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A New Method of Calculating Circular Cylindrical Shells

(Illustrated with one example of a calculation)

Nouvelle methode pour le calcul des coques cylindriques

Eine neue Methode für die Berechnung zylindrischer Schalen

W. J. van der Eb, Civil Engineer, Rijswijk (Holland)

Introduction

It may be assumed to be a known fact that the state of membrane stresses
in circular cylindrical shells, if these do not form tubes of completely cylindrical
shape, is inadequate per se to produce an equilibrium with the external loads.
For instance, in general, the membrane shearing stresses along the edge seem
to be far from adequate in combination with the other edge reactions, to allow
the application of an arbitrary edge member. First of all, a considerably higher
edge shearing stress will always be required to make such application possible.
Only in very exceptional cases such is possible with the proper membrane
stresses, to build up with edge members of a very definite shape.

This additional edge shearing stress which takes the course rxy rr(^l — x)
in free span shells, cannot develop per se in circular cylindrical shells with
continuous curvature.

This can be proved as follows: Take a symmetrical barrel-vault shell
which is preliminary approximated by a prismatic structure. The top descrip-
tive is the symmetrical axis.

Moreover, and entirely irrespective of the shape, the following applies to
prismatic structures for an nth line of intersection (the discs are all of the
same height and thickness), if no exterior stresses are operative:

rn-l + ^Tn^Tn+l °

or, expressed in calculus of finite differences:

with the Solution:

rn C1 - 0,2679)™ + C2 - 3,7321)™.
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If the counting is started from the symmetrical axis, the following
conditions apply: rn 0, when n 0, and rn rr, when n p, if a shearing stress
is operative along the edge p.

We find that:

(-0,2679)»- (-3,7321)»*

r„ becomes:

Tn l(-o,
(-0,2679)™ (-3,7321)™

2679)» - - 3,7321)» - 0,2679)» - - 3,7321)»

If p becomes large, then the denominator in the above formulse becomes

immediately very large. The first term between the brackets very quickly
approaches 0 and can be neglected in regard to the second; further, in the
case of a large p-value, (— 0,2679)» can also be neglected as far as (— 3,7321)»
is concerned.

So, finally:

_ (-3,7321)™
Tn~ (-3,7321)» 'Tr

or: rr
(-3,7321)»-

This formula indicates that rn calculated from the edge, approximates 0

very quickly. The first discs are affected to some extent; the central ones
remain practically without load.

If p ~, i. e. when the limit is reached and the prismatic structure changes
into a continuously curved shell, then it becomes clear that the shearing stress
is arrested in the outermost edge fibres and at specific plaees causes strong
folding-phenomena in the membrane.

Herewith it has been proved that an additional shearing stress cannot
occur per se in a membrane with continuous curvature. If, however, radial
loads can develop on the membrane, then this is possible. The edge longitudinal
stresses and the transverse stresses (gx and Gy) are likewise greatly influenced
thereby.

In the following theory, a shell is provisionally assumed to consist of two
major parts:

1. A membrane.

2. A series of closely adjacent circularly curved small rigid bars which are
lying close to the membrane by means of numerous radially orientated
short pendulums and are hinged to the membrane at the edge, in the simp-
lest instance, without any edge members, as pictures below:
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Small rigid arches
lying close together

membrane
numerous short pendulums

Fig. 1

What will happen now Caused by the transverse load a state of membrane
stresses is developed. Along the edges, shearing stresses and transverse loads
develop i.a. These transverse load operate upon the rigid arches which are
thereby pressed against the membrane. This gives rise to the additional radial
load on the membrane (which accordingly acts at the same time upon the
arches) and which again is necessary to bring about the corrective stresses in
the membrane. This radial load is developing in such a manner that:
1. The tangential and radial reactions along the edge are 0.

2. The edge shearing stress must also be 0.

3. The deformations in membrane and arches are equal, for the membrane
presses closely to the arches at all points.

Thus a System evolves which can indeed thoroughly resist the exterior
loads.

Apart from the arches, we can also imagine that there exists a series of
longitudinal small bars arranged closely next to one another along the shell,
while these bars are supported at the two ends of the shell. In this case, a

pressure also develops between the longitudinal bars and the transverse
arches while the membrane is loaded by the algebraic sum of these two radial
loads. This System must be taken into account in shorter shells. In long shells,
this is not necessary in view of the fact that in this case, the radial load
between the longitudinal bars and the transverse arches only arises to any impor-
tant extent close to the supports and is furthermore so small that it can be
neglected. In long shells with which we are mostly concerned, the influence
of the longitudinal bars may therefore as a rule be disregarded.

Finally, one may also imagine that the longitudinal bars and the transverse

arches are connected to one another in a manner resistant to torsion.
This is the most accurate Solution of the case and it is always possible to
obtain it in its exact form whenever we are dealing with a shell which is
supported on two end bases. In the case of continuous shells, a very close
approximation is possible, though not theoretically exact, with the so-called
"eigen" functions. This elaboration of the theory is introduced below. It
seems to call for the calculation of one additional coefficient only and therefore

does not involve any difficulties in itself. It is only useful, however, to
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apply it to shells that are definitely short, when the length of the shell is
smaller than the width. For, it appeared from many examples of calculations,
the theory which calculates only with arches has a very wide field of application.
In practical cases, one may almost exclusively use this theory.

The unknown radial load Z f(<px) is composed of

1. a number of symmetrical functions, and

2. a number of anti-symmetrical functions.

Both types of functions consist of a so-called linear part, and a pertur-
bation part. The linear part does not appear to fulfil the condition that the
deformations of membrane and arches are equal. For this purpose, a function
is added which has been evolved in Fourier-series which we shall hereafter
call the perturbation function; this latter function is determined by the
condition that arches and membrane must undergo the same deformations. The
linear functions are called so by the fact that they cause o-x-stresses in the
membrane which, if projected upon the plane of symmetry and perpendi-
cularly thereto, take a linear course.

These functions are following here:

A. Symmetrical functions

1. Linear functions

(ff o

9-9, ^ I }'»*
\ I / plane of symmetry

z cp0 (cos cp - cos cp0) + \ sin cpQ (cp2 - (p02)

Fig. 2

990-sin(p0
(COS cp - COS cpQ) + 1 (cp2 - cp02)

ts + Po
cpQ-smcpQ

2. Perturbation functions

~ „ mirx Ictt
L 2/ pmn • cos n cp sm —=— wherem n -—l ZcpQ

B. Anti-symmetrical functions

1. Linear functions

k 1 3,5,...

z 990sm99-99sm<p0[ J<P3~<Po2(P
ass + \ ^—~2 rss + —-<lo\ Sm J~_[ 990 cos cpQ- sin cp0j ss [ 2cp02 J ss

cp0
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2. Perturbation functions

Z L qmn • sm n cp sin —=— where in n -—

One can easily convince oneself by referring to the tables of formulae on
pages 117—122 that in the case of the symmetrical linear functions, the gs and
^-functions projected upon the plane of symmetry yield o^-stresses that take
a linear course, while of the anti-symmetrical linear functions the cxss-function
does so if projected upon the plane which is perpendicular to the plane of
symmetry, and the £ÄS-function yields a gx which takes a linear course that is
developed in the shell plane.

Furthermore, the p0 and g0-functions are required in order to bring about
such tangential and radial reactions that a connection with arbitrary edge
members is rendered possible. Of these functions, therefore, gs, ts, p0 or gss,
tss and q0 are still unknown quantities which must be more closely determined
by means of the edge conditions.

Furthermore, two other unknown quantities are added in a somewhat
devious way, namely M0s and M0ss.

These are fixed end moments along the shell edges. Hence there is a total
of eight unknown quantities which can be considered as integration constants.

We now revert to the condition by which the perturbation functions must
be determined, namely that deformations of membrane and arches must be

equal. It is simpler and requires less calculation to work with the moment
planes. In the arches, certain moment planes occur. Let us now take a series
of imaginary arches equal in number to the real arches which is forced to
undergo the same deformations of the membrane; the moment planes of the
real and those of the imaginary arches must of course be equal if they are to
give equal deformations.

This method of calculation has the great advantage that the transverse
moments can immediately be determined with certain calculated quantities
which are necessary for establishing the final equations.

In the following:

Mu the moment plane in the real arches I Hence Mi
Mi the moment plane in the imaginary arches j must equal Mu.

Furthermore, the index l will refer to the linear functions, s to the
symmetrical functions and ss to the anti-symmetrical functions.

Finally it is put that "eigen" functions can be applied in developing
series in a longitudinal direction. These functions, however, have the great
advantage that:
1. They are orthogonal.
2. They comply with the property that the fourth derivative and the function

itself are of exactly the same form.
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3. They themselves all fulfil their own edge conditions so that it does not
make any difference whether we are dealing with shells based on two
supports or on several supports, if one only calculates directly with the
correct "eigen" function and "eigen" values.

In the derivation shown below, the calculation for the longitudinal direction

is based for convenience upon the simplest "eigen" function, namely
that for the beam upon two supports, i.e. the sine-curve. We are working
here, then, with Fourier series in a longitudinal direction, which are in actual
fact special "eigen" functions, namely those of the beam upon two supports.
One can assume all these sine-functions to be replaced by any other arbitrary
"eigen" function; this does not make any difference. Only here and there it
does not work out exactly, since in the other "eigen" functions there is no
longer any equality of form between integral or differential curves with
relation to the original "eigen" function. A minor error is then made. Since
these errors as a rule bear upon the influence of the shearing stresses and these
are of considerably less influence than the longitudinal stresses, we need not
be concerned too much with them. All other "eigen" functions can be applied
without any diffieulty.

