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A New Method of Calculating Circular Cylindrical Shells

(Illustrated with one example of a calculation)
Nouvelle méthode pour le calcul des coques cylindriques

Eine neue Methode fiir die Berechnung zylindrischer Schalen

W. J. va~x pER EB, Civil Engineer, Rijswijk (Holland)

Introduction

It may be assumed to be a known fact that the state of membrane stresses
in circular cylindrical shells, if these do not form tubes of completely cylindrical
shape, is inadequate per se to produce an equilibrium with the external loads.
For instance, in general, the membrane shearing stresses along the edge seem
to be far from adequate in combination with the other edge reactions, to allow
the application of an arbitrary edge member. First of all, a considerably higher
edge shearing stress will always be required to make such application possible.
Only in very exceptional cases such is possible with the proper membrane
stresses, to build up with edge members of a very definite shape.

This additional edge shearing stress which takes the course r,,=7,(3{—x)
in free span shells, cannot develop per se in circular cylindrical shells with
continuous curvature.

This can be proved as follows: Take a symmetrical barrel-vault shell
which is preliminary approximated by a prismatic structure. The top descrip-
tive is the symmetrical axis. .

Moreover, and entirely irrespective of the shape, the following applies to
prismatic structures for an nth line of intersection (the discs are all of the
same height and thickness), if no exterior stresses are operative:

Tnat 47, +7,, =0
or, expressed in calculus of finite differences:
427, +67, =0,

with the solution:
7, = C, (—0,2679)" +C, (—3,7321)".
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If the counting is started from the symmetrical axis, the following con-
ditions apply: 7,,=0, when n=0, and =, =7,, when n=7p, if a shearing stress
is operative along the edge p.

We find that:
— e . Tr
Cr=-0Cq (—0,2679)? —(—3,7321)»"
T, becomes:
B (—0,2679)" B (—3,7321)"
T |(—0,2679)7 — (—3,7321)p  (—0,2679)" —(—3,7321)7] "’

If p becomes large, then the denominator in the above formul® becomes
immediately very large. The first term between the brackets very quickly
approaches 0 and can be neglected in regard to the second; further, in the
case of a large p-value, (—0,2679)? can also be neglected as far as (—3,7321)?
is concerned. '

So, finally:
_ (—3,7321)
™= T (37321 7
or: Ty

Ty = —

n T T (=3,7321)p

This formula indicates that =, calculated from the edge, approximates 0
very quickly. The first discs are affected to some extent; the central ones
remain practically without load.

If p=~,i.e. when the limit is reached and the prismatic structure changes
into a continuously curved shell, then it becomes clear that the shearing stress
is arrested in the outermost edge fibres and at specific places causes strong
folding-phenomena in the membrane.

Herewith it has been proved that an additional shearing stress cannot
occur per se in a membrane with continuous curvature. If, however, radial
loads can develop on the membrane, then this ¢s possible. The edge longitudinal
stresses and the transverse stresses (o,and o,) are likewise greatly influenced
thereby.

In the following theory, a shell is provisionally assumed to consist of two
major parts:

1. A membrane.

2. A series of closely adjacent circularly curved small rigid bars which are
lying close to the membrane by means of numerous radially orientated
short pendulums and are hinged to the membrane at the edge, in the simp-
lest instance, without any edge members, as pictures below:
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Small rigid arches
lying close together

membrane
numerous short pendulums

Fig. 1

What will happen now? Caused by the transverse load a state of membrane
stresses is developed. Along the edges, shearing stresses and transverse loads
develop i.a. These transverse load operate upon the rigid arches which are
thereby pressed against the membrane. This gives rise to the additional radial
load on the membrane (which accordingly acts at the same time upon the
arches) and which again is necessary to bring about the corrective stresses in
the membrane. This radial load is developing in such a manner that:

1. The tangential and radial reactions along the edge are 0.
2. The edge shearing stress must also be 0.

3. The deformations in membrane and arches are equal, for the membrane
presses closely to the arches at all points.

Thus a system evolves which can indeed thoroughly resist the exterior
loads.

Apart from the arches, we can also imagine that there exists a series of
longitudinal small bars arranged closely next to one another along the shell,
while these bars are supported at the two ends of the shell. In this case, a
pressure also develops between the longitudinal bars and the transverse
arches while the membrane is loaded by the algebraic sum of these two radial
loads. This system must be taken into account in shorter shells. In long shells,
this is not necessary in view of the fact that in this case, the radial load bet-
ween the longitudinal bars and the transverse arches only arises to any impor-
tant extent close to the supports and is furthermore so small that it can be
neglected. In long shells with which we are mostly concerned, the influence
of the longitudinal bars may therefore as a rule be disregarded.

Finally, one may also imagine that the longitudinal bars and the trans-
verse arches are connected to one another in a manner resistant to torsion.
This is the most accurate solution of the case and it is always possible to
obtain it in its exact form whenever we are dealing with a shell which is
supported on two end bases. In the case of continuous shells, a very close
approximation is possible, though not theoretically exact, with the so-called
“eigen’’ functions. This elaboration of the theory is introduced below. It
seems to call for the calculation of one additional coefficient only and there-
fore does not involve any difficulties in itself. It is only useful, however, to
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apply it to shells that are definitely short, when the length of the shell is
smaller than the width. For, it appeared from many examples of calculations,
the theory which calculates only with arches has a very wide field of application.
In practical cases, one may almost exclusively use this theory.

The unknown radial load Z =f(px) is composed of

1. a number of symmetrical functions, and

2. a number of anti-symmetrical functions.

Both types of functions consist of a so-called linear part, and a pertur-
bation part. The linear part does not appear to fulfil the condition that the
deformations of membrane and arches are equal. For this purpose, a function
is added which has been evolved in Fourier-series which we shall hereafter
call the perturbation function; this latter function is determined by the con-
dition that arches and membrane must undergo the same deformations. The
linear functions are called so by the fact that they cause o,-stresses in the
membrane which, if projected upon the plane of symmetry and perpendi-
cularly thereto, take a linear course.

These functions are following here:

A. Symmetrical functions

1. Linear functions

5’=—% \/rl\\ 9= +%
\ /
< N
A | AN
N 7 plane of symmetry

NG/
\{/ Fig. 2

7 - H% (COSqD—COS%)+%Sin%(9>2—%2)}0 B
S

®o — Sin
_ [(cosp —cos @) + 3 (¢ — @5°) t.+p, | sin 772
@ — Sin g, l

2. Perturbation functions

. mwx . kxw
Z =2p,, cosnesin wherein n = _—

l 2@,

k=13,5,...
B. Anti-symmetrical functions
1. Linear functions

sin —@sin 3_ 2 S
z = || PP PR P el @ . mme
I:{ P COS @y — SN @, Tss 2(P02 SS+SDQ 90 Sln. 7
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2. Perturbation functions

mmx ) ka
where in n

l B 2@ |k=2,4,5,...

Z =2q,,,  -sinngesin

One can easily convince oneself by referring to the tables of formule on
pages 117—122 that in the case of the symmetrical linear functions, the o, and
t,-functions projected upon the plane of symmetry yield o, -stresses that take
a linear course, while of the anti-symmetrical linear functions the o -function
does so if projected upon the plane which is perpendicular to the plane of
symmetry, and the ¢ -function yields a o, which takes a linear course that is
developed in the shell plane.

Furthermore, the p, and g,-functions are required in order to bring about
such tangential and radial reactions that a connection with arbitrary edge
members is rendered possible. Of these functions, therefore, o, ¢,, p, or o,
t. and g, are still unknown quantities which must be more closely determined
by means of the edge conditions.

Furthermore, two other unknown quantities are added in a somewhat
devious way, namely M, and M.

These are fixed end moments along the shell edges. Hence there is a total
of eight unknown quantities which can be considered as integration constants.

We now revert to the condition by which the perturbation functions must
be determined, namely that deformations of membrane and arches must be
equal. It is simpler and requires less calculation to work with the moment
planes. In the arches, certain moment planes occur. Let us now take a series
of imaginary arches equal in number to the real arches which is forced to
undergo the same deformations of the membrane; the moment planes of the
real and those of the imaginary arches must of course be equal if they are to
give equal deformations.

This method of calculation has the great advantage that the transverse
moments can immediately be determined with certain calculated quantities
which are necessary for establishing the final equations.

In the following:

M, = the moment plane in the real arches Hence M,
M, = the moment plane in the imaginary arches | must equal M, .

Furthermore, the index ! will refer to the linear functions, s to the sym-
metrical functions and ss to the anti-symmetrical functions.

Finally it is put that “‘eigen’’ functions can be applied in developing
series in a longitudinal direction. These functions, however, have the great
advantage that:

1. They are orthogonal.
2. They comply with the property that the fourth derivative and the func-
tion itself are of exactly the same form.
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3. They themselves all fulfil their own edge conditions so that it does not
make any difference whether we are dealing with shells based on two
supports or on several supports, if one only calculates directly with the
correct “‘eigen’’ function and “eigen’’ values.

In the derivation shown below, the calculation for the longitudinal direc-
tion is based for convenience upon the simplest ‘“‘eigen’’ function, namely
that for the beam upon two supports, i.e. the sine-curve. We are working
here, then, with Fourier series in a longitudinal direction, which are in actual
fact special “‘eigen’’ functions, namely those of the beam upon two supports.
One can assume all these sine-functions to be replaced by any other arbitrary
“eigen’’ function; this does not make any difference. Only here and there it
does not work out exactly, since in the other “‘eigen’’ functions there is no
longer any equality of form between integral or differential curves with
relation to the original “‘eigen’’ function. A minor error is then made. Since
these errors as a rule bear upon the influence of the shearing stresses and these
are of considerably less influence than the longitudinal stresses, we need not
be concerned too much with them. All other “eigen’’ functions can be applied
without any difficulty.

