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Begriindung und Darstellung einer allgemeinen Theorie der
Hiingebriicken mit Hilfe der Matrizenrechnung

Bases of a general theory of suspension bridges using a matricial method
of calculation

Bases d’une théorie générale des ponts suspendus, faisant appel au calcul matriciel

E. EceErVARY, Mitglied der Akademie Budapest

Die zur Erforschung des statischen Verhaltens eines aus starren oder
elastischen Korpern zusammengesetzten Systems geeigneten mathematischen
Hilfsmittel werden bekanntlich durch die Anzahl der Freiheitsgrade des
Systems bestimmt. Diejenigen Probleme der technischen Festigkeitslehre, bei
welchen das HookEesche Elastizitdtsgesetz zu Grunde gelegt wird, fithren bei
Systemen von endlich vielen Freiheitsgraden zu linearen, algebraischen Glei-
chungen, bei Systemen von unendlich vielen Freiheitsgraden aber zu linearen
Differentialgleichungen.

Es ist eine historische Tatsache, dafl die Auflosungstheorie der linearen
Differentialgleichungen — im besonderen mit Hilfe der GREENschen Funktion,
bzw. der Eigenfunktionen — sich frither entwickelt hat, als die analoge Auf-
I6sungstheorie der linearen, algebraischen Gleichungen mit Hilfe der Matrizen-
rechnung. Diesem Umstande ist es wohl zuzuschreiben, dal in der Theorie
der Héngebriicken fast ausschlieflich Modelle mit unendlich vielen Freiheits-
graden zu Grunde gelegt worden sind, die zu einer linearen Differentialgleichung
fithren, wahrend die Verwendung von Modellen mit endlich vielen Freiheits-
graden, die zu einem linearen, algebraischen Gleichungssystem fithren, kaum
iiber den ersten Anfang hinausgekommen ist.

Bei der Auswahl des geeigneten mathematischen Modells fiir eine Héange-
briicke hat man zwischen Kabelbriicke und Kettenbriicke scharf zu unter-
scheiden.

Eine Kabelbriicke, als Verkniipfung eines eindimensionalen biegsamen
Kontinuums mit einem elastischen Balken durch endlich viele starre Héange-
stibe, kann — bei einigermaflen betrichtlicher Anzahl der Hingestibe —
sicherlich durch das einfachere Modell ersetzt werden, bei dem Kabel und
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Balken durch eine Hingemembrane gekoppelt sind, und dieses Modell fiithrt
sofort auf die wohlbekannte, zuerst von E. MELAN aufgestellte lineare Differen-
tialgleichung.

Eine Kettenbriicke aber, deren Kettenglieder und Héngestidbe als starre
(oder hochstens in ihrer Langsrichtung dehnungsfihige) Stéabe zu betrachten
sind, 148t sich viel genauer und vorteilhafter als ein System von endlich vielen
Freiheitsgraden behandeln, wenn man die zusitzliche (lebende) Belastung
— deren mathematisch genaue Verteilung weder bekannt noch praktisch von
Belang ist — durch statisch dquivalente, an den unteren Endpunkten der
Héngestabe angreifende Einzelkrifte ersetzt. Dieses , finitisierte’ Modell einer
Kettenbriicke fiihrt — bei Anwendung der elementarsten Satze der tech-
nischen Festigkeitslehre — auf ein System von linearen, algebraischen Glei-
chungen, bei welchen die Anzahl der Unbekannten der Anzahl der Hinge-
stdbe gleich ist.

In der vorliegenden Arbeit wird das System der Gleichgewichtsgleichungen
einer finitisierten Kettenbriicke mit matrizentheoretischen Hilfsmitteln auf-
gestellt und gelost. Dabei wird auch die — von einzelnen Autoren schon
angedeutete — Tatsache ins klare Licht gestellt, dass der aus der Theorie der
linearen Differentialgleichungen her bekannten GrREENschen Funktion, bzw.
deren Bilinearreihe die Inverse der Koeffizientenmatrix des obigen Gleichungs-
systems, bzw. deren kanonische Darstellung (Spektralzerlegung) als finite
Urformen entsprechen.

Um die Analogie und den Zusammenhang zwischen den scheinbar wesent-
lich verschiedenen Methoden und Lésungsformeln moglichst klar hervortreten
zu lassen, werden wir die Grundgleichungen einer Kettenbriicke mit einem
Hangestab, mit n Hingestdben und mit unendlich vielen Héngestiben parallel
diskutieren. Dabei wird es sich herausstellen, daBB die Diskussion einer Ketten-
briicke mit eznem Hingestab der Losung einer allereinfachsten Ubungsaufgabe
aus der technischen Mechanik gleichwertig ist, aber dennoch die daraus entsprin-
genden einfachen Losungsformeln auch fiir eine Kettenbriicke mit » Héange-
stdiben ihre Giiltigkeit bewahren, wenn die darin vorkommenden skalaren
GroBen durch entsprechende Matrizen ersetzt werden.

Dariiber hinaus werden wir zeigen, daf3 die auf diese Weise fiir die n-glie-
drige Kettenbriicke aufgestellten matrizentheoretischen Losungsformlen bei
dem Grenzprozesse »— o0 in die von TiMosHENKO, KARMAN, BLEICH u. a.
fiir Hangebriicken mit unendlich vielen Héngestiben angegebenen Losungs-

formeln iibergehen.
*

Wir haben bis jetzt allgemein von Grundgleichungen der Hingebriicken
gesprochen. In Wirklichkeit gibt es bekanntlich bei jedem Problem der Elasti-
zitdtstheorie zwei Arten von Grundgleichungen, ndmlich Spannungsgleichun-
gen und Verschiebungsgleichungen.
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Die Spannungsgleichung einer Héingebriicke, welche die Biegungsspan-
nungsmatrix des Balkens (Versteifungstrigers) als Unbekannte enthilt, hat
eine besonders einfache Form. Bei endlich vielen Héngestéaben ist die Glei-
chungsmatrix eine symmetrische Kontinuante, welche bekanntlich verh&ltnis-
miBig leicht invertierbar ist. Bei unendlich vielen Hingestdben ist die Span-
nungsgleichung eine lineare Differentialgleichung zweiter Ordnung, deren
GrEENsche Funktion (EinfluBfunktion) bei konstantem Querschnittstragheits-
moment explizit angebbar ist, bei variablem Querschnittstrigheitsmoment
durch eine unendliche Reihe dargestellt werden kann. ‘

Die Verschiebungsgleichung einer Hiangebriicke, welche die Durchbiegungs-
matrix, bzw. Durchbiegungsfunktion des Briickenbalkens als Unbekannte ent-
halt, hat sowohl in Matrizen- ‘als auch in Differentialform einen wesentlich
komplizierteren Bau. Durch Anwendung einer Matrizenidentitét, deren infi-
nitesimales Analogon schon von D. HILBERT angegeben worden ist, wird es
aber gelingen, die Losung der Verschiebungsgleichung auf diejenige der
Spannungsgleichung zuriickzufithren. Damit werden auch die von KARMAN,
BLEICH u. a. gefundenen Reihenentwicklungen in den Rahmen der allgemeinen
Theorie eingefiigt.

Die kanonische Darstellung der Gleichungsmatrizen sowie die als deren
Grenzfall zu betrachtenden BrLricHschen Reihenentwicklungen  haben bei
variablem Querschnittstrigheitsmoment vorwiegend theoretisches Interesse,
weil kein einziger Spezialfall bekannt zu sein scheint, in dem die Eigenwerte
und Eigenmatrizen, bzw. Eigenfunktionen, in einer zur praktischen Rechnung
geeigneten Form bekannt wiren. So scheint zur Zeit das Invertieren der in
den Gleichgewichtsgleichungen auftretenden Kontinuantmatrizen das brauch-
barste Hilfsmittel zur Berechnung von ungleichméBigen Kettenbriicken.

Bei einer gleichmiBigen Kettenbriicke aber, wo die Hingestidbe dquidistant
sind und der Briickenbalken ein konstantes Querschnittstrigheitsmoment hat,
diirften die explizit bekannten Eigenwerte ui.d Eigenmatrizen der Gleichungs-
matrix als das geeignetste Hilfsmittel zur praktischen Berechnung bezeichnet

werden, weil sie dann automatisch die Fourier-Entwicklung der gesuchten
" Biegespannung, bzw. Durchbiegung liefern.

Wenn bei der Erdrterung eines Problems zwei verschiedene Ldésungs-
methoden wie hier die Matrizenmethode und die Differentialmethode einander
gegeniibergestellt werden, so ist eine vergleichende Betrachtung ihrer prak-
tischen Anwendbarkeit naheliegend. Es besteht kein Zweifel dariiber, daB fiir
eine Kettenbriicke mit wenigen Héngestiben die Matrizenmethode die Ver-
formungen und Spannungen der Briicke viel genauer beschreiben wird als
die Differentialmethode.

Bei groflen Kettenbriicken mit 30 und mehr Héngestdben wird die Abwei-
chung zwischen den mit diesen beiden Methoden gewonnenen Ergebnissen
voraussichtlich so geringfiigig, daf sie gegeniiber der Unsicherheit der Material-
konstanten wohl vernachlissigt werden kann. Wenn man aber beriicksichtigt,
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daB die Losungsformeln der Differentialgleichungen immer praktisch unbe-
queme Grenzprozesse (bei Verwendung der GREENschen Funktion bestimmte
Integrale mit Parameter, bei Verwendung der Eigenfunktionen unendliche
Reihen) enthalten, so wird man geneigt sein, die Anwendung der finiten
Matrizenmethode auch in diesem Falle als vorteilhaft zu betrachten.

Wie bei jedem System, welches ein durch vertikale Krifte gespanntes
Kabel oder Kette enthilt, so hat man auch bei einer Hédngebriicke — neben
der Auflésung einer linearen Matrizen- oder Differentialgleichung — noch die
durch die zusitzliche Belastung hervorgerufene Anderung der Kabel- bzw.
Kettenspannung, d. h. die zusétzliche Horizontalspannung zu berechnen. Diese
Berechnung wird allgemein so durchgefiihrt, daf fiir die unbekannte relative
Spannungsinderung mit Hilfe von kinematischen und elastizitdtstheoretischen
Uberlegungen eine Gleichung aufgestellt wird, deren algebraisch groBte Wurzel
die gesuchte relative Spannungsidnderung liefert.