To sum up, we may therefore say that the essence of the theory is as
follows:

1. The avoidance of the usual Solution of the differential equation of the
8th order by introducing linear o^-stresses to which are added perturbation
stresses developed in Fourier series in transverse direction, which must
ensure the condition is fulfilled of arches and membrane undergoing the
same deformations.

2. That this latter condition is obtained by the formula:

Mi Mu.

This latter formula is the basic condition of the theory given below.

A. The Membrane Stresses and Deformations

What will be the state of the membrane if Z z • sin —j—, in which z f(cp).

Hence, according to the differential equation of the state of membrane stresses,
the following is valid:

_ m-nx
Uy — r-Z — r-2-sm—-—.i

Therefore: dn^ 1 ^ng>
__ 0

dx r dcp

So: dnxq) dz mirx-r—^ +t—sm—=—.dx dcp l
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Whereby:
n.xq>

l dz mTrx „ x

ä—cos—i—+ Ci(9>).
m-n dcp 7 iyT/l

For a beam with hinged edges, in the case of symmetrical loading the
shearing force =0 when x ^l; accordingly, for the shell nX(p 0. From this
condition it follows that C1 (cp) 0.

nxf

^<
df

"<f
oa

0~ ->-
+o-

Furthermore:

So:

Whereby:

0.

dn^
dx

n„

Fig. 3

dnx 1 dnX(p

dx r dcp

l d2z niTix+ TT"VCOS—j—rriTTr dcp2, l
l2 d2z m-rrx „• sm —y— + C2 (cp).

m2Tr2r dcp2

In view of the fact that in the case of a beam with hinged ends the'moment
0 when x 0 and x l, hence for the shell nx 0, it appears therefore that

C2 (<p) 0 as well.

Recapitulating, we obtain with A —^—;

* /(?); z
d2z

dcp2 /'»;
nn

m^x-r-z- sm -

r
-y-z-cos- 7A l

i '

m-nx

r „ mTrx

(a)

(b) (I)

(c)

Regarding the deformations the following equations are valid:

du _
1

Ix ~~ E8
du 1

or: du,

dx
1 f l2 „ 1 mTrx

-mg- o 2 *g +^'2 S111
7J5/8 \m2TT2r J Z
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so: 1 f Z3
„ vrl^

E8 Lm3773r m-n
m^x „cos— hC1(99).

Considering when x \l, u must equal 0 everywhere, it follows that Gx(cp) 0,
thus:

du l [ P

dcp
JLL
E8 [n

vrl ,1 m^x
P5I ~ o 'Z + Z COS
Jjjö \m6Tr6r mTT \ l

Further:

Or:

du dv 2r(l+v)
dcp^ dx E8 X(p'

dv
dx

2(l+v) ^ ^„m^x 1

E8mir 'Z'COS l + E8\m*Tr*r2¦t vi I m-nx
>z H z \ cos—r-

m7r I l
so: 1 f Z4

V~ E8 Lm4774
(2 + ^)Z2 ^

m2TT2 Jsm-—^—+ <72(9).

Considering when x 0 and x l, v must be equal 0 everywhere; accordingly,
C2 (<p) 0 too, hence:

Finally:

dv
_

1

c^p~~~E8

dv
dcp

i* (2 + v)P
m2772

+ w ^g-(»v->'»x)

JSm —•

or:

w

so:

#8
vZ2 „1 ra7r# 1 T Z4

m (2 + v)Z2 „l mirx
— rz S—5--2 Ism-—; ^irl ——1-7;-z — -—0 0 -z sm

w

;1 z

2Z2

m2TT2

E8 \m*7T*r2

•z" + -

" sir

^ z""l
m4774r2 J

sm
TYlTTX

Recapitulating, we obtain with
d*z d*z

2"' v=/">); z"" v rM;
^ — [1 „ v 1 m7ra;

_.Z+_.ZJOOB-T-,

r2 I" 1 2 „ ] ra7r#

(a)

(b) (II)

(c)

In view of the fact that when equalling Mt to ilfM, we are using exclusively
cosine- and sine-functions, we derive the formulse for M^ only for these two
goniometrical functions.

Generally, the following is valid:
d*w /, vm27T2r2\ Jf,-r2(l-v2)
W+V 1T-)W + EI
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from which:

EI \d2w /_ vm2TT2r2\
w

EI d2w /, vm2TT2r2\
^-+(1—p—j1(1-L2)f2

which becomes with (II c):

— &2 T 1 m 9,

^==12(l-v2)LA?{gW + (1~t,A2)Z",,}~Ä2"{z",,+ (1~'/A2)2,,} +

f II /-. v n\ 1 • *'V TT X
+ {z" + (l-vA2)z}-sm —j—.

Substituting the following two z-functions in (III):

a) Symmetrical functions

klT
z pmn cosncp, in which n -— (k 1, 3, 5, etc.).

b) Anti-symmetrical functions

rC TT

z qmnsm.ncp, in which w -— (1c 2,4,... etc.).
2<Po

We find therefore that:

um-
°2 Tl ^ 11 /i/ o xox - nflTTX

Mi*>s= I2(l-v2) '[j*+n^ + n^\n {U2-l+vX2)Vmn^osncpsm-T~

or:
mTrx

cm)

if-*-"- insu

82 r i 2 i i
(IZ^ij

• [ä4 + ^Ä2 + ^J ni ^ ~ l + v A2) ?m» sin ^ <p sin -
12(l-v2) [A* rc2A2 «4J v '1B" r J

"

For concrete shells, usually v is taken =0. The formulse are then simplified to:

Mips Am-Bmn-ni(n*-l)Pmn-cosn<P-s™-—^— (a)

or * 772/ tt X
Miass Am'Bmn-nHn2-l)qmn-s^ncp-sin--j-- (b)

when:

A - S2

m 12A4 '

A2 A4
Bmn= 1 + 2^ + ^4- (IV)

A —j— and ^ ——,l 2cp0

k 1, 3,5 etc. or 2, 4, 6 etc.
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B. The Arches

In this case the three following differential equations are valid:

dMm, „ „ dQt
1. -=-* Qu.r; 2. -j^ + ny + z-r 0;

dcp dcp v
dn<p

dcp

Qu

->

**>
ox->-

t^jP^
f>(f

} \
Qu+Qu</<P \

Kl

\ dpi

X

Fig. 4

Differentiating (1) twice and substituting this result in (3) as well as in (2)
which has been differentiated once prior thereto, and multiplying by r, we
obtain:

d?Mu
| dMu= r2dz^

dcps dcp dcp

And after integrating once:

d2M,

lep*
^ + Jf„ -z-r2 (V)

Regarding the arches, the following is valid: z= — pmn-cosncp, so the differential

equation becomes:

d2Mv -r 9 m-nx
-j-^ + Mu r2-pmn-cosncpsin-j-

whereby:

Mu G1 cos cp + C2sincp--z—j-pmn-cos ]. min
sin—y~

As Mu 0 when 99 + cp0 and 99 — 990, Gx and C2 are equal 0 when
k= 1,3, 5 etc.

So: M-*¦"¦ ups
mTrx

^Y'Pmn-COS^-Sni—|- (Va)
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and if z= —qmn sin ncp, we find analogously with k 2,4, 6 etc.

M-tKi uqss U
r m 77 x

Y~ZJ ' Vrnn' SUl^-Sm-j-

111

(Vb)

The radial reactions, considered in their relation to the edge members
for which the — sign is introduced, are found by employing the differential
equation (1) for the shearing force, after substituting 99 + 990, and accordingly:

1 dM„
Qr= Qu

<P <P0 r d 9
When z= — pmn-cosncp:

When z= — qmn-sinncp:

n
nr kir m-nx
2--j-.^mn.sm —-sm l &*= 1,3,5...

+- nr m-nx
nTZJ'amn-cos — 'Sm-^-

(VI)

(Via)

(VIb)
fc 2,4,6..

This concludes the calculation for the arches. It should further be remarked
that the tangential reactions are caused by the membrane. These quantities
can be determined directly from n^ when#99= -\-cp0. When z pmn • cos n cp, we
find:

_> k-n m-nx 0

and when: z qmn'sinncp:
fc l,3,5...

_>
kTT IfYlTTX

<ltqss Rt -r-gmn-sm —-sm
Z

0.
k 2,4,6...