To sum up, we may therefore say that the essence of the theory is as
follows:

1. The avoidance of the usual solution of the differential equation of the
8th order by introducing linear o -stresses to which are added perturbation
stresses developed in Fourier series in transverse direction, which must
ensure the condition is fulfilled of arches and membrane undergoing the
same deformations.

2. That this latter condition is obtained by the formula:
.M i = M u*

This latter formula is the basic condition of the theory given below.

A. The Membrane Stresses and Deformations

mmx

What will be the state of the membrane if Z =z-sin 7

Hence, according to the differential equation of the state of membrane stresses,
the following is valid:

in which z={ (p).

. T
Ny, = —1-4 = —r-2-8in 7
Therefore: on, 1 0ng
~ 2% .
ox r 0@
So: anw:_'_ﬁ.. mamx
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: I 0
Whereby: My = “W'%'COS%QJFCI ().

107

For a beam with hinged edges, in the case of symmetrical loading the
shearing force =0 when x=14/; accordingly, for the shell n,,=0. From this

condition it follows that C, (p)=0.

o
*

Nxy

Furthermore: 0N, 1 0ngy
+= =0.
ox r Og
So: ong I 22 0 T
ox ~  mmwr Og? l
Whereby: 2 2z . mwnx
Mo = mz‘nzr.@qoz ST 02 (?)

In view of the fact that in the case of a beam with hinged ends the'moment
=0 when =0 and xz=I, hence for the shell n,=0, it appears therefore that

Cy(p)=0 as well.

Recapitulating, we obtain with X = 2",

l b

’ az ' . ” __ 32z_ " .
. MmmTx
Ny = —T-Z:8ID——,
r , mmax
nw=—-xoz + COS l ’

r o, . mwx
n, =+ 5-2"-sin

A% l

Regarding the deformations the following equations are valid:

ow 1
%_ES(% vnq,)

or: ou 1 o ” .
%=m m2w2r‘z +vr-z | sIln

mmax

l

(b) (I)
(c)
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80: _ 1 3 -z"+vrl~z cosmwx+0( )
YETES [miart Tmn l 119)-

Considering when =11, v must equal 0 everywhere, it follows that C, (p) =0,
thus:

ou 1 & . vrl mmx
é?q_o_:_m[m%ﬁr. w.z]cos l
Further: %4—7*@ _ 2r(1+v)n
op O E3 re-
Or:
ov 2(1+v) |, mmx 1 3 o vl o, mmx
oz~ Eoma - T T [m3w3r2. +m7r‘z] ©% 77
i 4 2
o v= LB |:m4f.,472'zm o (ijz_:.)zl -z'] sin m;rx+02 ().

Considering when =0 and x=1[, v must be equal 0 everywhere; accordingly,
C, () =0 too, hence:

ﬂ) — _L l4 ”/’_w.z” in mawx
o9 ES |minir mE 2 S A
Finally: ov r
| a—+w——§(’nq)—vn$)
or:
w-——.L _rz_v—p.z” si mnx_ 1 r zm/_(2+v)l2 arm mmx
~Es mEa? I " ES |minir? mea® © ST
SO: L[, 22 I wl . mmzx
w=_ﬂ TR A ? +m47747'2.z S I -
Recapitulating, we obtain with
4 33 2 " n 84 2 "
:%9—3=f (®); 2 =3—(p4‘=f (@);
u-—_Lz_ -i.z”_i_z 2 mmx
Y1 DA W R (a)
— r2 [ 1 " (2+V) ’ . Mmmx
v-——l—E—S—;\Zz BT -z]81n———~l , (b) (II)
w__—,,f— Fi z’”’—~2— ” . MmmTx
=@ W 22 +z S —— (e)

In view of the fact that when equalling M, to M, we are using exclusively
cosine- and sine-functions, we derive the formule for M, only for these two
goniometrical functions.

Generally, the following is valid:

d?w vm2n2r? M, -r3(1 —v?)
d¢2+(1“ 2 )w BT
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from which:

EI d?w vm2 a2y
M= D e (12 el

which becomes with (Il¢):

— 52 1 ;Z " 2 " "
M= ma=m [xz{z +(1=v A" =5 {2+ (1w A2} +
(I1I)

mwox

+{z"+ (1 —vA?)z}-sin ]

Substituting the following two z-functions in (III):

a) Symmetrical functions

2 = PunCoSne, in which »n = —2121 (k=1,3,5,... etc.).
Po

b) Anti-symmetrical functions

2 = (¢u,8inne, in which n = 2k—ﬂ (k= 2,4,... etc.).
Po

We find therefore that:

52 1 2 1 mmx
A2 =2 Tl ez 2 .
[)\4+n2)\2+n4]n(n 1 +vA2%) p,,, cOSn @sin ]

Mips = 12(1—2)

or:

62 1 2 1 : . mmwx
Moan = T30y [ s+ ) 704 0N dunsinngsin ™

For concrete shells, usually v is taken = 0. The formulz are then simplified to:

M, = A4, B,, n*(n*—1)p,, cosne-sin m;x (a)
or: Miqss=Am-an-n“(nz——l)qm.n-sinmp-sin mlwx (b)
when: . |
A = 12/\4’
B, = 1+2§+§, (IV)
)\zmlwr and n = 216(;70,

k=1,3,5...etc. or 2,4,6... etc.
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B. The Arches
In this case the three following differential equations are valid:

dMu_ . dQu _ . dn(p—
]" - Qu'rQ 2- d¢ +nq,+2-7'— 0, 3. W = Qu.

4y

\ /
\ /
</
\\ /
\ /
\ /
\ /
\ o’¢ /
/
\
/
v
Fig. 4

Differentiating (1) twice and substituting this result in (3) as well as in (2)
which has been differentiated once prior thereto, and multiplying by r, we
obtain:

aM, + aM, ——rzﬁ
d¢? do do’
And after integrating once:
: 3
fid—(p;i'{‘Mu:—z'Tz. (V)

Regarding the arches, the following is valid: z= —p,,,.- cosn ¢, so the differen-
tial equation becomes:

a: M .
—d?’ﬂ—“—i-Mu =1r2.P,,,,* COS N @ Sin

TL
l
whereby:

2
M, = [C’lcos<p+02sin<p—ﬁr_'—l—-pmn-cosnw] sin mlwx

As M,=0 when o= +¢, and ¢=—¢,, C; and C, are equal 0 when
k=1,3,5... ete.

: r2 . mwx
So v Mups=—m-pmn-cosn¢-51n ZT (Va)



A New Method of Calculating Circular Cylindrical Shells 111

and if z= —gq,,,sinn e, we find analogously with £=2,4,6... ete.

72 . . mmwTX
Muqss=—m~qmn-smncp-sm T (Vb)

The radial reactions, considered in their relation to the edge members
for which the — sign is introduced, are found by employing the differential
equation (1) for the shearing force, after substituting ¢ = + ¢,, and accordingly:

1 dM
9 = @ =———" . (VI)
i u‘P=lP0 r d(P Q= Qo
When z= —p,,,,- cosn ¢:
nr . km . mmx
Irps = “m'pmn‘ﬂn?'smTk_l .5 (V1a)
When 2= —gq,,,-sinn g:
nr km . mnx
g = + g "G00 SN (VIb)

This concludes the calculation for the arches. It should further be remarked
that the tangential reactions are caused by the membrane. These quantities
can be determined directly from n, when, ¢ = +¢,. When z=p,,,-cosn ¢, we
find:

knw . mnzx
Qps = By = —7- Py, - cOS—~-8in 7 =0
2 k=1,8,5...
and when: z=g¢q,,, -sinng:
' . km . mmnzx
qtqss=R,=—r-qmn-sm?-s1n ] =0,
k=2,4,6...

C. The Linear Functions

We now come to the linear functions. As described in the introduction,
the following is valid for the symmetrical linear function:

7 - H ®o (COS @ — COS ) + F 8in g (<P2—<P02)}U _
- s

Po — Sin @g
_ {(OOS P = COS @) +3 (¢* —%2)} . “’OJ gin MTE
Po — S @y 4 !

and for the anti-symmetrical function:

g — s ®— o’ mmx
7 = [[Posine—psing . [¢*—epl, @ T, mmz
[{ Po COS @ — S111 @ Tss T 2(})02 ss+q)0 qdo| SIN ]

From this it can be seen that the general form for the symmetrical func-
tion as well as for the term of o, and ¢, is: z=A4 cosp+ B¢?>+C, and for the
anti-symmetrical function: z=Dsing + K ¢+ F ¢.
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We solve the differential equation for the arches with the above general
forms for the perturbation functions. Thus the following is valid for the sym-

metrical functions:
a2 M . )
‘&PTMS'*'MWS =[Acosp+ B2+ C]r?-sin m;x

The complete solution of which is as follows:

My = 01003<P+023in9°+[‘%A<PSin<;0+B(<P2—2)+C]r2-sinmlﬂx.

When ¢ = + ¢,, M, must equal 0 from which it follows that:

C, = [—A %Sin%—B (%2_2)—0 1 ]rz-sinmwx.
2 cos g, COS @, cos g, l

C,=0, so that:
My = [A {COS(pO-gDSincp—OOSqJ-(pOSin(pO} .

