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Begründung und Darstellung einer allgemeinen Theorie der

Hängebrücken mit Hilfe der Matrizenrechnung

Bases of a general theory of Suspension bridges using a matricial method

of calculation

Bases d'une theorie generale des ponts suspendus, faisant appel au calcul matriciel

E. Egerväry, Mitglied der Akademie Budapest

Die zur Erforschung des statischen Verhaltens eines aus starren oder
elastischen Körpern zusammengesetzten Systems geeigneten mathematischen
Hilfsmittel werden bekanntlich durch die Anzahl der Freiheitsgrade des

Systems bestimmt. Diejenigen Probleme der technischen Festigkeitslehre, bei
welchen das HooKEsche Elastizitätsgesetz zu Grunde gelegt wird, führen bei
Systemen von endlich vielen Freiheitsgraden zu linearen, algebraischen
Gleichungen, bei Systemen von unendlich vielen Freiheitsgraden aber zu linearen
Differentialgleichungen.

Es ist eine historische Tatsache, daß die Auflösungstheorie der linearen
Differentialgleichungen — im besonderen mit Hilfe der GnEENschen Funktion,
bzw. der Eigenfunktionen — sich früher entwickelt hat, als die analoge
Auflösungstheorie der linearen, algebraischen Gleichungen mit Hilfe der Matrizen-
rechnung. Diesem Umstände ist es wohl zuzuschreiben, daß in der Theorie
der Hängebrücken fast ausschließlich Modelle mit unendlich vielen Freiheitsgraden

zu Grunde gelegt worden sind, die zu einer linearen Differentialgleichung
führen, während die Verwendung von Modellen mit endlich vielen Freiheits-
graden, die zu einem linearen, algebraischen Gleichungssystem führen, kaum
über den ersten Anfang hinausgekommen ist.

Bei der Auswahl des geeigneten mathematischen Modells für eine Hängebrücke

hat man zwischen Kabelbrücke und Kettenbrücke scharf zu
unterscheiden.

Eine Kabelbrücke, als Verknüpfung eines eindimensionalen biegsamen
Kontinuums mit einem elastischen Balken durch endlich viele starre Hänge -

stäbe, kann — bei einigermaßen beträchtlicher Anzahl der Hängestäbe —
sicherlich durch das einfachere Modell ersetzt werden, bei dem Kabel und
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Balken durch eine Hängemembrane gekoppelt sind, und dieses Modell führt
sofort auf die wohlbekannte, zuerst von E. Melan aufgestellte lineare
Differentialgleichung.

Eine Kettenbrücke aber, deren Kettenglieder und Hängestäbe als starre
(oder höchstens in ihrer Längsrichtung dehnungsfähige) Stäbe zu betrachten
sind, läßt sich viel genauer und vorteilhafter als ein System von endlich vielen
Freiheitsgraden behandeln, wenn man die zusätzliche (lebende) Belastung
— deren mathematisch genaue Verteilung weder bekannt noch praktisch von
Belang ist — durch statisch äquivalente, an den unteren Endpunkten der
Hängestäbe angreifende Einzelkräfte ersetzt. Dieses „finitisierte" Modell einer
Kettenbrücke führt — bei Anwendung der elementarsten Sätze der
technischen Festigkeitslehre — auf ein System von linearen, algebraischen
Gleichungen, bei welchen die Anzahl der Unbekannten der Anzahl der Hängestäbe

gleich ist.
In der vorliegenden Arbeit wird das System der Gleichgewichtsgleichungen

einer finitisierten Kettenbrücke mit matrizentheoretischen Hilfsmitteln
aufgestellt und gelöst. Dabei wird auch die — von einzelnen Autoren schon

angedeutete — Tatsache ins klare Licht gestellt, dass der aus der Theorie der
linearen Differentialgleichungen her bekannten GitEENschen Funktion, bzw.
deren Bilinearreihe die Inverse der Koeffizientenmatrix des obigen Gleichungs-
systems, bzw. deren kanonische Darstellung (Spektralzerlegung) als finite
Urformen entsprechen.

Um die Analogie und den Zusammenhang zwischen den scheinbar wesentlich

verschiedenen Methoden und Lösungsformeln möglichst klar hervortreten
zu lassen, werden wir die Grundgleichungen einer Kettenbrücke mit einem

Hängestab, mit n Hängestäben und mit unendlich vielen Hängestäben parallel
diskutieren. Dabei wird es sich herausstellen, daß die Diskussion einer Kettenbrücke

mit einem Hängestab der Lösung einer allereinfachsten Übungsaufgabe
aus der technischen Mechanik gleichwertig ist, aber dennoch die daraus entspringenden

einfachen Lösungsformeln auch für eine Kettenbrücke mit n Hängestäben

ihre Gültigkeit bewahren, wenn die darin vorkommenden skalaren
Größen durch entsprechende Matrizen ersetzt werden.

Darüber hinaus werden wir zeigen, daß die auf diese Weise für die n-glie-
drige Kettenbrücke aufgestellten matrizentheoretischen Lösungsformlen bei
dem Grenzprozesse n -> oo in die von Timoshenko, Kärmän, Bleich u. a.
für Hängebrücken mit unendlich vielen Hängestäben angegebenen Lösungsformeln

übergehen.

Wir haben bis jetzt allgemein von Grundgleichungen der Hängebrücken
gesprochen. In Wirklichkeit gibt es bekanntlich bei jedem Problem der
Elastizitätstheorie zwei Arten von Grundgleichungen, nämlich Spannungsgleichungen

und Verschiebungsgleichungen.
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Die Spannungsgleichung einer Hängebrücke, welche die Biegungsspan-

nungsmatrix des Balkens (Versteifungsträgers) als Unbekannte enthält, hat
eine besonders einfache Form. Bei endlich vielen Hängestäben ist die
Gleichungsmatrix eine symmetrische Kontinuante, welche bekanntlich verhältnismäßig

leicht invertierbar ist. Bei unendlich vielen Hängestäben ist die
Spannungsgleichung eine lineare Differentialgleichung zweiter Ordnung, deren
GnEENsche Funktion (Einflußfunktion) bei konstantem Querschnittsträgheitsmoment

explizit angebbar ist, bei variablem Querschnittsträgheitsmoment
durch eine unendliche Reihe dargestellt werden kann.

Die Verschiebungsgleichung einer Hängebrücke, welche die Durchbiegungs-
matrix, bzw. Durchbiegungsfunktion des Brückenbalkens als Unbekannte
enthält, hat sowohl in Matrizen- als auch in Differentialform einen wesentlich
komplizierteren Bau. Durch Anwendung einer Matrizenidentität, deren
infinitesimales Analogon schon von D. Hilbert angegeben worden ist, wird es
aber gelingen, die Lösung der Verschiebungsgleichung auf diejenige der
Spannungsgleichung zurückzuführen. Damit werden auch die von Kärmän,
Bleich u. a. gefundenen Reihenentwicklungen in den Rahmen der allgemeinen
Theorie eingefügt.

Die kanonische Darstellung der Gleichungsmatrizen sowie die als deren
Grenzfall zu betrachtenden BLEiCHschen Reihenentwicklungen haben bei
variablem Querschnittsträgheitsmoment vorwiegend theoretisches Interesse,
weil kein einziger Spezialfall bekannt zu sein scheint, in dem die Eigenwerte
und Eigenmatrizen, bzw. Eigenfunktionen, in einer zur praktischen Rechnung
geeigneten Form bekannt wären. So scheint zur Zeit das Invertieren der in
den Gleichgewichtsgleichungen auftretenden Kontinuantmatrizen das brauchbarste

Hilfsmittel zur Berechnung von ungleichmäßigen Kettenbrücken.
Bei einer gleichmäßigen Kettenbrücke aber, wo die Hängestäbe äquidistant

sind und der Brückenbalken ein konstantes Querschnittsträgheitsmoment hat,
dürften die explizit bekannten Eigenwerte ui^d Eigenmatrizen der Gleichungs-
matrix als das geeignetste Hilfsmittel zur praktischen Berechnung bezeichnet
werden, weil sie dann automatisch die Fourier-Entwicklung der gesuchten
Biegespannung, bzw. Durchbiegung liefern.

Wenn bei der Erörterung eines Problems zwei verschiedene
Lösungsmethoden wie hier die Matrizenmethode und die Differentialmethode einander
gegenübergestellt werden, so ist eine vergleichende Betrachtung ihrer
praktischen Anwendbarkeit naheliegend. Es besteht kein Zweifel darüber, daß für
eine Kettenbrücke mit wenigen Hängestäben die Matrizenmethode die
Verformungen und Spannungen der Brücke viel genauer beschreiben wird als
die Differentialmethode.

Bei großen Kettenbrücken mit 30 und mehr Hängestäben wird die Abweichung

zwischen den mit diesen beiden Methoden gewonnenen Ergebnissen
voraussichtlich so geringfügig, daß sie gegenüber der Unsicherheit der
Materialkonstanten wohl vernachlässigt werden kann. Wenn man aber berücksichtigt,
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daß die Lösungsformeln der Differentialgleichungen immer praktisch
unbequeme Grenzprozesse (bei Verwendung der GREENschen Funktion bestimmte
Integrale mit Parameter, bei Verwendung der Eigenfunktionen unendliche
Reihen) enthalten, so wird man geneigt sein, die Anwendung der finiten
Matrizenmethode auch in diesem Falle als vorteilhaft zu betrachten.

Wie bei jedem System, welches ein durch vertikale Kräfte gespanntes
Kabel oder Kette enthält, so hat man auch bei einer Hängebrücke — neben
der Auflösung einer linearen Matrizen- oder Differentialgleichung — noch die
durch die zusätzliche Belastung hervorgerufene Änderung der Kabel- bzw.
Kettenspannung, d. h. die zusätzliche Horizontalspannung zu berechnen. Diese

Berechnung wird allgemein so durchgeführt, daß für die unbekannte relative
Spannungsänderung mit Hilfe von kinematischen und elastizitätstheoretischen
Überlegungen eine Gleichung aufgestellt wird, deren algebraisch größte Wurzel
die gesuchte relative Spannungsänderung liefert.

