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Analysis of Suspension Bridges by the Minimum Energy Principle
Calcul des ponts suspendus d’aprés la méthode de I’énergie minimum

Die Berechnung von Hdngebriicken nach der Methode der kleinsten Emnergie

CevDET Z. ERZEN, Assistent Professor of Structural Engineering,
Cornell University, Ithaca, N. Y.

Synopsis

The purpose of this paper is to develop and solve the differential equations
of displacements and cable stress in a suspension bridge due to live load or
temperature change. The Principle of Minimum Energy is applied in the
analysis, and by means of variational calculus two equations are obtained
from which are derived expressions for the cable stresses and the deflection
of the suspension bridge in the form of trigonometric series.

Introduction

The usual theory of suspension bridges necessitates the determination of
two equations in order to calculate the stresses completely. This stems from
the fact that the basic differential equation in terms of the vertical displace-
ment of the cable and the stiffened truss includes a redundant quantity known
as the additional cable stress due to live load or temperature change. One
method of obtaining the second equation required for the solution is given by
TimosHENKO?!) and by JorNsoN, BryaN, and TURNEAURE?2). To do this, the
increase in energy of the cable is equated to the work done by the load acting
on the cable.

1) “The Stiffness of Suspension Bridges”, S. TiMosHENKO, Transactions Am. Soc.
C. E. Vol. 94 (1930), p. 377.

2) “Modern Framed Structures”, J. B. Joanson, C. W. BRyYAN, and F. E. TURNEAURE.
New York: John Wiley & Sons, 10th ed., 1929, part IT, pp. 252ff.
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However, two independent equations can be established by minimizing
the total strain energy defined in terms of two displacements. Therefore it is
possible to obtain directly two equations by means of variational methods if
the total strain energy of a suspension bridge is expressed in terms of its
vertical and horizontal displacements. In addition to the displacements, both
equations include the redundant quantity mentioned above. This redundant
can be evaluated from the known boundary conditions. Thus the problem of
suspension bridges resolves into the determination of the differential equations
and the solution of these equations with due regard to the boundary conditions.

Notation

The following notation is used throughout the paper.

q = Dead load per unit length of the truss, cable and hangers.

p = Live load per unit length on the truss.

P = Concentrated live load.

H = Horizontal component of cable stress due to dead load and mean
temperature.

h = Additional horizontal component of cable stress due to live load or
temperature change.

y = Ordinate of the cable under the action of dead load. ‘

w = Vertical displacement of cable in excess of y (assumed to be equal to
the vertical displacement of the truss) due to live load or temperature
change.

v = Horizontal displacement of cable due to live load or temperature
change.

E I = Flexural rigidity of the truss.

L = Span of the truss.

f = Sag of the cable.

4T = Change in temperature from mean temperature.

w = Coefficient of thermal expansion.

The Total Strain Energy Expression and the Derivation of the
Differential Equations

The usual assumption made in the analysis of suspension bridges is that
the vertical displacement of the cable is equal to the deflection of the truss.
This assumption is valid in view of the fact that the deflection of the truss
and cable is large in comparison with the elongation of the hangers due to
tension. It is also assumed that all the dead load, before the application of
the live load, is carried by the cable, and under uniformly distributed load of
constant magnitude the shape of the cable is a parabola given by the equation



Analysis of Suspension Bridges by the Minimum Energy Principle 53
d?y
da?

If the origin of the coordinate system is taken at the top of the left tower, the
equation of the parabolic curve for the center span is

H —q (1)

4f
v = I3 Law—ay (2)
and for the side spans eq. (2) holds except that y and f are measured from the
diagonal drawn from the outer support to the top of the tower as shown in
fig. 1. '
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In the derivation of the total strain energy expression both the vertical
and horizontal displacements will be taken into consideration. As stated above,
the vertical displacement w will be taken to be the same for the cable and the
truss. Furthermore, for the time being, both displacements will be considered
large. The strain energy in the cable will be investigated first.