2 cos Po (VII a)

+B{(<p2——2)cos<p0—(%2—2)cos<p}+0{cos<p0—cos<p}] sin T
COS @q COS @, l

hence:

qus-_—Qu?s:_r d(P

b

Qs = 7 [_A{COS(PO(Sin‘P+q)COS(p)+gvosing00-sinq:} B
res

2 cos
o (VIITa)

_ B 2@ cos @y + (@2 —2)sing _0 sin g gin T
COS @, COS @, )

l

If we proceed analogously, we obtain the following for the anti-symmetri-
cal functions:

az M . y
7<P—;1@+Mulss = [DSln‘P+E(P3+F‘P]T2'Slnm;x’

with the complete solution:

Mo = Cycosp+Cysingp—[3 Dopcosp — E (¢p3—6¢) — Fp]r2-sin ’mzrx,

when ¢ = + ¢,, M, must equal 0, or:

5—6
04= |:+—%‘D¢O.COS(PO—E(PO, (PO_F ‘(P() ]Tz-sinmﬂ_x,
SII @y sin @, sing, 1

C;=0, so that:

My, = 12 [D {(pOOOS(po-Sln(p.—(pOOS(p-SlanO} "
2 sin ¢,

(VIID)

L gl@—69)sing, — (g’ —6gy)singl o [psing, —gosing|] . mmz
sin ¢, sin g, l
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\

further: 1 dM
Qriss = Qulss = _? —_ﬁ@,
q =,.[_D{‘POCOS%-COS(P“Sin%(COSQD-—(PSinqﬁ}__
. 2 sin.g, (VIIIb)
—E{ (397 —6)sinpo = (py’ — 6.90) cos | ﬁF{Sin%_—% OOS‘P}] sin 7
S @ sin ¢, l

Considering the fact that the condition M,=M, will be expressed in a
Fourier series with the course ~, we must develop M, in a Fourier series.
We can do this direct; it is simpler, however, to develop Z in a Fourier series.

According to the theory of the eigen-functions (e.g. for symmetrical

functions)
2=20C,,co8nQl_13;5...

then:
+@o

c,., = (Pif[A cos g+ Bg?+C]cosngpdp =
0

—Po
A

n . + e
1 cospsinn g +

1 .
[—— mSln(}Ocoan)‘i‘

B Po n®— —Po
B [¢2sinn 2¢pcosn 2 . +¢  ( [sin +¢,
Po = L n -  Po n | —g
2 n P> 2 11 . k=
B I DL B(% _ = LN
-~ [A a7 CoS@o+ (n n3)+0 n]sm 5

i k
since: cosn%:cos?ﬂ:O when k=1,3,5...

while: sinn @, = sin—z—ﬂ = t1.
Analogously, for the anti-symmetrical functions:
z= Z’YOmn sin nq)lk=2,4...

Hence it follows that:
+@o

1
Onn = ;J[Dsin¢+Eqv3+F¢]Sinn<Pd<P =
0

— @

D 1 P n . +@o
= ;; ms1nn¢cos¢—mcosn¢81n¢ _%-l—
E| ¢3cosng 3¢?sinng 6gcosng|te
+$‘[— ” + o + o ] +
0 —Po
r pcosne sinne|te
+‘P— = " + o =
0 —®o
2 n .. . 6 3 kw
= —-—|D- ; —B.[2P0_ Po Po bl
fPo[ a7 S, E (n3 n)+F 7 | €055
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in which, analogously with the above:

. .k
smn%:sm?‘”:O when £k =2,4...

k
COSN Py = CO8 5~ = +1.

With formulae (Va) and (Vb) we find for the symmetrical functions:

. k=
27r28in — 2
2 [A.ncos%_*_B.(qa_O 2 x (IXa)

=>— —|+C 1 cosnpsin 27
M s = (n2—1) g, n?—1 n nd n ¢ l

and for the anti-symmetrical functions:
(IXDb)

ko :
272 coS — .
2 7 8IN @, 6 ¢, (po <p0 nx
M = . _F.| 10
- Z+(n2_1)% [D Py E (n3 . + F- 22| sinn@sin ;

In the above, the following must be substituted:

1. For the symmetrical functions:
a) The o, term

A — Po o.: B — %Sin Po e

Po—Singy * Po — Sin @y
and O = — P08 %o + % @2 sin Po ..
o — Sin @, .
b) The ¢, term (X a)
_ 1 ‘ 1
A=——"¢; B=—— 2 3

Po — S @, Po — SIN @y

1.2
and O = +28PF 2P0,
Po — S @

8

S

c) The p, term
A = 0; B=0; and C = p,.

2. For the anti-symmetrical functions:
a) The o, term
D= L — E=0 and F=- =
Po COS Py — SN @ Po COS g — SN g
b) The ¢, term (X'b)

D=0; E=—>t, and F=—}i,.

2 ¢02 88

8s*

c¢) The q, term

D =0; E =0 and F=—-1—-q0.
: Po

Before going on to the equation to determine the various perturbation
functions, which is: M;=M,, as has been explained in the beginning, first
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the question of M, as a result of the linear functions must be dealt with.
These appear to be only very small and constitute a quantity which can be
disregarded in the process of determining the perturbation functions as a
function of the unknown quantities o, ¢;, p, Or o, ¢, and ¢,. For, we can
determine M, with the aid of formula (III).

When v =0, the following applies:

12 [ At l

1f we carry out the calculation and divide the formula into a variable
and a constant part, we find e.g. for the linear symmetrical functions:

P—— [ {%(902—%2)

12 | e —sin g

__82 1 ” 2 ” .m
Mi _ Y [_ (Z”/ +zm/) —F(Z”ﬂ-l-z”) +(Z +z)] “=in 7T£U.

(sin gy - 0y — @)} ;

2
=1
+ {— (Poc%zi% (‘Po%“%)‘;ﬁ%@{%;(Sin‘Po‘Us“ts)"‘Po” sin m;-rx
The constant part simply requires the presence in the M, -plane of 2 fixed
end moments of the same magnitude which together yield the same constant
moment plane, so that the condition M,= M, is satisfied in this respect.
For determining p,,, therefore, only the variable part matters.
This is as follows:

} (sinqoo-crs—ts)] -sinm;x

Il I A ')
s 12 | | @p—Sin g,
or, developed in Fourier series:

2 sin&f

52 1 . . T
po= > . ; . co.—1t.)- .
M, =+ 12Zn3 o (@o S gy) (singy-0s—1,)-cosme-sin 7
Analogously, we find the following for the linear anti-symmetrical functions
if we split these into a curvilinear variable and a linear variable part, which
latter part is cancelled out in the condition M,=M, against an identical
moment plane of the M  -plane:

— 8% [ [P’ —p po®
Milss= 20 2
12 2,
. 35 —1
sin 2 1 . mwTx
- ‘Po. "Ogst (/\ 2 'tss__QO} sm 7
Po COS Py — SIN g Po Po !
For determinig gq,,,, only the following remains therefore:
—82% [ [¢® — p pp? . M
Milss = 19 I:{ 29002 }tss "Sim 7
or, developed in Fourier series:
6 kn
M 52 1 CO8 5~ . . mwx
ilss=_T2_ n—3-—;0-2——-tss-s1nncp-s1n ]
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»>» we first present a
tabulated survey of the various formule which will appear to be necessary
for the further calculation, divided according to symmetrical and anti-sym-
metrical functions. Starting from z = f(p), all these formule can be easily
determined with the aid of the basic formule established for this purpose,
namely (I), (IT), (III), (VIIa and b), (VIIIa and b), (IXa and b) and (X a and b),
while the perturbation functions have likewise been included here.
The indices have been changed for this purpose. Thus, e.g.:

M, =M, +M,

us ups
M =M, .+M

uss ugss ulss

Prior to establishing the general condition M,=M

etc., which is a simplification of these indices. The index s now exclusively
refers to the symmetrical functions and the index ss to the anti-symmetrical
functions. Furthermore, the index 0 has been introduced. This is applied to
all edge quantities, and in particular to that edge of the shell when ¢ = +¢,.
In the theory of the northlight shells are definitely asymmetrical, the index &
will be used in addition; this latter refers to alle edge quantities of the shell
edge when ¢ = —g,.

Furthermore, p,,, is replaced by P,,, and q,,, by @,.,. The significance
of this will be made clear below.

The signs for the edge quantities have been changed in such a manner
that they are valid for the edge beams. Here, a downward reaction whether
vertical or oblique, is counted as positive, since it acts as a load upon the
edge beam; further, deflections directed downward, whether vertical or oblique,
are likewise counted as positive.

The state of membrane stresses deriving from the shell weight

This is the state of membrane stresses deriving from the dead weight,
excluding the edge perturbations. These formule can be found in all text
books on shell constructions.

1—-cosm7r) . muwx
=_Z g7+ Cos @ sin—
l—cosmv-r) gr mamx
z¢e~+Z TSln(pCOS T
_"Z (L—cosmm) gr .cosasin PTE
mm A PR
4(1— é :
o= TS A g
4(1-—
vy =D ( éismﬂ)'lf]g)\ia (1+2)\2)s1n<ps1nm;7x

g = the weight of the shell per cm? of shell surface.
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D. Establishing of the Condition M,=M,

We now come to the condition with the aid of which the perturbation
functions can be more precisely determined. If we confine ourselves at first
to the symmetrical functions, the condition is as follows: M;;=M ., and it
can be established with the aid of the above without any further difficulty.