Die Berechnung der Spannungsänderung ist auch im Falle einer finitisier-
ten Kettenbrücke keine lineare Aufgabe. Selbst bei einer Kettenbrücke mit
einem einzigen Hängestab hat man eine algebraische Gleichung zweiten Grades

zu lösen. Bei einer Hängebrücke mit n Hängestäben ergibt sich eine algebraische
Gleichung %+1-ten Grades, bei einer Kabelbrücke eine transzendente
Gleichung. Für die approximative Lösung dieser Gleichungen sind verschiedene
Methoden vorgeschlagen worden.

Bei einer gleichmäßigen Kettenbrücke kann die Bestimmungsgleichung
für die relative Spannungszunahme auf eine solche Form gebracht werden,
die die Existenz einer einzigen positiven Wurzel erkennen läßt und unschwer
approximativ gelöst werden kann.

Bei einer ungleichmäßigen Kettenbrücke wird wohl das bequemste
Verfahren das sein, die gegebene Brücke durch eine hinsichtlich der Spannungs-
änderung annähernd äquivalente gleichmäßige Brücke zu ersetzen und die
darin eintretende relative Spannungsänderung nach bekannten Methoden
approximativ zu berechnen.

Um die vorliegende Arbeit möglichst lesbar zu gestalten, haben wir sie

folgendermaßen in Abschnitte eingeteilt.

I. Im ersten Abschnitt wird eine möglichst knappe Darstellung derjenigen
Begriffe und Sätze der Matrizentheorie gegeben, welche in den folgenden
Abschnitten gebraucht werden. Auch der Zusammenhang zwischen den
Kontinuantmatrizen und den linearen Differentialgleichungen wird flüchtig
erörtert.

IL Im zweiten Abschnitt werden die wohlbekannten Gleichgewichts-
gleichungen einer durch vertikale Einzelkräfte beanspruchten Kette bzw.
Balken angeführt und in Matrizenform dargestellt.

III. Der dritte Abschnitt bringt die elementare Berechnung der
Biegespannung und der Durchbiegung einer zweigliedrigen Kettenbrücke mit einem
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einzigen Hängestab. Gleichzeitig wird auch die Gleichung zweiten Grades,
welche die zusätzliche Horizontalspannung bestimmt, aufgestellt.

IV. Im vierten Abschnitt zeigen wir, daß die im Abschnitt III für die
zweigliedrige Kettenbrücke hergeleiteten elementaren Lösungsformeln auch
für die w-gliedrige Kettenbrücke gültig bleiben, wenn die skalaren Größen
durch entsprechende Matrizen ersetzt werden. Auch die Bestimmungsgleichung
für die zusätzliche Horizontalspannung wird in Matrizenform erhalten.

V. In diesem Abschnitt wird der Grenzübergang von einer w-gliedrigen
Kettenbrücke zu einer unendlich vielgliedrigen Kabelbrücke durchgeführt.

Im Abschnitt VI werden diejenigen Vereinfachungen und praktischen
Vorteile angegeben, die sich im Falle einer gleichmäßigen Ketten- oder Kabelbrücke

einstellen.

Abschnitt VII bringt endlich einige Beispiele über die Anwendung der
geschilderten Methoden.

Abschnitt I [1]

§ 1. Wählt man als leitende Idee bei der Einführung der Matrizen ihre
Anwendbarkeit zur Lösung linearer Gleichungssysteme, so kann man sich
zunächst folgende Aufgabe stellen.

Die Koeffizienten a^, die Unbekannten xi und die Störungsglieder bi eines
geordneten linearen Gleichungssystems

#11 #i + &i2 %2~^~ ' ' ' ^^ln^n ^1

a21 x^-\-a22 x2-\- - • • -\-a2nxn b2 (1)
anlx1 + an2x2 + - - • + annxn bn

sollen derart in Symbole A,x,b zusammengefaßt werden, daß man erstens
mit diesen Symbolen möglichst genau so rechnen kann wie mit gewöhnlichen
Zahlen, zweitens das Gleichungssystem (1) und seine Lösung mit diesen Symbolen

in der Form
A x b bzw. x A-1 b (2)

darstellbar sei.

Für diesen Zweck wird es genügen, die Begriffe: Spaltenmatrix, Zeilenmatrix

und quadratische Matrix einzuführen.
Spaltenmatrix n-tev Ordnung ist die Zusammenfassung von n geordneten

Zahlen (Elementen) a1,a2,... an in ein vertikales Schema von der Form

a9

Zeilenmatrix ist die Zusammenfassung von n geordneten Zahlen b1,b2,
in ein horizontales Schema von der Form
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b* foft, bn].

Eine quadratische Matrix n-ter Ordnung ist die Zusammenfassung von
n2 doppelt geordneten Zahlen an, a12,. ann in ein schachbrettartiges Schema

von der Form

A

«n a12 aln
^21 ^22 * * * ®'2n

-anlan2 • • • ann-

Das Gleichheitszeichen zwischen zwei Matrizen bedeutet, daß sie gleichviel
Spalten und Zeilen enthalten und ihre homologen (an gleicher Stelle befindlichen)

Elemente gleich sind.
Eine Matrix, deren alle Elemente gleich 0 sind, wird Nullmatrix genannt

und mit 0 bezeichnet.
Eine quadratische Matrix mit den Elementen S^- (8^ 1 für i=j und =0

für i+j) heißt Einheitsmatrix und wird mit E bezeichnet. Die Rechenregeln
für die Addition und Subtraktion von Matrizen lauten:

K«2 •an]±\Pib2"-bnl [a1±b1,a2±b2,... an±bn] (3)

«1 -b1~ ~ax ± bx «11 "6u "
«2 + b a2±b2

5 +

_«n- -K- _«n±bn- - ann- — ®nn—

¦«n ± 6n

a„„ ± bnn — ^nn—

Eine beliebige Matrix wird mit einer Zahl (Skalar) multipliziert, indem
man jedes Element der Matrix mit der betreffenden Zahl multipliziert.

Das Produkt von zwei Matrizen ist nur dann erklärt, wenn die Spaltenanzahl

des ersten (linken) Faktors mit der Zeilenanzahl des zweiten (rechten)
Faktors übereinstimmt (Konformitätsbedingung zweier benachbarter
Faktoren). In dieser Arbeit werden nur folgende Matrizenprodukte vorkommen

-bx~ «11 «12 aln "6i" ~Ealvbv

Ol «2 - •O h n
Yflvbv*>
v=l

a2\ a22 * • • a2n b2 Ea2vbv

-k- — anlan2 ' • ' ann — -k- -ßanvhv-
«11 «ig aln hi b12 bln Ealv bvl Ealv bv2 Ealv bvn~

^21 ^22 * • • a2n b2x ^22 • • • b2n Ea2v bvl Ea2v bv2 Ea2v bvn

anlan2 • • anil — Jnl®n2 • ' • "nn JSanvbvlEt^nv^vi * £j an v ov n_

(4)

Aus diesen Multiplikationsformeln folgen die charakteristischen Eigenschaften
der Einheitsmatrix E

Ea a; EA AE A.
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Auch das Produkt von drei und mehreren Matrizen kann nach diesen Regeln
gebildet werden, wenn die Konformitätsbedingungen zwischen je zwei benachbarten

Faktoren erfüllt sind. So ist z.B.

n n
a*Bc= 2 I&W«„<V (5)

U=lv=l
Aus einer quadratischen Matrix A kann man die Matrixpotenzen

(A« E),A,A2,A3,...

und mit beliebigen Zahlen Cq,cy,c2, die Matrixpolynome

c0E + c1A + c2A2-\
bilden.

Fast alle wesentlichen Rechenregeln der gewöhnlichen Zahlen bleiben bei
den Matrixoperationen erhalten, nur die Multiplikation ist im allgemeinen
nicht kommutativ; die Reihenfolge der Faktoren eines Matrizenproduktes
darf also im allgemeinen nicht vertauscht werden.

§ 2. Es ist zweckmäßig, schon hier einige spezielle Matrizentypen
einzuführen. Die aus der linken, oberen Ecke ausgehende Diagonale einer quadratischen

Matrix A nennt man Hauptdiagonale. Werden alle Elemente einer
quadratischen Matrix an der Hauptdiagonale gespiegelt, so erhält man die
Transponierte von A, welche mit A* bezeichnet wird. (Auch die Bezeichnung
a* einer Zeilenmatrix erinnert daran, daß sie als Transponierte einer Spaltenmatrix

a betrachtet werden kann.)
Ist eine quadratische Matrix ihrer Transponierten gleich, also A A*, so

wird sie symmetrisch genannt. In dieser Arbeit werden ausschließlich
symmetrische (quadratische) Matrizen vorkommen.

Die einfachste symmetrische Matrix ist die Diagonalmatrix, welche nur in
der Hauptdiagonale von 0 verschiedene Elemente enthält.

Als einfachste symmetrische Matrizen nach den Diagonalmatrizen müssen
die symmetrischen Kontinuanten betrachtet werden, welche nur in der
Hauptdiagonale und in den dazu benachbarten Schräglinien von 0 verschiedene

Elemente enthalten. Eine symmetrische Kontinuante n-ter Ordnung hat
also folgende Form

"«iöi0 0

bxa2b2 0

C 0 b2 «3 0

0 0 0 öl,

Man wird sehen, daß diese symmetrischen Kontinuanten, welche schon in der
Fachwerkstatik vorgekommen sind, in der Theorie der Kettenbrücken eine
hervorragende Rolle spielen.
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§ 3. Die bis jetzt erklärten Begriffe und Rechenoperationen geben uns
schon die Möglichkeit, das lineare Gleichungssystem (1) in der gewünschten
Form darzustellen. In der Tat, wenn die n2 Gleichungskoeffizienten atj zu
einer quadratischen Matrix A, die Unbekannten xi, bzw. die Störungsglieder bi
zu einer Spaltenmatrix x, bzw. b vereinigen, so läßt sich das Gleichungssystem

(1) zu der einzigen Matrizengleichung Ax — b zusammenfassen. Jetzt
können wir uns also der zweiten Forderung zuwenden: das Symbol A~1 so zu
erklären, daß die Lösung in der Form (2) darstellbar und berechenbar sei.