Let there be taken a differential element of the cable ds long. After defor-
mation of the cable due to the application of the live load or the temperature
change, this length becomes ds;. The unit strain in the cable is then given by

_ ds;—ds
€=y (3)

The change in length of ds corresponds to the change in 2 and y coordinates
of the cable. That is, the original coordinates of a point on the cable (z, ¥)
become (x+v) and (y+w) after deformation. As a result of this deformation
the length d s expressed by

ds = (dx®+dy?) = (14+y,2) dx
(the subscript  will designate the derivative) becomes
. ds; =[(dx+dv)2+ (dy+dw)?])
or dsy=[1+y2+2v,+0v2+ 2y, w,+w,2*dx (4)

Thus it may be seen that the unit strain e can be expressed in terms of the
displacement functions of the cable. This unit strain can also be associated
with the change in three quantities, namely, the increase in the horizontal
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cable pull, the change in the stress produced by H as a result of the change
in slope of the cable, and finally the temperature change. It can therefore be
said that the unit strain given by eq. (3) is.the sum of the three unit strains
produced by the change in the three quantities mentioned above. Denoting
by dx,, the horizontal component of ds;, the unit strain due to 4 is given by

_ 1 hods
T E A dx

€1

and the increase in stress produced by H yields
o= H (_E‘l_ﬁ _ Elf)
27 E A \dx; dxz

in which d s, is given by eq. (4), and

de, = (1+v,)dx (5)
and finally the unit strain produced by the temperature change is

e&=wdT

Therefore the sum of the unit strain components becomes

1 [hds, H(ds ds ds;—ds
ds

‘TFE [z dw, 4 (dwl dz
This equation may be written as
h+H ds; _ 7 dsl—ds_,_il ds
A dux ds A dx
which is the unit stress in the cable at its displaced position. This stress is also

composed of three terms. The first term, due to the extension of the cable, is
given by '

)| +war -

—EwdT (6)

ds;—ds
the second term is the initial stress
_ M ds
=4 dx

and the third is a constant stress due to temperature change

These unit stresses are shown in fig. 2. :
Thus the strain energy of deformation of a unit volume becomes, from the
figure

Lojetoyetoge

Substituting the corresponding values for o, o,, 0, and €, this becomes
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and for a differential volume A4 ds of the cable

(ds1 d s)? ds

AUy = +H 25 (ds,—ds)—~BEAwAT (ds,—ds)

N[v—l

ds dzx
ds 2 ds (ds ds
= 1 %1 Rl Budhe S _ 71
or dU,=%EA (ds 1) ds+H dx (ds )ds EAwAT(dS )ds

The strain energy due to bending of the truss is given by

v UTzf%EIw2xmdx
and for the dead load
Upr =Jqwdz

Summing up all the terms and remembering that in d U,

ds=(1+y2):dx
there results

2
o flima (g asnamen s (2o o

CHAwAT (‘%_ ) (1 +yx2)‘/=+%—Ewam—qw] do—P% (1)
where % is the deflection under the concentrated live load P. To minimize the
total strain energy one takes the variation of U with respect to w and v and
sets it equal to zero. Since ds; includes w and v terms, the variation of ds,
from eq. (4) is

3V, +v, 00,4y, 8w, +w,dw,

—dx
(L+9.2+ 20, + 0,2+ 2y wy + w, %)

dds, =

3V, +v,0v,+y, 0w, + w,dw,
ds,

(d)? (8)

or dd s, =
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and from eq. (5)
ddx, =0v,dx