C. The Linear Functions

We now come to the linear functions. As described in the introduction,
the following is valid for the symmetrical linear function:

[<Po(CQS(P - cos <Po) + ism<Po(<P2-9o2)Z
cp0-smcp0

(cos 99 - cos 990) +1 (992 - 9902)

990-sm990

and for the anti-symmetrical function

[ 990 sin 99 —

*8+P0]. niTTC

sm-p

Z
l{<PoCOS(Po -sm<p0J \ 2cp02 j cp0*0}

sm
m-nx

l

From this it can be seen that the general form for the symmetrical function

as well as for the term of gs and ts is: z ^4cos99 + ^992 + (7, and for the
anti-symmetrical function: z D sin 99 + E cp* + F cp.
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We solve the differential equation for the arches with the above general
forms for the perturbation functions. Thus the following is valid for the
symmetrical functions:

d2M, m-nxj^ + Muls [A cos 9 + B <p2 + G] r2 • sin -^
The complete Solution of which is as follows:

Muls Gx cos 99 + G2 sin 99 + \\ A cp sin 99 + B (cp2 — 2) + G] r2 • sin

When 99 ± 9?0> Mu must equal 0 from which it follows that:

m^x

*+ 90Sm<P0 73 (^02-2)
2 cos

B
9o cos990

„,
1 1 m-nx

- C rl • sm —=—.
COS990J l

O2 0, so that:

Muls r2 \ä { cos 990 • 99 sm 99 — cos 99 • 990 sm 990

2 cos 990
+

| B\(92~2)coS9o-(9o2-2)G°S9{ c)cos990-cos99
(VII a)

cos990 cos990
•sm-

m-n-x

hence:

Qrls -A-A
-b{^

Vrls-VuTs- r d(p
>

cos <p0 (sin 99 + 99 cos cp) + 990 sin cp0 • sin 99

2 cos 990

cos 990 + (9902 — 2) sin
cos990

cp)
_, sm cp }1 m^x

— \ — G — > -sm—j—.
J cos990JJ l

(Villa)

If we proceed analogously, we obtain the following for the anti-symmetrical
functions:

^p + MuUs [D sin 9 + E «p3 + F cp] r* ¦ sin ^11,

with the complete Solution:

Mulss C3 cos 99 + 04 sin 99 — [J D cp cos 99 — E (cp3 — 6 99) — F cp] r2 • sin mTrx

when 99 ± 990, Mu must equal 0, or:

GA
L 2

sin990 sin990 sin990
r2 - sin mTrx

Co 0, so that:

MAulss r2 \d { 990 cos 990 • sm 99 — 99 cos 99 • sin 990

2 sin 9o
+

| rcf(y8-6y)smy0-(y08-6y0)smyj | ^|ysmyo-9osm
sm990 sm990

in^n
(VII b)

m^xsin-
Z
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further: „ 1 dM„lQ<s
Qulss - r dcicp

__ [ f990 cos (p0 - cos 99 - sin 99p (cos 99 - 99 sin <p)\

L l ZsmcpQ J

E \ (3(p2- 6)sincp0- (cp0*-6cp0)cos99 j _^|i sin990 J 1

sin 990 — 990 cos 99

(VIII b)
m-nx

sin —=—.
VsmcpQ

Considering the fact that the condition Mi Mu will be expressed in a
Fourier series with the course ~, we must develop Mu in a Fourier series.
We can do this direct; it is simpler, however, to develop Z in a Fourier series.

According to the theory of the eigen-functions (e.g. for symmetrical
functions)

then:

Cmn — [^ cos 9 + E cp2 + G] cosn cpdcp
9cs J

— <Po

A f 1 n "1+^
— 2—r sm 9 cos ^ 9H—2—7- c°s 95 sm w 99 +

B ro92sinwo9 2 09 cos ncp 2 l+^o (7 rsinwq9~l+<?«
+ — - + -^—2—^--^rsmncp\ +— 1:

9>o L ^ ^2 ™3 J -y. <Po L n J -v.
&7TAL. » .cos,0+5(^_4) + c.ilsi

990 [ w2-1 \ w w3/ nj sm-2
&7T

since: cos^990 cos— 0 when k 1, 3, 5

k TT
while: sin w 99p sin-— + 1.

Analogously, for the anti-symmetrical functions:

z ECmn&\n.ni

Hence it follows that:

Cmw — [Dsin99 + ^993 + JF99]sinno96Zo9
9o J

-<p»

D T 1 n 1 +<p»

E I" 993cos^99 3 992 sin ^99 6 cp cos ncpl+(P°

<Po L ™ ^ ^ J -?.+
JP f 99 cos n cp sin n 99] +<p<>

<Po L n n2 \ _^o"

--^•^•sin^o-^-^-^+^^leos^
990 l n2 -1 ru \ 7i3 n / w J 1
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in which, analogously with the above:
k-rr

sin^990 sin—- 0 when k 2, 4
Zj

kn
cos ncpQ cos — + 1.

With formulae (Va) and (Vb) we find for the symmetrical functions:

9 2 ' kir
njT xn

V Sm~2"r^ ^COS990 _> /99p2 2\ 11 m-nx /TV

and for the anti-symmetrical functions:

2, *- <Ixb>
^ cos 2 r wsiny0 /69>0 <p03\ WL1-n_mq:nj^

In the above, the following must be substituted:

1. For the symmetrical functions:

a) The as term
A <Po t> lsin<Po „A : crs £> ; crs

990-sm990 990-sm990

and C ^oCQS^o + ^o2sin^o0.
990-sin990 s*

b) The Z^term (Xa)

A \ ts; B i ts
990-sm990 990-sm990

and c +eos9o + iyo2
O90-sm990

c) The pQ term
.4=0; 5 0; and C p0.

2. For the anti-symmetrical functions:

a) The gss term

Z>= ^ ffss; # 0 and J» Sin^ ass.
990cos990 —sm990

öö
990 cos 990 — sm 99p

b) The tss term (Xb)

c) The q0 term

D 0; ^=J^^ and ^ ~KS.
^9V

D 0; ,£7 0 and F —q0.
9o

Before going on to the equation to determine the various perturbation
functions, which is: Mi Mu, as has been explained in the beginning, first
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the question of Mi as a result of the linear functions must be dealt with.
These appear to be only very small and constitute a quantity which can be
disregarded in the process of determining the perturbation functions as a
function of the unknown quantities gs ts, p0 or gss tss and q0. For, we can
determine Mt with the aid of formula (III).

When v 0, the following applies:

M4
-S2
12 [^(^ +0-Ä(^ +0 + (^ + »)l-sin-m7ra?

A2 v~ ~ x~ •

~/j — l

If we carry out the calculation and divide the formula into a variable
and a constant part, we find e.g. for the linear symmetrical functions:

M&
~82
12

ii(92~9o2)

+ {-.

Wo-sin 990

cos 99p

(sincp0-Gs-ts)\ +
2

l

(90*1 *\ U2 */
x

11 m^x^-z—znn- (*m9o' Vs-ts)+Po\ sm -

990-sin990 "v ° <" <p0-sm<p0* lv ° °' '"JJ Z

The constant part simply requires the presence in the ilfw-plane of 2 fixed
end moments of the same magnitude which together yield the same constant
moment plane, so that the condition Mi Mu is satisfied in this respect.

For determining pmn therefore, only the variable part matters.
This is as follows:

M,1& -
S2

12 [_i«p0-sin<p0

or, developed in Fourier series:

WT<ro2)}(si g-|.sin>mirx
l

82^ 1 2sin-
• (sin 990 • gs — ts) • cos n cp • sin nnrx

12 ^n* 9o(9o-siiiyo) v~"™ "s "s/ —'r Z
•

Analogously, we find the following for the linear anti-symmetrical functions
if we split these into a curvilinear variable and a linear variable part, which
latter part is cancelled out in the condition Mi — Mu against an identical
moment plane of the Jfw-plane:

jyj- o*7oo —
-S2
12

y3-yyo2
2<Po2

sin 99p

U -

•o"** +
'«-•) 1

(990 cos 99p-sm 99p ~ 99p

For determinig gmn, only the following remains therefore:

i] sin m^x

Mn^
-82
12

J93-99o2\, 1
sin-

niTrx
l

or, developed in Fourier series:

£2 l
M Vl7ss 12 ^n8

6cos-^-

<Po

m-nx
• fSÄ

• sin w 99 • sin —r
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Prior to establishing the general condition Mi Mu, we first present a
tabulated survey of the various formula? which will appear to be necessary
for the further calculation, divided according to symmetrical and anti-symmetrical

functions. Starting from z=f(cp), all these formula? can be easily
determined with the aid of the basic formula? established for this purpose,
namely (I), (II), (III), (Vlla and b), (Villa and b), (IXa and b) and (Xa and b),
while the perturbation functions have likewise been included here.

The indices have been changed for this purpose. Thus, e.g.:
ivr M j_ M^rx us ^fJ- ups ' ±1J- uls
M M -4- M-*¦"¦ uss ^rj- uqss ' -^^ ülss

etc., which is a simplification of these indices. The index s now exclusively
refers to the symmetrical functions and the index ss to the anti-symmetrical
functions. Furthermore, the index 0 has been introduced. This is applied to
all edge quantities, and in particular to that edge of the shell when 99 + 99p.

In the theory of the northlight shells are definitely asymmetrical, the index b

will be used in addition; this latter refers to alle edge quantities of the shell
edge when 99 — 99p.

Furthermore, pmn is replaced by Pmn, and qmn by Qmn. The significance
of this will be made clear below.

The signs for the edge quantities have been changed in such a manner
that they are valid for the edge beams. Here, a downward reaction whether
vertical or oblique, is counted as positive, since it acts as a load upon the
edge beam; further, deflections directed downward, whether vertical or oblique,
are likewise counted as positive.

The state of membrane stresses deriving from the shell weight

This is the state of membrane stresses deriving from the dead weight,
excluding the edge perturbations. These formula? can be found in all text
books on shell constructions.

vi2 (1 — cosm7r) m-nx
nve -Z — gr-coscpsm-j—.

vn4 (1 —cosm7r) gr mirx
nxwe + 2j~' r--Sino>COSX(pe ^ mir A r Z

^n4 (1 — cosm77) qr m-nx
nxe - 2j " ' \?' COS 9 sm 7 •xe ^ mir A2 r Z

^4 (1 — cosm7r) qr2 ^xo _ x.x mirx^ 2~^ ;.-^3-(l + 2A2 + iA4)cos9sm-r-.

Vi 4(1 -cosm7r) gr2 rtX9. mirx

g the weight of the shell per cm2 of shell surface.
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D. Establishing of the Condition Mi Mu

We now come to the condition with the aid of which the perturbation
functions can be more precisely determined. If we confine ourselves at first
to the symmetrical functions, the condition is as follows: Mis Mus, and it
can be established with the aid of the above without any further diffieulty.
For an arbitrary harmonic function m in a longitudinal direction, after division
of both parts of the equation by sin Vll^9 the following is therefore valid:

z[-
§2 1 2sln^"

2cos<p \ / 2

•cos n cp

/ 2cosy \ 2 \
r2 y fein k7T \ f'n (n2"1)2' ^" '"' (n2~l)' Bm(P°}

g +

/ 2 cos? \ _
/ 2 \

In this equation, JkT^fe developed in Fourier series, has still to be taken into
account. It is furthermore clear that this summation condition has been
exactly satisfied if the above condition (without the S symbol) has been
satisfied as regards each part of the harmonic function.