Zu diesem Zweck wird es genügen, die reziproke (oder inverse) Matrix
A~x von A durch die Forderung zu erklären, daß das Produkt von A'1 und
A (in irgendwelcher Reihenfolge) der Einheitsmatrix E gleich sein soll, d.h.

A~*-A ^A-A-1 E.

Ebenso wie die Zahl 0 keine Reziproke hat, so besitzt auch eine quadratische
Matrix, deren Determinante verschwindet, keine Reziproke. Ist aber die
Matrix A nicht singulär, ist also ihre Determinante

detA + 0,

so besitzt A eine Reziproke, welche durch die folgende explizite Formel geliefert

wird

(6)

Hier bezeichnet Atj die zum Element «^ gehörige (mit richtigem Vorzeichen
versehene) Unterdeterminante von detA.

Das Gleichungssystem ist also gewiß lösbar, wenn detA +0 ist, und
Multiplikation der Matrizengleichung Ax b beiderseits von links mit A~x liefert
die Lösung in der gewünschten Form.

Hierzu ist vom praktischen Standpunkt aus folgendes zu bemerken: Zur
wirklichen Berechnung der Reziproken ist die Formel (6) — bei einigermaßen
hoher Ordnungszahl — wegen den darin auftretenden Determinanten absolut
unbrauchbar. In der Kettenbrückentheorie hat man aber nur mit den oben
eingeführten Kontinuanten zu tun und zum Invertieren dieser Kontinuanten
werden wir numerisch gut verwendbare Rechenverfahren angeben. Als
Beispiel sei hier die Reziproke der einfachsten Kontinuante n— 1-ter Ordnung

«n «i2 • «m -1 A\\ A21 Anl
^21 ^22 • • ^2n 1

detA
A12 A22 An2

m_anlan2 • • ann- _AlnA2n 4

Cq angegeben.

"2-1 0 0 0" -l ~(n~l)l (n-2)l (n-3)l - 2,1 1,1 "
-1 2-1 0 0 (n~2)l (n-2)2 (n-3)2 2,2 1,2

C -i —c0 —
0-1 2 0 0 1

n
(n-3)l (n-3)2 (n-3)3 2,3 1,3

0 0 0.. 2-1 2,1 2,2 2,3 2(n-2) l(n-2)
_ 0 0 0 -1 2_ 1,1 1,2 1,3 l(n-2) l(n-l)_
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Mit der Definition der inversen Matrix ist auch die Division von Matrizen
erklärt. Mit einer nichtsingulären Matrix zu dividieren, heißt, mit ihren
Inversen zu multiplizieren, wobei allerdings rechtsseitige und linksseitige
Division zu unterscheiden sind. Sind aber der Dividend und der Divisor Polynome

derselben Matrix, so ist der Quotient unabhängig von der Reihenfolge
und existiert nur dann, wenn der Divisor nicht singulär ist.

§ 4. Um die bei den gleichmäßigen Kettenbrücken anzuwendende
Rechnungsmethode vorzubereiten, müssen wir noch einige Sätze über die Eigenwerte

und Eigenmatrizen einer symmetrischen Kontinuante vorausschicken.
Eine Spaltenmatrix u wird durch Multiplikation mit einer symmetrischen

Matrix A in eine andere Spaltenmatrix A u transformiert. Unterscheidet sich
diese Transformierte A u von u nur in einem skalaren Proportionalitätsfaktor A,

besteht also die Gleichung
Au Xu,

so wird A ein Eigenwert und u die dazu gehörige Eigenmatrix von A genannt.
Bezüglich der Existenz und Anzahl solcher Eigenwerte und Eigenmatrizen
gilt folgender Satz:

Zu jeder (reellen) symmetrischen Matrix A n-ter Ordnung gehören n
Eigenwerte

Ai,A2,.. A^

und n Eigenmatrizen
ux,u2,. un,

welche die Gleichungen
Äuk \uk (8)

befriedigen.
Ist cp (A) ein Polynom oder rationale Funktion der Matrix A, so hat cp (A)

die Eigenwerte
<p(*i)>9(*2)> • • • <p(*J

und dieselben Eigenmatrizen wie A. Es gelten also die Gleichungen

9(A)'uk 9(K)uk-
Die Eigenmatrizen uk sind orthogonal, d.h. uk*uh 0 für k + h und können

so normiert werden, daß uk*uk=l sei.
Das System der Eigenmatrizen ist vollständig in dem Sinne, daß jede

Spaltenmatrix n-ter Ordnung a als lineare Kombination der Eigenmatrizen
uk mit skalaren Koeffizienten ck in der Form

a Ciiii + c2u2+- • • +cnun
darstellbar ist.

Die Eigenwerte und Eigenmatrizen sind nur für wenige Matrizen explizit
bekannt. Ihre Kenntnis vereinfacht die Lösung des entsprechenden Gleichungs-
systems ganz bedeutend.
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§ 5. Bei dieser knappen Schilderung der Elemente der Matrizenrechnung
haben wir die Forderung in den Mittelpunkt gestellt, daß ein lineares
Gleichungssystem, bzw. seine Lösung symbolisch in der Form (2) darstellbar sei.

Es wäre aber ein Zerrbild, die praktische Bedeutung der Matrizenrechnung
ausschließlich in dieser symbolischen Schreibweise der Lösung zu erblicken.

Erstens zeigt sich die Verwendung der reziproken Matrizen zur numerischen

Berechnung der Kettenbrücken nur deshalb besonders geeignet, weil
hier überall Kontinuanten auftreten, deren Invertierung eine verhältnismäßig
kurze und einfache Rechenaufgabe ist.

Darüber hinaus zeigt sich aber die Leistungsfähigkeit der Matrizenrechnung
überall dort, wo man solche Eliminationen und andere Umformungen der
linearen Gleichungssysteme vorzunehmen hat, deren Ergebnis in skalarer
Schreibweise unübersichtlich oder gar nicht explizit angebbar ist.

§ 6. Um den Zusammenhang zwischen Kontinuanten und linearen Differen-
zialgleichungen zweiter Ordnung erklären zu können, müssen wir einige
einleitende Begriffe vorausschicken.

Hat man eine unendliche Folge von Spalten- (oder Zeilen-) Matrizen

f (1) f(2) f(n)J >J 9 • • • J 5 • • • 3

wo der obere Index die Ordnung der Matrizen angibt, so kann man jede dieser

Matrizen graphisch darstellen, indem man den Abszissen ——, ——^,. ——rö r ' n+1 n + 2' n+1
(L>0 sonst beliebig) die Elemente fjn\ /2<w>, /n<w> von f^ als Ordinaten
entsprechen läßt. Es kann vorkommen, daß die auf diese Weise gewonnenen
Punktgruppen bei unendlich wachsendem n sich zu einer stetigen Kurve
verdichten. In diesem Falle werden wir sagen, daß der Limes der Matrizenfolge
eine stetige Funktion einer Variablen ist. Genauer:

lim/(n) f(x), wenn für jedes x aus (0, L) lim /fc(n) f(x).
n—»oo n-»oo

kL
n

In derselben Weise kann eine unendliche Folge G(ri) von quadratischen
Matrizen zu einer in 0<x,y<L definierten stetigen Funktion G(x,y) von
zwei Variabein konvergieren.

Eine Folge von Matrizenprodukten geht bei dem entsprechend normierten
Grenzübergang in ein bestimmtes Integral über. In der Tat

L n L L
lim —g^*/(n) um 2 gk™f^) =jg(x)f(x)dx

n—>oon n_>cok l ™ 0

und

lim -£ GW/W lim 2 Q® /*<»>-£ fo (x, £) f (f)df. (9)

kL
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Wie man sieht, ist der Limes einer Matrizenproduktfolge nicht das Produkt
der beiden Grenzfunktionen, sondern deren Produktintegral.

Die Universalität der Matrizenrechnung zeigt sich auch darin, daß nicht
nur das Integral, sondern auch der Differentialquotient als Limes einer
Matrizenproduktfolge darstellbar ist. Wird nämlich die Spaltenmatrix f(n\
deren Elemente die Werte / (——), / 1 • • • / (-^—T | einer in 0 und L ver-; \n+l/ " \n+lj } \n+lj
schwindenden Funktion f(x) sind, mit der Kontinuante
ziert, so erhält man

L* CqW multipli-

L2 w
n*

\n)

2-1 0 0

-1 2-1 0 0

'(i)"
1

©
Die Elemente der Produktmatrix sind also die zweiten Differenzenquotienten
der Funktion f(x). Ist nun f(x) zweimal stetig differenzierbar, so wird im
obigen Sinne

§ 7. Nach diesen Vorbereitungen kann man die eingangs erwähnte Analogie
zwischen reziproker Matrix und GREENscher Funktion leicht illustrieren.

Man betrachte das Gleichungssystem

n L
(10)

oder ausführlicher geschrieben

-yi-i + 2yj-yi+i_„ l~qi n
n

l,2,...n-l; y0 yn 0.

Die Lösung lautet
L r-i L

J n u ^ n
(11)

oder mit Benützung der in I. (7) angegebenen Form der Inverse C0_1

L i(n — j)
n-i £ n n

Vi- 2 9ij9j— mit Qij

für i rg j
1 i L j (n — i)

n n
für i ^ j

i,j 0,1,2, .n.