For an arbitrary harmonic function m in a longitudinal direction, after division

m

of both parts of the equation by sin ——lﬂ—m, the following is therefore valid:

ko

¢

Q S.
sz 1 2 8in

Z [f‘lm‘ann4 (,n2__ 1)'pmn+ )'(Singpo'as_ts):l ‘CoOSn @ =

1213 g (y — sin g
2cose 2 .
=) P~ e =) S0 Po

L i K s A T

®o (po —SIn )

2cos ¢ 2
+{(n(n2—1)2)_(na(nz—-l))}t _{ 2 i}p] 1 ]cosn
Po (o — SIN @) Tl mE=1) gy 0] T P v

In this equation, M., developed in Fourier series, has still to be taken into
account. It is furthermore clear that this summation condition has been
exactly satisfied if the above condition (without the 2 symbol) has been
satisfied as regards each part of the harmonic function.

Therefore, after elimination of cosng and after division of both parts
of the equation by 72, we can establish the following for each part of the
harmonic function:

A By 40, 1
{T'" (m _1)+;1,_2———1}'pmn" (XIa)
_ sink—ﬂ[—{ 1 2@oco89) 1 2 8in g,
2 n(n?—1)2 @o(py—sing,) n®(n*—1) @q(pe—sing)

8% 1 2 8in ¢, . 1 2 cos ¢, 1
—_— . ’ o' . < — .
1272 08 g (po—singg)| °  |n (n?—1)* @o(py—singy) n?(n?—1)

2 I 82 1 2 }t { 1 2 } ]
Po (Po—Singg) 1277 13 gy (po—singy)| ° (n (n*—1) ¢, Po
from which p,,, can be resolved directly and expressed in o, f, and p,.
Analogously, we find, with the aid of the condition M, =M., the follow-
ing for the anti-symmetrical functions:
Ay By 40 1 :
| Em P D) -
{ o )+n2—1}qﬂm (XIb)
sk 4 1 2 sin @, 1 6 &
B 2 n(n?—1)% @,cos @, —sin g, s |3 (n2—1) @2 1272

16y, f 1 2
" @e?] | (rP—1) ¢, ,qo
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from which ¢,,, can be directly expressed in o, ., and ¢,. It is evident that
2

in (XTa) as well as in (XIb), the expressions which have the coefficient %ﬂ,

constitute a negligible influence as regards the others; for, the coefficient
referred to varies in practice between the values 3-10—¢ and 7-10-%. The
average error lies at approximately } per mille when one simply eliminates
the expressions.

Where p,,, can now be expressed in o, {, and p,, or g,,, in o, ¢, and ¢,
all quantities at the shell edge can also be expressed in these same magnitudes
by substitution. In the edge equations, only o,, £, py, OT o, ts, ¢, OcCCUr.
These quantities can therefore be determined from the above. Once they are
known, the stress lines can be directly established with them.

E. Taking into Account of Longitudinal and Torque Rigidities
These canZstill be computed in a rather simple manner. The complete
equilibrium equations are as follows:

on,  on,
"ox T g (@)

=3
*

2
*+

f =3
-+
> 2
Y <
= ,‘P +xl), +*
_~ + "'"0_"_
Q.
< &
QU
Py

Fig. 5
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T G- Q, = 0, (b)
M Py, )
3%’”"’“8%%4@%:0. (e)

Equations (b), (¢) and (d) have already been applied when M,,, @, as

well as the expression r ag’;‘p were disregarded. Hereby it was found that:
M . m
——dq)zq’-i-Mq,:—rzqsm e

if ¢ represents the shearing load which is exclusively taken up by the arches.
Further, the following applies:

El|d*w
iy~ gl

which, substituted in the above equation, yields:

dw & " TR (1)
det " Cde YT TR T
In this expression, the sign for ¢ has been reversed, since the loads are opera-
tive upon the arches inversely to those operative upon the membrane.

Let us now investigate what will be the situation, if M, and M, are not
disregarded:

The differentiation of (c¢) to ¢ results in:

PRy  PQp  Omg 09

e 5, 2
dxdp 0@ o T@tp (2)

(d) differentiated twice to ¢ results in:

2Qy_ P My, My

"ogr T dgp ' dwogt

(e) differentiated twice to  and ¢ respectively, results in:

, 2 Q, _ BM, PMy,
oxdp  0x 0@ Ox 0P

(3) and (4) substituted in (2), after multiplication with r, results in:

s OMy o P Wy Py 0My, Mey 04 5)

Tt Towoet T og® | o | ox e
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Disregarding the very negligible influence of v, we can write:

2w

EI[ *w 0w
M“¢—7[9x8¢+%] Y (6)
EITew 6o while é;=w.
M,=—|—+-—
? 2 |og* O¢
Substituting (6) in (5), we obtain:
2 P w + B w +»1 86w+234w+82w 3 otw +82w__ ot &g
oxtop? oxtoer 1 |0¢® T O¢t  O¢? 0x2o@?  Oa® I 0¢?

multiplied by 72 and computing the load inversely to that operative upon
the membrane, we obtain:

86w+234w+82w , Ow P cw 4302 04w +7282w_
0¢® opt 0@ dxtop? ox?opt 0x%0¢? ox®
rt 02q
IR
When w = Wsin”"% and q = qosin = the differential equation, after

l
mnx

l
[d“W aw d2W] miairt 2W _mPair2 dCW  mPnie?r AW

{

elimination of sin , becomes:

2 . _ . — ) _
dob T dgt T o LR P I s S S T

m277272 _+7'4 82q0

7 T TEI aer

Here, the expression between the brackets actually represents the influence
of the arches which can be easily understood if (1) is differentiated twice in
succession to ¢.

- The total shearing load g, is composed of three different influences g,
9o and q,3 as follows:

1. Operative upon the arches

d®qy,  E1I d6W+2d4W azw
d @2 T4 d @b do* + d<p2 :
2. Resulting from the longitudinal force

d*qys EI[m*zairt d2W
4 de? |’

de® 7t
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3. Resulting from the torque

g Bl [m2772r2 (2d4W d2W+ W)]

det M| B dot T

The part which is operative upon the arches is therefore 22 times the total
0

transversal load, that is to say that of the total shearing load which is opera-

tive between membrane and slab, only the part £ is operative upon those

arches which are actually in this slab. These arches constitute the transversal
bearing of the curved slab.
In the equation M,=M,,,

for M. Considering the fact that in the establishing of the equation M ;=M uo,
sine- and cosine-functions are applied and that it hereby appears that all
quantities always take a course according to the same functions, we can
start, for instance, from W =w,cosne and W =w,sinn ¢ next to gy=@,cosn ¢
and ¢,= @, sinn ¢.

The coefficient in both instances is as follows:

we must therefore introduce the coefficient 20t

mn = = 2,22 4,4,4"
D mio2mr140 (2n2—3+—$?)+ﬁ@;—’”

or also: )

1
@mn = PRERP 1 mAatt”
S8 (0 L) 4
14 12 n? 14
nt—2n2+1

When A = ml" L, while n = Ek(PL by disregarding the negligible influence of

+ iz, this coefficient finally reads:
n

1
O = L MHREn—3)

nt—2n2+41

- We can now establish equations (XIa) and (XIb) for the general case, where
longitudinal force and torque are not disregarded, where, however, the very
82
1272
we get the following for the symmetrical functions:

negligible influences arising from have indeed been disregarded. Thus

. kn 1 2@y cos ¢
A B -nt(n2—1)- = .2 —— | = . : o —
m* B 0 (02 = 1) Py = O [sm 2 [ {72 (n?—1)% @ (po — Sin gy)

1 2sin g, } . { 1 2 cos g,
- ¢ : o . : -
n3(n2—1) @o(po—singy)| *  |n(n2—1)% @4 (py—sing,)

N 2 t 1 2 1 ]
W =1) gy (po—singy) ° |n(nF—1) gof 7] T nr—1 P}’
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or:
A, B, n*n?-1) 1 . k= 1 2@y COS @
[ ) = 0 i i
"Dimn - Po (Po — S @q
1 2 sin g, } { 1 2 cos @,
— . : o+ . - - (XIIa)
n?(n?—1) @o(po—singy)] °  |n{n2—1)* @q(po—sing)

ST A N
n3 (n2—1) @olpo—singy)| * |n(n2—1) @of°
from which p,,, can therefore be directly expressed in o,, ¢, and p,. Ana-

logously, we find for the anti-symmetrical functions:

Am-an-n4(n2—1)+ 1 ok 1
7-2.@mn n2—1 Qmn = COS 2 + n(n2_1)2

(XIIb)

28in g, 1 6 Loy 1 2
®p COS Py — Sin @, Tss n2(m*—1) ¥ = |n(n?—1) ¢, fo

from which ¢,,, can again be directly expressed in o, £, and g,.

The perturbation functions determined in this way are practically exact.
Only extremely minor factors are allowed to be disregarded in this instance.
As far as concrete calculations are concerned, they can in any event be con-
sidered as completely inessential.

mn

. -B . .
We can now also contract the coefficient Am B into one coefficient. If

2.9
we call it @,,,,, then we get: " tmn
2 Az A AL+ 2% (2n2-3)
it 12r2)\4(1+zﬁ+7ﬁ){1+ nt—2n2+1 } (X1le)
Here: m =1,3,5... n:ﬁ,
2
k=1,2,34,5... A=m;r

When taking into account the longitudinal force and the torque, one must
consider that the formule for q,,, given on pages 119 and 122 are no longer
valid. In this case, the formule for ¢, become considerably more complicated.