Therefore, after elimination of cos ^99 and after division of both parts
of the equation by r2, we can establish the following for each part of the
harmonic function:

^^¦nHn>-l) + -^\Vmn= (XIa)

_„i *"T f 1 2<p0cosy0 1 2siny0[-{2 L \n(n2-l)2 cp0(cpQ-sincpQ) n3(n2-l) cp0 (cp0-sincp0)
S2 1 2sin990 | f 1 2cos990 1

+ ttt-t * -r ; zj- v f o* + '
12r2 n3 990(990 — sin990)J s \n(n2—l)2 9?0(<p0 —sin<p0) n3(n2—l)

2 S2 J. 2 | f 1 2A '
'cp0(cpQ-sin cp0) 12 r2

'
n*

'
cp0 (cp0 - sin cp0)} s [n (n2-l)'cp0}Po

from which pmn can be resolved directly and expressed in gs, ts and p0.
Analogously, we find, with the aid of the condition Miss Muss, the following

for the anti-symmetrical functions:

{A^.n4(n._1)+_L_}?iim= (Xib)
coc^r.f i 2sin?° l -( -1 a_jl.2 |_ l»(»2-l)a <p0coscp0-smcp0} ss \n3(»2-l) <p02 12r2

2'
&'Jttm + \ ;•— ?o
n3 <p02j ss' \n(n2-l) <p0
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from which qmn can be directly expressed in gss tss and q0. It is evident that
in (XIa) as well as in (XIb), the expressions which have the coefficient y^—2,

constitute a negligible influence as regards the others; for, the coefficient
referred to varies in practice between the values 3-10-6 and 7-10-6. The

average error lies at approximately J per mille when one simply eliminates
the expressions.

Where pmn can now be expressed in gs, ts and p0, or qmn in gss, tss and q0,
all quantities at the shell edge can also be expressed in these same magnitudes
by Substitution. In the edge equations, only gs, ts, p0, or gss, tss, q0 occur.
These quantities can therefore be determined from the above. Once they are
known, the stress lines can be directly established with them.

E. Taking into Account of Longitudinal and Torque Rigidities

These can^still be computed in a rather simple manner. The complete
equilibrium equations are as follows:

dnT dnT
dx dcp

(a)

nx?

d<t
Pcf

flcf

*>

Mx

ad<p ->^-V vxfi=»x>*~ ^**o>.
s*>

^,rV <*r +-0*.
\*(f*

>̂*» d*

Fig. 5
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^SL + r^~Qv 0, (b)
dcp dx v

reo„+ 8ß^+ + o, (C)
dx dcp *

dMxq) dM<p
-r—£zr 7-^ +^ 0, (d)

dx dcp v

dMX(p dMx
#99 dx

Equations (b), (c) and (d) have already been applied when MX(p, Qx as

well as the expression r x<p were disregarded. Hereby it was found that:

d2M<p 2 „ m^x

if q represents the shearing load which is exclusively taken up by the arches.
Further, the following applies:

EI\d2w[d2ud^2<p r2 l^^2

which, substituted in the above equation, yields:

d^w ^d2w r4 mTrx
d?+2d?+t° +TI'qmR-T— (1)

In this expression, the sign for q has been reversed, since the loads are operative

upon the arches inversely to those operative upon the membrane.
Let us now investigate what will be the Situation, if Mx and Mxq) are not

disregarded:
The differentiation of (c) to 99 results in:

d2Qx
|

d2Q(p
|

8nv== rdq
dxdcp dcp2 dcp dcp'^r + VT + Tr -r^- (2)

(d) differentiated twice to 99 results in:

d2Q(p
_ d3MJ3_M^

dcp2 dcp3 ex ocp'

(e) differentiated twice to x and 99 respectively, results in:

PQ fPMx t
d3Mxv^

dxdcp dx2 dcp dx dcp2'
r

w Vx v ^x " ^xq> ,4,ft ~. C\ ~ ' 2 ™2 2 „ ' ft ™ 3 „2 * V /

(3) and (4) substituted in (2), after multiplication with r, results in:

r2
83MX

| 2r g'Jfx,, g3^ 8M9 lrMxv_ f2 dg
dx2dcp dxdcp2 dcp3 dcp dx dcp'

(5)
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Disregarding the very negligible influence of v, we can write:

^ riTd2w

in r d2w dv~\
*<p ~~7~ldxdcp + !x~\

d2w dv'
r* \ dcp2 dcp_

_EI\d2w dv]
<p~^2~[dy2+~d^\

while 1-~ w.
dcp

(6)

Substituting (6) in (5), we obtain:

dQw
; + 2

W 1

+ ¦

dx*dcp2 dx2dcp* r2

>w
+ 2

d*w d2w
+

dcpQ d<p4 dcp2] dx2dcp2 dx+ 3:
d*w d2w

+ TT-T
r2 d2q

~ETJ^2

multiplied by r2 and Computing the load inversely to that operative upon
the membrane, we obtain:

[dcp6 + ^™4 + ^™2 I +f Pinr^S)^
\-2 I

I

p6 dcp* dcp2

r4 d2q

dQw
0 9 d«w 0 9

d4w 9d2w

dz4V c*x23cp4^ dx2£>9>2 8x2

+ EI d<p*

When w IT sin—-— and q g0sin—j—, the differential equation, after

elimmation oi sin—=—, becomes:

deW d*W d2W
d<p*

+
dcp*

+
dcp2 j

TO47r4r4 d2W ^m2tT2r2 diW m2tx2r2 d2W

l2
W +

Z4 dcp2

r*_ S2^
El' 8<p2'

P ',cp* l2 dcp2

Here, the expression between the brackets actually represents the influence
of the arches which can be easily understood if (1) is differentiated twice in
succession to cp.

The total shearing load q0 is composed of three different influences q01,

q02 and q03 as follows:

1. Operative upon the arches

d2q01 E^[dyw ayw_ d2w\
r4 [dcp6 +

dcp*
+

dcp2 J'dcp2 r~ \_acp- acp* acp"

2. Resulting from the longitudinal force

d2q02 EI[miTTiri d2Wl
dcp2

EI\t
l* dcp2']
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3. Resulting from the torque

d2q0S_ EI\m2?r2r2t d*W d2W \]~l^-~^{ i2 \zdcp^6~dcp2 + w)y
The part which is operative upon the arches is therefore — times the total
transversal load, that is to say that of the total shearing load which is operative

between membrane and slab, only the part — is operative upon those

arches which are actually in this slab. These arches constitute the transversal
bearing of the curved slab.

In the equation Mi — Mu, we must therefore introduce the coefficient —

for Mu. Considering the fact that in the establishing of the equation Mi Mu,
sine- and cosine-functions are applied and that it hereby appears that all
quantities always take a course according to the same functions, we can
start, for instance, from W w0 cos n cp and W w0 sin n cp next to q0 Q0 cos n cp

and q0 Q0 sin n cp.

The coefficient in both instances is as follows:

ft ?oi n*-2n2+l
^o ^4-2ti2+1+ l2 \2n2-3 + -£J+ Z4

'mn

or also:

@
mn m2 n2 r2

72i+—- (*"-»+±)+"
w4-2»2+l

When A —^—, while n -^- by disregarding the negligible influence of
H—g-, this coefficient finally reads:

n*

©mn A4 + A2(2n2-3)'+ n4-2n2+l

We can now establish equations (XI a) and (XI b) for the general case, where
longitudinal force and torque are not disregarded, where, however, the very

§2
negligible influences arising from y^—^ have indeed been disregarded. Thus

we get the following for the symmetrical functions:

A .ß .„4/„2_i^ _Ä .„21^""' I J A 2 9o cos 9p.•n*(n2- l)-pmn ®mn-r2|^in-^ I -fc^n:mn v -/ /-m» -m |— 9 | U^2_1)2 ^ (^ _ ^n<p^
2sin990 1 f 1 2cos990

l 2] 1 1

Pn

n3 (n2-l) cp0 (cp0 - sin 990)J s \n (n2 -l)2'cp0 (cp0 - sincp0)

12 1 f 1 2

n3(n2-l) 990(990-sin990) \n(n2-l)'n\Po n2-l
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or:

Am-Bmn.n*(n2-l) t
l \^ _ k>rr\ \ 1 2q>^o^n_

— tolll - [ \n(n2-l)r*-®mn n2-\\^mn 2 l \n{n2-l)2 <p0 (<p0 - sin <p0)

1 2sin<p0 1 f 1 2cosy0 /XTT,rt
n3(n2-l) cp0(cp0-sm(p0)} s \n{n2-l)2 <p0 (<p0 - sin cp0)

~n«(n2-l) 'cp0(cp0-Sinn)\ts~\n(n2-l)'^\Po\

from which pmn can therefore be directly .expressed in as, ts and p0. Ana
logously, we find for the anti-symmetrical functions:

Am-Bmn-n*(n2-l) 1 ki i | _ ^77- r f i+ W=l)qnm - cosT~ [ + \n(n2-l)r2-®mn n2-\ymn 2 [ \n(n2-l)2

— i- i ' »L4 ' - ' <Xnb)

^rr^H9?0 cos 990 — sin 990 J
ss }w3 (n2 — 1) 99p2j ss |w (w2

from which qmn can again be directly expressed in gss, tss and q0.
The perturbation functions determined in this way are practically exact.