Taking the variation of U from eq. (7) there is found

L %
_ ds; .\ (L+y.%)" ds (1+y,2)" _
SU—f[EA(dS )TSdsl+H dx ds 3d81
0
2}/,
—EAwATM8d81+Elwm8wm—q8w] de—P8% =0

ds

Substituting for §ds; and 8 dx; from eqgs. (8) and (9),

L
2)'/s
SU =f [EA (éﬁ_ ) (l+yx) va+vmavx+yx8wx+wx8wx (dx)2+

ds ds ds,
ds 1+y,2)" 8v,+v,8v,+y,0w,+w,dw, 5
+Hd_9—c ds d s, (@)~
2}Y/s.
ds ds;
+Elwm8wm—q8w] de—Péw =0
Writing
ov,+v,0v, l+v, Su. — dx, v
ds, T ods; " dxds; ”
remembering that (1+y,2)dx =ds,
and factoring,
¢ d d d
_ kil s _ 2%
SU—f[EA(dS )—}-H Ju EAwAT] as, dv,dx

L

+[ BA(T 1 40 L _pAdwar| Y= go5uw 4+
8 dx d s,
0

+E’Iwm8wm—q8w} de—Pdw =0 (10)

From the above equation one can obtain two differential equations by con-

sidering terms in dv and dw independently. To do this, the terms are inte-

grated by parts. Since the variation of the derivative of a function is equal to
the derivative of the variation, i.e., '

dv d
S 4w = dz %Y
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the first integral can be written as

- d
J‘«ﬁ% dvdx
0

where
_ ds,; ds ; dzx,
Integrating by parts L
[qSSv]L— J 4é dvdx =0
0 dx -
0
but since 6 v is arbitrary between =0 and =L
d
o ? ="
from which there results
¢ = constant.
Eq. (6) may be rewritten
_ ds,—ds ds d x,
htH = [E’A (—-—dg——)+HEZ—;——EAwAT] = (6a)
Comparing now eq. (11) with the above, it is seen that
¢ = H +h = a constant.
Substituting this constant in the second portion of eq. (10),
L
f [qS % dw,+EITw,, dw,, — qu] dx—Péw =0

The first and second terms of this last expression will now be integrated by
parts in order to collect them under 8 w. From the first term is obtained

L ' L
Yo W, (0 _ Yot s g, ] _
J(H-i—h) 4o, (dx Sw) dx—[(H—}—h) Ty Bw]
0 . ]
_ @ (Ypt Wy,
f(H-i—h) Iw (1"'%) dwd x
0
and the second term after integrating twice yields
L L )
fEIw L su,) do = [BIw,bw,]— | B (-2 4 sw)da =
xx \ J Wy r = [ W wx]o_ d—x” Waa a—a,; w T =
0 0
L

. L L
— [ETw, 5w, —[Elw,, sw]+ fEI (i wm) Swdaz
0 0 dx

0
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Thus the integral becomes
L

f [Elwmm—(H+h) sz? (—yfigjﬁ)—q] Swdz—P3w=0 (12
In order to find a solution for the problem eq. (12) must be satisfied. This
equation contains three unknowns, namely, w, v and k. However eq. (11) or
eq. (6) can be used to find the displacement function » which necessarily will
contain the redundant k. But once the expression for v is obtained k can be
evaluated from the consideration of the boundary conditions.

If it is assumed that v, is small in comparison with unity, from eq. (12)
there results

L ' -
f [Elwzxxa:_(H+k) (yacx+wxx)_Q] Swdx'"PS?_”_ =0
0

but Hy, =—q

therefore this integral becomes
L

[ Bl wyppy—hYp— (H+h)w, | wdxe—Pow =0 (13)
0

This is the well-known equation used by previous investigators. A trigono-
metric series for w in the form

Ly . nwx
w= 3 A,sin
n=1 L

can now be assumed, in which 4, are coefficients to be determined. Taking
the concentrated load P at x=a, there is found

nmTa

dw =niwsin nr 34, and &w =n=Zwsin 84,
n=1 L n=1 L
g . 8f
Substituting these expressions, and y,, = 7z from
4
y= 11 Lo
there is obtained, |
- 4 8fh 2
na . nTx nm . T
f > [EI(—L—) A, sin T +T2—+(H+h) (—L—) A, sin T]
0 :
. MTE . nTa
D' sin B dxdA, = > Psin T 84,
The integration between the limits yields
nw\* L 8f L nm\2 L . mTa
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from which the coefficients A4,, are found to be

nwa 8fh L

_Psin T —Fﬁ—w—(l—cosnw)
L e () e ) o

However the preceding formula contains an unknown constant quantity %
which must be determined. This will be found with the aid of eq. (11)