Die Berechnung der Spannungsinderung ist auch im Falle einer finitisier-
ten Kettenbriicke keine lineare Aufgabe. Selbst bei einer Kettenbriicke mit
einem einzigen Héngestab hat man eine algebraische Gleichung zweiten Grades
zu l6sen. Bei einer Hingebriicke mit n Héingestédben ergibt sich eine algebraische
Gleichung 7+ 1-ten Grades, bei einer Kabelbriicke eine transzendente Glei-
chung. Fiir die approximative Losung dieser Gleichungen sind verschiedene
Methoden vorgeschlagen worden.

Bei einer gleichméfligen Kettenbriicke kann die Bestimmungsgleichung
fir die relative Spannungszunahme auf eine solche Form gebracht werden,
die die Existenz einer einzigen positiven Wurzel erkennen 148t und unschwer
approximativ gelost werden kann.

Bei einer ungleichméBigen Kettenbriicke wird wohl das bequemste Ver-
fahren das sein, die gegebene Briicke durch eine hinsichtlich der Spannungs-
anderung annidhernd &dquivalente gleichmé&fBlige Briicke zu ersetzen und die
darin eintretende relative Spannungsinderung nach bekannten Methoden
approximativ zu berechnen.

Um die vorliegende Arbeit moglichst lesbar zu gestalten, haben wir sie
folgendermaflen in Abschnitte eingeteilt.

I. Im ersten Abschnitt wird eine moglichst knappe Darstellung derjenigen
Begriffe und Satze der Matrizentheorie gegeben, welche in den folgenden
Abschnitten gebraucht werden. Auch der Zusammenhang zwischen den
Kontinuantmatrizen und den linearen Differentialgleichungen wird fliichtig
erortert.

II. Im zweiten Abschnitt werden die wohlbekannten Gleichgewichts-
gleichungen einer durch vertikale Einzelkrafte beanspruchten Kette bzw.
Balken angefiihrt und in Matrizenform dargestellt.

I1I. Der dritte Abschnitt bringt die elementare Berechnung der Biege-
spannung und der Durchbiegung einer zweigliedrigen Kettenbriicke mit einem
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einzigen Hingestab. Gleichzeitig wird auch die Gleichung zweiten Grades,
welche die zusétzliche Horizontalspannung bestimmt, aufgestellt.

IV. Im vierten Abschnitt zeigen wir, dal die im Abschnitt III fiir die
zweigliedrige Kettenbriicke hergeleiteten elementaren Losungsformeln auch
fir die n-gliedrige Kettenbriicke giiltig bleiben, wenn die skalaren GréBen
durch entsprechende Matrizen ersetzt werden. Auch die Bestimmungsgleichung
fiir die zusédtzliche Horizontalspannung wird in Matrizenform erhalten.

V. In diesem Abschnitt wird der Grenziibergang von einer n-gliedrigen
Kettenbriicke zu einer unendlich vielgliedrigen Kabelbriicke durchgefiihrt.

Im Abschnitt VI werden diejenigen Vereinfachungen und praktischen
Vorteile angegeben, die sich im Falle einer gleichmiBigen Ketten- oder Kabel-
briicke einstellen.

Abschnitt VII bringt endlich einige Beispiele iiber die Anwendung der
geschilderten Methoden.

Abschnitt I [1]

§ 1. Wahlt man als leitende Idee bei der Einfithrung der Matrizen ihre
Anwendbarkeit zur Losung linearer Gleichungssysteme, so kann man sich
zunéchst folgende Aufgabe stellen.

Die Koeffizienten a,;, die Unbekannten x; und die Stérungsglieder b, eines
geordneten linearen Gleichungssystems

Aoy &1+ Agg Tyt -+ + Ay, T, = by (1)
a’nlx1+an2x2+ e +a’nnxn = bn

sollen derart in Symbole A, x,b zusammengefalit werden, dal man erstens
mit diesen Symbolen mdglichst genau so rechnen kann wie mit gewohnlichen
Zahlen, zweitens das Gleichungssystem (1) und seine Losung mit diesen Sym-
bolen in der Form
Ax=0b bzw. x=A471b (2)

darstellbar sei.

Fiir diesen Zweck wird es geniigen, die Begriffe: Spaltenmatrix, Zeilen-
matrix und quadratische Matrix einzufiihren.

Spaltenmatrix n-ter Ordnung ist die Zusammenfassung von n geordneten

Zahlen (Elementen) a,,a,, ... a, in ein vertikales Schema von der Form
ay
a=| "
a,
Zeilenmatrix ist die Zusammenfassung von n geordneten Zahlen b, ,b,, ... b,

in ein horizontales Schema von der Form
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b* = [byb,...b,].

Eine quadratische Matrix n-ter Ordnung ist die Zusammenfassung von
n? doppelt geordneten Zahlen a,;,a,,, . . . @,, in ein schachbrettartiges Schema
von der Form

all alz . e e aln
A — (1/21 a22 o s e azn
Ap1Qpo - App

Das Gleichheitszeichen zwischen zwei Matrizen bedeutet, daBl sie gleichviel
Spalten und Zeilen enthalten und ihre homologen (an gleicher Stelle befind-
lichen) Elemente gleich sind.

Eine Matrix, deren alle Elemente gleich 0 sind, wird Nullmatrix genannt
und mit 0 bezeichnet.

Eine quadratische Matrix mit den Elementen 3;; (5;;=1 fiir =7 und =0
fir ¢+74) heit Einheitsmatrix und wird mit E bezeichnet. Die Rechenregeln
fir die Addition und Subtraktion von Matrizen lauten:

[a,ay...a,]+[b1by...0,]=[a;+b;,05+0s,...0,+b,] (3)
@y 2 [ a;+b, 2% b1 [ @111 b1y T
G (1] b || %tb + -
ad Lo, 1 la, 40 a, B G By |

Eine beliebige Matrix wird mit einer Zahl (Skalar) multipliziert, indem
man jedes Element der Matrix mit der betreffenden Zahl multipliziert.

Das Produkt von zwei Matrizen ist nur dann erklirt, wenn die Spalten-
anzahl des ersten (linken) Faktors mit der Zeilenanzahl des zweiten (rechten)
Faktors iibereinstimmt (Konformitidtsbedingung zweier benachbarter Fak-
toren). In dieser Arbeit werden nur folgende Matrizenprodukte vorkommen

b, 11 Q12 - - - Qg by Za,b,
b n Ayy @ a b 2y, b
2 _ . 21 %22 < - Y2n 2 _ 2v Yv |.
[aia,...a,]l .° |=2a,b,; . . =1 j
: v=1 : . :
b, Ap1Qpso - App b, 2a,,b,_| )
: -
au alz "'a’ln bll b12 "'bln Za’lvbvl Zaxlvbvz ...Ealv’bvn
Uy Qgg - - - g || Doy bog o by | | 20y, b, X0y, b,y ... Zay, b,
A1z -« - App bnlbn2"'bnn Z"a’nvbvlZ"'a’nvbu2 "'Zan‘vbvn—

Aus diesen Multiplikationsformeln folgen die charakteristischen Eigenschaften
der Einheitsmatrix E

Ea=a; EA=AE = A.



Theorie der Héngebriicken mit Hilfe der Matrizenrechnung 155

Auch das Produkt von drei und mehreren Matrizen kann nach diesen Regeln
gebildet werden, wenn die Konformitdtsbedingungen zwischen je zwei benach-
barten Faktoren erfiillt sind. So ist z. B.

a*Bc = i ibuvaucv. (5)
1

u=1v=
Aus einer quadratischen Matrix 4 kann man die Matrixpotenzen

(4° = E), A, 42, 43, . ..

und mit beliebigen Zahlen ¢,,¢,,¢,, ... die Matrixpolynome

coE+c, A+c, A%+ - - -
bilden.

Fast alle wesentlichen Rechenregeln der gewohnlichen Zahlen bleiben bei
den Matrixoperationen erhalten, nur die Multiplikation ist im allgemeinen
nicht kommutativ; die Reihenfolge der Faktoren eines Matrizenproduktes
darf also im allgemeinen nicht vertauscht werden.

§ 2. Es ist zweckm#fBig, schon hier einige spezielle Matrizentypen einzu-
filhren. Die aus der linken, oberen Ecke ausgehende Diagonale einer quadra-
tischen Matrix 4 nennt man Hauptdiagonale. Werden alle Elemente einer
quadratischen Matrix an der Hauptdiagonale gespiegelt, so erhidlt man die
Transponierte von A4, welche mit 4* bezeichnet wird. (Auch die Bezeichnung
a* einer Zeilenmatrix erinnert daran, daB sie als Transponierte einer Spalten-
matrix a betrachtet werden kann.)

Ist eine quadratische Matrix ihrer Transponierten gleich, also A =A%, so
wird sie symmetrisch genannt. In dieser Arbeit werden ausschliefllich sym-
metrische (quadratische) Matrizen vorkommen.

Die einfachste symmetrische Matrix ist die Diagonalmatrix, welche nur in
der Hauptdiagonale von 0 verschiedene Elemente enthélt.

Als einfachste symmetrische Matrizen nach den Diagonalmatrizen miissen
die symmetrischen Kontinuanten betrachtet werden, welche nur in der
Hauptdiagonale und in den dazu benachbarten Schréiglinien von 0 verschie-
dene Elemente enthalten. Eine symmetrische Kontinuante n-ter Ordnung hat
also folgende Form
[a,0,0 ...0 7]
byasby ... 0
C= 0 byas...0

000 ...a

Tt

Man wird sehen, da3 diese symmetrischen Kontinuanten, welche schon in der
Fachwerkstatik vorgekommen sind, in der Theorie der Kettenbriicken eine
hervorragende Rolle spielen.
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§ 3. Die bis jetzt erklirten Begriffe und Rechenoperationen geben uns
schon die Moglichkeit, das lineare Gleichungssystem (1) in der gewiinschten
Form darzustellen. In der Tat, wenn die n? Gleichungskoeffizienten a,; zu
einer quadratischen Matrix 4, die Unbekannten z;, bzw. die Stérungsglieder b,
zu einer Spaltenmatrix x, bzw. b vereinigen, so 148t sich das Gleichungs-
system (1) zu der einzigen Matrizengleichung 4 x =b zusammenfassen. Jetzt
koénnen wir uns also der zweiten Forderung zuwenden: das Symbol 4~ so zu
erkldren, dafl die Losung in der Form (2) darstellbar und berechenbar sei.