Diese Gleichung bestimmt (siehe Abschnitt II. § 2) die Gleichgewichts-
gestalt einer zwischen x 0 und x L ausgespannten Saite, deren Punkte
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L 2L (n—l)L..j t Tr ..r, L L L
x —, —, - — mit den transversalen Kräften q* —, «2—,. «„ i —

belastet sind.
Wird nun in der Gleichung (10), welche man auch in der Form jj C0y q

schreiben kann, der Grenzübergang n -> oo durchgeführt, so erhält man

-g *(*), (12)

also die Differentialgleichung einer Saite, auf welche die stetig verteilte Last

q (x) wirkt. Bei demselben Grenzprozeß geht aber die Inverse — C0_1 über in

n—>oo

iL,
n ^X lim

iLtT jL\^r~7rj x(L-j)
L L

j L f T iL\(t-'-i) HL-x)

für x^g,

für x^g,

d. h. in die bekannte GREENsche Funktion G (x, g) der Differentialgleichung (10)

(Einflußfunktion der gespannten Saite). Gleichzeitig wird aus (11) nach (9)

y(x)=fG(x,£)q(£)d£; y(0) y(L) 0.
0

§ 8. In der üblichen Theorie der Kabelbrücken treten lineare, inhomogene
Differentialgleichungen zweiter und vierter Ordnung auf, welche im Falle
eines Balkens mit variablem Querschnittsträgheitsmoment variable
Koeffizienten haben. Die eine Lösungsmethode verwendet die zu der Differentialgleichung

-^l + XP(x)y q(x) (13)

und zu den Randbedingungen

y(0)=y(L) 0 (14)

gehörende GREENsche Funktion G (x, £; A). p (x) ist hier, von einem konstanten
Proportionalitätsfaktor abgesehen, das reziproke Querschnittsträgheitsmoment
an der Stelle x und man hat bei einer symmetrischen Brücke von der Länge
Lp (x) =p (L — x). In diesem Falle läßt sich die GREENsche Funktion G (x, g; A)

aus einer einzigen Partikularlösung der entsprechenden homogenen Gleichung

d2u
J^-XP(x)y 0 (15)

folgendermaßen konstruieren:
Es sei u(x;X) die durch die Anfangsbedingungen u(0; A) 0,^/(0; A) 1

eindeutig bestimmte Lösung von (15) und es sei u(L;X) + 0. Dann ist die
GREENsche Funktion
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u(x; X)u(L — £;A)

G(x,£;X)

161

u(L;X)
u(£;X)u(L — x;X)

x^g

x^£u(L;X)
und die den Randbedingungen (14) genügende Lösung von (13) lautet

y(x)=fG(x,£;\)q(g)d£.
o

§ 9. In der vorliegenden Arbeit wird eine Theorie der Kettenbrücken
begründet, in welcher lineare algebraische Gleichungen mit doppelt-symmetrischer

Kontinuante eine hervorragende Rolle spielen. Diese Gleichungen
haben — mit Matrizensymbolen geschrieben — folgende Form

Cy

-&! 0

"Öl ®2

0 -b9

0

0

0

0

«3 ~b3

0

0

0

0

0

0

0

0

un-2 ~un-2
~ 0v>—9 «*

r«/i "Si
2/2 ?«

y.3 q.3

Vn-Z 1n-2

-Vn-lJ L?»-Jn-2 ^n-l-J
Hier ist wegen der Symmetrie der Brücke ^k an-k'^k ^n-k-i- Für die
numerische Berechnung der zur Herstellung der Lösung y C"1 q notwendigen
Inverse C~x werden wir hier eine praktisch anwendbare Rechnungsvorschrift
angeben, welche die oben illustrierte Analogie zwischen reziproker Matrix und
GREENscher Funktion ausnützt.

Man berechne die durch die Anfangsbedingungen ^0 0;^i l eindeutig
bestimmte Lösung des homogenen Gleichungssystems

a1u1 — b1u2 0

— b1u1 + «2 u2 — b2uz =0

— on_3 un_3

mit Hilfe der Rekursionsformeln

+ a,n-2 wn-2 ^n-2 wn-l>/&„ > Un o

uk+i
«*tt*-6*-i»t-i (^=1,2,...»-!), (16)

und es sei

Un — an-l Un-1 ~ ^n-2 Un-2 + 0.

Dann sind die Elemente gtj der Inverse C_1

u„

un

i^j

i^j
i,j 1,2, ra-1. (17)

und die Lösung des Gleichungssystems ist
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Vi
n-l
I>9ij<lj i 1,2, n-l. (18)

Bei einem kritischen Vergleich der infinitesimalen und der finiten Methoden

hat man zu berücksichtigen, daß die wirkliche Herstellung der Lösung
u(x;X) der homogenen Differentialgleichung (15) bei variablem p(x) immer
unendliche Prozesse, z.B. Reihenentwicklung nach A erfordert, während zur
Lösung des entsprechenden homogenen algebraischen Gleichungssystems nur
eine endliche Anzahl von arithmetischen Grundoperationen nötig ist.

Abschnitt II [2]

Gleichgewicht einer Kette

§ 1. Befindet sich eine (in einer vertikalen Ebene liegende) w-gliedrige
Kette A0A±. An, deren k-tes Gelenk Ak die Koordinaten (xk,yk) besitzt
und durch die vertikale Kraft qk belastet ist, im Gleichgewicht, so müssen
zwischen den Spannungen tk_lk, den Koordinaten und den Kräften die
folgenden Zusammenhänge bestehen

y^r

X - ^v A

$u.*

k, k

Fig. 1

Xt. - Xi.

k-lsk~

^k-1'lk-l,k —
sk-l,k

Vk-l-Vk

- + t>
X-

k, k+1 ~
k+1'

+«*. fc+i"

Sk,k+X

Vk+l-Vk

* 0,

+& <>.

(1)

(2)
sk-l, k sk, k+1

Aus der Gleichung (1) folgt, daß die horizontale Komponente tk,k+1Xk+1~Xk
der Zugspannung längs der ganzen Kette konstant ist, d. h #k,k+l

X-t Xn Xn X-t

*01
01 ^12 ~

x*,. x^

°n—l,n
n—1, n h.

Werden die Größen ^±1 mit Hilfe von (3) aus den Gleichungen (2) eliminiert,

so erhält man
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h (Vk+i-Vk
__

Vk-Vk-A
+gfc =0.

\ xk+l xk xk ~~ xk-l /
(4)

Wir wollen von nun an die Längen der Horizontalprojektion der einzelnen
Glieder, d.h. die Größen xk+1 — xk mit lk>fc+1 bezeichnen. Dann nehmen die
Gleichgewichtsgleichungen der Kette folgende Form an

1 / 1 1 \ 1

7-2/0+ (7— + 7-2/1-7— 2/2
«•oi Vm «'12/ *ia

1 / 1 1 \ 1

-7-2/1+ 7- + 7-h/2-r

9l

=92 (ß)

- 7
yn-2+(7 + 7—) yn-

Ln-2,n-l \tn-2,n-l vn-l,n/ n—2, n
~yn — 9n-l-

Werden die Randwerte y0 und yn beliebig vorgeschrieben, so sind die
übrigen Ordinaten yx, y2, yn_x durch die Gleichungen (5) eindeutig
bestimmt. Im folgenden werden wir nur den Fall

2/0 y» 0 (6)

betrachten. Führen wir die symmetrische Kontinuante C und die
Spaltenmatrizen y und q

1

'19

c

¦ 1 1

T + T~''Ol «'19''Ol

U

1 1

T + Vt"l9. V9

0

0
"12 "23

+
^7i-2, n-l ^n—1, n—1

2/1

L2/»-iJ

1

<Zi

?2

L«2„-iJ

(7)

ein, so kann man die Gleichgewichtsgleichungen (5) ww«' die Randbedingungen
(6) in die folgende Matrizengleichung zusammenfassen

Cy jq- (8)

Hieraus erhält man die Gelenkordinaten yk als Funktionen der belastenden
Kräfte qk unmittelbar

y=hc~lq- (9)

Man verifiziert leicht, daß die hier auftretende reziproke Matrix folgende
explizite Form hat



164 E. Egerväry

C~1 J-

^01 W n

01 ^2 n

"0w

^01 ^21

"02 v2 n

' ^01 ^n-l,n
• ^02 ln-l,n

-^01^n-l,n ^02^n-l,n • • • ^0,n-l^n-l,n-

(10)

wo lij(i<j) die Länge Z*,i+i + ^+i,*+2 + • • -^-ij bedeutet.
Multipliziert man beide Seiten der Gleichung (8) von links mit der

Zeilenmatrix e* [1,1, 1], so ergibt sich

Vi x Vn-l
^01 ln-l,n e*cy L *gEgi+g»+;--+g^-x.J h ^ h

Diese Gleichung bringt das Verhältnis der Gesamtbelastung zur Horizontalspannung

mit den Neigungen der Randkettenglieder in Zusammenhang.

§ 2. Sind alle vertikalen Kräfte gleich und äquidistant, also

9l 92 --9n-l =9
^01 ^12 • • '^n-l,n ^

so wird

c-±c --1C " Z ° " l

und nach (8) (9) (10)

" 2-1 0

-1 2-1
0-1 2

0 0 0,

Z

0"

0

0

-1 2

Iq

q qe

y=hc»-lqe=2h

'l(n-iy
2(71-2)

(11)

_(ra-l)l_
d. h. sämtliche Kettengelenke hegen auf der Parabel

Das Verhältnis der Gesamtlast (n — 1) q zur Horizontalspannung h wird
jetzt

(m-1)? yi + yn-i l^i
ä Z Z '

Das tiefste Gelenk, bzw. Gelenkpaar hat nach (11) die Ordinate

q n2— 1

h 8

Ä 8
l

l für ungerades n

für gerades w.
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Im Abschnitt I haben wir schon gezeigt, daß die Elemente der Matrizenprodukte

— C0y die zweiten Differenzen der Zahlenfolge

0,2/1,2/2, •••2/n-i>°
sind. Setzt man nun in (8)

nl L, C TC0, ft g(_j.-
(q (x) soll hier die auf die Längeneinheit entfallende stetige Belastung bedeuten),

so erhält man die Gleichung

n ILLC°y hqn

und hieraus durch den Grenzübergang n -> co,l >0 die bekannte
Differentialgleichung

-£?->>• <12>

welche die Gleichgewichtsgestalt eines Seiles unter der Wirkung der stetig
verteilten Last q (x) bestimmt.