Only extremely minor factors are allowed to be disregarded in this instance.
As far as concrete calculations are concerned, they can in any event be
considered as completely inessential.

We can now also contract the coefficient m' mn into one coefficient. If
we call it ^>mn, then we get:

S2 / A2 A4W A4 + A2(2^2-3)l /VTT0-=i2^(1+2^+^){1+ ,4-L2+i T (XIIc)

k-rr
Here: m= 1,3,5... n -—,2<Po

k=l, 2,3,4,5... A ^p.
When taking into account the longitudinal force and the torque, one must

consider that the formulae for q0r, given on pages 119 and 122 are no longer
valid. In this case, the formulse for q0r become considerably more complicated.

F. The Influences of the Fixed End Moments Along the Shell Edges

So far, we have actually all the time carried out calculations of shells
which are hinged along their edges (long hinges). Now, the fourth unknown
is introduced which consists of a moment along these shell edges. In the
symmetrical functions, we are concerned with two equally large edge moments
M0s of the same sign, both of which bring about a constant moment plane in
the arches, while in the anti-symmetrical functions, we have equally large
moments M0ss, however with the opposite sign, which bring about a moment
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plane with a linear course. In a longitudinal direction, they all take again
the course according to sin —^—. Restricting ourselves firstly to the symmetrical

functions, if we have an intermediate pressure between arches and membrane

which is as follows:
A ' ^C7T

4 sm -£- mirX

This intermediate pressure brings about a Mis of the following magnitude:

4smT~ mTrx
Mis XAm'Bmn'n*(n2-l)'M0s-~ Cosnep-sin—j—

^m' nmn' IC7T'n V1 ~ L) l
or* a • &7r

4smlT „ mTrx
Mis 2—i M0s'cosncp'sin

kTT M08 ^'^ "" l '

This represents a constant moment plane developed in Fourier series,
namely:

mTrx
Mis M0s-sm—j-~.

This moment plane brings about an equally large moment plane in the

arches, caused by the fixed end edge moments M0s-sin —^— at both shell

edges. Hence these bring about a moment plane Mus, of the following magnitude:

ht ht • mTrx

However, the intermediate pressure in the arches brings about another moment
plane which can easily be determined with the aid of the above, namely:

A ' kir
ht vn o ht

~ inT mirx
MUS2 Zr2M0s.AmBmnk7TnHn2_lfcoSncp.s1n-r.

In the equation Mi Mu, Mis M0s • sin —^— must be added to Mi, and

A ' ^^
4- sm

ht ht - mirx 2 m-nxMus MQSsm— Z^^^.t^^^^^nyBm-p
toMu.

It is evident that the expressions Jf0ssin —^— are cancelling each other
out on either side of the equation. Therefore, only the second expression of
Mus remains. After having been divided by sin —^— the following must be
added to each part of the harmonic function:

a • ktr
4sm^r

— r2M -* Am-Bmn-kn-n*(n*-ir
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After dividing both parts of the equation by r2, the following has to be added

finally to the right-hand side of the equation (XII a):

a - kir
4sm-r2

-Jfft
Am'Bmn-kTr-n^(n2-l)2

Entirely analogously, we obtain in the case of the anti-symmetrical functions
the addition as below:

a kir
4cos-^-

_i_ i M
^Am.Bmn-kTr.n*(n2-l)2 0ss'

As a matter of fact, this causes the moment plane Miss — • M0ss • sin—^-,
and is obtained from the intermediate pressure:

a bn
ry ^ ht

~ C°S"2" m-nXZ \Mq<.„—a - ———— • sm n cp • sm—=—.^ 0SS Am.Bmn.kTr.n*(n2-l) * l

Obviously, the moment plane Miss pertaining to this expression is:

a ki*A QQg
ht sr* 2 ™ niTrx
Miss Zj ^ M0ss-sinncp-sin—j—.

Equation (XIIa) in its complete form is as follows:

2990cos9900_-^2-l) +^] '*™ sinT" [ -{n~W=l
)2 9o(<Po-sin(Po)

1 2sin990 1 f 1 2cos990 1

n3(n2-l) 990(990-sin90)J s \n(n2-l)2 cp0 (cp0 - sin<p0) n3(n2-l)
2 lf f l 2}v 4 M 1

«Po^o-sin^J s \n{n2-\) <p0\™ Am-Bmn-kTr-n* (n2-l)2
and likewise equation (XIIb):

^ 4/ o ,v 11 kir f f 1 2sino9n 1

mri n2— IJ mn 2 L (w(w2 — l)2 990cos990 —sm990J
cr00 —

6 1 [ 1 _2\ 4

n3(n2-l) cp02\ss'\n(n2-l) cp0j™^ Am-Bmn.kTr-n* (n2- l)2

Furthermore, the total perturbation function as quoted below is present in
the membrane:

a • kn4sm-x-
P rn _i ~ Mx mn rmn* a t> i. _ ^4/^2 i\ Os

or *. a k 1

4 cos -5-

Am-Bmn-kTT-tf(n2-\)
a kir4cos-x-

Jj

Km-Bmn-kTftf(n2-V)^Cmn Hmn \ j? 7„ ^4/^2 i\ Oss'

respectively.
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This completes in actual fact the theory, and we can now proceed to the
practical application which consists determining the edge conditions, with
which the unknown quantities can be determined. Prior to that, we want to
ask ourselves, however, upon which differential equation the theory is actually
based.

G. More Detailed Theoretical Considerations

Let us restrict ourselves first of all to the instance where longitudinal and
torque bearing are disregarded.

The differential equation for the moment plane of the arches, included
the inverse sign for the load, is as follows:

d2 M" M + Jf =ar2 (l)
dcp2

+ u q [ '

while Mi is determined from:
d2w M,r2
d^+w -ET

so __ EI\d2w 1

however, the condition: Mi Mu (3)

must prevail.
Hence, the following also applies:

EI\d2w w

(4) substituted in (1) results in:

^ d2w
^94 dcp1 EI

F* "ä2"" T* rxi —r

W

d^w ^d2w qr4"
+ 2zr-2+™ +wr (5)

which with q z-sin—-— when z f(cp) gives: (6)
V

d*w ^ d2w r4 .mirxj^+2d^+w +E-i'z'smir' (7)

We found in formula (IIc) that when (6) applies:

r2 T 1 „„ 2 „ 1 m^x /oxW ~¥S [vz -y*z+z I sm-/- (8)

in which: m-rrr
A-^-p-. (9)

Substitution of (8) in (5) finally results in:
im m / 10r2\

s,w + 2(l-A2)^, + (l~4A2 + A4)^,,-2(A2-A4)^ + A4!l + -p^U 0. (10)
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This differential equation is practically identical with that of Finsterwalder.
One can still correct the minor difference, however, this does not make any
sense at all, in view of the fact that an error of only approximately 0,015

per mille is involved in this instance.
In the second instance, where the longitudinal and torque bearing are

taken into account, the same derivations are valid up to (5). However, in this
case a diminished bearing is computed for the arches, since a part is
transmitted by the longitudinal force and the torque so that, in other words, q is
reduced as regards the arches. This reduetion amounts to:

<7o2 + ?o3 ^ [a4w-2A2-^-3A2w m-rrx
sm—-—. (11)

I

This is the result, after the very negligible influence oi\2w has been disregarded
and after integration twice successively of the term to 99.

Consequently, (7), in changed form, is as follows:

d*w ^d2w r4 f mTrx Eli.. ^,0d2w ^xo )1 ,,rt,-3—r+2-r-^- + w -=-F\zsm—1 ^ A4^-2A2-y-v-3\2w\ (12)
dcp* dcp2 Ell l r l d9 IJ

or:
d*w ^d2w c,.tyd2w rtNO r4 m-rrx ,,rtV-t-T+2-^t + w + X*w-2X2--¥-3X2w =-=rjzsm—r- 13
dcp* dcp2 dcp1 EI l

contracted:

d*w ^/, no. d2w rtXO r4 m-rrx /1JX^ + 2<1-A,V + <1-8A'+A4>» ;^*Bm—• (14)

(16)

Again, (8) applies:
r2 f 1 2 „ 1 rtinx _.w -m[¥z ~vz+zrn-r- (15)

(15), substituted in (14), gives:
mt tu

^_(4A2-2)^/, + (6A4-7A2+l)^,,,-(4A6-8A4 + 2A2)^ +

+ jA8_3A«+A4(l + ^2\U 0.

In this instance, too, very minor factors have been neglected; proportionately,
they are of about the same order as in the preceding instance. They might
be introduced without any diffieulty, but this is quite superfluous.

H. The Practical Application

Let us confine ourselves at first to the barrel-vault shells. These are
symmetrical, so that the anti-symmetrical functions are cancelled out as a matter
of course. Furthermore, all edge quantities in vertical and horizontal direction
are necessary, while the so-called state of membrane stresses deriving from
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the dead weight must be added, in order to obtain the shell weight. The weight
of the shell construetion per cm2 of shell surface is provisionally put at 1,
and is only later introduced in true magnitude. We quote:

?>=0

A'V 2.