F. The Influences of the Fixed End Moments Along the Shell Edges

So far, we have actually all the time carried out calculations of shells
which are hinged along their edges (long hinges). Now, the fourth unknown
is introduced which consists of a moment along these shell edges. In the
symmetrical functions, we are concerned with two equally large edge moments
M, of the same sign, both of which bring about a constant moment plane in
the arches, while in the anti-symmetrical functions, we have equally large
moments M., however with the opposite sign, which bring about a moment
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plane with a linear course. In a longitudinal direction, they all take again
mmx
Sl
cal functions, if we have an intermediate pressure between arches and mem-

brane which is as follows:

the course according to sin . Restricting ourselves firstly to the symmetri-

4si ka
Sin - o

Z = ZMOS'Am-an-kw-n'l(’nz—1)‘0087“7).8111 ]

This intermediate pressure brings about a M, of the following magnitude:

4sin—k—71
2 mmx

. +COS M @+ 8Sin ——
9 A, By, km-nt(n2—1) l
. . k=
or ’ 4 sin —-
.m
M@-S:ZTZ—-MOS-cosmp-sm ;Tx

This represents a constant moment plane developed in Fourier series,
namely:

Mis = ZAm'an'n4(n2_1)'M

mmwx -
ik

This moment plane brings about an equally large moment plane in the

M, = M, sin

arches, caused by the fixed end edge moments M,-sin @ at both shell

edges. Hence these bring about a moment plane M ., of the following magni-
tude:
=M Os-sinﬁz—lﬂ.

However, the intermediate pressure in the arches brings about another moment
plane which can easily be determined with the aid of the above, namely:

M

Uusy

. k=
—4s1n7

. T
% A, Byn-km-nt(n2—1) l

In the equation M;=M,, M, =M, -sin —nlzf—x— must be added to M, and

M, = >r2 M

5 COS M - 8in

4sin®”
. mmx 2 . T
M, = M,.ssin 7 —ZT2MOS.Am'an'kﬂ"n4 (nz_l)z-oosngvsm 7

to M,,.

It is evident that the expressions M, sin anﬂ—m

out on either side of the equation. Therefore, only the second expression of

are cancelling each other

m

M, remains. After having been divided by sin m—l—x the following must be
added to each part of the harmonic function:

.k
4s1n?

A, B, km-ntn—1)32

—r2 M
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After dividing both parts of the equation by 72, the following has to be added
finally to the right-hand side of the equation (XIIa):

. kx
4sm-§—

"~ A,-B,, kw-n*n2-1)

5 M.

Entirely analogously, we obtain in the case of the anti-symmetrical functions
the addition as below: '

kx
4cos——2—

+Am-an-kw-n4 (n?— 1)2'M

0ss *

As a matter of fact, this causes the moment plane M iss:(pi.M()ss-sin nre
0

l b
and is obtained from the intermediate pressure:

4 k=
T &85 mmx

' 4 B kmndtmio1) P SIT

Z=M

Obviously, the moment plane M,  pertaining to this expression is:

ka
—4 cos—-
2 . .. mmTx
M, = ZT'MOSS-SIH’)’L(})-SIH ]

Equation (XIIa) in its complete form is as follows: .

.k 1 2 gy cos

nt(n2— . = i B 0 Po

[(p’"” i 1)+n2—1] Pnn = 5079 [ {n(nz—l)2 Po (Po —Sin @)

1 2sin ¢, } n { 1 2 cos ¢, 1
— . P O' . - —— .
n3(nP—1) @q(po—singy)| *  |n(n?—1)* @ (p,—sing,) n®(n>-1)

2 D I S P 4 M
-9’90(‘P0—Sin990) *oln(nt=1) g, Po Ay By kem-nt (n2—1)2 7%
and likewise equation (XIIb):

1 km 1 2sin g
vl (2 . — va . 0 —_
[Pt 08 1) = 008 | e e i %
1 6 1 P 4
N s A M. |.
{n3<n2—1) qooz}tsﬁ{n(nz-l) %}q"*Am-Bm-kw-n‘*<n2—1)2 ]

Furthermore, the total perturbation function as quoted below is present in

the membrane:
.k
4 sin 5

P =
mn = Punt B A (= 1)
or: kx
4008—2—

Qi = qm”_AmoB,,m-kv-r-n‘1 (n®—1)

'MOS

M

0ss*

respectively.
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This completes in actual fact the theory, and we can now proceed to the

practical application which consists determining the edge conditions,

with

which the unknown quantities can be determined. Prior to that, we want to
ask ourselves, however, upon which differential equation the theory is actually

based.

G. More Detailed Theoretical Considerations

Let us restrict ourselves first of all to the instance where longitudinal and

torque bearing are disregarded.

The differential equation for the moment plane of the arches, included

the inverse sign for the load, is as follows:

% +M, =qr?
while M, is determined from:
d?w M, r?
At TY T EI
2
however, the condition: M,=M,

must prevail.
Hence, the following also applies:

El[d?w
Mu = +7[W+w:l .

(4) substituted in (1) results in:

d4w+2d2w+ _ +q_r4
dot " der "W T TET
which with ¢ = z-sin mlwx when z = f(p) gives:
HFw S Bw T sinPTE
do* T der TP T TE] l
We found in formula (IIc) that when (6) applies:
w____rf_ 1 ////__2_ " 4 . MmX
= =5 |a? —gd tr|sin——
in which: mamr
A= 7

Substitution of (8) in (5) finally results in:

m " 12 2
z””+2(]_-—Az)z’”-}-(].’f4)\2+)\4)2””—2(A2—A4)2”+A4(].+ 827' )Z =0

(1)

(2)

(4)

(5)
(6)

(7)

(8)

(9)

. (10)
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This differential equation is practically identical with that of Finsterwalder.
One can still correct the minor difference, however, this does not make any
sense at all, in view of the fact that an error of only approximately 0,015
per mille is involved in this instance.

In the second instance, where the longitudinal and torque bearing are
taken into account, the same derivations are valid up to (5). However, in this
case a diminished bearing is computed for the arches, since a part is trans-
mitted by the longitudinal force and the torque so that, in other words, ¢ is
reduced as regards the arches. This reduction amounts to:

EI d?w . M7
q02+qo3=74—[A4w—2A2d(p2—3A2w]81n T (11)

This is the result, after the very negligible influence of A2w has been disregarded
and after integration twice successively of the term to ¢.
Consequently, (7), in changed form, is as follows:

dtw dz2 w rd mmx 4 zdw 2
T | s Tt | I
or:
d*w d?w s o A2w o Tt . mmX
W+2d99 +w+Nw—22 d(p2—3)\ w = 7zsin—y (13)
contracted: ‘
d4w d2w rt mmx
- 22 — 2 4 e -
d(p4+2(1 A)dtpz"}'(l 322+ X)w EIzsm I - (14)
Again, (8) applies:
I I D/ . mmTx
wz—m[ﬂz —ﬁz +z] sIn ——. (15)

(15), substituted in (14), gives:

nn n

2" —(4X2—2)2" 4 (6A—TA24+1)2"” — (4N —8A 4+ 222)2" +
1942 (16)
+{)\8—3)\6+)\4(1+ )}z=0.

52

In this instance, too, very minor factors have been neglected; proportionately,
they are of about the same order as in the preceding instance. They might
be introduced without any difficulty, but this is quite superfluous.

H. The Practical Application

Let us confine ourselves at first to the barrel-vault shells. These are sym-
metrical, so that the anti-symmetrical functions are cancelled out as a matter
of course. Furthermore, all edge quantities in vertical and horizontal direction
are necessary, while the so-called state of membrane stresses deriving from
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the dead weight must be added, in order to obtain the shell weight. The weight
of the shell construction per cm? of shell surface is provisionally put at 1,
and is only later introduced in true magnitude. We quote:

#=0

%) H,
N : ,
i | %
\ 2 //

\+’ Fig. 6
;EZ;TO = Tm'*‘,,,%ESin(Poa
12 812

COS @q ,

mEatrs 00 T0sT Lm s
. 4r . (positively directed
7 Vo = Qots SiN @y + Gops COS @y + o S Po COS @ downward),
. 4r (positively directed
r Hy = qou5 COS Qg — o5 SIN g + p— cos? g outward)

2 . 814
Ao = Wpe COS @y + Vo SiN g+ [1 +22% + 3 A% cos? gy ] PP RS

mint Er2§
(positively directed downward)
s A . 1\ g 81t
AT 2 A0 = — Wos SN o+ Vg COS g — g ATSIM @y COS Py 55 55
(positively directed outward).

mor

(The substitution A = ;

However, a better and very precise method of determining the edge dis-
placements is that in which the horizontal displacement is calculated by means
of the static moment of the transversal moment plane in the arches in regard
to the horizontal line running through the ends of the arches and contracted
along the axis of the arch. When this 4,, is known, then:

It W, 814
v — s . 23214 1)4 2 A A
miat Er28~ " cos (p0+tg% Ao+ [1+22+§ A% cos %]m57r5E’728 :
The simplest calculation of the static moment is effected by means of M. us
which has been resolved in a Fourier series.

has been abandoned purposely in some instances.)

o‘p e
Q \\
= rlcos.p-cos.g)' N \¢; it
No® N8 /
AN q‘ /
0 7
N\
ah, Q{/

Fig. 7 , Fig. 8
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Obviously, in general M, =mg,cosn¢. Then, the following is valid for this
harmonic function:

Po
2
[410] = EI_BE fmorz (cosp —cosgy)cosne-do
0

or:

kn

12,2 COS@,-sin 5
[4nl = 55 n(n2—1)

.mo’

which formula can also be easily applied to the entire moment plane.