Gleichgewicht eines Balkens

§ 3. Wir betrachten einen geraden elastischen Balken, welcher im
unbelasteten Zustande mit der Strecke (0, L) der x-Achse zusammenfällt und in
seinen Endpunkten gestützt ist. Der Balken soll durch die Punkte

(0 )a;0<;ri<a;2< xn__1<xn( L)

in die Teile (xkxk+1) mit den Längen lk>u+i xk+i~xk eingeteilt sein. Das
Querschnittsträgheitsmoment des Teiles sei Jk)k+1 und der Elastizitätsmodul
des Balkenstoffes E.

Befindet sich dieser Balken unter der Wirkung der in den Teilungspunkten
xk angreifenden transversalen Kräfte qk im Gleichgewicht, so müssen
zwischen den in diesen Punkten auftretenden Biegungsspannungen mk, den
Durchbiegungen vk und den Kräften qk die folgenden Zusammenhänge
bestehen

Vk+1-Vk Vk-Vk-i 1 K+ 7Tn{-TdttL™k+l +
h, k+i h-i, k 6E [Jk) k+1

+ 2 (Jkjc+i^ + h^jA mk + h^m\ 0
9

\dk,k+l Jk-l,k) Jk-l,k

(13)

—y± - —+ ?* <). (14)
^k,k+l ^k-l,k

Werden nun neben den Matrizen (7) die ,,Biegsamkeitsmatrix" K und die
Spaltenmatrizen m, v
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r2/z0i

K 6E

(t-+t)Woi ü12l J,

'12

(h
U dOQ

m, «1

m
%

v
*>2

_m"-1_ _*>»-!

(15)

eingeführt, so lassen sich die Gleichgewichtsgleichungen (13,14) und die den

gestützten Enden entsprechenden Randbedingungen

2/o S/n °> ™<0 ™>n 0 (lß)

in die folgenden Matrizengleichungen zusammenfassen

Cv =Km, (17)

Cm q. (18)

Durch Elimination von m erhält man aus diesen Gleichungen den direkten
Zusammenhang zwischen den Durchbiegungen yk und den transversalen
Kräften qk in der folgenden Form

CK1Cv=q
bzw. v C-^KC-^q.

§ 4. Bei einer gleichmäßigen Kettenbrücke hat der Balken ein konstantes
Querschnittsträgheitsmoment und ist in gleiche Teile geteilt:

^oi - ^12 " ' ' ^n-l,n — l\ C-Jc°' Jo\ — ^12 — • • • — J.

Die Biegsamkeitsmatrix K kann in diesem Falle durch C0 und die Einheitsmatrix

E ausgedrückt werden

K EJ

r4 i A66°--
i

~ EJ
1 4 1

6 6 6'*'
—: —

H4
Werden diese Werte von K und C in die Gleichungen (13) (14) eingeführt,

so vereinfachen sich diese zu

EJ
l2

C0v (E-\c^ m,

C0m q.

Wird in diesen Matrizengleichungen der in Abschnitt I, § 6, näher beschriebene

Grenzübergang für Z=—,L fest, n->co durchgeführt, so ergeben sich

die bekannten Differentialgleichungen [3]
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„ Td2v(x)-EJ \ ' =m(x),dx2

d2m(x)
dx2 q(x)

(19)

(20)

des stetig belasteten Balkens, wo v(x), m(x) bzw. q(x) die Durchbiegung,
Biegungsspannung bzw. die spezifische Last an der Stelle x bedeuten.

Abschnitt III

Die Grundgleichungen einer zweigliedrigen Kettenbrücke und ihre Lösungen

fMMMMMMMMM/Z V/M/MMMMMMUO.

Fig. 2

7ZZZZZ2. hzzzzzzzzzzzzz&&^_ _ JV
p+q.

§ 1. Die hier zu betrachtende Kettenbrücke besteht aus zwei Gliedern, aus
einem Hängestabe und aus einem gestützten Balken.

Fig. 1 stellt denjenigen Zustand dar, in welchem die Kette bloß die tote
Last p (welche von der Kollinearität des Balkenmittelpunktes und den
Unterstützungspunkten herrührt) trägt. In diesem Zustande lautet die
Gleichgewichtsgleichung der Kette nach II (8)

iy h P- (1)

Nun sei der Balken in der Mitte mit der transversalen Kraft (lebende
Last) q belastet (Fig. 2). Die Kette wird einen Teil q der Last tragen und die
Horizontalkomponente ihrer Spannung wird sich zu H ändern. In diesem
Zustande wird die Gleichgewichtsgleichung

2/ 1
/ ~x(y+v) =u(p+9)'H (2)

Durch Subtraktion der Gleichungen (1)(2) erhält man die Verschiebungs-
gleichung der Kette
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2 1 /. H-h \
-lv=H\q—hTp)- (3)

Der Balken trägt die Last q — q; die Biegungsspannung in der Mitte wird
also

m=^ (4)

und die Durchbiegung

•-»
Ehminiert man q aus den Gleichungen (3) (4), so ergibt sich folgender

Zusammenhang zwischen der Biegungsspannung, Durchbiegung und Belastung

2 2H H-h

Eliminiert man aber q — q aus den Gleichungen (4) (5), dann bekommt man
den Zusammenhang zwischen der Biegungsspannung und Durchbiegung

lV 6^1m- (7)

Wird der hieraus entnommene Wert von v in (6) eingesetzt, so erhält
man die „Spannungsgleichung" der Brücke

/2 „ 41 \ H-h
\i+H6Ej)m q-^rp (8)

und die explizite Formel für die Biegungsspannung

H-h
9. ^— P

m I7TTJL- (9)

l + 6EJ

Die durch die Unterstützung der Kette hervorgerufene Abnahme der

Biegungsspannung wird klar erkennbar, wenn man die Gleichung (9) mit der
aus (4) bei Abwesenheit der Kette folgenden Gleichung

q
m jl

vergleicht.
Wird endlich der aus (7) entnommene Wert von m in (6) eingesetzt, so

ergibt sich die ,,Verschiebungsgleichung'' der Brücke

(6EJ 2H\ H-h

und die explizite Formel für die Durchbiegung
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H-h
9 Y~V

V=SEJ^2H- <H>

Z3 + l

Ein Vergleich dieser Formel mit (5) zeigt die durch die Kettenunterstützung

herrührende Abnahme der Durchbiegung.
Der Ausdruck (11) für die Durchbiegung kann auch in der Form

•-Mr-^i&rK«-^')
geschrieben werden, welche sich später als besonders geeignet und
verallgemeinerungsfähig erweisen wird.

§ 2. Alle unsere Formeln enthalten die bis jetzt unbekannte, veränderte
Horizontalspannung H. Zu ihrer Berechnung muß man die DehnungsVerhältnisse

der Kettenglieder in Betracht ziehen.
Die relative Dehnung der Kettenglieder bei der vertikalen Verschiebung v

des Gelenkes ist (bei Vernachlässigung kleiner Größen höherer Ordnung)

Js _
Vl2 + (y + v)2-]/l2Ty2 _ yrv

s ~
J/Z^+P " "**"

oder mit Benützung des aus (1) sich ergebenden Wertes von y

As
_ plv

~7~ " 2hs2' (13)

Andererseits ist die totale Spannungszunahme in den Gliedern: (H — h)-r.
Die Dehnungsgleichung lautet also

^ ^± (14)
s EF V K '

wo F den Querschnittsflächeninhalt der Glieder bedeutet. Aus den Gleichun-
gen (13) (14) folgt

pEF l2 v '

Wird endlich v aus den Gleichungen (11) (15) eliminiert, so erhält man
die eingangs erwähnte Gleichung zweiten Grades

g-y? _h(H-h) *
6^ + 2|" VEF V <16>

Diese Bestimmungsgleichung für H hat bei positivem q immer genau eine
Wurzel, welche größer als h ist.
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Abschnitt IV

Die Matrizengleichungen einer n-gliedrigen Kettenbrücke und ihre Lösungen

$W-i
J

#̂<k-1

Sr

}/)U*»»f»l>,>>»>,),,>""n",»Wt>>,>.>,,,>f,,,>>>>,JJ»\
k-i.k k.k-t

P. +4.

Fig. 3

§ 3. Betrachten wir jetzt eine Kettenbrücke, welche aus n Kettengliedern,
n — l Hängestäben und einem gestützten Balken besteht. Wir bezeichnen

die Längen der Balkenteile mit l01 ,l12, Zn_x n
die Querschnittsträgheitsmomente J01, J12, Jn^1>n

die Längen der Kettenglieder mit s01 ,s12,... sn_1 n

die Ordinaten der Kettengelenke y0 0; yx,y2,. yn-\\ yn 0

die zur Erhaltung der Kollinearität der Balkenknotenpunkte notwendigen,
als tote Last wirkenden Kräfte auf die einzelnen Kettengelenke mit
:Pi>P2>--->2V-i-

Es bestehen wegen der Symmetrie der Brücke die Gleichungen

lk-l,k
'k-l,k

1,

J
n—k, n—k+1

n—k, n—k+1

Vk Vn-k

yk= yn-k-

sk-l,k — sn-k, n-k+1

Ist die Kette unter der Wirkung der toten Last im Gleichgewicht, so muß
nach II (8) die Gleichung

Cy-\P (l)

bestehen, wo C und y die in II (7) eingeführten Matrizen, p die Spaltenmatrix
der toten Last und h die anfängliche Horizontalspannung bedeuten.

Nun sei der Balken in seinen Knotenpunkten mit den vertikalen Kräften
(lebende Last)
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?U?25' •• 9n-l

9l
92

L9n-lJ
belastet.

Die Kette wird einen Teil q der Last tragen, ihre Gelenke werden die
vertikalen Verschiebungen v erleiden und die Horizontalkomponente ihrer
Spannung wird sich zu H ändern.