Zu diesem Zweck wird es geniigen, die reziproke (oder inverse) Matrix
A1 von A durch die Forderung zu erkliren, dal das Produkt von 4! und
A (in irgendwelcher Reihenfolge) der Einheitsmatrix E gleich sein soll, d.h.

A1 A=A4-A1=E.
Ebenso wie die Zahl 0 keine Reziproke hat, so besitzt auch eine quadratische
Matrix, deren Determinante verschwindet, keine Reziproke. Ist aber die
Matrix 4 nicht singulir, ist also ihre Determinante
det A+£0,

so besitzt 4 eine Reziproke, welche durch die folgende explizite Formel gelie-
fert wird

-1
(1 Qg - - - Ay Ay Ay oo Ay
: detA| :
Ap1pg - - - Ay —AlnAzn o Ann

Hier bezeichnet A4,; die zum Element a;; gehorige (mit richtigem Vorzeichen
versehene) Unterdeterminante von det 4.

Das Gleichungssystem ist also gewill 16sbar, wenn d et A4 %0 ist, und Multi-
plikation der Matrizengleichung 4 x=>b beiderseits von links mit 4! liefert
die Losung in der gewiinschten Form.

Hierzu ist vom praktischen Standpunkt aus folgendes zu bemerken: Zur
wirklichen Berechnung der Reziproken ist die Formel (6) — bei einigermaflen
hoher Ordnungszahl — wegen den darin auftretenden Determinanten absolut
unbrauchbar. In der Kettenbriickentheorie hat man aber nur mit den oben
eingefiihrten Kontinuanten zu tun und zum Invertieren dieser Kontinuanten
werden wir numerisch gut verwendbare Rechenverfahren angeben. Als Bei-
spiel sei hier die Reziproke der einfachsten Kontinuante n —1-ter Ordnung

C, angegeben.

—2-10... 0 0 [(n-1)1 (n-2)1 (n-3)1... 21 1,1 7
~12-1... 00 (n-2)1 (n-2)2 n-3)2... 22 1,2
ca_| 01200 1[®m31(@®3)2@®3)3... 23 13
0o - . . - g
000 2-1 21 22 23 ...2(n-2) 1(n-2)
| 00 0...-1 2 L1 12 1,3 ...1(n-2) 1(n-1)_

(7)
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Mit der Definition der inversen Matrix ist auch die Division von Matrizen
erklart. Mit einer nichtsinguliren Matrix zu dividieren, hei3t, mit ihren
Inversen zu multiplizieren, wobei allerdings rechtsseitige und linksseitige
Division zu unterscheiden sind. Sind aber der Dividend und der Divisor Poly-
nome derselben Matrix, so ist der Quotient unabhingig von der Reihenfolge
und existiert nur dann, wenn der Divisor nicht singulir ist.

§ 4. Um die bei den gleichméBigen Kettenbriicken anzuwendende Rech-
nungsmethode vorzubereiten, miissen wir noch einige Sitze iiber die Eigen-
werte und Eigenmatrizen einer symmetrischen Kontinuante vorausschicken.

Eine Spaltenmatrix u wird durch Multiplikation mit einer symmetrischen
Matrix A4 in eine andere Spaltenmatrix 4 u transformiert. Unterscheidet sich
diese Transformierte 4 u von u nur in einem skalaren Proportionalitdtsfaktor A,
besteht also die Gleichung

Au = \u,

so wird A ein Eigenwert und u die dazu gehérige Eigenmatrix von 4 genannt.
Beziiglich der Existenz und Anzahl solcher Eigenwerte und Eigenmatrizen
gilt folgender Satz:

Zu jeder (reellen) symmetrischen Matrix 4 n-ter Ordnung gehoéren =
Eigenwerte

AL, Ag, . LA,
und » Eigenmatrizen
u,uy, ... Uu,,
welche die Gleichungen
Au, = u, . (8)

befriedigen.
Ist ¢ (A) ein Polynom oder rationale Funktion der Matrix A, so hat ¢ (A4)
die Eigenwerte

P (A1), @A), ... (X))

und dieselben Eigenmatrizen wie 4. Es gelten also die Gleichungen
P (A4) uy, = @A) uy.
Die Eigenmatrizen u; sind orthogonal, d.h. u;*u, =0 fir k4% und kén-
nen so normiert werden, dal u,* u; =1 sei.
Das System der Eigenmatrizen ist vollstindig in dem Sinne, daB jede

Spaltenmatrix n-ter Ordnung e als lineare Kombination der Eigenmatrizen
u;, mit skalaren Koeffizienten ¢, in der Form

a=cu +cuy+---+c,u,
darstellbar ist.
Die Eigenwerte und Eigenmatrizen sind nur fiir wenige Matrizen explizit
bekannt. Thre Kenntnis vereinfacht die Losung des entsprechenden Gleichungs-
systems ganz bedeutend.
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§ 5. Bei dieser knappen Schilderung der Elemente der Matrizenrechnung
haben wir die Forderung in den Mittelpunkt gestellt, daB} ein lineares Glei-
chungssystem, bzw. seine Losung symbolisch in der Form (2) darstellbar sei.

Es wire aber ein Zerrbild, die praktische Bedeutung der Matrizenrechnung
ausschlieBlich in dieser symbolischen Schreibweise der Losung zu erblicken.

Erstens zeigt sich die Verwendung der reziproken Matrizen zur numeri-
schen Berechnung der Kettenbriicken nur deshalb besonders geeignet, weil
hier iiberall Kontinuanten auftreten, deren Invertierung eine verhéltnismaf3ig
kurze und einfache Rechenaufgabe ist.

Dariiber hinaus zeigt sich aber die Leistungsfihigkeit der Matrizenrechnung
iiberall dort, wo man solche Eliminationen und andere Umformungen der
linearen Gleichungssysteme vorzunehmen hat, deren Ergebnis in skalarer
Schreibweise uniibersichtlich oder gar nicht explizit angebbar ist.

§ 6. Um den Zusammenhang zwischen Kontinuanten und linearen Differen-
zialgleichungen zweiter Ordnung erkliren zu koénnen, miissen wir einige ein-
leitende Begriffe vorausschicken.

Hat man eine unendliche Folge von Spalten- (oder Zeilen-) Matrizen

f(l),f(2), .. .f(n), cees

wo der obere Index die Ordnung der Matrizen angibt, so kann man jede dieser
L 2L nL
n+l’n+2’ " " n+l
(L> 0 sonst beliebig) die Elemente f,™,f,™, ... f ™ von f™ als Ordinaten
entsprechen l4B3t. Es kann vorkommen, daf3 die auf diese Weise gewonnenen
Punktgruppen bei unendlich wachsendem n sich zu einer stetigen Kurve ver-
dichten. In diesem Falle werden wir sagen, dafl der Limes der Matrizenfolge

eine stetige Funktion einer Variablen ist. Genauer:

Matrizen graphisch darstellen, indem man den Abszissen ——

lim f®™ = f(x), wenn fiir jedes x aus (0, L) lim f,™ = f(x)
n— 0 n— ©

kL
AL o
n
In derselben Weise kann eine unendliche Folge G™ von quadratischen
Matrizen zu einer in 0<x,y <L definierten stetigen Funktion G (x,y) von
zwei Variabeln konvergieren.
Eine Folge von Matrizenprodukten geht bei dem entsprechend normierten
Grenziibergang in ein bestimmtes Integral iiber. In der Tat

L
lim £g‘”)"‘fm) = lim Z 9™ fk(")— Jg(x)f(x)dx
n— n n—ow k=1 0
und
L
lim -2 G® f® = lim Z G £ % [ G, €)f(¢)dE. (9)
n-—> o n—o k= 1]

kL

— 5
n
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Wie man sieht, ist der Limes einer Matrizenproduktfolge nicht das Produkt
der beiden Grenzfunktionen, sondern deren Produktintegral.

Die Universalitit der Matrizenrechnung zeigt sich auch darin, daf3 nicht
nur das Integral, sondern auch der Differentialquotient als Limes einer
Matrizenproduktfolge darstellbar ist. Wird nimlich die Spaltenmatrix f™,

deren Elemente die Werte f(n—_l*_;—l) , f(%l-il) - f (nnTLl) einer inZ 0 und L ver-

schwindenden Funktion f(xz) sind, mit der Kontinuante —--1’% C,™ multipli-
ziert, so erhilt man ‘
2

— G =
Lz o

o] [ ) )

= —Z—: -1 2-10...0 f(%) z(é)2 }(%)—21‘(-2{1)“(%)

L. . -y . — e . -

Die Elemente der Produktmatrix sind also die zweiten Differenzenquotienten
“der Funktion f(x). Ist nun f(x) zweimal stetig differenzierbar, so wird im
obigen Sinne

d?f (x)

n2
lim 2 cmfm — % T®)
7z Co"f dz8

§ 7. Nach diesen Vorbereitungen kann man die eingangs erwahnte Analogie
zwischen reziproker Matrix und GreEENscher Funktion leicht illustrieren.
Man betrachte das Gleichungssystem

n L
7 Gy =9~ (10)
oder ausfiihrlicher geschrieben
— . 2. —1y, .
yl°1+Ly’ y”l-——qi%; i=1,2,...n—1; y,=y,=0.
n

Die Losung lautet
L L
y=*co—1‘1'z (11)

oder mit Beniitzung der in I. (7) angegebenen Form der Inverse C,™!