. o km
2
‘ 1274 S5 1 2 @, COS @, 1
o] = 55 0% %o [Zn(n2—1> [‘{n (=1 gy (po—sing,) n*(m*—1)
2 sin g, } +{ 1 2 cos g, 1
.——————_——:—-———— o" . % —_— .
®o (po—singy)f ° " |n(n?—1)% @, (po—sing,) n?(n?—1) (XIII)
2 } 1 2} ] My « . k=
. : t,— o — +{t — — =) sin-——-
®o (‘Po_SHl‘Po) s n(n2—1) ®o Do {g(PO (PO} 2 Z 2
1 . 8
RE—T)E P, | —3Atsin g, cos Po, 55 25

Analogously, the angle of rotation at the shell edge is found by contracting
the volume of the moment plane along the axis of the arch.

. k=
127 Sln—2—

dw 12
= =E‘—83 mo’rOOS'n(Pd(P=—.‘E~8—3'—n——'m0.
0

‘/'O_d_(P'

P= Qo

Hence, the following applies:

. o km
0T ES8 n n(m2—1)2 gy (po—sing,) n3(n2—1)
2 sin g, } { 1 2 cos @, 1
' ingg)| ™" ' s : XIV)
@o (o—singg)] *  |n(n?—1) @q(po—sing,) n?(n*—1) (

1

wimE—1) L]

@o (po—singy)| ° |n(n2—1) ¢, Do) + P03 5

In the case of an inner shell, e.g., the following conditions apply:

4,0=0 next to o, shell edge = o, edge beam.
l/l() =0 I3} 13} Av{) 3 ” =A/U() ’ 12

From these four conditions, oy, t,, p, and M,, can be resolved, whence
all stress- and moment-lines are known. In order to determine the latter two
conditions, one must consider that on the edge beam V,, shell reactions T,
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as well as the shell weight, amounting to ¢, per cm are acting, as sketched -
below. '

B opp ot Lo e e -

I N R
g per ¢m? %0

Fig. 9

a = position of neutral axis in relation to upper edge.

The conditions can now easily be established. If the development in Fourier
series in a longitudinal direction is also applied in this case, then one finds
the following for the first condition:

gl2 12 I ta
w2 atr5%0 = T |\ T2 )9 To—agrVo— .

or:
I 2
Sre[(F Y 4a
"°=T[(T)T<>—“VO—M'§%] )
and for the second:
gt*  , _ U _ %
mimt B r2d Auo = mimt B grVe agT0+m7T Qe
or:
973 a 4 q, '
A”O—T[V°_7T°+m—w'?77] (B)
whereupon according to (XIIT) the following is determined:
and according to (XIV) the following is determined:
o =0 (D)

In these formulz the expressions signify therefore (see above):

m

8 .
T, = 7 TOS+———m7T -8in ¢y,

1 ) 4 -
Vo= 7 [Qots SIN @4 + G5 COS @ ] + ma S g COS @,

m2m2rd 8
—————0pn. — — COS .
l2 0s mr Po

Considering the fact that in this instance the condition has been introduced,
that 4,,=0, the following applies:

O'O=

miTt E 238  wg,
ADO = 4 ‘
l COS @,

8
+[1+2X2+ 1A cos? p] —.
[ A2+ 1 Atcos %]mn
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One can see from these formule that when a given ¢,-value is applied,
all shells which have the same ¢,-value can be calculated with the aid of a
table which can be practically reduced to the four final formulas (A), (B),
(C) and (D), with the exception of some coefficients once and for all. It is of
no importance which r, 8 and ! proportions these shells have, provided that
@, is identical. The same applies to the course of the stress- and moment-lines.
This is indeed a great advantage of the method developed above.

23,
g, = total weight

Fig. 10 23, of edge beam.

Let us now follow the case sketched here, that is to say that of a freely
suspended shell with two small horizontal beams at the edge of the shell. The
quantities concerning the vertical beam are quoted with index 1 and those
of the horizontal beam with index 2. First of all, the moment at fixed ends;is
known directly (in this instance, the torque rigidity has been disregarded),
that is to say, it is: My, =a,q,,.

The increase in shearing force, 7', is split into two parts, that is to say
T, and T,; hence, the following applies:

Ty = Toy+ Top-
The longitudinal stresses of both beams must be identical at their point:of

meeting, and then the following applies:
£SY

+a,?
LA To1"@1'V0“'4al’ge‘ =
1 r mm g7
, (4)
1 F—ZZ +a22
=E[( , )(TO_TM)_%'HO]
Furthermore:
1, 2
e[ (F, ™ 4ay g,
o g | (5 ) T )
_ o a, 4 q,
Avo—Tl[Vo—7To1+;n—;'g7] (C)
while furthermore, the following ha;s:’co be added:
ord a
Ah0=T[H0—72(T0“T01)] - (D)
; ,

From these 4 equations, Ty, o, t, and p, can be resolved.
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Finally, we come to a third type which can only be used for smaller longi-
tudinal spans. If the horizontal- and torque-rigidities of the vertical beam
are disregarded as a matter of convenience, then the following is valid:

MOSZO A
q —o (A)
I .
or? F da 9.
=7 () Tomamem g )
dr3 a 4 q,

from which the three unknowns o,, ¢, and p, can be computed.

This concludes the chapter on the three main types of symmetrical barrel-
vault shells and we are now going to deal with the northlight shell types
which are asymmetrical and therefore call for more elaborate calculations.

We are concerned here only with that type of northlight shell where the
tangent at the top of the circular cross section runs horizontally.

#--9

(4

I
|
|
|
|
|
|
|
™
|
{Z

As stated earlier on, all edge quantities of the top edge will have the index b,
that is to say when ¢,= —¢,, and of the gutter edge the index 0, that is to
say when ¢ = +¢,.

In the first place, the following is valid:

%Tb = _TOS+TOSS7

ﬁ% Ty = qu+ To.ss"f‘m—il;z'smz()?o?

2 812
mea2rs b 08T T0ss TS

{2 812
mao = UOS—G—O'OSS*mcosZ(pO,

r Vb = Gors — Qorss >

r VO = (%ts + QOtss) Sin 2 Po + (QOrs + QOrss) Ccos 2 Po +

4r
——sin 2 ¢, cos 2q,,
+ ST ZPo Po
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4r

'er = QOts—'QOtss"l"mﬂ,’

r HO = - (QOts + QOtss) cos 2 Po + (QOrs + QOTSS) sin 2 Po —
4r
- 29
ma o> - PO

I Q4
Avb = wOs—w0$s+(1 +2A2+%A4)m

mimt B r2§ B B r2s
It ‘
i g as Avo = (Wos T Woss) €08 2 + (Vg5 + vgss) 81 2 0y +
814
+[1+ 20+ 3 M cos* 20] 55 s
It .
mdhﬂ = (W5 + Wogs) SIN 2 Po — (Vs T Vgss) COS 2 g +
. 814
+ %)\4s1n2<pocos2<pom,

Mb = MOS-MOSS’
MO = MOS+M033'

If the shell does not have a thickened top, the conditions as below are valid:

Tb = 0: (A)
H, =0, (B)
Avb= Avo’ (C)
M,=0. (D)

This latter applies when for the sake of convenience the torque rigidity of
the edge beams are assumed to be ~.

The introduction of this simplification is admissible in every respect as
has appeared from different numerical examples. Further, it is assumed that
the top edge of each preceding shell is supported by frame trusses placed on
the following gutter edge, as follows:

This latter condition is very important since it renders a considerably
more favourable distribution of stress possible than if this were not the case.
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The frame planes are assumed to be vertical. Those that are placed obliquely
will be dealt with later on. If the edge beams are considered to be a frame-
work construction, which supposition is a safe one to make, then the following
edge conditions apply:

2
et [P e ) 2]
2 hy r hy hy - mmw gr
bhs (1+h) ()
2
3073 h h h 4 gq
b I TR () (e 5]
vb bk13(1+£2)|: r 0 h’2 0+ +h1 b+ 0+’)'TL1T gr ( )
hl
3
Ay, = 33r [ h1+2k2).T0+(4+_h_1 .Ho_gﬁg Vb_*_VO_*__‘L._.& , .
bh3 1 _}il r k2 hl mmT gr
2 (" g, - (G)
ow =0 (H)
a(p ®=-+@o
_“b
|
i| 77
sl L
Fig. 14 t—p,— Fig. 15

If a thickened top edge is involved, then the following replaces condition (A):

rd

7,

where F, represents the cross-section of the top-edge thickening. If the rigidity

of the top-edge thickening in a horizontal direction is neglected, then (B)

remains valid per se. This simplified supposition can be considered as admis-
sible without any objections.

If the frame planes are oblique, at an angle y with the perpendicular, then
the following applies instead of (B):

'—Hb‘}'Vb'tg'y:O (Ba’)

The equations (E), (F), and (G), are, however, as follows:
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2
S 1 i [(3h1+4h2)_T0+
bhg? (14 3) g
h h 4 (Ha)
M) g _gle .4
(o) Ao )
3 N
= 382 [—E'To—3£—l‘ﬂo+(4+%){(Vb‘”/o)‘*'i'&”—
bh13(1+__2) cosy r 2 1 mm gr
s (Fa)
3. hy+2 _ 4
B 3o6r tg}}: [( 1+ kz),T0+(4+%).Ho_g%{(Vb.i_Vo)_;__._qi}]’
bh23(1+k—1) r 2 by mm gr
2
- 2 h - ) [ 4
4,0 = 307 > [(k1+ k2)-To+(4+h—1)-H0—3h—2{(V,,+VO)+——-1"—H.
bk23(1+—1) # 2 1 mm gr
& (Ga)
— = V,+V
Here, H,= H,—V,tgy and: (Vb+V0)=—é’(—)~S—y—9.

For the sake of convenience, it is again assumed that:

L —0.