In diesem Zustande wird die Gleichgewichtsgleichung

C(y + v)=—(P + q). (2)

Durch Subtraktion der Gleichungen (1) (2) erhält man die Verschiebungsgleichung

der Kette

r 1 /. H-h \Cv H-\q—h~p)- (3)

Jetzt wollen wir die für den Balken im Abschnitt II angeführten
Gleichgewichtsgleichungen anwenden.

Der Balken trägt die Last q — q und die davon herrührende Biegungs-
spannungsmatrix m wird nach II (8) bestimmt durch die Gleichung

Cm — q — q. (4)

Zwischen der Verschiebungsmatrix v und der Biegungsspannungsmatrix m
besteht nach II (17) die Gleichung

Cv Km. (5)

Eliminiert man q aus den Gleichungen (3) und (4), so ergibt sich folgender
Zusammenhang zwischen Biegungsspannung, Durchbiegung und Belastung

^. tt \ H — h
C (m + Hv) q y—p (6)

Wird der aus (5) entnommene Wert von Cv in (6) eingesetzt, so erhält
man die Spannungsgleichung der Brücke

(C + HK)m q-
H-h
-fTi

und die explizite Formel für die Biegungsspannung

H-h(C + HK)-i(q-*j±p).

(8)

(9)

Wird endlich der aus (5) entnommene Wert K~xCv von m in (6)
eingesetzt, so ergibt sich die Verschiebungsgleichung der Brücke

(CK^C+ HQv q-^-r-^p. (10)
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Die Ausrechnung und scheinbar auch das Invertieren der Faktormatrix
von v ist äußerst schwerfällig. Man kann aber eine zu (12) analoge Auflösungs-
formel gewinnen. Es bestehen nämlich die Identitäten

(CK^C+ HC)-1 {CK-1(C + HK)}~1

(C + HK)-1KC-1 -^{C~1-(C + HK)-1}.
(11)

Die gebrauchsfertige explizite Formel für die Durchbiegung ist also

f =±{C-i-(C +HK)-i}(q-^py (12)

Vergleicht man die Formeln (9) und (12), so sieht man, daß nach Berechnung

der Biegungsspannung m die Berechnung der Durchbiegung v eine
besonders einfache Aufgabe ist, weil die dann noch nötige reziproke Matrix
C-1 in II (10) explizit angegeben ist.

Wendet man die in diesem § abgeleiteten Formeln auf eine Brücke mit
einem einzigen Hängestab an, so werden sämtliche Matrizen skalare Größen,
und zwar wegen der Symmetrie der Brücke

Die Gleichungen (1) bis (12) dieses Paragraphen gehen in die gleichbezeichneten

Gleichungen des § 1 über. Damit haben wir gezeigt, daß die Gleichungen
der w-gliedrigen Brücke aus den elementaren skalaren Gleichungen des § 1

durch Substitution von entsprechenden Matrizen gewonnen werden können.
Analog verläuft die Aufstellung der Bestimmungsgleichung für H.
Sind die Koordinaten des k-ten Kettengelenkes vor bzw. nach der

Belastung (xk,yk) bzw. (xk + uk,yk + vk), so bestimmt sich die Zunahme Askk+1
von skk+1 durch die Gleichung

K k+i + A *k, k+i)2- 4.k+i (xk+i + %+i - xk - Uk)2 + (y*+i + vk+i - y* - vk)2 -
-(xk+i-xk)2-(yk+i-yk)2-

also bei Vernachlässigung kleiner Größen höherer Ordnung

**,k+iA sk,k+i (xk+i ~xk) (uk+i ~uk) + {Vk+i ~ Vk) iVk+i ~ vk)-

Summiert man diese Gleichungen von k 0 bis k n — 1 nach vorheriger
Division durch lu,k+i xk+i~xk^ so wird

"f -*'fc)lJ'fc'fc+1 EK+r%)+^K+r^). (13)
jc 0 Lk,k+1 o xk+l~~xk

n-l
Sind die Randgelenke der Kette fest, so ist ^] (uk+i~uk) ®- Weiterhin,

mit Rücksicht auf (1), erhalten wir k=0

k 0 xk+l~xk k=l l k xk-l xk+l~xk) n
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Die Dehnungsgleichung des k-ten Gelenkes ist

^ ^a-, k+i _
H — h skf k+1

sk,k+l EF h,k+l

Werden diese Werte in die Gleichung (13) eingetragen, so wird

EF Ljl 72
k Q^k, k+1

oder, bei Berücksichtigung der Gleichung (12),

Diese algebraische Gleichung n-tcn Grades bestimmt die Horizontalspannung

H als Funktion der Brückenkonstanten und der Belastung.

Abschnitt V

Die Differentialgleichung einer 00 -vielgliedrigen Hängebrücke und ihre Lösungen

§ 1. Wir betrachten jetzt als Grenzfall einer w-gliedrigen Kettenbrücke für
n -> 00 eine Hängebrücke, welche aus einem Kabel, einer Hängemembran
und aus einem gestützten Balken von der Länge L besteht.

Wir bezeichnen
das Querschnittsträgheitsmoment an der Stelle x mit J (x),
die Ordinate des Kabels an der Stelle x mit y (x),
die zur Erhaltung der Kollinearität der Balkenpunkte notwendige (als tote

Last wirkende), stetig verteilte Last, pro Längeneinheit an der Stelle x
mit p(x).

Wegen der Symmetrie der Brücke bestehen die Gleichungen

J(x) J(L-x), y(x) y(L-x); p(x) p(L-x).
Ist das Kabel unter der Wirkung der toten Last im Gleichgewicht, so

muß nach II (12) die Gleichung bestehen

d2y(x) 1
x ,,x

Nun sei der Balken mit der stetig verteilten vertikalen Kraft (lebende
Last) q(x) belastet. Das Kabel wird einen Teil q(x) der Last tragen, seine
Punkte werden die vertikale Verschiebung v(x) erleiden und die Horizontalspannung

h ändert sich zu H. In diesem Zustande wird die Gleichgewichts -

gleichung

-j^{y(x) + v(x)}=1j{p(x) + q(x)}. (2)

Aus (1) und (2) folgt
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¦^Ir-^tiM-^pi*))- (»)]j{*(*)-^p(*)}-
Der Balken trägt die Last q(x) — q (x) und die davon herrührende

Biegungsspannung m(x) wird nach II (20) durch folgende Differentialgleichung
bestimmt

d2m(x)
dx2 q(x)-q(x). (4)

Zwischen der Verschiebung v (x) und der Biegungsspannung m (x) besteht nach

II (19) die Differentialgleichung

d2v(x) 1

~-d^ E-J(x)m(X)- (5)

Die Elimination von q (x) aus (3) und (4) ergibt

~jxj{m(x) + Hv(x)} q(x) ^~P(X)- (6)

Wird der aus (5) entnommene Wert von 2 in (6) eingetragen, so erhalten

wir die Spannungsdifferentialgleichung der Hängebrücke

d2m(x) H H — h ._.

--Jx^ + ET(x-)m{X) qiX) h~p(xh

Die Randbedingungen sind wegen der Stützungen

m(0)=m(L) 0. (8)

Wird aber der aus (5) entnommene Wert von m (x) in (6) eingetragen, so

erhält man die wohlbekannte MELANsche Differentialgleichung für die
Verschiebung

riTd^v(x) TTd2v(x) H — h ._.

Diese Differentialgleichung hat man unter den Randbedingungen zu lösen

v (0) v" (0) =v(L) v" (L) 0. (10)

In den meisten mathematischen Untersuchungen über Hängebrücken wird
die MELANsche Differentialgleichung direkt diskutiert. Die Ergebnisse des

vorigen Paragraphen, besonders die dortige Inversionsformel IV (12) legen
es nahe, auch die MELANsche Differentialgleichung mit Hilfe der GitEENschen
Funktion der Spannungsgleichung (7) zi^ lösen.

Zu diesem Zwecke gehen wir folgendermaßen vor. Es sei G(x,fj;\) die zu
der Differentialgleichung

d2z A
n m\d^~YjW)z 0 (H)

und zu den Randbedingungen

z(0) z(L) 0 (12)
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gehörige GREENsche Funktion. Wird vorübergehend die abkürzende Bezeichnung

r(x) q(x) J^P(X)

eingeführt, so erhält man mit Hilfe dieser GnEENschen Funktion — welche
jetzt die Rolle der inversen Matrix übernimmt — aus der Spannungsgleichung
(7) den folgenden expliziten Ausdruck für die Biegungsspannung m(x)

-m(x)=1j;G(x,t,H)r(£)d£. (13)
o

Die Verschiebung v (x) genügt aber nach (5) derselben Differentialgleichung
(11) mit dem Parameterwert A 0 und denselben Randbedingungen (12), sie
läßt sich also mit Hilfe von G(x,g; 0) explizit darstellen

-v(x) =fG(x,i;0)^^m(i)di.
Wird der Wert (13) von m(x) hier eingeführt, so ergibt sich

v(x)=fo(x,f,0)^^{fG(t,t,H)r($)di}dt

t^G{x,t-,Q)w^G{t,tH)d^r^)d^.
Die in der letzten Klammer auftretende „iterierte" GREENsche Funktion

läßt sich aber mit Hilfe einer von Hilbert herrührenden Identität auf folgende
Form bringen [4]

±{G(x,£;0)-Q(x,£;H)},

welche nichts anderes ist als das infinitesimale Analogon der Matrizenformel
(11) in Abschnitt IV.

Demnach kann die Lösung der MELANschen Differentialgleichung mit Hilfe
der GREENschen Funktion G(x, f;A) folgendermaßen dargestellt werden

L

v(x) =^ fiG(*,£;0)-G(x,t;H)}{q(()-^j^P(t)}d£. (14)
0

Man verifiziert leicht, daß die von Kärman [5], Bleich [6] u. a. angegebenen
Lösungsformeln, als spezielle Fälle, in (14) enthalten sind.