Litn=d) gy i
n—1 L . n = .
Yi = jglgﬁ%z mit 9ij __27(77/_@) fiin ,L_>_7 %] =0,1,2,...n.

n

Diese Gleichung bestimmt (siehe Abschnitt 1. § 2) die Gleichgewichts-
gestalt einer zwischen x=0 und x= L ausgespannten Saite, deren Punkte
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L 2L n—1L . ) L L L
=, ==, ... — —— mib den transversalen Kriften Q92,0 n-1y

belastet sind. ,
Wird nun in der Gleichung (10), welche man auch in der Form - C,y=gq

12
schreiben kann, der Grenziibergang n — oo durchgefiihrt, so erhilt man
d2
-3 =@, (12)

also die Differentialgleichung einer Saite, auf welche die stetig verteilte Last

q () wirkt. Bei demselben Grenzprozel geht aber die Inverse %Co—l iiber in

z'L( gL
%L L——)
o n n/ x(L—f) ..
1_”1_)961. 7 = T fir x <¢,
n m g . .
iL E(L_ﬂ)
e n n E(L—x) .
I = T fur x> ¢,

d. h. in die bekannte GREENsche Funktion ¢ (z, £) der Differentialgleichung (10)
(EinfluBfunktion der gespannten Saite). Gleichzeitig wird aus (11) nach (9)

y(x)=fa<x,s>q<s)d§; y(0) = y (L) = 0.

§ 8. In der iiblichen Theorie der Kabelbriicken treten lineare, inhomogene
Differentialgleichungen zweiter und vierter Ordnung auf, welche im Falle
eines Balkens mit variablem Querschnittstrigheitsmoment variable Koeffi-
zienten haben. Die eine Losungsmethode verwendet die zu der Differential-
gleichung

- LY @y = @) (13)

und zu den Randbedingungen
y(0)=y(L)=0 (14)

gehorende GrReENsche Funktion G (z, £;A). p (z) ist hier, von einem konstanten
Proportionalitdtsfaktor abgesehen, das reziproke Querschnittstriagheitsmoment
an der Stelle x und man hat bei einer symmetrischen Briicke von der Linge
Lp(x)=p(L—2x). In diesem Falle 148t sich die GREENsche Funktion G (z, ¢; A)
aus einer einzigen Partikularlésung der entsprechenden homogenen Gleichung
d’y
o
folgendermaBen konstruieren:
Es sei u(x;)) die durch die Anfangsbedingungen % (0;1)=0,u,!(0;1)=1
eindeutig bestimmte Losung von (15) und es sei w(L;A)+0. Dann ist die
GrEENsche Funktion

Ap(x)y =0 (15)
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u (2; ) u (L—§;A)

. “w(L;A) r=g
CEENT ez,
w (LN v=

und die den Randbedingungen (14) geniigende Losung von (13) lautet

y<x>=f0<x,m)q<§>df.

§9. In der vorliegenden Arbeit wird eine Theorie der Kettenbriicken
begriindet, in welcher lineare algebraische Gleichungen mit doppelt-sym-
metrischer Kontinuante eine hervorragende Rolle spielen. Diese Gleichungen
haben — mit Matrizensymbolen geschrieben — folgende Form

~ a;, -b; O ... 0 0 Try:. T K2
_bl Qs —bz ... 0 0 Ys 72
Cy _ (.) ——bz as -—b3 ... 0 0 ?{3 — 9{3 =gq.
0 0 0 e Ay o _bn—z Yn—2 Qn—2
0 0 0 .5 —bn—2 Ay 4 Yy 1| | 9n—1

Hier ist wegen der Symmetrie der Briicke a,=a, ;;b,=b,_,_,. Fur die
numerische Berechnung der zur Herstellung der Losung y = C~! g notwendigen
Inverse C—1 werden wir hier eine praktisch anwendbare Rechnungsvorschrift
angeben, welche die oben illustrierte Analogie zwischen reziproker Matrix und
- GrEENscher Funktion ausniitzt.

Man berechne die durch die Anfangsbedingungen u,=0;u,=1 eindeutig
bestimmte Losung des homogenen Gleichungssystems

............................................

mit Hilfe der Rekursionsformeln

-b !
Uy = M b;_luk_l (k=1,2,...n—=1), (16)

und es sei
Uy = Qp_1Upy_1— bn—z Up_o F 0.

Dann sind die Elemente g,; der Inverse C-!

i<j

gis = . L,j=12...n-1, (17)
stz
” 2

und die Losung des Gleichungssystems ist
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n—1
y; = 'Zlgijqj t=1,2,...n—1. (18)
] =

Bei einem kritischen Vergleich der infinitesimalen und der finiten Metho-
den hat man zu beriicksichtigen, dal die wirkliche Herstellung der Losung
% (z;A) der homogenen Differentialgleichung (15) bei variablem p (x) immer
unendliche Prozesse, z. B. Reihenentwicklung nach A erfordert, wihrend zur
Losung des entsprechenden homogenen algebraischen Gleichungssystems nur
eine endliche Anzahl von arithmetischen Grundoperationen nétig ist.

Abschnitt IT [2]
Qleichgewicht einer Kette

§ 1. Befindet sich eine (in einer vertikalen Ebene liegende) n-gliedrige
Kette 4g4,... A, deren k-tes Gelenk A, die Koordinaten (z,y,) besitzt
und durch die vertikale Kraft ¢, belastet ist, im Gleichgewicht, so miissen
zwischen den Spannungen #,_,; ;, den Koordinaten und den Kriften die fol-
genden Zusammenhinge bestehen

Ty 1 —X Lrq—X
b, R by g — = 0, (1)
k—1,k Sk, k1
Ye1—Y Yr1—Y
tk—l,k——l " +tk,k+1_——k+1 g, =0. (2)
Sp—1,k S, k+1

Aus der Gleichung (1) folgt, daB die horizontale Komponente #;, ., “£r1— %k

" . Sk, k+1
der Zugspannung lings der ganzen Kette konstant ist, d.h.
Ty — %y Lo~ Lpn—%n_1
boy = byg =+ =‘—‘tn—1,n=h-
So1 12 Sn—1,n

Werden die GroBen :—I’:—kil mit Hilfe von (3) aus den Gleichungen (2) elimi-
niert, so erhilt man piL



Theorie der Héngebriicken mit Hilfe der Matrizenrechnung 163

h(ylﬁ-l_yk___ yk“yk~1)+ —0. ‘ 4)
Tpi1— %k Xp—Tp T (
Wir wollen von nun an die Lingen der Horizontalprojektion der einzelnen
Glieder, d.h. die GroBen x; ;—x; mit [, ., bezeichnen. Dann nehmen die
Gleichgewichtsgleichungen der Kette folgende Form an

AT 1 iy
o P\l T 1) T :

1 1 1 1

——l—yl+(—l—+l—)y2—l—y3 = ({5 (5)
12 12 23 / 23
1 1 1 1
_l—yn—2+ l +l yn—l_f_yn = Qn—l'
n—2,n—1 n—2,n—1 n—1,n n—2,n

Werden die Randwerte y, und y, beliebig vorgeschrieben, so sind die
iibrigen Ordinaten y,,¥,,...%,_; durch die Gleichungen (5) eindeutig be-
stimmt. Im folgenden werden wir nur den Fall

Yo="Yn =0 (6)
betrachten. Fiihren wir die symmetrische Kontinuante C und die Spalten-
matrizen y und g

1 1 1 T
5+ 5 e .o 0
ln o Lis
1 1 1
- 5+ 0
C= l12 l12 l23 ’
0 0 NS S
b ln—2, n—1 ln—l, T ( 7 )
/51 q,
y = 3.{2 , q = 9:2
yn—l Qn—l

ein, so kann man die Gleichgewichtsgleichungen (5) und die Randbedingungen
(6) in die folgende Matrizengleichung zusammenfassen

1
Cy=+a. . (8)
Hieraus erhilt man die Gelenkordinaten v, als Funktionen der belastenden
Krifte ¢; unmittelbar

1
y=3C"q. (9)

Man verifiziert leicht, dal die hier auftretende reziproke Matrix folgende
explizite Form hat



164 E. Egervary

_l()l ll n l01 l2n LR lOl ln—-l,n
C1 = i lOl l2n ZOZ l2n <t l02 ln—l,n (10)
ZO n : ’
lOl ln—l, n l02 ln—l, n " lO, n—1 ln—l, Nt

wo l;; (1 <j) die Lange I;,;,1+ ;5 s12+ - - .1;_1 ; bedeutet.
Multipliziert man beide Seiten der Gleichung (8) von links mit der Zeilen-

matrix e*=[1,1, ... 1], so ergibt sich
Y Yna _ s =1 Nttt an
PR R A A 2 '

Diese Gleichung bringt das Verhéltnis der Gesamtbelastung zur Horizontal-
spannung mit den Neigungen der Randkettenglieder in Zusammenhang.

§ 2. Sind alle vertikalen Krifte gleich und dquidistant, also

f1=9%=-..9a1 =4
l01= l12= .. 'ln—l,'n = l
so wird
— 2-1 0... OT 17
1 1 -1 2-1... 0 1
C=7GCG=75[ 0-12... of g=ge=4|1
| 000...-1 2 | 1]
und nach (8) (9) (10)
1(n—1)
b, gl 2(n—2)
(rn—1)1

d. h. simtliche Kettengelenke liegen auf der Parabel

4
hl

(n—1)q zur Horizontalspannung % wird

Y = z(nl—zx).

[\

Das Verhiltnis der Gesamtlas
jetzt

[

(n—1)q _ Y1tYna _ 2y,
h l l -

Das tiefste Gelenk, bzw. Gelenkpaar hat nach (11) die Ordinate

I fiir ungerades n

l fiir gerades n.
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Im Abschnitt I haben wir schon gezeigt, dall die Elemente der Matrizen-
produkte — C,y die zweiten Differenzen der Zahlenfolge

0,?/1,?/2; e yn——l’o
sind. Setzt man nun in (8)
n

nl=L, C=—Co> qk-_—Q(

kL).L
L

n) n
(¢ (x) soll hier die auf die Lingeneinheit entfallende stetige Belastung bedeu-

ten), so erhilt man die Gleichung

n 1 L
L&Y =59y

und hieraus durch den Grenziibergang n — oo,l-—-% — 0 die bekannte Dif-

ferentialgleichung
d?y 1
a2 —%9(35): (12)

welche die Gleichgewichtsgestalt eines Seiles unter der Wirkung der stetig
verteilten Last g (x) bestimmt.