H+h = [EA (ii%%izf)JrH %—EACUAT] %
in which d x; as previously found is .
dwy = (1+v,) da
and dsy = [(1+5,2) + (20, +0,2+ 2y, w,+w,) ] d

which upon expanding by the binomial formula becomes
dsy = (1492 + 3 (149,970 (20,4024 2y, 0,4 0,2 + -] dw

neglecting terms after the second, this gives

2 2
e Vgt 2+ Yo W+ o ]
N )2 ’
whence
Vy? W2
H+h EA vw+%+ywwm+ 21; H(1 e BAwdT
+ - - 1+yx2 + ( +yx) ' w
1+,
’sz wx2
- vac+7+?/acw:c+ 9
(1+yx )/2+ (l‘l'y 2)1/2
X

If the assumption be made that the secant of the angle between the horizontal
and the cable before deformation is equal to the secant of the angle after
deformation

LA
ds ds;
the above formula then becomes
v? We?
Vot 5t Y Wyt ——
Hih=pa -~ 2 7202 g FBdedT
(1 +y,%)" (L+y,)"
2
Neglecting the relatively very small term %ﬁ—, this reduces to
w,? h .
Vet YpWot—5— = 75 (L+y,)+0dT (1+y,?)

2 B



60 Cevdet Z Erzen

Substituting

_4f 8f _ ™
?/zf-f—fz—x, wx—Z(—L—)Ancos T

this equation becomes
4f Sf . nmxr 1 naw
+Z(L TE x) A Ancos—E—+—2—[Z(T)Ancos T ] =

:Z%[1+(%I—§—2zx)]3/2+wd’l’[ (2" SLI;:C)] (15)

Denoting by & the derivative of y
g A 8f

Y2 = - L L2

and integrating eq. (15), the following equation is found:

4f . N f L nmTr nw . NTX
v+Z—E—Ans1 e e Z [os—-——L +Tx31n~———L]
+1 ﬂzAz lznwAz.anx
a2\ ) Ante gl Autsin2 =4
© o |Sin (m n)Lix sin(m—}-n)j;"—x:i)
t 22T, + 2
me=1n=1 = (m—n) (m+mn)
o B sy 2zt 2 inze (4 22y -
AE 32
L? 1
_ = ~ 73
57 (Z+3Z)wAT+c (16)
in which ¢ includes the constant
L, 8P
2 3L

arriving from the integration of
4f  8f
wdT [1 (f L2 ) ]

L2
- 8f
Equations (14) and (16) are general and apply to all the spans of the bridge.

Denoting the coefficients in the series representing w by a,, b,, ¢, for the
first, second and third spans of the bridge respectively,

which is
8 f2

3
(Z+ Z) AT+ +3L

3) Where m?n2.
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nmwTx nmwx

. nTx
w; = D, a,sin I = > b,sin I, w3=chsm-E3— (17)

If, instead of a concentrated load P, uniformly distributed loads of inten-
sities p,, p, and p, occupy portions of all three spans denoted by « L,, B L,
and y L, (all measured from x=0), then substitution of the integrals

oo Ly
P4 Sin RTE = i Ly (1 COS T 77 o)
L,
0
in eq. (14) for nra
Psin T
gives Py (1 —cosnma)— 8h h (1 —cosn)

L2
a, = !

LG e e
; Do (1~00sn7r/3)—8f2h(1~cosnw)
n = - (18)
() e
Ps (1‘*008%773/)—&}&(1—0087@77)
Cn = nw
2 () [Po(5]) 1 +1]

Similarly eq. (16) can be written for all three spans by proper substitution
of the coefficients a,, b,,, c, for 4,, and the values f,, f,, f5, Ly, Ly, Ly for
f and L respectively.

