\ J_ /_ J_ 8w jv\ [" 1

~B~1\BTß+Wj+^Ä[ A AdB + BJ[a.B

(16)

u 8AX
~BTß).

1 dA dw

dA/dv
dß \da"

u dA\
B dßj)])•
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En coordonnees cylindriques, pour A \, B B(x,ß); Bx oo; B2 0

_ _ (i) (2) _
^2w 1 d2w /dw \

Xx-Xx-Xx +Xx -J^--Rj^[j^ + V)'.

(i) (2) _ JL A /A iE Al J^dllchv 2_crw 82v
X2-Xv-Xv +Xv ~Jify[^J^ + ^)+^J^Yx+lZTxcT^dlp +

+ Bs
1 (dw \2 J_8R^8jv(div \

R3\dT+v) +B~2TxJx\bT+v)'

_ _ <i) (2) _
d 1 dw v\

xu - XxV - xxV -*x*p - dx yR 8<p f Rj

(17)

dw d2v

TxJx2'

Si R constante

_ d^w _ J_ d2^ ldw_ \
xi-Xx-jz^ iijx^[jx-+v);

i d (dw \ i dw d2v i (dw \2 „_^2 ^ ^^ld7+vj+^-d^d^ + ^te+v) ; (17)

l d (dw \
Xi2 X„ ^^^ +^-

dw d2v

dx dx2'

En coordonnees cartesiennes:

_
d2w d2v dw

d2w dw d2v
X2 Xy^I^2+Jx~'dx~^; (18)

_ _
d2w dw d2v

X12 -x^ 0^0^" d¥d^#
6° L'etude a ete poursuivie en donnant differentes formes ä l'expression

des deplacements:

a) u 0; v 0; w cos—-=- cos kcp; \Jc —I21 \ cp0/

cette expression est la plus simple du point de vue des developpements ana-
lytiques et eile correspond suffisamment au comportement reel de la voüte,
laquelle, ä cause de sa longueur, presente des deplacements w normaux ä la
surface de la voüte, beaucoup plus grande que les autres. L'expression donnee
est en partie non-extensionnelle car on a:

e(D lE o-
dx '

1 dv w wn ttx

(i) d/ldw v\ Wft TT2 TTX 7

V" =dx-[liT9+li) =W02lSln-2Tsmk(f,
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tandis qu'elle est completement flexionnelle

d2W TT2 TTX

dx
a) —T= -^^cos^ycos&cp;

1 d / 1 dw v\ 1 TT2 TTX

(D d/ldW V\ l Wn TT2 TTX -.

b) L'expression:
v

u 0 ; v -~ sin Je cp; w w0 cos k cp

qui correspond ä des conditions aux extremites qui ne sont pas parfaitement
satisfaites8); cette expression n'est pas du tout extensionnelle.

c) L'expression

w 1c Je

u 0; v —5-COS&99; w w0-^xcosJccp; (x^l)
Jti K

uj Je Je

u 0; v —^-(2l — x)cosJccp; w w0-^(2l — x)coskcp; (x^l)R K

est aussi purement flexionnelle, ce qui est confirme par 1'Observation experi-
mentale, qui fait apparaitre une sorte de flambage plastique de la voüte, en

correspondance du milieu.

d) L'expression

77

u u0 sin —y x cos k cp; v v0 cos —y x cos k cp; w0 w0 cos —y x cos k cp

est l'expression la plus complete (extensionnelle et flexionnelle) et depend de

trois parametres, u, v et w. La charge critique sera, dans ce cas, donnee par
la plus petite racine ou par la seule racine reelle d'une equation d'un troisieme
degre.

7° En ce qui concerne les efforts, on a considere, ä cöte de ceux qui cor-
respondent au regime de membrane (11)

N
3212 ttx

R
(l2 — x2)coscp ^-^g cos 99 cos—T;

TT6 R 21

N —gRcoscp —4</ — cosepcos—T; (19)
TT 2 l

Nxq) — 2gxsincp ^^ sin 99 sin
16 Z TTX

21

8) On peut toujours chercher ä satisfaire ä ces conditions en superposant une
distribution d'efforts localises ä proximite des extremites.
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les efforts qu'on determine en tenant compte de la flexion (12)

Nx 4^{[(^i(2) + ^i(4))cosß1o; + (51(2) + 51W)sinß1a;]e-ai- +
TT jlL

+ [(CY2> + (?!<«) cos ß2cü + (DJ» + DJ**) sin ß2a>] e-*» <"} cos ^|;
Na> —L [e-«i«. (^ (2) cos o w + £ (2) sin ff w) +