Qleichgewicht evnes Balkens

§ 3. Wir betrachten einen geraden elastischen Balken, welcher im unbe-
lasteten Zustande mit der Strecke (0, L) der z-Achse zusammenfillt und in
seinen Endpunkten gestiitzt ist. Der Balken soll durch die Punkte

O=)zyg<z;<23<...%, ;<z,(=1L)

in die Teile (x; x;,,) mit den Lingen [, ;,,=u;,,—; eingeteilt sein. Das
Querschnittstragheitsmoment des Teiles sei J; ;,, und der Elastizitdtsmodul
des Balkenstoffes E.

Befindet sich dieser Balken unter der Wirkung der in den Teilungspunkten
z, angreifenden transversalen Krifte ¢, im Gleichgewicht, so miissen zwi-
schen den in diesen Punkten auftretenden Biegungsspannungen m;, den
Durchbiegungen v, und den Kriften ¢, die folgenden Zusammenhinge be-
stehen

Vps1— V%  Vp—Vp_ |
12+1 — 1 GE{J L gy +
k,k+1 k—1,k k,k+1
TR A S 4
+2( §25 W )m+ -1, m_}=0,
Jieprr  Ji-re) L T
mk+1_mk_mk_mk—l+qk_:o (14)

lk, k+1 lk—l, k

Werden nun neben den Matrizen (7) die',,Biegsamkeitsmatrix“ K und die
Spaltenmatrizen m, v
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— (1 l l 7 . 7] B T
2(-0L _12_) 2 . my U
'(J(u J12 J12
K 1 l l l m = 2 v = V2 (15)
B E!l 12 9 (__11 + _2§_) I K =1 : A B
J12 Jya  Ja3 ’ )
| : ] _mn—l_ Lvn—l_

eingefiihrt, so lassen sich die Gleichgewichtsgleichungen (13, 14) und die den
gestiitzten Enden entsprechenden Randbedingungen

Yo=Yn=0, mg=m,=0 (16)

in die folgenden Matrizengleichungen zusammenfassen
Cv =Km, : (17)
Cm=gq. (18)

Durch Elimination von m erhilt man aus diesen Gleichungen den direkten
Zusammenhang zwischen den Durchbiegungen y, und den transversalen
Kriften ¢, in der folgenden Form

CK'1Cv=gq
bzw. v=C1KCq.

§ 4. Bei einer gleichmiBigen Kettenbriicke hat der Balken ein konstantes
Querschnittstrigheitsmoment und ist in gleiche Teile geteilt:

1
lp=le=""lyqn=1 C=7Co§ Jop=Jp=---=J.
Die Biegsamkeitsmatrix K kann in diesem Falle durch C, und die Einheits-

matrix E ausgedriickt werden

= 1 _
l 6 E O..- l 1

K=--|141 =———(E——Co)
EJ 666" EJ 6

Werden diese Werte von K und C in die Gleichungen (13) (14) eingefiihrt,
so vereinfachen sich diese zu

El’—zJCOv‘z (E—%CO) m,
1
-ZCOm= q.

Wird in diesen Matrizengleichungen der in Abschnitt I, § 6, ndher beschrie-
bene Grenziibergang fiir lzé, L fest, n — oo durchgefiihrt, so ergeben sich
die bekannten Differentialgleichungen [3]
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d?v (x)

—BI2E = m), (19)
- g @ | (20)

des stetig belasteten Balkens, wo v(x), m(x) bzw. ¢ (x) die Durchbiegung,
Biegungsspannung bzw. die spezifische Last an der Stelle x bedeuten.

Abschnitt III

Die Qrundgleichungen einer zw:zigliedrigen Kettenbriicke und thre Losungen

- VY, 3 - -
oo Y {
! 1 _ |

- =

§ 1. Die hier zu betrachtende Kettenbriicke besteht aus zwei Gliedern, aus
einem Hingestabe und aus einem gestiitzten Balken.

Fig. 1 stellt denjenigen Zustand dar, in welchem die Kette bloB die tote
Last p (welche von der Kollinearitit des Balkenmittelpunktes und den Unter-
stiittzungspunkten herriihrt) trigt. In diesem Zustande lautet die Gleichge-
wichtsgleichung der Kette nach IT (8)

2 1
7Y =77 : (1)

Nun sei der Balken in der Mitte mit der transversalen Kraft (lebende
Last) q belastet (Fig. 2). Die Kette wird einen Teil ¢ der Last tragen und die
Horizontalkomponente ihrer Spannung wird sich zu H #ndern. In diesem
Zustande wird die Gleichgewichtsgleichung

%(@Hv) =%(p+é)- (2)

Durch Subtraktion der Gleichungen (1)(2) erhilt man die Verschiebungs-
gleichung der Kette
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2 1 (. H-h
7" =ﬁ(q"T?’)- )

Der Balken trigt die Last ¢ —¢; die Biegungsspannung in der Mitte wird
also

4D 4
und die Durchbiegung
_lg-9r
v = *—M—J“. (5)

Eliminiert man ¢ aus den Gleichungen (3) (4), so ergibt sich folgender
Zusammenhang zwischen der Biegungsspannung, Durchbiegung und Belastung
T VT Ty P

Eliminiert man aber ¢ —q aus den Gleichungen (4) (5), dann bekommt man
den Zusammenhang zwischen der Biegungsspannung und Durchbiegung

2 4]
7' =sEg™ (7)

Wird der hieraus entnommene Wert von » in (6) eingesetzt, so erhilt
man die ,,Spannungsgleichung‘‘ der Briicke

2 41 H-—h
(7 +Hggs)m =05 ®)
und die explizite Formel fiir die Biegungsspannung
g-H="
h :
m=g——7p7 - (9)
THH 557

Die durch die Unterstiitzung der Kette hervorgerufene Abnahme der
Biegungsspannung wird klar erkennbar, wenn man die Gleichung (9) mit der
aus (4) bei Abwesenheit der Kette folgenden Gleichung

l
vergleicht. ,
Wird endlich der aus (7) entnommene Wert von m in (6) eingesetzt, so
ergibt sich die ,,Verschiebungsgleichung‘‘ der Briicke
( 6J 2H ) H-—h
v=gq—

- T i (10)

und die explizite Formel fiir die Durchbiegung
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_H-h
9T
=%EJ  2H

p Ty

v (11)

Ein Vergleich dieser Formel mit (5) zeigt die durch die Kettenunter-
stiitzung herriihrende Abnahme der Durchbiegung.
Der Ausdruck (11) fiir die Durchbiegung kann auch in der Form

R A N

geschrieben werden, welche sich spéter als besonders geeignet und verallge-
meinerungsfihig erweisen wird.

§ 2. Alle unsere Formeln enthalten die bis jetzt unbekannte, verdnderte
Horizontalspannung H. Zu ihrer Berechnung muB8 man die Dehnungsverhalt-
nisse der Kettenglieder in Betracht ziehen.

Die relative Dehnung der Kettenglieder bei der vertikalen Verschiebung v
des Gelenkes ist (bei Vernachldssigung kleiner GréBen hoherer Ordnung)

ds V4 (y+v)2— V2 +y2 oy

s VBt ?

oder mit Beniitzung des aus (1) sich ergebenden Wertes von y

ds _ plo

s  2hs? (13)

Andererseits ist die totale Spannungszunahme in den Gliedern: (H —h)%.
Die Dehnungsgleichung lautet also
4ds H-hs
s EF T W)
wo F den Querschnittsflicheninhalt der Glieder bedeutet. Aus den Gleichun-
gen (13) (14) folgt
_h(H-h)_s®
Wird endlich v aus den Gleichungen (11) (15) eliminiert, so erhilt man
die eingangs erwahnte Gleichung zweiten Grades
¢-"tp
- AR
EJh H™ k(i]ﬁ'ﬁ)z%' (16)
65-+27 P

Diese Bestimmungsgleichung fiir H hat bei positivem ¢ immer genau eine
Wurzel, welche groBer als A ist.
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Abschnitt IV

Die Matrizengleichungen einer n—gliedrigen Kettenbriicke und thre Losungen

§ 3. Betrachten wir jetzt eine Kettenbriicke, welche aus n Kettengliedern,
n —1 Héingestdben und einem gestiitzten Balken besteht. Wir bezeichnen

die Lingen der Balkenteile mit [y, ,l;,,...1

n—1,n
die Querschnittstragheitsmomente Jy;,J,, ... J, 1 ,
die Langen der Kettenglieder mit syy,855, ... 8, 1.,
die Ordinaten der Kettengelenke ¢y, = 0; ¥1,¥s, .- - ¥p_1; Y = O

die zur Erhaltung der Kollinearitit der Balkenknotenpunkte notwendigen,

als tote Last wirkenden Krifte auf die einzelnen Kettengelenke mit
P1>P2s - - -5 Pp-1-

Es bestehen wegen der Symmetrie der Briicke die Gleichungen

llc—l,k = ln—k, n—k+1 Prx = Pn—k
J -1,k = J n—k, n—k+1 Ye = Yn—i-
Sk—1,k = Sn—k, n—k+1

Ist die Kette unter der Wirkung der toten Last im Gleichgewicht, so muf}
nach II (8) die Gleichung

1
Cy=;p (1)

bestehen, wo C und y die in IT (7) eingefithrten Matrizen, p die Spaltenmatrix
der toten Last und A die anfingliche Horizontalspannung bedeuten.

Nun sei der Balken in seinen Knotenpunkten mit den vertikalen Kriften
(lebende Last)
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71
915925 - -+ In—1 q= q:2
9n—1
belastet.

Die Kette wird einen Teil g der Last tragen, ihre Gelenke werden die
vertikalen Verschiebungen v erleiden und die Horizontalkomponente ihrer
Spannung wird sich zu H dndern.