Abschnitt VI

Die gleichmäßige Hängebrücke

Unsere bisherigen Ergebnisse gelten allgemein für Kettenbrücken, bei
denen die Längen und Querschnittsträgheitsmomente der einzelnen Balken-
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teile beliebig vorgeschrieben sind, sowie für Kabelbrücken, bei welchen das

Querschnittsträgheitsmoment beliebig veränderlich ist.
Dieser Abschnitt soll der Untersuchung der gleichmäßigen Hängebrücken

gewidmet sein, bei welchen der Balken ein konstantes Querschnittsträgheitsmoment

aufweist und — im Falle einer Kettenbrücke — die Hängestäbe
äquidistant sind.

Die außerordentlichen Vereinfachungen, welche bei der mathematischen
Untersuchung derartiger Brücken eintreten, sind durch zwei Umstände bedingt.

Erstens sind in diesem Falle beide vorkommenden Matrizen C und K
einfache Funktionen der (dimensionslosen) Kontinuante C0. Zweitens sind sowohl
die Eigenwerte als auch die Eigenmatrizen der Kontinuante C0 sowie
diejenige einer Funktion <p(C0) von C0 explizit bekannt. Ähnliches gilt auch für
die gleichmäßige Kabelbrücke, weil die Eigenwerte und die Eigenfunktionen

d2zder Differentialgleichung -=—j — A z 0 explizit bekannt sind.

Hat eine gleichmäßige Kettenbrücke n Glieder, also n—l Hängestäbe, so

gehört dazu eine Kontinuante n— 1-ter Ordnung. Die Eigenwerte dieser
Kontinuante sind

Ai 4 sin2
2n

A2 4sin*f^, V-i 4sini (n-l)
2n (1)

und die Eigenmatrizen (als Spaltenmatrizen geschrieben)

\ n

TT

sm —
n

sm-

sin (n-l)rr
n

"2 ]/l

sm-
2rr

sm

n
2-2rr

n

sin 2(w-1)tT
n

u„i / —

sm (n-l)rr'
n

2(71-1)77
sm— —

n

sm (n-l)2rr
n

(2)

Das System dieser Eigenmatrizen ist im Sinne des § 4 von Abschnitt I
vollständig, orthogonal und normiert. Diese Eigenmatrizen genügen nach I (8)
den Gleichungen

,,n— 1.Couk huk'> k 1>2>

Hieraus sieht man, daß die Lösung des inhomogenen linearen Gleichungssystems

C0x uk
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sofort hingeschrieben werden kann in der Form

x ¦

Steht aber auf der rechten Seite eine lineare Kombination der
Eigenmatrizen

C0x ßlUl + ß2u2+ • • •^_1«n_1)

so setzt sich die Lösung additiv zusammen aus denjenigen Lösungen, welche
zu den einzelnen Eigenmatrizen gehören, d. h.

Ao n-l-Ai a2 "n-l
Jetzt wird man die naheliegende Frage aufwerfen, ob jede Spaltenmatrix b,

welche auf der rechten Seite der Gleichung C0x b steht, sich als lineare
Kombination der Eigenmatrizen ux,u2,.'.. un_x darstellen läßt. Diese Frage
fällt im Falle der Kontinuante C0 mit der Frage nach der Möglichkeit der
harmonischen Analyse einer beliebigen Spaltenmatrix zusammen.

In der Tat, wie bei der ,,unendlichen" harmonischen Analyse einer (in 0
und 77 verschwindenden) Funktion f(x) diese, als konvergente, unendliche
lineare Kombination der Funktionen sin x, sin 2x,. in der Form

f (x) ß± sin x + ß2 sin 2 x + • • •

dargestellt wird, ebenso hat man bei der „endlichen" harmonischen Analyse
einer Spaltenmatrix b diese als lineare Kombination der Eigenmatrizen in
der Form

¦b1

h

-b»-i- ^
TT

sm —
n

sm
n

sm
(n-l)TT

n

+ /M/-

sm

sm

n
477

n

sm
2(72,-1)77

n

+ (3)

oder kürzer geschrieben in der Form

b ßl ul +ß2 u2 + ' ' ' +ßn-l "n-l (4)

darzustellen. (Die Eigenmatrizen von C0 vertreten die Sinusfunktionen
vollkommen auch in dem Sinne, daß ihre Bilder nichts anderes sind, als
Sehnenpolygone der Bilder von sin x, sin 2 x,. sin (n — 1) x, mit äquidistanten
Abszissen.)

Die Möglichkeit dieser Darstellung folgt aus der Vollständigkeit des
Systems der Eigenmatrizen uk.

Zur Berechnung der Koeffizienten ßx, ß2, ßn_1 benützt man — ebenso
wie bei einer unendlichen Fourierreihe — die Orthogonalität und Normiertheit
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der Eigenmatrizen. In der Tat, um den Koeffizient ßk in der Entwicklung (4)
zu erhalten, multipliziert man beide Seiten der Gleichung (4) von links miti^*.
Wegen der Orthogonalität verschwinden alle skalaren Produkte auf der rechten
Seite bis auf eines: uk*uk. Dieses Produkt ist aber wegen der Normiertheit
gleich 1. Also erhält man

& «**&.
Die Lösung der Gleichung C0x b kann also folgendermaßen ausgeführt

werden: Man berechne die „endlichen" Fourierkoeffizienten ßk der Spaltenmatrix

6 mit Hilfe der Formeln

o *t -1/2"/t • ^ l • ^tt _ (n-l)kTr\ßk **k**> =y- y>i sm— + 6aSm—_+ +6w_lSin^ ^ j (5)

Dann wird die Lösung der Gleichung C0x b

~
ß1

_l_
ß2 j_ _i_

ßn-1 „ (a\x =-)~ul+->ru2+ ' ' ' + ^ un-l- (6)
Al A2 An-1

Um diese Methode bei der Auflösung der Grundgleichungen einer
gleichmäßigen Kettenbrücke anwenden zu können, haben wir noch eine Ergänzung
einzufügen.

In den Grundgleichungen kommt nicht die Matrix C0 selbst vor, sondern
— wie erwähnt — eine Funktion <p(C0) dieser Matrix. cp(C0) hat aber nach
dem in I. § 4 angeführten Satze dieselben Eigenmatrizen wie C0 und ihre
Eigenwerte sind <p(Ai),<p(A2), (p(Xn_1). Bei der Lösung einer Gleichung von
der Form

<p(C0).x b (7)

müssen also in der Lösungsformel (6) die Nenner Xk durch 9 (A^) ersetzt werden,

d.h.

h*i <p (A*)*=EJh»*- w

Beide Lösungsformeln (6) und (8) stellen die endliche Fourierentwicklung
der lösenden Spaltenmatrix x dar.

Jetzt sind wir im Stande, die Grundgleichungen einer gleichmäßigen
Kettenbrücke ohne direkte Inversion der Gleichungsmatrix zu lösen.

Man hat bei einer gleichmäßigen Kettenbrücke

^01 ^12 ' ' * ln-l,n h ^01 «^12 * • • Jn-it7l J
und fast ohne Ausnahme

Pi V2 ''' Pn-l P>

In diesem Falle wird also

C==TC<" k e-j{e-\C)' p pe- (9)
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Die Spannungsgleichung einer gleichmäßigen Kettenbrücke nimmt jetzt nach
IV (8) folgende Form an

HP/„ lr\|m H-h

Die Gleichungsmatrix ist also in diesem Falle

Hl21 x\
<p(Cq) mit <p(x) X +Jfj[l- q)'

Um diese Gleichung bei unbestimmtem H auflösen zu können, haben wir die
Spaltenmatrizen q und e einzeln der harmonischen Analyse zu unterwerfen.
Man findet nach (5)

q ßlUl + ß2u2+- • • +ßn-1un_1; ßk uk*q,
lA *" n

(10)
e e1u1 + e2M2+ • • • +€n_ittn_1; e2k+1 l' — ^J^^ €2k °-

Unter Benützung dieser Werte erhält man die explizite Lösung der Spannungsgleichung

in folgender Form

*-lA*+¥7l1_-6)
Die Verschiebungsgleichung lautet nach IV (10) mit den oben eingeführten

Bezeichnungen

Die Gleichungsmatrix ist jetzt

i/^x -x 1/ x EJ x2 H
i/j(C0) mit xfj(x) -p r~ + T^

1_6^
und mit Benützung derselben Koeffizienten (10) lautet die Lösung

""^715 T k

ff

Die Bestimmungsgleichung für die relative Spannungsänderung x erhält
man am besten aus IV (14), indem man dort p* =pe*,H-h xh, ^&+1 Z

und den Wert (12) von v einführt. So ergibt sich
n—1

V ßk^k-Px^k _ ^x V /**.fe4-i\3 „„Zj ej Afc2 - — ~ yf Z-> \T~) ' '
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(Die Glieder mit geradem Index fehlen in der linken Summe, weil jedes e2k

verschwindet.) Zwischen 0 und oo ist die linke Seite dieser Gleichung abnehmend,

die rechte zunehmend. Bei einer Lastverteilung also, welche die linke
Seite für x ® positiv macht, hat die Gleichung (13) eine einzige positive
Wurzel. Ist diese Wurzel x gefunden, so ist H h (1 + x)-

Wird in der endlichen Fourierreihe (12) der Verschiebungsmatrix v bei

festem L der Grenzübergang n-^co,l >0 durchgeführt, so erhält man

für die Verschiebungsfunktion v(x) einer gleichmäßigen Kabelbrücke die

folgende, schon von Kärmän, Bleich u. a. angegebene unendliche Fourierreihe

Hier ist

V Pk-^P*" knx
v(x) > -j—g -j—-s sm —j^-.**"(t)+h(t) L

2 f k-nx
ßk jj \q(x)sm-j--dx

(14)

und
€o> lrA.12k+1 (2k+l)TT' €2k °-

Durch denselben Grenzübergang erhält man aus (13) die transzendente
Bestimmungsgleichung für die relative Spannungszunahme x i*1 folgender
Form

L L

pjv(x)dx ^j(^Jdc
Hier bedeutet d s das Bogenelement der Kabelkurve an der Stelle x unter der

Wirkung der toten Last.