\; / Fig. 6

To Tos + ^2Z2Bin9o,m-rr
l2

m'Tr*
SI2

m

9 9 ^Gq Gqs r—^ ^COS990,m2Tr2rh u us m3ir3rh ru

rr 4r (positively directed
r Vo %ts sm cp0 + q0rs cos 990 + — sm 990 cos 99,, d^wnwar^

4r (positively directed
rH0 qm cos cp0 - q0rs sm cp0 + — cos2n ^^l* 81*

,4^Er28' Avo wos cos <p0 + Vqs sin 990 + [1 + 2 A2 +1A4 cos2 990] -3-^—
(positively directed downward)

l* 81*
*Tr*Er28'Ah0 ~ wos sm y0 + v0s cos 990 - \ A4 sin 990 cos 99p^ ^5 ^ r2 g

(positively directed outward).
m

(The Substitution A —j— has been abandoned purposely in some instances.)
However, a better and very precise method of determining the edge

displacements is that in which the horizontal displacement is calculated by means
of the static moment of the transversal moment plane in the arches in regard
to the horizontal line running through the ends of the arches and contracted
along the axis of the arch. When this Ah0 is known, then:

l* A wnQ .„,.*« ,x. » SI*
m*Tr*Er28 v0 - + tg(p0.JÄ0 + [l+2A2 + iA4cos2^0] m5Tr5Er2S'cos 999

The simplest calculation of the static moment is effected by means of Mu
which has been resolved in a Fourier series.

&ho

Fig. 7

/ rfcos.y-cos.cp) \ \£j /
Fig. 8
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Obviously, in general ilf^ m0 cos ^99. Then, the following is valid for this
harmonic function:

«Po

12 f
(Aol j£§3

\ ™<>r2 (cos cp - coscpQ) cosncp-dcp

or:

12r2 coscpo-sm-^-
IAo] -^gs-• n(n2-l) *m°'

which formula can also be easily applied to the entire moment plane.

>kisinv12 r* I" ~2~ T f 1

UM] Wcos cp, [X^-^ [^ - [^^j
2 cpQ cos 990 1

)2 9o(9o-sin9o) ^3(^2-l)

[n (nz —

2sin990 | \ 1 2cos990
__

1

990(990-sin990)J s \n(n2-l)2 cp0 (cp0 - sin99,,) n3(n2-l) (XIII)
2 1 1 21 1 r^ * Mos v, • *w

1 r, 1 1 m - 8^
7~^ 7T^' "mw I — 2 A sm 990 COS 990 — ^ 9glw(w2-l)2 mnJ 2 rü Tüm5Tr5 Er2S

Analogously, the angle of rotation at the shell edge is found by contracting
the volume of the moment plane along the axis of the arch.

<p0 kir
dw ,0 ' 10~ sm

+°=
dcp

12 f 12r

9 <P0 •/ n
•mn

Hence, the following applies:

Tcrr

12r3r^sm^r [ 1 2cp0coscpQ
3 [^ n [ \n (n2 - l)2

'
cp0 (cp0 - sin cp

2sin<p0 1 f 1 2cos990 1

'cp0(cPQ-sincpQ)\(7s \n(n2-l)2 '990(<Po~sin<Po) ™3(™2-l
2

(XIV)

L f 1 21 1 M0s ^ kn 1 _ 1

r^l^^i)-^IH +^-^--2smT--M^T)-pH-
In the case of an inner shell, e. g., the following conditions apply:

Ah0 0 next to gx shell edge gx edge beam.
*Ao =" " " ^vO " jj "^o jj jj

From these four conditions, gs, ts, p0 and M0s can be resolved, whence
all stress- and moment-lines are known. In order to determine the latter two
conditions, one must consider that on the edge beam V0, shell reactions T0
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as well as the shell weight, amounting to qe per cm are acting, as sketched
below.

t„ 4 4,^4 jq.^ 4. 4.4.4.4.4.4.

g per cm2

Fig. 9

a — position of neutral axis in relation to upper edge.

The conditions can now easily be established. If the development in Fourier
series in a longitudinal direction is also applied in this case, then one finds
the following for the first condition:

gl2
m2Tr2rS ° m2lh[{7+aj<>T>-<"-V°-^]

or:

I L\ r I m7T 9rl (A)

and for the second:

m^^E^S v0 m4-

or:

ÜU ^L r mir gr]

whereupon according to (XIII) the following is determined:

^o <>

and according to (XIV) the following is determined:

In these formulae the expressions signify therefore (see above):

(B)

(C)

P)

0- l -os'

I7 lr 4
V0 ~ llots Sln <?>0 + lürs cOs «Pol +~ Sm <Po COS 9o >

/ fit TT

m2Tr2rh

m-rr
COS 990.

Considering the fact that in this instance the condition has been introduced,
that Ah0 0, the following applies:

A m*Tr*Er2h Wq„ r, rtX9 9 _,
84. — ^- + [l + 2A2 + iA4cos2^] —.Z4
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One can see from these formula? that when a given 990-value is applied,
all shells which have the same 990-value can be calculated with the aid of a
table which can be practically reduced to the four final formulas (A), (B),
(C) and (D), with the exception of some coefficients once and for all. It is of
no importance which r, § and l proportions these shells have, provided that
cpQ is identical. The same applies to the course of the stress- and moment-lines.
This is indeed a great advantage of the method developed above.

Fig. 10

23

2*1

qe total weight
of edge beam.

Let us now follow the case sketched here, that is to say that of a freely
suspended shell with two small horizontal beams at the edge of the shell. The

quantities concerning the vertical beam are quoted with index 1 and those
of the horizontal beam with index 2. First of all, the moment at fixed ends is

known directly (in this instance, the torque rigidity has been disregarded),
that is to say, it is: Jf0s a2ge2.

The increase in shearing force, T0 is split into two parts, that is to say
T01 and T02; hence, the following applies:

Tn T^ + T{02-

The longitudinal stresses of both beams must be identical at their point of
meeting, and then the following applies:

1 r/4+a(^h -«i-Fo-

Furthermore:

+ a2

+ Gh

4% gg"

nm gr

(Tq- T01)-a2'IlQ

(A)

A,o- h [Vo r ioi +
m77

mn gr
11
gr

while furthermore, the following has to be added:

Sr3

22
tf0-^(T0-T01)

(B)

(C)

(D)

From these 4 equations, T0l, as, ts and p0 can be resolved.

Fig. 11
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Finally, we come to a third type which can only be used for smaller
longitudinal spans. If the horizontal- and torque-rigidities of the vertical beam
are disregarded as a matter of convenience, then the following is valid:

(A)
M«s 0

H0 - 0

°o
8r2

4*
Sr3

+ a

F1 -aVn

.£r0 + _L.ft
r mir gr

rriTT gr
(B)

(C)

from which the three unknowns gs ts and p0 can be computed.
This concludes the chapter on the three main types of symmetrical barrel-

vault shells and we are now going to deal with the northlight shell types
which are asymmetrical and therefore call for more elaborate calculations.

We are concerned here only with that type of northlight shell where the
tangent at the top of the circular cross section runs horizontally.

<p=o

U^<»
&

>u

=+#

V-"
Fig. 12

As stated earlier on, all edge quantities of the top edge will have the index b,
that is to say when 990 — 990, and of the gutter edge the index 0, that is to
say when 99 + cp0.

In the first place, the following is valid:

— Tb -To8+Tos8>

l 81
Tq yto+y +—_sin2<pmn U6 US6 m2772

l2 8l2
m2Tr2rhGb a°s (J°SS m3773rSJ

l2 8l2
—ö—ö—^ °0 °0s + °0ss s~q—^ COS 2 9Q jm2Tr2rö m3Tr3ro

r Vb q0rs~%rssy

rVo= (?0te + ffotes) Sin 2 ?0 + (%rs + %rss) COS 2 <Po +
4r

H sm 2 Q9ft cos 2"<pft,
TYlTT
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4r
mir'

l*
m*Tr*Er2h

l*
m*Tr*Er28

l*
m*Tr*Er2h

rü0 - (qots + qotss) cos 2 <p0 + (gr0rs + q0rss) sin 2 990 -

4/*
cos2 2 Q90,

m7r

^ö=^os-^os, + (1 + 2A2 + iA4);
8Z4

m5Tr5Er28'

dvO (W0s + W0ss) C°S 2 90 + Ks + Voss) sin 2 <Po +

+ [l + 2A2 + iA4cos229o]m577^r2§,

4w> Ks + «%») sin 2 <Po - Ks + «W) c°s 2 9o +

+ | A4 sin 2 990 cos 2 990

8Z4

m57r*Er2S'

Mb M0s-M0ss,

Mq M0s + M0ss.

If the shell does not have a thickened top, the conditions as below are valid:

Tb 0, (A)

#6 0, (B)

4*=4*> (C)

Jf6=0. (D)

This latter applies when for the sake of convenience the torque rigidity of
the edge beams are assumed to be ~.

The introduction of this simplification is admissible in every respect as
has appeared from different numerical examples. Further, it is assumed that
the top edge of each preceding shell is supported by frame trusses placed on
the following gutter edge, as follows:

^--«

//
v~--~

Fig. 13

This latter condition is very important since it renders a considerably
more favourable distribution of stress possible than if this were not the case.
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The frame planes are assumed to be vertical. Those that are placed obliquely
will be dealt with later on. If the edge beams are considered to be a framework

construetion, which supposition is a safe one to make, then the following
edge conditions apply:

bh2 l + ^)\-\ r / V Kl M ° wtt gr)\
2 \ V (E)

4*

Ao
bh2s>

8w
dcp

0.

(G)

(H)
q> +q>0

Fig,ig. 14 t V-h,-A
J

Fig. 15

If a thickened top edge is involved, then the following replaces condition (A):
rh
Fh

Tb ab (Aa)

where Fb represents the cross-section of the top-edge thickening. If the rigidity
of the top-edge thickening in a horizontal direction is neglected, then (B)
remains valid per se. This simplified supposition can be considered as admissible

without any objeetions.