+ e-a2 co (^(2) cos ßiU) + ^(2) sin ^ ^)] Cos ^f; (20)

^ ~T% ^e~ai'"[{Ä™+Ä*3)) cos ßlCÜ + {Bl'V+Bl<3)) sin ßl w] +

+ e-<*2»[(dw + CV») cos ft, ot + (2)!« + 2ty»>) sin j82 w]} sin^f;
Jf [e-a^(^1cos^1a; + ^1sin^1a;)-L6-a2W((71cos^1w+Z>1sini81a;)]cos^.

II faut remarquer que, pour determiner le travail du second ordre du aux
efforts de flexion:

Lt, if'kNxeJV +N^ +N^ + MvX^Bdxdcp
0 0

il faut calculer des integrales du type:

\ f° „ n o77^ 7 r TTX „TTX 1
AJ e_ai^cospxcdcosJ acoj cos—y snv2—yax

o 9o o 21 11

en echangeant ax avec a2, et j8x avec ß2, soit en considerant toutes les combi-
naisons possibles entre sin/^co, cos/^cu, sin/32co, cosß2eo et sin2—7^, sin2^,

«TT CO ^° *°
COS'2 —.

«Po

8° Considerons maintenant une voüte qui ait les dimensions suivantes:
et l'angle de demi-ouverture variable, en prenant les valeurs de

2Z 40ra, R l0m, s 0,06m.

a) L'expression de la charge critique est:

Dl(p0 mBRwq TT^Bl TT^B
- + 77 1fi7o—r ¦

- R l6P R*v* ±nRi
?c ~ QilS1 2tt21 q 128Z q i az,/2) (21)

ou

8l l[ 2I+1— + —2T^I—+2sm<Po_

£2 sin^o-^;

S3
g

cos(4& + l)<p0 cos(4& — l)<p0

4&+1 4&-1 -2H"[^TT"^i"2]}'
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b)

c)

ffe

2B

^(1-^)2
h*+lj„ 1 8 Lp)' (22)

^U-f^ggi + i)
+

266^(S2 + i»/Sf1) + 4ZA«[(l--L) + Ai(ifc*+l)]-8s
2 R /fr272^P(l-F)^9ogi

+
')

256
7T*R2 {l-»){„-2)S*8J£'

(23)

d) Dans ce cas, nous sommes en presence d'une equation du troisieme
degre, en gc\ on donne les valeurs numeriques obtenues en annulant la
contribution extensionnelle de l'energie elastique.

9° A l'aide des trois premieres expressions, on a etudie aussi l'influence
de la precontrainte sur la charge critique: cette influence n'est pas aussi
avantageuse que l'on pourrait croire. En effet, tandis que le travail du second
ordre des efforts correspondant au regime flexionnel, moment transversal
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000
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Fig. 2
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compris, eleve, bien que tres peu, la charge critique, l'effet de la precontrainte,
realisee soit par des cables rectilignes loges dans les generatrices de naissance,
soit par des cables paraboliques plaees dans les poutres de rive, abaisse tres
peu la valeur de la charge critique en la reportant ä peu pres ä la valeur
correspondant au regime de membrane.

Le tableau ci-dessous contient les resultats obtenus, dont quelques-uns
ont ete mieux encore mis en evidence sur les diagrammes des figures 2, 3 et 4.

10° On peut donc conclure, pour le cas etudie, que, en ce qui concerne
l'effet de la flexion, on a une augmentation de la charge critique, mais telle-
ment petite qu'elle ne justifie pas cette seconde approximation. La precontrainte

abaisse le multiplicateur critique en le reportant ä peu pres ä la valeur
qu'il avait, sans tenir compte de L%f. Ces resultats etaient previsibles d'ail-
leurs, si l'on pense d'une facon tres approximative ä la voüte comme ä une
poutre soumise ä une charge transversale g (poids propre) et ä un effort normal
excentre N (precontrainte) [21].

On a: 9c

Vnfnt
()/N2-N(Nf + Nt) + NfNt-N-\ (24)

0.400.40

0.350.35

— 0.30030
<D©

-0250.25
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ti) i i) WTTßTTTU

m f L'?+L

0.20

0.150.15

&(£>

— 0.100.10

— 0.050.05

0000.00
z/S ~ r/3 1/2

Fig. 3. Cables rectilignes.
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Fig. 4. Cables paraboliques.
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oü: g c est la valeur critique, en l'absence de eharge axiale,
Nf et Nt la charge critique flexionnelle et torsionnelle,
p est le rayon d'inertie maximum,
e 1'excentricite de la force Nd).