Abschnitt VII

Im folgenden Beispiel wird die Berechnung einer gleichmäßigen Kettenbrücke

mit 5 Hängestäben durchgeführt.

h 90t h 90t

4 ^<^^
1——r""^^

1000cm WOOcm WOOcm WOOcm 1000cm woocm
A

f>r<

9,"

,20t />2-

r28.2t qp

,20t ßA

'28.2t q3

20t P^
%

1U.1t

,20t p5%

¦0 95

,20t

-0

Fig. 4
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Zur Berechnung der obigen Hängebrücke (Fig. 4) sind folgende Zahlenwerte

notwendig:

Die Länge des Versteifungsträgers: £ 6000 cm.
Die Anzahl der Balkenabschnitte: n 6.

Die Länge eines Balkenabschnittes: Z —= 1000 cm.

Der Höhenunterschied zwischen dem tiefsten Punkte der Kette und den
Aufhängungspunkten: 1000 cm.

Das konstante Querschnittsträgheitsmoment des Balkens: J 475000 cm4.
Der Elastizitätsmodul des Balkens sowie der Kette: E 2100 t/cm2.
Querschnittsflächeninhalt der Kette: F' 52 cm2.

Die tote Last: p 20 t pro Hängestab.

Die von der toten Last herrührende Horizontalspannung wird nach
Abschnitt II

h p
l

8 y„
90 t.

Wir wollen die Spannungen und Verformungen der Brücke bei folgender
Verteilung der lebenden Last berechnen:

9l 28,2 t, q2 28,2 t, q3 14,11, g4 q5 0.

Die Berechnungen werden wir sowohl für undehnbare als auch für dehnungs-
fähige Ketten durchführen.

Die Eigenwerte, sowie die Eigenmatrizen der zur sechsgliedrigen Brücke
gehörigen Kontinuante fünfter Ordnung C0 kann man nach VI (1)(2) aus
einer trigonometrischen Tafel sofort entnehmen:

Ai 0,2679,

"0,2887"

0,5000
0,5773
0,5000

_0,2887_

Nach den Ausführungen des Abschnittes VI hat man zuerst die harmonische
Analyse

VtV, A2 *, A3 *, i\ 4 — °>
' 0,5000" " 0,5773"

0,5000 0,0000
0,0000 W3 -0,5773 "4

-0,5000 0,0000

-0,5000_ _ 0,5773_

A5 3,7320
' 0,5000" " 0,2887"
-0,5000 -0,5000

0,0000 > U5 0,5773
-0,5000 -0,5000

0,5000_ _ 0,2887__

der lebenden Last q

28,2
28,2
14,1

0

0

und der toten Last p pe

20
20
20
20
20

durchzuführen. Durch Anwendung der Formeln VI (10) und VI bekommen
wir

q 30,3813i*i + 28,2 m2 + 8,1406 w3 + 0tt4 + 2,1813tf5
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oder ausführlich

"28,2"
28,2
14,1
0

0

30,3813 "0,2887"
0,5000
0,5773
0,5000
0,2887

+28,2 " 0,5"
0,5
0,0

-0,5
-0,5

+ 8,1406 " 0,5773"
0,0000

-0,5773
0,0000

_ 0,5773_

+ 2,1813 " 0,2887"

-0,5000
0,5773

-0,5000
0,2887

und

p 43,0940 i*i + 0u2+l 1,547 u3 + 0u4 + 3,0940 u5

oder ausführlich

20"" 43,0940
20
20

20
20

"0,2887"

0,5000
0,5773
0,5000
0,2887

+ 11,547 0,5773" + 3,0940 " 0,2887"
0,0000 -0,5000
0,5773 0,5773
0,0000 -0,5000
0,5773_ _ 0,2887_

Wir haben zunächst mit Hilfe der Gleichung VI (13) die veränderte Horizontalspannung,

bzw. die relative Spannungsänderung x zu berechnen. Die
Bestimmungsgleichung für x wird nach VI (13)

52,63 - 74,64 x 14,10-20,00* 3,778 - 5,359 x
79,65 + 19,39* 18495+ 540* 415300 + 3761 x

0 im Falle einer undehnbaren Kette,
0,0138 x im Falle einer dehnbaren Kette.

Die einzige positive Wurzel dieser Gleichung ist: x 0,7050 für undehnbare
Kette und x 0,6930 für dehnbare Kette.

Werden diese Werte von *, bzw. von H h(l+x) in die Formel VI (11)
und VI (12) eingetragen, so erhält man für die Biegespannungen, bzw. für die
Vertikalverschiebungen folgende Werte:

Biegespannungen (t-cm)

mx m2 m3 m4 m5

-12 498

-12 958
-12 498
-13 226

0

-7960
12 498
11 790

12 498
12 060

undehnbar
dehnbar

Vertikalverschiebungen (cm)

*>i ^2 ^3 ^4 ^5

10,44
11,75

10,44
12,68

0

2,56
- 10,44

- 8,22
- 10,44

- 9,15
undehnbar
dehnbar
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Zusammenfassung

In der Fachliteratur findet man verschiedene Ansätze, welche eine finiti-
sierende Tendenz erkennen lassen und die Differentialgleichungen der Hänge-
brückentheorie durch Differenzengleichungen, bzw. die stetig verteilte Last
durch konzentrierte ,,Knotenlasten" ersetzen. Der Verfasser war bestrebt, eine
konsequente finite Theorie für Kettenbrücken aufzubauen. — Ist das
Querschnittsträgheitsmoment des Versteifungsträgers einer einfeldrigen Kettenbrücke

streckenweise konstant und wird die lebende Last durch statisch
äquivalente Knotenlasten ersetzt, so kann die Kettenbrücke als ein Fachwerk mit
steifen und gelenkigen StabVerbindungen aufgefaßt werden. Die Gleich-
gewichtsgleichungen dieses finitisierten Brückenmodells, welche den
Zusammenhang zwischen den Knotenlasten und Knotendurchbiegungen ausdrücken,
lassen sich übersichtlich in eine einzige Matrizengleichung zusammenfassen.
Die Lösung dieser Matrizengleichung erfordert nur das praktisch bequem
durchführbare Invertieren von Kontinuantmatrizen. — Beim Grenzübergang
für unbegrenzt zunehmende Knotenanzahl geht diese Matrizengleichung in die
Melansche Differentialgleichung der Kabelbrücken über; als Grenzgebilde der
inversen Matrix ergibt sich die Greensche (Einfluß-) Funktion. — Sind die
Eigenwerte und Eigenvektoren (Eigenfunktionen) der Gleichungsmatrix
(Differentialgleichung) bekannt, so kann man die Lösung auch in der Form
einer endlichen (unendlichen) Fourier-Entwicklung erhalten. — Die Methode
läßt sich auch im Falle einer mehrfeldrigen, durchlaufenden Hängebrücke
verwenden.

Summary

In the specialised literature, various studies have been published which
exhibit a tendency towards definite Solutions and in which the differential
equations of the theory of Suspension bridges are replaced by difference
equations, the uniformly distributed load being itself replaced by loads
concentrated at the nodes. The author has endeavoured to establish a consistent
finite theory for chain bridges. If the moment of inertia of the section of the
stiffening girder of a chain bridge with a single span is constant by stages,
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and if the live load is replaced by statically equivalent concentrated loads,
the chain bridge may be treated as a lattice structure consisting of jointed
assemblies of rigid bars. The equilibrium equations of this type of bridge,
equations which express the correlation between the loads concentrated at
the nodes and the deflections at these nodes, may be summarised quite
clearly in the form of a single matricial equation. In order to solve this
equation, all that is necessary is to carry out an inversion of the matrices,
which is quite easily done in practice. As the limit for a number of nodes

increasing in an unlimited manner is approached, this matricial equation
assumes the form of Melan's differential equation for cable bridges; the limiting
form of the inverted matrix is Green's influence function. If the actual values
and actual vectors (actual functions of the matrix) (differential equation) are
known, it is also possible to obtain the Solution in the form of a finite (infinite)
Fourier expansion. This method is equally applicable to the case of a
continuous Suspension bridge with several spans.

Resume

Dans la litterature specialisee, ont ete publiees differentes etudes qui
manifestent une tendance vers les Solutions finies et dans lesquelles les equations

differentielles de la theorie des ponts suspendus sont remplacees par des

equations aux differences, la charge uniformement repartie etant elle-meme
remplacee par des charges concentrees aux noeuds. L'auteur s'est efforce
d'etablir une theorie finie consequente pour les ponts a chaines. Si le moment
d'inertie de la section de la poutre de raidissement d'un pont a chaines ä une
seule travee est constante par paliers et si la charge utile est remplacee par
des charges concentrees statiquement equivalentes, le pont a chaines peut
etre traite comme un ouvrage en treillis constitue par des assemblages arti-
cules de barres rigides. Les equations d'equilibre de ce modele de pont, equations

qui expriment la correlation entre les charges concentrees aux noeuds et
les fleches en ces noeuds, peuvent etre resumees d'une maniere claire sous la
forme d'une seule equation matricielle. Pour resoudre cette derniere equation,
il suffit de proceder a une inversion des matrices, qui peut en pratique etre
effectuee aisement. Lorsque l'on passe ä la limite pour un nombre de noeuds

augmentant d'une maniere illimitee, cette equation matricielle prend la forme
de l'equation differentielle de Melan pour les ponts ä cäble; la forme limite de
la matrice inverse est la fonetion d'influence de Green. Si les valeurs propres
et les vecteurs propres (fonctions propres de la matrice) (equation differentielle)
sont connus, il est possible d'obtenir egalement la Solution sous la forme d'un
developpement fini (infini) de Fourier. Cette methode peut etre egalement
appliquee au cas d'un pont suspendu continu ä plusieurs travees.
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