3(]) P=+@o
The torque influences can, of course, also be taken into account without any
difficulty. Supposing the angle torsion is 5 (7 is very small), then the following
replaces equation (C):

Avo =Avb+77h2’ (Ca’)
while:
ou|
0Plp=tgo

7 can be determined from the torque moment with regard to the neutral axis
of the gutter beam which can be easily determined with the aid of V,, V,
and H,. Let us, however, repeat again that the most simplified supposition
gives results which differ only very little from the exact ones. One must
consider that the torque rigidity of the gutter edges is considerably enlarged
by the frame trusses which are fastened to the top edge of the shell. These
trusses have a large moment arm, so that minor shearing forces act rather
as a check on the upper shell edge as far as the angle torsion of these edges is
concerned. The taking into account of all these minor influences calls for a

v

Fig. 18
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considerably more complicated calculation, with the result that the tabulated
elaboration cannot be carried out so far, and is therefore unnecessary. The
influence upon the main forces is subsequently only very negligible (n,, n,,,
and n,). ‘

We now come to another asymmetrical type of shell, i. e. the butterfly shell.

It is necessary in this case to place solid edge members upon the top edge
of the shell, that is to say, to the underside of the shell. This is the most
favourable position of the top edge member. If displaced toward the upper
edge, its position becomes increasingly unfavourable, and it is therefore not
advised to do so.

The edge conditions for this type are as follows:

AhO =0, (A)
4 Qeo _ ‘
Vo‘*‘ﬂ'g; =0, (B)
ré
E" TO = 0Oy, (C)
ow =0. (D)
8(7) @ =+@o
Further, when neglecting the horizontal rigidity of the top edge beam:

Hb = O, (E)
w2, (F)
0P lp——a0 I,

2
e[ (O 4a gy
P I
873 4 q,
4, = I [Vb—l— T,+ mrrg—r] (H)

This concludes the discussion of the most important forms of this asym-
metrical type.

The reader may have noticed that, although the method of determining
the perturbation functions including the longitudinal and torque rigidities
have been discussed in Chapter E, the formule which are quoted in the
part on practical applications are nonetheless based upon the ‘“‘arches theory’’.
The reason is that its field of application is very wide. It is even so that the
usual shell constructions in utility structures fall entirely within this group
where one may neglect the influences of longitudinal and torque rigidities
without any consideration and thus save a considerable amount of unneces-
sary calculations.

If longitudinal and torque rigidities must, however, be taken into account,
then almost all formule remain in force, with the exceptlon of those of the
radial reaction g, .
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This can easily be seen, since the edge quantities oy, 7'y, ¢4, v, and w,
have all been determined with the aid of the membrane formulse, whereby
the influence of longitudinal and torque rigidities has also been taken into
account by means of establishing the perturbation functions.

The case of the radial reaction is different. This is determined by means
of the moment plane which is developing in the transverse arches. Considering
that this moment plane has been changed as regards the arches theory, sub-
sequent to taking into account longitudinal and torque rigidities, the trans-
verse reaction g, is naturally changed, too. The procedure for determining
it is rather laborious and has not been included in this publication.

Ezxample of a calculation

We now come to an example of a calculation and for this purpose, the
well-known ‘“‘Markthalle Budapest’ that is to say, its inner shell, has been
chosen. Let us state at once that of the perturbation functions, only the first
harmonic function has been determined, i.e. for k=1.

The higher harmonic functions decrease so rapidly in magnitude that it is
quite unnecessary to take them into account. Furthermore, we shall show in
what manner a table is drawn up.

In the case of the ‘““Markthalle’’, the following applies:

o = 0,61872, hence:
sin @, = 0,57999 n, = 2,5638783823
cos ¢, = 0,81462.

Herewith we determine the equation, see formula (XkIIa) page 128, in
order to determine the perturbation function p,,. After figures have been
substituted to 9 decimals, this is, if M, is neglected, i.e. if M,=0 as follows:

[226,2218 D, + 0,183 640452] p,; = —0,015539523 0, — 0,033516134 ¢, —

.10-6 (1)
—0,233818 144, — 1033,58000-10 . ]{0
Dy, r
if: 1 I+ 82

P = Ti6a00075 o1 o4 (103102976962 +0,024071165X)  (2)

whereby: ©,, has been put as 1, that is to say, the influence of longitudinal

and torque rigidities has been neglected.

5628,28063-10-% M, ' 3
by re ®)

It is evident that if », I and 6 are known, it is possible, with the aid of

Also: Py =pn+

these formule, to express py; and P,; in o, £, p, and J;—lzﬂ

Conditions (C) and (D), page 135, can now also be established directly
with the aid of formule (XIII) and (XIV), page 134. Hereby, k=1,
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3 and 5 are taken into account whereby the results are practically exact
because of the extremely rapid convergence. Translated into numerical values,
these conditions are as follows:

—0,000915238 ¢, —0,001976012¢,—0,013792279 p,+

M (4)
+0,075968314T;’—0,010821 021 P, =0
and: —0,0060901890,—0,013279702¢,— 0,093201 219 p, +
(5)

+0,618720 00(}-—7]@— 0,072333423 P;; = 0.

Furthermore, we are able to determine in 6 decimals the following with the
aid of the formule on page 135 for V, and 7T, and the table of formulz,
page 119.

601569
Vo = —0,030534 0, — 0,073433,— 0,379795 P11+9’—0m#6“ (©)

and:

1,476933

T, = t,+2,538784 P, + (7)

We can now write the conditions (A) and (B) with the aid of the formulse
for o, and 4., page 135; and the table of formula; these, calculated in 6 deci-
mals, are as follows:

4
1,961629 0,— 4,786 703 ts_gﬂ%ﬁ -
8
_ o172 I +a2 T —aV 1,27324 agq, (8)
-7 Fr r 0 0 poey gr

and:

{15,975213 —4,815905A%} 0, — {25,819778 — 11,751 419 A%} £, + 1,227 566 A*-

2,54 648 813 a 1,27324 ¢ (9)
. o . 24 1)4) — _Z > L qe
Dot (1+222+32%) = — [ ~To+Vo+ o, g'r]'
Substituting (6) and (7) in (8) and (9) gives, in 6 decimals:
2 ; 2
1.961629 —0,030534 257 o,— 14,786 703+ 27 (L 442} +0,073433237 t,—
I I\F I
2
_{2’538784_81 L\ ) 40370705287 ) p _[2.074414 | 1,476933
I \F 1 m m
dr (1 0,601569 adr2 1,27324 adr? q
" —_— — 2 L ? . —_— ? . --—e— = ].
I (F a) I m I gr} 0 (10)
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and:

3
{15,975210 —4,8159052A%2+0,030534 ﬁ};} o, — {25,819 780 —11,751419A% —

adr?
I .
1,476933 ad r?
m I

2 3
“i’" —0,073433 - §f—}ts+ 1,227566 2% p, +{2,538 784

1

(11)

3 4

+0,3797958—T- P+ @—8-(1+2)\2+—1§A4)+
1 m

0,601569 673 1,27324 o813 9\
m Ji m I gr|™

Herewith, practically everything is known and after eliminating P,; the
unknown quantities a,, ¢, p, and M, can be resolved by numerical substitution
with the aid of the four given equations (4), (5), (10) and (11).

Another method of working out, however, is possible. From (4) and (5)

M, .
Ppo and —° can be expressed in o, t; and P,;.

/,«2
We find that:
Po= —0,071300059 5, — 0,147095163 ¢, — 0,825844962 P, (12)
and:
M
72-0 = —0,000897 1150, —0,000694 5731, — 0,007 493428 P, . (13)

Substitution of (12) and (13) in (1), and a further application of (3), renders
it possible to express P;; in o, and ¢,. We find that:

p 10,519-10-6 6,974-10- b (14)
1" T 1996,2218P,, + 83,847-10°| 5 | 226,2218P,, + 83,847-10-9] *°

After substituting (12) in (11), and (14) in (10) and (11), o, and ¢, can be
expressed simply and explicitly in numerical and edge beam magnitudes.
Thus we obtain the following table which is generally valid for symmetrical
shells.

Table for ¢, = 0,61872 valid for symmetrical barrel vault shells

A= 3,14159-m-%
B = b s 82(1+0 310297 696 A2+ 0,024 071 165 A4
1™ 1168,909m?* ¢ ¢2 ’ +9 )
10,519-10-6 6,974-10-6
‘RO = So ,9

226,222 @, + 83,847-10-° ~ 226,222P,, + 83,847-10-°

or {1 adr?
= e 2 .
Ho 2,5638784 7 (F +a ) +0,379795 7



1/6% |

e
*l6®o
e ®o
% Po

Po

2538784

a

2 3
_SI’"_+ 0,379 79527 _1,013779 )¢

I

0,601569 + 1,27 324{%

b

bR

b

b

b

I

I

[+0,100 ,, +0,005,,+0,658 ,,
[+0,183 ,, +0,038,,+1,269 ,,
[+0,231 ,, +0,127,,+1,795 ,,
[+0,228 ,, +0,299,,+2,199
[+0,155 ,, +0,582,,+2,452 ,,
[+0,000 ,, +1,000,,+2,539 ,,

+0,262-
+0,521-
+0,775-
+1,021-
+1,256-
+1,477-
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2
1,961 629—0,0305340&8]7 + Ry H,
or (1 o r2
4,786703+ > (- +a2) +0,073433. 227 1 8- H,
I\F 1
3
15,975210—4,816059/\2—0,087526/\4+O,030534-—8—IL—R0-K0
3 2

25,819780——11,751419)\2—0,180569»—0,073433-—8—}—?—SIL—
1 or{ I adr?