Dans notre cas, on trouve facilement que NfNt^>N2 — N(Nf + Nt), ainsi que
l'expression de gcr devient:

Vnfnt\ pJ \ VnfntJ
On a donc certainement

9e<9e

11° On pourrait donc dire en conclusion de cette etude que pour une
voüte mince cylindrique ä profil circulaire, la charge critique diminue au für
et ä mesure que l'angle d'ouverture augmente, ce qui pourrait etre explique
d'une facon tres approximative par le fait que si l'angle d'ouverture diminue
indefiniment le comportement de la voüte est toujours plus pres de celui
d'une poutre flechie pour laquelle on ne peut plus parier d'instabilite.

On peut encore remarquer que la contribution apportee ä la valeur critique
de la charge par les termes qui tiennent compte du travail £*/ du deuxieme
ordre du aux efforts de flexion est tres peu sensible; il faut pourtant faire
reference dans le calcul du travail £2* seulement aux efforts Nx, N^, et Nxq)

correspondant au regime de membrane; tandis que pour ce qui concerne
l'energie elastique correspondant au passage de la position initiale ä la nou-
velle position d'equilibre (caracterisee par les deplacements u, v et w donnes
ä chaque point de la voüte) il vaudrait la peine de choisir toujours des expressions

flexionnelles, de teile facon que l'on a plus le terme tropeleve correspondant

ä l'energie extensionnelle et qui enleve ä la charge critique toute signifi-
cation physique.

Pour ce qui concerne la precontrainte il faut remarquer que son influence
sur la stabilite de la voüte est presque nulle10); dans notre cas la precontrainte
baisse tres peu la valeur critique de la charge en la reportant ä celle qu'on a

trouve en negligeant la partie flexionnelle du travail L\\ dans d'autres cas [14]
la charge critique est elevee, bien que tres peu, par la precontrainte.

Les conclusions donnees sont evidemment valables pour le profil de la
voüte et la position des cables qu'on a etudie.
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Resume

L'auteur etudie ä l'aide de la methode energetique l'instabilite de l'equilibre

dans les voütes minces en tenant compte, ä cote des efforts de membrane,
egalement des efforts de flexion; il etablit pour une surface quelconque, au
moyen de la theorie des formes quadratiques, les expressions du seconde
ordre des variations de courbure qui interviennent dans l'expression plus
generale de l'energie potentielle. II etudie ensuite l'influence que la precontrainte,

realisee par des cables disposes directement dans la voüte le long des

generatrices de naissance ou dans les poutres de rive, apporte ä l'instabilite
de la voüte.
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On reporte enfin sur diagrammes les valeurs trouvees pour la charge
critique pour la meme voüte avec differents angles d'ouverture.

Zusammenfassung

Der Autor untersucht mit Hilfe der Energiemethode die Unstabilität der
Schalen unter Berücksichtigung sowohl der Membran- als auch der
Biegespannungen. Für irgendeine Fläche werden mit Hilfe der Theorie der
quadratischen Netze die Ausdrücke zweiter Ordnung der Krümmungsvariation
aufgestellt, die im allgemeinsten Ausdruck der Potentialenergie auftreten. Der
Verfasser untersucht anschließend den Einfluß der Vorspannung auf die
Unstabilität der Schale, die durch Kabel hervorgerufen wird, welche entlang
der Erzeugenden, in den Kämpfern oder in den Randträgern angeordnet sind.

Es werden schließlich Diagramme aufgestellt, die die Werte für die
kritische Belastung für den gleichen Bogen mit verschiedenen Öffnungswinkeln
darstellen.

Summary

The author considers the instability of the equilibrium in thin shells, using
the strain-energy method, and taking into account, not only the membrane
state of stress, but also the bending stresses; by means of the theory of qua-
dratic forms, he derives, for any given surface, second-order expressions for
the variations in curvature which enter into the more general expression for
the potential energy. He then examines the effect which prestressing, brought
about by cables arranged directly in the shells along the generating lines of
the abutment, or in the stringers, exerts on the instability of the shell.

The values for the critical load found for the same arch with different span
angles are plotted on graphs.
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