There will now be determined an expression for - by considering the
boundary conditions. Denoting by v,, v,, and v,, the horizontal displacements
of the three spans, one can write

vy,=0atx=1L, (a)
(vl) =0 = (U2)m—0 (b)
<v2)x_L2 (%3)mo ()
=0atx=1L, (d)
Since
4f
Z = T at =0
and Z = — %[ at z=1L

Eq. (16) yields the following four equations based on the four expressions
(a) to (d):
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o i)
h 3L2

g

A {)-

S H T
+

h 3L2 4f, 16 f, 1/2 16 f, o
AE’64]‘11 [ I (1+L2) +2 1+3L2)wAT & =
8!‘2 L, b Ly 16 f5%\3/ §( L 16/ )1/2
=2t as s M) ta L22
ho3Le . [4f, 16 1,2\ "/, g( ) ,
_*AE'64]‘2 ln[L2+(1+ ) 5 wdT+c, (b')
8fy . Ly _2 L 2
Z-L?bnﬂcosnw (Lz) b,2L, +
h Ly 16£,%\*2 3 16f22 Ya] _
+A_E_8—[(1+ ) t3
h 3Ly 4f, 16f22 1/2 161‘22) _
_ 8, Ly h L 16]‘3 %z 3 16f32)1/2 _
=272 % nn 4E 8 [T L32) T\t
h 3Lg?, [4fs 16 f2\'a] _ Ly 16!‘32) :
~ AT 64t In [L3+(1+ .2 <5 1—}—31;32 wdT+c, (¢")
and
8fs Ly ( w)z 5
Cn ——cosn - — c,2 L+
ZLz w Z L3 3

A [ B2 1)
Z%?’I}zln [~—§+( + Zsf 1/2]+
+€— (1+ 3(2’32) wAT+c5 =0 (d’)

If there be imposed the further restriction of a bridge with L, and f, equal
respectively to L and f;, by eliminating ¢, between eqs. (b’) and (c¢’) there is
found
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ZZLb Lw( —cosnm)+ Z (7277) b,2 L,—

G U S
(e

_ 3 Ly?
_ 8f, Iy b Ly 161‘12)3/2 3 (1 _1_6_&)1/2]
.__szz (@t + g h1+ 7o) a1t e +

h 3 L,? 16 £,2\'/, 4f; 16f12) _
+ % 32](11 [( le) +L1 + L, 1-|-3L12 wdT —(c;+¢3)

By adding eqgs. (a’) and (d’) there is obtained
‘ 1 nw 1 nm 2 8 fl Ly
—ZZ (-L—l) 2L _—Z(T) C, L1+Z a, . cosn i+

h L, 16 f,2\3 16 f,%\!
+Z 8f1 n%cosnw+—»——4—[(l+ szl)/2+2(l+_l;?_)/z]_

h 3L2 16]‘12 1/2 4]‘1 16f12 B
~4E 32, ™ [( L12) A ”“(”31:12 wdT+(ertes) =0

b3y
AL 64}, (1+ 161‘2 7

b h’

Eliminating (¢, +¢3;) between the last two equations
1 nw\® 1 (n7\%, , 1 nmw\¥
1 (E) ay® Ly +7 2 (E) by® Ly + 2 (71) ¢,® Ly +
+ > 8h a, nL (1—cosnw)+ Z 8f2 b, lj— (1 +cosnw) +
1 Ko

+ > 8h g, Ly (1 —cosnm) =
1

"
a2 [ 3 5
(-

2

h L, 16f22 3/, 16 f,2\1/,

rap e () s () )

" 3L21 (1+ 161fl )1/2+4f11 b 3Ly (1+ 16 1,2 )1/2+sz
TAE 321, (1+ 280 2 TAE 6af, ™ (1+_11f_3f22 ROy "

1 42 2
16 f 16 f,?