In diesem Zustande wird die Gleichgewichtsgleichung

Cly+v) = 7 (p+)- (2)

Durch Subtraktion der Gleichungen (1) (2) erhdlt man die Verschiebungs-
gleichung der Kette

Cv =-}—§(q_$p). (3)

Jetzt wollen wir die fiir den Balken im Abschnitt IT angefiihrten Gleich-
gewichtsgleichungen anwenden.

Der Balken trigt die Last g—q und die davon herriihrende Biegungs-
spannungsmatrix m wird nach II (8) bestimmt durch die Gleichung

Cm=gq-q. (4)

Zwischen der Verschiebungsmatrix » und der Biegungsspannungsmatrix m
besteht nach IT (17) die Gleichung

Cv=Km. (5)

Eliminiert man q aus den Gleichungen (3) und (4), so ergibt sich folgender
Zusammenhang zwischen Biegungsspannung, Durchbiegung und Belastung

H-h
C(m+Hv)=q———p. (6)
Wird der aus (5) entnommene Wert von Cv in (6) eingesetzt, so erhalt

man die Spannungsgleichung der Briicke

(C+HK)m=q—£I%_—h (8)

und die explizite Formel fiir die Biegungsspannung

H-h ) (9)

Wird endlich der aus (5) entnommene Wert K-1Cv von m in (6) ein-
gesetzt, so ergibt sich die Verschiebungsgleichung der Briicke

(CK—1C+HC)v=q—-——{{k;kp. (10)
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Die Ausrechnung und scheinbar auch das Invertieren der Faktormatrix
von v ist dulerst schwerfillig. Man kann aber eine zu (12) analoge Auflésungs-
formel gewinnen. Es bestehen namlich die Identitdten

(CK1C+HC)'={CK*(C+HK)} =

= (C+HK)_1KC—1:%{C_l—(c—{—HK)_l} (11)

Die gebrauchsfertige explizite Formel fiir die Durchbiegung ist also

v=~I;{C— —(C+HK)~ 1}( —HThp). (12)
Vergleicht man die Formeln (9) und (12), so sieht man, daf3 nach Berech-
nung der Biegungsspannung m die Berechnung der Durchbiegung v eine
besonders einfache Aufgabe ist, weil die dann noch nétige reziproke Matrix
C-'in II (10) explizit angegeben ist.
Wendet man die in diesem § abgeleiteten Formeln auf eine Briicke mit
einem einzigen Hingestab an, so werden sdmtliche Matrizen skalare Groflen,
und zwar wegen der Symmetrie der Briicke

2 4 1
C = 7 K = S hT

Die Gleichungen (1) bis (12) dieses Paragraphen gehen in die gleichbezeich-
neten Gleichungen des § 1 iiber. Damit haben wir gezeigt, dal die Gleichungen
der n-gliedrigen Briicke aus den elementaren skalaren Gleichungen des § 1
durch Substitution von entsprechenden Matrizen gewonnen werden koénnen.

Analog verlduft die Aufstellung der Bestimmungsgleichung fiir H.

Sind die Koordinaten des k-ten Kettengelenkes vor bzw. nach der Be-
lastung (xy,yy) bzw. (¥ +uy, ys +v;), so bestimmt sich die Zunahme 4s;, .4
von 8y, ., durch die Gleichung

2
(S, i1+ 4 Sk, 101)2 — Sk kt1 = @y +Upern — T — Ug)® + (Yi1 + Vhpr — Y — Vi) —
— (Tpy1 — ) — (Yrr1 — Yr)*

also bei Vernachlissigung kleiner GroBen héherer Ordnung

St k414 S, ky1 = (Cpp1 — Tx) (g1 — Uge) + Y1 — Yi) (Vh1 — V)-
Summiert man diese Gleichungen von k=0 bis k=% —1 nach vorheriger

Division durch I, ;. ., =2, — %, so wird
n—1

Sty kr14 S k11 4 Yer1 " Yk
e (Upyr — % (Vg1 — V) - 13
) e Z o= ) e (13)
Sind die Randgelenke der Kette fest, so ist Z (ug1—u) =0. Weiterhin,

mit Riicksicht auf (1), erhalten wir
n—1 n—1

Yerr =Yk, gy = {yk—'yk-lA_yk—i—l_yk},v  (Cv) o = Lp* o,
= Zrer1— g k1 Tk 1;::1 Tp—Tp_y T — ) (G} wP
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Die Dehnungsgleichung des k-ten Gelenkes ist

4 Sk k+1 H—h Sk, k+1

Sk, k+1 EF lk, k+1

Werden diese Werte in die Gleichung (13) eingetragen, so wird
n—1 3

(H—h)h S, k+1
EF

%k —
p v = l2
k=0"'k+1

oder, bei Beriicksichtigung der Gleichung (12),

[ H—h )_H(H-h)h”fl 8% pin

p*{C - (C+HK) ™} (q-=7—p 0T

Diese algebraische Gleichung n-ten Grades bestimmt die Horizontalspan-
nung H als Funktion der Briickenkonstanten und der Belastung.

(14)

l2
k=0 k+1

Abschnitt V
Die Differentialgleichung einer co-vielgliedrigen Hdingebriicke und thre Losungen

§ 1. Wir betrachten jetzt als Grenzfall einer n-gliedrigen Kettenbriicke fiir
n — o0 eine Hingebriicke, welche aus einem Kabel, einer Hingemembran
und aus einem gestiitzten Balken von der Lange L besteht.
Wir bezeichnen
das Querschnittstrigheitsmoment an der Stelle x mit J (x),
die Ordinate des Kabels an der Stelle z mit y (z),
die zur Erhaltung der Kollinearitit der Balkenpunkte notwendige (als tote
Last wirkende), stetig verteilte Last, pro Lingeneinheit an der Stelle x
mit p (x).

Wegen der Symmetrie der Briicke bestehen die Gleichungen
J (@) =J(L-2),y@) =y(L—x);p) =p(L-x).

Ist das Kabel unter der Wirkung der toten Last im Gleichgewicht, so

mul} nach II (12) die Gleichung bestehen
d?y(x) 1

LY~ Sp@). (1)

Nun sei der Balken mit der stetig verteilten vertikalen Kraft (lebende

Last) q(x) belastet. Das Kabel wird einen Teil ¢ (x) der Last tragen, seine

Punkte werden die vertikale Verschiebung v (x) erleiden und die Horizontal-

spannung k &ndert sich zu H. In diesem Zustande wird die Gleichgewichts-

gleichung

- @ @) = @)+ @) (2)

Aus (1) und (2) folgt
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_%”_x(;’_) — Hi{q (x)—ﬁ—kilfp(x)}. (3)

Der Balken trigt die Last ¢ (x) — g (x) und die davon herriihrende Biegungs-
spannung m (x) wird nach IT (20) durch folgende Differentialgleichung be-

stimmt
- @) - @), (4)

Zwischen der Verschiebung v (x) und der Biegungsspannung m (z) besteht nach
IT (19) die Differentialgleichung

d?v(x) 1
~ T T EI@"® (5)
Die Elimination von ¢ (z) aus (3) und (4) ergibt
d? H-h

— o m @)+ Ho @)} = ¢ @) - p(@). (6)
Wird der aus (5) entnommene Wert von dzvx(f) in (6) eingetragen, so erhalten

wir die Spannungsdifferentialgleichung der Héngebriicke

d2m (x) H _ H-h

Die Randbedingungen sind wegen der Stiitzungen
m (0) = m (L) = 0. (8)
- Wird aber der aus (5) entnommene Wert von m () in (6) eingetragen, so

erhdlt man die wohlbekannte MEvLaNsche Differentialgleichung fiir die Ver-
schiebung

dtv (x) d?v (x) H-h
Diese Differentialgleichung hat man unter den Randbedingungen zu lésen
v(0) =" (0) =v (L) =v" (L) =0. (10)

In den meisten mathematischen Untersuchungen iiber Hangebriicken wird
die MEvraNsche Differentialgleichung direkt diskutiert. Die Ergebnisse des
vorigen Paragraphen, besonders die dortige Inversionsformel IV (12) legen
es nahe, auch die MeLANsche Differentialgleichung mit Hilfe der GREENschen
Funktion der Spannungsgleichung (7) zu lésen.

Zu diesem Zwecke gehen wir folgendermafBlen vor. Es sei G (z, ;) die zu
der Differentialgleichung

d*z A
dz?  EJ @)

und zu den Randbedingungen

0 (11)

2(0)=2(L)=0 (12)
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gehorige GREENsche Funktion. Wird voriibergehend die abkiirzende Bezeich-

nung
@) =@ - )

eingefiithrt, so erhilt man mit Hilfe dieser GREENschen Funktion — welche
jetzt die Rolle der inversen Matrix iibernimmt — aus der Spannungsgleichung
(7) den folgenden expliziten Ausdruck fiir die Biegungsspannung m ()

_miz) =jG(x,f;H>r<§)d§. (13)

Die Verschiebung v (x) geniigt aber nach (5) derselben Differentialgleichung
(11) mit dem Parameterwert A=0 und denselben Randbedingungen (12), sie
148¢ sich also mit Hilfe von G (z, ¢; 0) explizit darstellen

L 1
—v () =OfG(x>f§0)mm(f)df-
Wird der Wert (13) von m () hier eingefiihrt, so ergibt sich
L 1 L
v@) =6 @10 gy (TO0ER)r @ dedi =

L(L ' 1 H d d
=g{g(;(x,t,0)m6¥(t,§, ) t}r(f) €.

Die in der letzten Klammer auftretende , iterierte’* GREENsche Funktion
1483t sich aber mit Hilfe einer von HILBERT herrithrenden Identitit auf folgende
Form bringen [4]

IHI—{G (2, £0)— G (x, & H)},

welche nichts anderes ist als das infinitesimale Analogon der Matrizenformel
(11) in Abschnitt IV.

Demnach kann die Losung der MELANschen Differentialgleichung mit Hilfe
der GREENschen Funktion G (z,§;2) folgendermallen dargestellt werden

L
v =g [Owa0-owam -2 polae. o
0

Man verifiziert leicht, daf3 die von KARMAN [5], BLEICH [6] u. a. angegebenen
Losungsformeln, als spezielle Fille, in (14) enthalten sind.