— s O (L L a2) — .

m{ 074414 +1,476 933 (F +a) 3 Lo}

1 2 3

Lo 54648 (142024 3 M) +1,476933. 227 2" 1

m I I
LS+ LS, o LR+ LR

R2SI— IS2 s RZSI—-RIS2

—_.Ro'os_So'ts

—0,0713000,—0,147095t,— 0,825 845 P,
—0,000897 o, — 0,000 695 ¢, — 0,007 493 P,

o = I8 [—1 000 0. — 0,000t — 6,445 P, —2.546 . -

z m2w27‘8 ’ s ’ s ? 1n ? m

.= . [—0,915, —0,137, —6,226 , —2,533-,,]

.= ., [—0,662, —0,547, 5581 , —2,493- ]
o=, [—0,241, 1,225, —4557 ,, —2,426-,]

9 Iy [+0>340 :;—2316591“3,223 99 _23333'77]

9y 3 [+1:O76 :7_37357”_17669 99 _2:215'73]

W= [+1,962,, —4,786,—0,000 ,, —2,074-,,]
o= 9 [+00000' +0,000£,+ 0,000 P, +0,000 1]

xY mwd s s ’ s ’ 11 ) .’m
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and also the course of stresses and moments:

gl?
mem2rd

gl

mmd
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¢=0|0,= & [——0,09508—0,156158—1,000 Do —1,000P11—1,273.-nl-1]
Yewo | 5 = v [-0,090,,—0,155,,—1,000 ,, —0,966 ,, —1,267- )]
2e®o | 5 = ’s [-0,075,,—-0,153,,—1,000 ,, —0,866 ,, —1,247. »s |
3/6(;)0 3y = I3 [—03053 ) —0:1455’_17000 I3 “0;707 ) _17213 77]
4/6(1’0 ,, = vy [—0,029,, —0,125,,—1,000 ,, —0,500 ,, —1,167- ]
Blowg ] » = ' [—-0,003,, —0,091,,—1,000 ,, —0,259 |, —1,108-,,]
Po | 5 = ’s [—0,000,, —0,000,,—1,000 ,, —0,000 ,, —-1,037-,,]
@=0 |M,=gr2-10-5[ — 15454 o, — 33465, — 227566 p, — 183641 P,,]+¢- M,
Ys@o | »» =, [—14806, —32569,, —221048 ,, — 177397 ,, ]+
2e@o | 5 = [—13139, —29538, —201554 ,, — 159033 ., |+
Yoo | 5 = . [—10566, —24522 169294 ,, — 129834 ,, ]+
4/6(;00 yy = ’s [—7345 ,, —17662,,—124610 ,, — 91820 o 1+
A5/6‘P0' 59 = 3 3 [—3648 ,, —9453 ,,— 67983 ,, —47563 1+ .,
Po 9y i3] [ 0 5:_0 53—0 n_O 7,]+ Ly
Calculation
4e _
e _ 0,263 241
r = 1000 cm I =199-105 cm? gr
!l = 4100 cm F = 3960 cm? 8_[7; (%-{-az) = 8,665704
S = 6 cm a = 154 cm dus: 5 2
adr
g = 0,0253 kg/em? ¢, = 6,66 kg/cm!? 7 = 46,432161
m=1 3
07 _ 301,507 536
I
With this, the following can be computed:
A = 0,766241
@, = 10,360482-10-6 A2 = 0,587126 At = 0,344717.
Hence: Ry, = 0,004333 S, = 0,002873
H, = 39,635055 Ko = 232,042815 L, = 0,936738
and: R, =0,715612 S1 = 16,975924 L, = —28,621692
R, = +21,318171 S, = —50,381741 L, = —210,427257
So: o, = 5,352910 t, =1,911661 P, = —0,028687
Py = —0,639168 M,= —5916

= 7,18187 gr? = 25300
= 5,50305 %' = 4,217
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o=
¢=0| — 5,352—0,000+0,185—2,546 = — 7,713 | —55,4
1 gy | — 4,898—0,262+0,179—2,533 = — 17,514 |—53,9
2 pe | — 3,544 —1,046+0,160—2,493 = — 6,923 |—49,7
3 — 1,290—2,342+0,131 — 2,426 = — 5,927 | —42.,6
s %o
Yopo | + 1,830—4,139+0,092-2,333 = —4,560 | —32,7
560 | + 5,760 —6,417+0,048 —2,215 = — 2,824 |—20,3
@y | +10,502—9,149+0,000 — 2,074 = —0,721 |— 5,2

Tyy =
=0 | 40,000+ 0,000 — 0,000+ 0,000 = 0,000 +%,o
V.o, | +0,563540,010—0,019+0,262 = +0,788 |+ 4,4
2/e@o | +0,980+0,072—0,036 + 0,521 = +1,537 |+ 8,5
3@y | +1,23740,243 —0,051 +0,775 = +2,204 |+12,1
4 oy | +1,22040,572— 0,063 +1,021 = 42,750 | +15,1
5/s@o | +0,83041,113—0,070 +1,256 = +3,129 |+ 17,2
@ | +0,000+1,912—-0,073+1,477 = +3,316 |+18,2

M =

=0 | —82723 — 63974 + 145453 + 5268 = +4024 — 5916 = — 1892 | — ¢48
1. @ | — 79255 — 62261 + 141287 + 5089 = + 4860 — 5916 = — 1056 | — 27
2/ @ | — 70332 — 56467 + 128827 + 4562 = + 6590 — 5916 = + 674 |+ 17
3)s@p | — 56559 — 46878 + 108207 + 3725 = + 8495 — 5916 = + 2579 |+ 65
4o@o | —39317—33764 4 79647+ 2634 = +9200—5916 = + 3284 |+ 83
5e@ | — 19527 — 18071 + 43421 +1364 = +7187—5916 = + 1271 |+ 32
@ | —0 -0 +0 +0 = —5916 = — 5916 | — 149

& =
=0 | —0,508— 0,298 + 0,639 +0,028 — 1,273 = — 1,412 _'6,0
1. @y | —0,482 —0,296 + 0,639+ 0,028 —1,267 = — 1,378 | —5,8
2/ 0o | — 0,401 — 0,292 + 0,639 +0,025 — 1,247 = — 1,276 | —5,4
3,90 | —0,284—0,277+0,639+0,020 — 1,213 = — 1,115 | —4,7
4. 90 | —0,155—0,239+0,639+0,014— 1,167 = —0,908 | —3,8
5600 | —0,016 —0,174 + 0,639 +0,007 — 1,108 = — 0,652 | —2,7

| —0 —0  +0,639+0 —1,037=—-0,398 | —1,7

Note: This theory has more extensively been published in the Dutch
language in a publication by the C.U.R. (Committee for Research) together
with comprehensive and suitable tables. With the help of these the calculation
of cylindrical shells may quickly be accomplished.

Summary

The method described in this paper is entirely different from those usually
published in the literature. By means of an artifice, it proved possible to avoid
the standard mathematical solution of the fundamental differential equation.
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Starting with linear o, stresses, a part of the o, stresses due to disturbance
proved necessary in order to satisfy the fundamental differential equation,
governed by the condition M,=M,. The method is generally applicable and
may be carried out to any required degree of accuracy.

It is evident that the formulas derived are particularly suitable for drawing
up tables. It is even possible to give detailed results (see the worked example).
In the Netherlands, tables are published which are elaborated to such an
extent that, for example, it proved possible to reduce the number of end
equations from 8 to 4 in the case of a Northlight Shell and from 4 to 2 for
symmetrical shell construction. It is obvious that by this method the work
involved in the calculation of a shell is considerably reduced.

Résumé

La méthode ici décrite différe essentiellement de celles qui sont générale-
ment mentionnées: a ’aide d’un artifice, il est possible d’éviter la résolution
mathématique habituelle de 1’équation différentielle de base. En partant des
contraintes linéaires o,, un élément de perturbation des contraintes o, doit
intervenir pour satisfaire I’équation différentielle de base, suivant la condition
M,=M,. Cette méthode est universelle et peut étre appliquée avec tout
degré voulu de précision. Il apparait manifestement que les formules dérivées
se prétent fort bien a 1’établissement de tableaux. Il est méme possible de
fournir des résultats explicites (voir exemple de calculs).

Aux Pays-Bas, la publication de tables a été poussée a un point tel qu’il
est par exemple possible de réduire le nombre des équations finales de 8 a 4
dans le cas d’'une coque Nordlicht et de 4 & 2 dans le cas des coques symé-
triques. 1l est évident que le calcul des coques est ainsi beaucoup simplifié.

Zusammenfassung

Die in diesem Aufsatz beschriebene Methode unterscheidet sich vollstindig
von der gewohnlich verwendeten. Durch Anwendung eines Kunstgriffes wird
es moglich, die iibliche mathematische Losung der Grunddifferentialgleichung
zu vermeiden. Ausgehend von den linearen Spannungen o, wird das Storglied
der o,-Spannungen zur Erfillung der Grunddifferentialgleichung gebracht,
die in der Bedingung M,= M, liegt. Die Methode ist generell anwendbar und
mit jedem Genauigkeitsgrad durchzufiihren; wie gezeigt wird, sind die abge-
leiteten Formeln sehr praktisch zur Verarbeitung in Tabellen. Es ist sogar
moglich, explizite Formeln anzugeben (siehe Rechnungsbeispiel).

In Holland sind Tabellen versffentlicht, die soweit ausgearbeitet sind,
daB es z. B. mdglich ist, die Anzahl der Endgleichungen von 8 auf 4 im Falle
einer Nordlicht-Schale zu reduzieren, von 4 auf 2 bei symmetrischen Schalen.
Es ist klar, daBl auf diese Weise die Berechnung einer. Schale stark verein-
facht wird.
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