<r=-9>

<p=o

n

r*+*V'-S"
Fig. 16

If the frame planes are oblique, at an angle y with the perpendicular, then
the following applies instead of (B):

-#5 + JVtgy 0 (Ba)

The equations (E), (F), and (G), are, however, as follows:
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I2 |73A1 + 4ft2\

mir gr)

(Ea)

4ö
38 r3

4»=-

F6 + F0

38r3

ii+& gr)
(Ga)

Here, H0 H0-V0tgy and: (F6 + F0)
cos *y

For the sake of convenience, it is again assumed that:
dw
dcp

0.

The torque influences can, of course, also be taken into account without any
diffieulty. Supposing the angle torsion is rj (rj is very small), then the following
replaces equation (C):

Av0 Avb + rJh2, (Ca)
while:

dw
7].

dcp
<P +q>o

rj can be determined from the torque moment with regard to the neutral axis
of the gutter beam which can be easily determined with the aid of VQ, Vb
and Hq. Let us, however, repeat again that the most simplified supposition
gives results which differ only very little from the exact ones. One must
consider that the torque rigidity of the gutter edges is considerably enlarged
by the frame trusses which are fastened to the top edge of the shell. These
trusses have a large moment arm, so that minor shearing forces act rather
as a check on the upper shell edge as far as the angle torsion of these edges is
concerned. The taking into account of all these minor influences calls for a

| ?--o^^--p0

Fig. 17 £=+% \
Fig. 18
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considerably more complicated calculation, with the result that the tabulated
elaboration cannot be carried out so far, and is therefore unnecessary. The
influence upon the main forces is subsequently only very negligible (nx, nxq),
and nv).

We now come to another asymmetrical type of shell, i. e. the butterfly shell.
It is necessary in this case to place solid edge members upon the top edge

of the shell, that is to say, to the underside of the shell. This is the most
favourable position of the top edge member. If displaced toward the upper
edge, its position becomes increasingly unfavourable, and it is therefore not
advised to do so.

The edge conditions for this type are as follows:

^o 0, (A)

F0 + —-^-° 0, (B)
mir gr
r8

dw
dcp

T0 o0, (C)

0. (D)
> 4-<P0

Further, when neglecting the horizontal rigidity of the top edge beam:

Hb 0, (E)

0, (F)
dw
dcp

tyitt gr•>-T[-mr'-''
8r3r

r m-rr gr

(G)

(H)

This concludes the discussion of the most important forms of this
asymmetrical type.

The reader may have noticed that, although the method of determining
the perturbation functions including the longitudinal and torque rigidities
have been discussed in Chapter E, the formulae which are quoted in the
part on practical applications are nonetheless based upon the "arches theory".
The reason is that its field of application is very wide. It is even so that the
usual shell constructions in utility structures fall entirely within this group
where one may neglect the influences of longitudinal and torque rigidities
without any consideration and thus save a considerable amount of unnecessary

calculations.
If longitudinal and torque rigidities must, however, be taken into account,

then almost all formulae remain in force, with the exception of those of the
radial reaction q0r.
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This can easily be seen, since the edge quantities g0, T0, qot, v0 and w0
have all been determined with the aid of the membrane formulae, whereby
the influence of longitudinal and torque rigidities has also been taken into
account by means of establishing the perturbation functions.

The case of the radial reaction is different. This is determined by means
of the moment plane which is developing in the transverse arches. Considering
that this moment plane has been changed as regards the arches theory, sub-
sequent to taking into account longitudinal and torque rigidities, the transverse

reaction q0r is naturally changed, too. The procedure for determining
it is rather laborious and has not been included in this publication.

Example of a calculation

We now come to an example of a calculation and for this purpose, the
well-known "Markthalle Budapest" that is to say, its inner shell, has been
chosen. Let us state at once that of the perturbation functions, only the first
harmonic function has been determined, i.e. for k=l.

The higher harmonic functions decrease so rapidly in magnitude that it is

quite unnecessary to take them into account. Furthermore, we shall show in
what manner a table is drawn up.

In the case of the "Markthalle", the following applies:

cp0 0,61872, hence:

sin cp0 0,57999 n± 2,538783823

cos^o 0,81462.

Herewith we determine the equation, see formula (XII a) page 128, in
order to determine the perturbation function pllm After figures have been
substituted to 9 decimals, this is, if Mi is neglected, i.e. if M{ 0 as follows:

[226,2218C2>n + 0,183 640452] pxl= -0,015539523crs-0,033516134^-
1033,58000-IO"6 Mq (J)

-0,233818144^0- *u r2

^ 011==
1168,909m4 V^(l+ ^10297 696A2 + 0,024071165 A4) (2)

whereby: ®n has been put as 1, that is to say, the influence of longitudinal
and torque rigidities has been neglected.

5628,28063-IO"6 M0Also: ^11^11 + '-q^ -J55- (3)

It is evident that if r, l and 8 are known, it is possible, with the aid of
these formulae, to express pn and Pn in gs, ts, p0 and -£.

Conditions (C) and (D), page 135, can now also be established directly
with the aid of formulae (XIII) and (XIV), page 134. Hereby, k 1,
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3 and 5 are taken into account whereby the results are practically exact
because of the extremely rapid convergence. Translated into numerical values,
these conditions are as follows:

- 0,000915238 o-s-0,001976012 ^-0,013792 279^90 +

+ 0,075968314-^-0,010821021 Plt 0

and: -0,006 090189 gs- 0,013 279 702 ts-0,093 201219 p0 +
M (5)

+ 0,618720000-^-0,072333423 Pn 0.

Furthermore, we are able to determine in 6 decimals the following with the
aid of the formulae on page 135 for V0 and T0 and the table of formulae,
page 119.

V0 - 0,030 534 gs - 0,073 433 ts - 0,379 795 Pn +
°'601569

(6)

and:

T0 ^ + 2,538 784 Pn+1?476933. (7)u m

We can now write the conditions (A) and (B) with the aid of the formulae
for g0 and Av0, page 135; and the table of formulae; these, calculated in 6
decimals, are as follows:

2,074414
1,961 629 gs- 4,786 703 ts

hr2\( I a2\m T7 1,

m
21324 aq(

(8)

m gr
and:

{15,975213-4,815905A2}as-{25,819778-ll,751419A2}^+l,227566A4-

.Ä+2,64648 A 8^ Ha 2,27324 ^r" m ' I L r m gr\

Substituting (6) and (7) in (8) and (9) gives, in 6 decimals:

,961629-0,030534^^1 <rs- {4,786703 +yfi + a2) + 0,073433^^US-

-{2,538784^(^ + a2)+0,379795^}pn-p

(9)

074414 1,476933
m m

Sr// \ 0,601569 ahr2 1,27 324 aSr2 qe\ _T\~F+a) m 1 m T'g~r~)~ '
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and:

8r3) f
15,975210-4,815905A2 + 0,030534—- o-s-|25,819780-ll,751419A2-

_ ^_L_0,073433 •-^Us+1,227566 A4-^0+ 2,538784^- +

nonn.nr^3ln [2,54648 „ rtN. ^^ 1,476933 a8 r2
+ 0,379795-y- Pn+ 1 + 2A2 + |A4 +- fI 1L [ m ' m I

0,601569 8r3 1,27 324 8r3 qA _
m I m I gr\

Herewith, practically everything is known and after eliminating Pn the
unknown quantities gs ts, p0 and M0 can be resolved by numerical Substitution
with the aid of the four given equations (4), (5), (10) and (11).

Another method of working out, however, is possible. From (4) and (5)

Pq and —^ can be expressed in gs ts and Pn.
We find that:

p0= - 0,071300059 gs- 0,147095163 ts- 0,825844962 Pn (12)

and:
M_^ -0,000897115gs-0,000694573 ts-0,007493428 Pn. (13)

Substitution of (12) and (13) in (1), and a further application of (3), renders
it possible to express Pn in gs and ts. We find that:

P [ 10,519-10-6 1 f 6,974-10-6 ]
11 L226J2218^n + 83J847-l°~6_l L226J2218^ii + 83J847-10~6J S'

After substituting (12) in (11), and (14) in (10) and (11), crs and ts can be

expressed simply and explicitly in numerical and edge beam magnitudes.
Thus we obtain the following table which is generally valid for symmetrical
shells.

Table for cp0 0,61872 valid for symmetrical barrel vault shells

A 3,14159-m-y
V

*" 1168,909m^^$(1+0'310297696A2 + 0'024071165A4)

_ 10,519-IQ"6
_ 6,974-IO-6

0 " 226,222 <Pn + 83,847 • 10~6 ° " 226,2220n +83,847-10~6

Hq 2,538 784-^ (-L + a2\+ 0,379795-^
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S 2 Sv 3

Kq 2,538784 .^-+ 0,379795-^--1,013 779 A4

0,601569+1,27 324
gr

Rx

«i

B2

St

Lx

L,

Then:

1,961 629- 0,030534^- + RqH0

4,786 703 + -^ U= + a2) + 0,073 433 - ^-_ü + S0 - £T0

Sv 3

15,975210- 4,816059 A2- 0,087 526 A4 + 0,030534- -^--R0K0
Sv 3 Sv 2

25,819780-11,751419 A2-0,180569 A4-0,073433--^-^-^

^2,074414 + 1,476933^ LL +a*\-^J-. L0\

1 Ss 2 Sv 3 1

^ 2,54 648 (1 + 2 A2 + ±A4) +1,476933-^^-^-£0

— Sn • Kn

GQ —
L2S1 + L1S2 and ^

_L2R1-\-L1R2

x n
Vo

M.