Abschnitt VI
Dre glerchmdf3ige Hingebriicke

Unsere bisherigen Ergebnisse gelten allgemein fiir Kettenbriicken, bei
denen die Liangen und Querschnittstrigheitsmomente der einzelnen Balken-
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teile beliebig vorgeschrieben sind, sowie fiir Kabelbriicken, bei welchen das
Querschnittstrigheitsmoment beliebig verénderlich ist.

Dieser Abschnitt soll der Untersuchung der gleichmifBigen Héngebriicken
gewidmet sein, bei welchen der Balken ein konstantes Querschnittstrigheits-
moment aufweist und — im Falle einer Kettenbriicke — die Hingestibe
daquidistant sind.

Die aufBlerordentlichen Vereinfachungen, welche bei der mathematischen
Untersuchung derartiger Briicken eintreten, sind durch zwei Umsténde bedingt.

Erstens sind in diesem Falle beide vorkommenden Matrizen C und K ein-
fache Funktionen der (dimensionslosen) Kontinuante C,. Zweitens sind sowohl
die Eigenwerte als auch die Eigenmatrizen der Kontinuante C, sowie die-
jenige einer Funktion ¢ (C,) von C, explizit bekannt. Ahnliches gilt auch fiir
die gleichmiflige Kabelbriicke, weil die Eigenwerte und die Eigenfunktionen

der Differentialgleichung (%.7; —Az=0 explizit bekannt sind.

Hat eine gleichmiBige Kettenbriicke » Glieder, also n — 1 Héngestédbe, so
gehort dazu eine Kontinuante n—1-ter Ordnung. Die Eigenwerte dieser

Kontinuante sind

. ,(n—1)7
An—-l = 4:811'12——2‘?;——

2

o (1)

. v .
A, = 4sin?—, Ay = 4sin?

2n

und die Eigenmatrizen (als Spaltenmatrizen geschrieben)

B . 7] B . 27 7]
S — sin —
n n
— .2 — . 2.2
2 31n—7T 2 sin 7
Sin(n-—l)ﬂ' SinQ(n—l)w
- . (n—1)7w
Sin
n
. 2(n—-1
2 SIHM
u, =1\ — n

1y
sin (r— 1)
n

Das System dieser Eigenmatrizen ist im Sinne des §4 von Abschnitt I
vollsténdig, orthogonal und normiert. Diese Eigenmatrizen geniigen nach I (8)
den Gleichungen

Coukzhkuk; k‘=1,2,...,7’b—1.

Hieraus sieht man, daB die Losung des inhomogenen linearen Gleichungs-

systems
Cox = u,
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sofort hingeschrieben werden kann in der Form

X = 1 u
_)\k I+

Steht aber auf der rechten Seite eine lineare Kombination der Eigen-
matrizen ’

Cox =Biu+Bous+-- -8, Uy 4,

so setzt sich die Losung additiv zusammen aus denjenigen Losungen, welche
zu den einzelnen Eigenmatrizen gehoren, d. h.

Beyy o p B
A2u2+ +A u

x=—u1+

1
A

n—1-
n—1

Jetzt wird man die naheliegende Frage aufwerfen, ob jede Spaltenmatrix b,
welche auf der rechten Seite der Gleichung C,x=b steht, sich als lineare
Kombination der Eigenmatrizen u,,u,,." . u, ; darstellen 1laBt. Diese Frage
fallt im Falle der Kontinuante C, mit der Frage nach der Moglichkeit der
harmonischen Analyse einer beliebigen Spaltenmatrix zusammen.

In der Tat, wie bei der ,,unendlichen‘ harmonischen Analyse einer (in O
und 7 verschwindenden) Funktion f(x) diese, als konvergente, unendliche
lineare Kombination der Funktionen sinz,sin2z, ... in der Form

f () =Blsin:2+,82sin2x+ ..

dargestellt wird, ebenso hat man bei der ,,endlichen‘* harmonischen Analyse
einer Spaltenmatrix b diese als lineare Kombination der Eigenmatrizen in
der Form

B .7 ) B . 27 7
sin — sin —
n n
b 2 4
b, 2 sin =~ 2 sin — ' .
. = = |2 3
S A I R T I 3)
bn—l . .
sin (n—1)m sin2('n—1)71-

oder kiirzer geschrieben in der Form
b= u+Bust - +By Uy (4)

darzustellen. (Die Eigenmatrizen von C, vertreten die Sinusfunktionen voll-
kommen auch in dem Sinne, daf} ihre Bilder nichts anderes sind, als Sehnen-
polygone der Bilder von sinz,sin2z,...sin(n—1)z, mit #quidistanten
Abszissen.)

Die Moglichkeit dieser Darstellung folgt aus der Vollstindigkeit des
Systems der Eigenmatrizen u,,.

Zur Berechnung der Koeffizienten B,,8,, ... ,_, beniitzt man — ebenso
wie bei einer unendlichen Fourierreihe — die Orthogonalitit und Normiertheit
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der Eigenmatrizen. In der Tat, um den Koeffizient B, in der Entwicklung (4)
zu erhalten, multipliziert man beide Seiten der Gleichung (4) von links mitu, *.
Wegen der Orthogonalitit verschwinden alle skalaren Produkte auf der rechten
Seite bis auf eines: u;*u, . Dieses Produkt ist aber wegen der Normiertheit
gleich 1. Also erhilt man
Br = u,*b.

Die Losung der Gleichung Cyx=>b kann also folgendermaBien ausgefiihrt
werden: Man berechne die ,,endlichen Fourierkoeffizienten B, der Spalten-
matrix b mit Hilfe der Formeln

By =u,*b =‘/% (b1 sin%z+bzsin 2:”+ ce +bn_1sinw-r). (5)

Dann wird die Losung der Gleichung Cyx=b
_ Bl /32 /gn—l (6)

x—-/\—lu1+xu2+---+)\ u, ;.

Um diese Methode bei der Auflosung der Grundgleichungen einer gleich-
méBigen Kettenbriicke anwenden zu kénnen, haben wir noch eine Erginzung
einzufiigen.

In den Grundgleichungen kommt nicht die Matrix C, selbst vor, sondern
— wie erwihnt — eine Funktion ¢ (C,) dieser Matrix. ¢ (C,) hat aber nach
dem in I. § 4 angefiihrten Satze dieselben Eigenmatrizen wie C, und ihre
Eigenwerte sind ¢ (1), 9 (A,), . .. ¢ (A,_;). Bei der Lésung einer Gleichung von
der Form

n—1

9 (Co)-x = b (7)

miissen also in der Losungsformel (6) die Nenner A, durch ¢ (A,) ersetzt wer-
den, d. h.

n—1

-y B ®)

X = — < Uu..
k=1‘P()‘k) *

Beide Losungsformeln (6) und (8) stellen die endliche Fourierentwicklung
der l6senden Spaltenmatrix x dar.

Jetzt sind wir im Stande, die Grundgleichungen einer gleichmiBigen
Kettenbriicke ohne direkte Inversion der Gleichungsmatrix zu 16sen.

Man hat bei einer gleichmiBigen Kettenbriicke

ln=be=-=lL 1 ,=8 Jn=Jp==Jdy ,=J
und fast ohne Ausnahme
Pr=Pe="'+=DPpq1=07.

In diesem Falle wird also

pe. (9)

C=1G,, K=—Z—(E—-—éco), p
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Die Spannungsgleichung einer glelchmaﬁlgen Kettenbriicke nimmt jetzt nach
IV (8) folgende Form an

HIiz? 1 m H—-h

Die Gleichungsmatrix ist also in diesem Falle
. H (2 x

Um diese Gleichung bei unbestimmtem H auflosen zu konnen, haben wir die
Spaltenmatrizen g und e einzeln der harmonischen Analyse zu unterwerfen.
Man findet nach (5)

q=PFu+Byus+ - +B, 11, ;; Br = u,*q; (10)

2
e = U teUyt - t+€, U, q; e2k+1-l/ 0tg2 , € =0.

Unter Beniitzung dieser Werte erhélt man die explizite Losung der Spannungs-
gleichung in folgender Form
—h

H
= Peg
m =1 Z1Ak+EJ(1 AG'“) u,,. (11)

Die Verschiebungsgleichung lautet nach IV (10) mit den oben eingefiihrten
Bezeichnungen

EJ 1 .\ H H-h
{—ZQ“CO(E_E;‘CO) Co+“l—co}” =97 pe.
Die Gleichungsmatrix ist jetzt
. EJ x? H
h (Go) mit o (x) = - S B
1—?3%

und mit Beniitzung derselben Koeffizienten (10) lautet die Losung

o Br— h =L
- l3 1_._/.\7_" 1k

3

Die Bestimmungsgleichung fiir die relative Spannungsinderung x erhéilt
man am besten aus IV (14), indem man dort p*=pe*, H—h=xh, l; ;,,=1
und den Wert (12) von v einfiihrt. So ergibt sich

B € — P x €i” k> Sk, ke1)°
L. B N = EF Z(—l—t) ' (13)
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(Die Glieder mit geradem Index fehlen in der linken Summe, weil jedes e,
verschwindet.) Zwischen 0 und co ist die linke Seite dieser Gleichung abneh-
mend, die rechte zunehmend. Bei einer Lastverteilung also, welche die linke
Seite fiir y=0 positiv macht, hat die Gleichung (13) eine einzige positive
Waurzel. Ist diese Wurzel x gefunden, so ist H =hA (1 + x).

Wird in der endlichen Fourierreihe (12) der Verschiebungsmatrix » bei

festem L der Grenziibergang n — oo,l=§ —> 0 durchgefiihrt, so erhélt man
fir die Verschiebungsfunktion »(x) einer gleichmifBigen Kabelbriicke die
folgende, schon von KARMAN, BLEICH u. a. angegebene unendliche Fourierreihe
. H-h
@) Z ﬂk——h Peg kwx
v(x) = sin ]
k=1 EJ(%)4+H(]%)2 L

(14)

Hier ist L

B_E ().kwxd
k=T qxsmL x
0

und 4

€2k+1=(2k+1)77; €2k=00

Durch denselben Grenziibergang erhalt man aus (13) die transzendente
Bestimmungsgleichung fiir die relative Spannungszunahme x in folgender

Form
3 h2 3 ds\3
_ X $
pfv(x)dx_EFf(dx) G,
0 0

Hier bedeutet d s das Bogenelement der Kabelkurve an der Stelle x unter der
Wirkung der toten Last.

Abschnitt VII

Im folgenden Beispiel wird die Berechnung einer gleichméBigen Ketten-
briicke mit 5 Hangestdben durchgefiihrt.

000cm 000cm 1000cm 000cm 1000¢cm 000cm
P 20t b=, ;0! pJ-rzat b~ 20t By 20t
4,0 95=9

\
¢’ '"28~2t q2=\ (28.2[ 43= 14.1¢

Fig. 4
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Zur Berechnung der obigen Hingebriicke (Fig. 4) sind folgende Zahlen-
werte notwendig:

Die Linge des Versteifungstriagers: L =6000 cm.
Die Anzahl der Balkenabschnitte: n=6.

Die Lange eines Balkenabschnittes: l=£i =1000 cm.

Der Hoéhenunterschied zwischen dem tiefsten Punkte der Kette und den
Aufhingungspunkten: 1000 cm.

Das konstante Querschnittstragheitsmoment des Balkens: J =475000 cm?.

Der Elastizititsmodul des Balkens sowie der Kette: £ = 2100 t/cm?2.

Querschnittsflicheninhalt der Kette: F =52 cm?2.

Die tote Last: p =20t pro Hangestab.

Die von der toten Last herrithrende Horizontalspannung wird nach
Abschnitt 11

n?

h = Pg g 90 t.

max

Wir wollen die Spannungen und Verformungen der Briicke bei folgender Ver-
teilung der lebenden Last berechnen:

ql = 28,2 t, Q2 = 28>2 t’a 93 = 14’1 t" 94 = Q5 = O'

Die Berechnungen werden wir sowohl fiir undehnbare als auch fiir dehnungs-
fahige Ketten durchfiihren.

Die Eigenwerte, sowie die Eigenmatrizen der zur sechsgliedrigen Briicke
gehérigen Kontinuante fiinfter Ordnung C, kann man nach VI (1)(2) aus
einer trigonometrischen Tafel sofort entnehmen:

A =0,2679, A, =1, A =2, A\ =3, A =37320

70,2887 ~ 0,50007] 10,5773 ™ 0,50007] ~ 0,28877]
0,5000 0,5000 0,0000 ~0,5000 ~0,5000
u,=| 0,5773 |, uy,=| 0,0000 |, u;=| —0,5773 |, u,=| 0,0000 |, u;=| 0,5773
0,5000 ~0,5000 0,0000 ~0,5000 ~0,5000
| 0,2887 | | —0,5000 | | 0,5773 | | 0,5000 | | 0,2887

Nach den Ausfithrungen des Abschnittes VI hat man zuerst die harmonische
Analyse

28,27 207
28,2 20
der lebenden Last g = | 14,1 | und der toten Last p=pe=| 20
0 20

| 0 | | 20|

durchzufiihren. Durch Anwendung der Formeln VI (10) und VI bekommen
wir

q = 30,3813 u; + 28,2 u, + 8,1406 uy + 0 u, + 2,1813 u
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oder ausfiihrlich

—28,27]=30,3813[70,2887+28,2] 0,57]+8,1406] 0,57737]+2,1813] 0,2887
28,2 0,5000 0,5 0,0000 -0,5000
14,1 0,56773 0,0 -0,5773 0,5773

0 0,5000 —0,5 ‘ 0,0000 -0,5000
0| | 0,2887 | | 0,5 | | 0,5773 | 0,2887 |
und

p = 43,0940 uy + 0 uy+ 11,547 ug+ 0w, + 3,0940 u;

oder ausfiihrlich

207 =43,0940 [70,2887 [+ 11,547 [ 0,57737]+3,0940 [ 0,28877]
20 0,5000 | 0,0000 ~0,5000
20 0,5773 ~0,5773 0,5773
20 0,5000 0,0000 ~0,5000

| 20 | | 0,2887 | | 0,5773_ | 0,2887 |

Wir haben zunichst mit Hilfe der Gleichung VI (13) die veréinderte Horizontal-
spannung, bzw. die relative Spannungséinderung x zu berechnen. Die Bestim-
mungsgleichung fiir y wird nach VI (13)

52,63 74,64y 14,10—20,00x 3,778 5,359
79,65+19,39y ' 18495+540y 415300 +3761y

_]o im Falle einer undehnbaren Kette,
~ 10,0138 x im Falle einer dehnbaren Kette.

Die einzige positive Wurzel dieser Gleichung ist: y =0,7050 fiir undehnbare
Kette und x =0,6930 fiir dehnbare Kette.

Werden diese Werte von y, bzw. von H =hA (1+y) in die Formel VI (11)
und VI (12) eingetragen, so erhilt man fiir die Biegespannungen, bzw. fiir die
Vertikalverschiebungen folgende Werte:

Biegespannungen (t-cm)

my my my my my
—12 498 —12 498 0 12 498 12 498 undehnbar
—12958 | —13 226 — 7960 11 790 12 060 dehnbar

Vertikalverschiebungen (cm)

V1 Vg V3 Uy Vs

10,44 10,44 0 —10,44 —10,44 undehnbar
11,75 12,68 2,56 — 8,22 — 9,15 dehnbar
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Zusammenfassung

In der Fachliteratur findet man verschiedene Ansitze, welche eine finiti-
sierende Tendenz erkennen lassen und die Differentialgleichungen der Héinge-
briickentheorie durch Differenzengleichungen, bzw. die stetig verteilte Last
durch konzentrierte ,, Knotenlasten‘‘ ersetzen. Der Verfasser war bestrebt, eine
konsequente finite Theorie fiir Kettenbriicken aufzubauen. — Ist das Quer-
schnittstragheitsmoment des Versteifungstrigers einer einfeldrigen Ketten-
briicke streckenweise konstant und wird die lebende Last durch statisch dqui-
valente Knotenlasten ersetzt, so kann die Kettenbriicke als ein Fachwerk mit
steifen und gelenkigen Stabverbindungen aufgefaflt werden. Die Gleich-
gewichtsgleichungen dieses finitisierten Briickenmodells, welche den Zusam-
menhang zwischen den Knotenlasten und Knotendurchbiegungen ausdriicken,
lagsen sich iibersichtlich in eine einzige Matrizengleichung zusammenfassen.
Die Losung dieser Matrizengleichung erfordert nur das praktisch bequem
durchfiihrbare Invertieren von Kontinuantmatrizen. — Beim Grenziibergang
fiir unbegrenzt zunehmende Knotenanzahl geht diese Matrizengleichung in die
Melansche Differentialgleichung der Kabelbriicken iiber; als Grenzgebilde der
inversen Matrix ergibt sich die Greensche (EinfluB-) Funktion. — Sind die
Eigenwerte und Eigenvektoren (Eigenfunktionen) der Gleichungsmatrix
(Differentialgleichung) bekannt, so kann man die Losung auch in der Form
einer endlichen (unendlichen) Fourier-Entwicklung erhalten. — Die Methode
146t sich auch im Falle einer mehrfeldrigen, durchlaufenden Héngebriicke ver-
wenden.

Summary

In the specialised literature, various studies have been published which
exhibit a tendency towards definite solutions and in which the differential
equations of the theory of suspension bridges are replaced by difference
equations, the uniformly distributed load being itself replaced by loads con-
centrated at the nodes. The author has endeavoured to establish a consistent
finite theory for chain bridges. If the moment of inertia of the section of the
stiffening girder of a chain bridge with a single span is constant by stages,
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and if the live load is replaced by statically equivalent concentrated loads,
the chain bridge may be treated as a lattice structure consisting of jointed
assemblies of rigid bars. The equilibrium equations of this type of bridge,
equations which express the correlation between the loads concentrated at
the nodes and the deflections at these nodes, may be summarised quite
clearly in the form of a single matricial equation. In order to solve this
equation, all that is necessary is to carry out an inversion of the matrices,
which is quite easily done in practice. As the limit for a number of nodes
increasing in an unlimited manner is approached, this matricial equation
assumes the form of Melan’s differential equation for cable bridges; the limiting
form of the inverted matrix is Green’s influence function. If the actual values
and actual vectors (actual functions of the matrix) (differential equation) are
known, it is also possible to obtain the solution in the form of a finite (infinite)
Fourier expansion. This method is equally applicable to the case of a conti-
nuous suspension bridge with several spans. '

Résumé

Dans la littérature spécialisée, ont été publiées différentes études qui
manifestent une tendance vers les solutions finies et dans lesquelles les équa-
tions différentielles de la théorie des ponts suspendus sont remplacées par des
équations aux différences, la charge uniformément répartie étant elle-méme
remplacée par des charges concentrées aux nceuds. L’auteur s’est efforcé
d’établir une théorie finie conséquente pour les ponts a chaines. Si le moment
d’inertie de la section de la poutre de raidissement d’un pont & chaines & une
seule travée est constante par paliers et si la charge utile est remplacée par
des charges concentrées statiquement équivalentes, le pont & chaines peut
étre traité comme un ouvrage en treillis constitué par des assemblages arti-
culés de barres rigides. Les équations d’équilibre de ce modéle de pont, équa-
tions qui expriment la corrélation entre les charges concentrées aux nceuds et
les fleches en ces nceuds, peuvent étre résumées d’une maniére claire sous la
forme d’une seule équation matricielle. Pour résoudre cette derniére équation,
il suffit de procéder & une inversion des matrices, qui peut en pratique étre
effectuée aisément. Lorsque ’'on passe & la limite pour un nombre de noeuds
augmentant d’une maniére illimitée, cette équation matricielle prend la forme
de I’équation différentielle de Melan pour les ponts & cable; la forme limite de
la matrice inverse est la fonction d’influence de Green. Si les valeurs propres
et les vecteurs propres (fonctions propres de la matrice) (équation différentielle)
sont connus, il est possible d’obtenir également la solution sous la forme d’un
développement fini (infini) de Fourier. Cette méthode peut étre également
appliquée au cas d’un pont suspendu continu & plusieurs travées.
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