R2 S1 — Rx S2

R0-Gs-S0>ts

R2 S1 — Rx S2

-0,071 300 gs- 0,147 095 ^-0,825 845 Pn

- 0,000 897 gs - 0,000 695 ts - 0,007 493 Pn

9 0

Ve^o
2le9o

3/e9o

4/e9o

5/e9o

cp 0

Ve9o
2/e<Po

3/e9o

4/e9o
5/e<Po

flr«:

W,2TT2 rS [-1,000 a,-0,000 fa

[-0,915 „-0,137,,
[-0,662 „ -0,547,,
[-0,241 „-1,225,,
[ + 0,340 „-2,165,,
[+1,076 „-3,357,,
[+1,962 „-4,786,,

' xy'
gl

mirl + 0,000 as + 0,000 ts

+ 0,100 „+0,005,,
[ + 0,183 „ +0,038,,
[ + 0,231 „+0,127,,
[ + 0,228,,+0,299,,
[ + 0,155,,+0,582,,
[ + 0,000,,+1,000,,

- 6,445 P3L1-2,546-
1"

m
-6,226 -2,533
-5,581 -2,493 »]
-4,557 -2,426 »]
-3,223 -2,333 »]
-1,669 -2,215 »]
-0,000 -2,074 »]

+ 0,000 Pu + 0,000 • 11

+ 0,658 + 0,262 »]
+ 1,269 + 0,521 »]
+ 1,795 + 0,775 »]
+ 2,199 + 1,021 »]
+ 2,452 + 1,256 »]
+ 2,539 + 1,477 »]
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1Ig9o

2le9o

3/e9o
4/e<Po

5Ig9o

9o

cp 0 M(
1l<>9o

2/e<Po

3lß9o
*l<>9o

5U9o

9o

\ gr*.\0-«

- 0,095 gs

-0,090 „
-0,075 „
-0,053 „
-0,029 „ -

-0,003 „ -

-0,000 „-
-15454as
-14806,,
-13139,,
-10566 „
-7345 „
-3648 „

0

-0,156£s-

-0,155,,-
-0,153,,-
-0,145,,-
-0,125,,-
-0,091,,-
-0,000,,-

-33465^-
-32569,
-29538,
-24522,
-17662,
-9453
-0

-1,273--
m.

-1,267- „;
-l?247-„]
-1,213-,,]
-1,167,,]
-1,108-,,]
-1,037-,,]

1,000 p0 -1,000.
1,000 „ -0,966
1,000 „ -0,866
1,000 „ -0,707
1,000 „ -0,500
1,000 „ -0,259
1,000 „ -0,000

-227566^0- l83641Pn]+^-Jf0
-221048 „ -177397 „ ] +
-201554 „ -159033 „ ] +
-169294 „ -129834 „ ] +
-124610 „ -91820 „ ] +
-67983 -47563 „ ] +
-0 „-0 „] +

r 1000 cm

l 4100 cm

8 6 cm

g 0,0253 kg/cm2

m 1

Calculation

I 199-105cm4

F 3960 cm2

a 154 cm dus:

qe= 6,66 kg/cm1

With this, the following can be computed:
A 0,766241

011= 10,360482-IO-6

Hence: R0 0,004333
Hq 39,635055

and: R1 0,715612
R2 +21,318171

So: gs 5,352910 ts 1,911661

^ 0,263 241
gr
or 11 \
T\~P 8>665704

a8r2

8r3

46,432161

301,507 536

A2 0,587126 A4 0,344717.

S0 0,002873
Kq 232,042815 A> 0,936738

S1 16,975924 L, -28,621692
82 -50,381741 L2 -210,427257

Pn= -0,028687
Mn 5916p0 -0,639168

and also the course of stresses and moments:

gl2
m2Tr2r8

gl
mTr8

7,18187

5,50305

gr2 25300

f 4,217
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9 0

1l*9o
2/e<Po

3/e9o

4/e9o

5/e9o

9 0

Ve9o
2/e9o
3/e9>o

4/e9o
5/6<Po

9 0

2/e9o

3/e9o
4/6<Po

5/e9o

9 0

1Ig9o

2le9o
Zle9o
4/e<Po

5Ig9o

9o

- 5,352-0,000 + 0,185-2,546

- 4,898-0,262 + 0,179-2,533

- 3,544-1,046 + 0,160-2,493

- 1,290-2,342 + 0,131-2,426
+ 1,830-4,139 + 0,092-2,333
+ 5,760-6,417 + 0,048-2,215
+ 10,502-9,149 + 0,000-2,074

°x
7,713 -55,4
7,514 -53,9
6,923 -49,7
5,927 -42,6
4,560 -32,7
2,824 -20,3
0,721 - 5,2

+ 0,000
+ 0,535
+ 0,980
+ 1,237

+ 1,220
+ 0,830
+ 0,000

-82723
-79255

- 70332
-56559
-39317
-19527
-0

+ 0,000
+ 0,010
+ 0,072-
+ 0,243
+ 0,572-
+ 1,113

+ 1,912

-0,000 + 0,000
-0,019 + 0,262
-0,036 + 0,521

-0,051 + 0,775
-0,063 + 1,021

-0,070 + 1,256

-0,073 + 1,477

0,000

+ 0,788
+ 1,537

+ 2,204
+ 2,750
+ 3,129

+ 3,316

rxy
+ 0,0

+ 4,4

+ 8,5

+ 12,1

+ 15,1

+ 17,2

+ 18,2

-63974+145453 + 5268

-62261 + 141287 + 5089

- 56467 + 128827 + 4562

-46878 + 108207 + 3725

-33764+ 79647 + 2634

-18071+ 43421 + 1364

-0 +0 +0

+ 4024-5916
+ 4860-5916
+ 6590-5916
+ 8495-5916
+ 9200-5916
+ 7187-5916

-5916

-1892
M9
- 48

-1056 - 27

+ 674 + 17

+ 2579 + 65

+ 3284 + 83

+ 1271 + 32

-5916 -149

- 0,508 - 0,298 + 0,639 + 0,028 - 1,273 - 1,412

-0,482-0,296 + 0,639 + 0,028-1,267 -1,378
- 0,401 - 0,292 + 0,639 + 0,025 - 1,247 - 1,276

-0,284-0,277 + 0,639 + 0,020-1,213 -1,115
-0,155-0,239 + 0,639 + 0,014-1,167 -0,908
-0,016-0,174 + 0,639 + 0,007-1,108 -0,652
- 0 - 0 + 0,639 + 0 - 1,037 - 0,398

-6,0
-5,8
-5,4
-4,7
-3,8
-2,1
-1,7

Note: This theory has more extensively been published in the Dutch
language in a pubhcation by the C.U.R. (Committee for Research) together
with comprehensive and suitable tables. With the help of these the calculation
of cylindrical shells may quickly be accomplished.

Summary

The method described in this paper is entirely different from those usually
published in the üterature. By means of an artifice, it proved possible to avoid
the Standard mathematical Solution of the fundamental differential equation.
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Starting with linear gx stresses, a part of the gx stresses due to disturbance
proved necessary in order to satisfy the fundamental differential equation,
governed by the condition Mi Mu. The method is generally applicable and

may be carried out to any required degree of accuracy.
It is evident that the formulas derived are particularly suitable for drawing

up tables. It is even possible to give detailed results (see the worked example).
In the Netherlands, tables are published which are elaborated to such an
extent that, for example, it proved possible to reduce the number of end

equations from 8 to 4 in the case of a Northlight Shell and from 4 to 2 for
symmetrical shell construetion. It is obvious that by this method the work
involved in the calculation of a shell is considerably reduced.

Resume

La methode ici decrite differe essentiellement de celles qui sont generalement

mentionnees: ä l'aide d'un artifice, il est possible d'eviter la resolution
mathematique habituelle de l'equation differentielle de base. En partant des

contraintes lineaires gx, un element de perturbation des contraintes gx doit
intervenir pour satisfaire l'equation differentielle de base, suivant la condition
Mi Mu. Cette methode est universelle et peut etre appliquee avec tout
degre voulu de precision. II apparait manifestement que les formules derivees
se pretent fort bien ä l'etablissement de tableaux. II est meme possible de

fournir des resultats explicites (voir exemple de calculs).
Aux Pays-Bas, la publication de tables a ete poussee a un point tel qu'il

est par exemple possible de reduire le nombre des equations finales de 8 a 4

dans le cas d'une coque Nordlicht et de 4 a 2 dans le cas des coques syme-
triques. II est evident que le calcul des coques est ainsi beaucoup simplifie.

Zusammenfassung

Die in diesem Aufsatz beschriebene Methode unterscheidet sich vollständig
von der gewöhnlich verwendeten. Durch Anwendung eines Kunstgriffes wird
es möglich, die übliche mathematische Lösung der Grunddifferentialgleichung
zu vermeiden. Ausgehend von den linearen Spannungen gx wird das Störglied
der crx-Spannungen zur Erfüllung der Grunddifferentialgleichung gebracht,
die in der Bedingung Mi Mu liegt. Die Methode ist generell anwendbar und
mit jedem Genauigkeitsgrad durchzuführen; wie gezeigt wird, sind die
abgeleiteten Formeln sehr praktisch zur Verarbeitung in Tabellen. Es ist sogar
möglich, explizite Formeln anzugeben (siehe Rechnungsbeispiel).

In Holland sind Tabellen veröffentlicht, die soweit ausgearbeitet sind,
daß es z. B. möglich ist, die Anzahl der Endgleichungen von 8 auf 4 im Falle
einer Nordlicht-Schale zu reduzieren, von 4 auf 2 bei symmetrischen Schalen.
Es ist klar, daß auf diese Weise die Berechnung einer. Schale stark vereinfacht

wird.


	A new method of calculating circular cylindrical shells