+2L, (1+§—1711§) wAT+L2(1+—3—L—2?§) wdT (19)

Eq. (19) contains the coefficients a,, b, and ¢,. When the values of these
coefficients are substituted there is obtained an equation from which A can
be evaluated.
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Let there be considered now the case when only the middle span is loaded
and the two side spans are of equal length. Furthermore if the flexural rigidities
of the two side span stiffening trusses are equal, a, =c,,, and eq. (19) simpli-
fies to

1 nw 2 nw 3 16]‘1 Ly,
3 (fl—) L,+- Z( 2) b, L+Z ”nn(l cosnw)+

L 16 3 16 f,2\1
b3 Y B (1 anmy - b I [(1 Y, (1, 20

B Ly (), 1662 16 £,%) 1/,
ran e () e (e )

16,2\ |, 44, 16/,\Y/ | 41,
h 3L2 (1+ Ll) tZ.| b 3L (1+2) "+ 32

-1+ +
HE 32f1 (1+ 12!‘1 )1/2 4Lf1 AE 64f2 (1+ lI(ifzzz)l/z _ 4/
1 1 2

+

16 f,2 16 f,2
+2L, (1+3L112) wdT+ L, (1+§f:§) wdT

Substituting for a,, and b, from eq. (18)

811\% ;2 (1 —cosnm)?
22 (le) " Ll(%’) [EI ( )+Hh+] T

[pz(l-—cosnw,B)— fz h(1- cosnvz-)]2

Lz(%‘”) |81, (3= )+H+k]

8f;\2 (1 —cosnm)?
_24(L121) hLl( +

’5—:’) (21, (F )+H+k]

+2

P A ) B

fz) [pz(l—cosnwﬁ)—%fgh (1—cosnw)]
__h L [(1+ 16 f,? )3/2+ (1+ 16 f,2 )1/2] .

AE 2 L? 7%
h Ly 16 /2%\*2 16 /5%\ /2
s () e (e )+
161,21/, | 4f 16,51y 41
N k 3L12ln (1+L21) 2+L11 k 3L21 (1+ L222) 2+L_: N
AB52f | (1100 4k Y4 F 64, (14 10T 4
L? Z,. L2 L,
16 /.2 16 f,2

in which A is fhe only unknown quantity and can be evaluated by trial.
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Numerical Example

The Manhattan Suspension Bridge will be used as an example. Eq. (20)
will be applied to finding the additional cable stress due to temperature change
and also to live load occupying part of the middle span. The following data
will be used in the calculations:

L, = 17135 ft.
L, = 1446.7 ft.
fi = 37.2ft.
f, = 1453 ft.
A = 275in.2

EI, = 29.10%-50860-144 1b.-in.2
EI, = 29-108-43900-144 1b.-in.?

9, = 5820 lb. per ft.
ps = 4000 Ib. per ft. = 334 lb. per in.
g -1

66-10~7 in. per in. per degree Fahrenheit
AT = +55°F.

S
I

Substituting this data with units in pounds and inches, in eq. (20), it
becomes:

(1 —cosnm)?
nt (28.7-106n2+ H +h)

30.5h% > z +

[334(1—cos 7) —46.4-10-5R 1 ——cosnﬂ-)r
+53400-10° 2, n%(6.02-108n%+ H + h)? -

(1 —cosn)?
nt (28.7-108n2+ H +h)

—61.0h Y +

[334(1 —cos 27} —46.4- 106 (1 -—cosnw)]

n%(6.02-108n2+ H +h)

+4.96.108 > (1—cosnw) =
= 4.549-1076%435.67-10°w AT
in which H is found from eqgs. (1) and (2) to be

g _ 9L _ 5820(1446.7)2
- 8f,  8.145.3

= 10.48.108 1b.

Taking n = 1, 2, 3, 4 and 5, this equation becomes
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1 1 1
2
122k [(39.18- 10° 1) T 81(268.78. 106 + )2 625 (727.98- 106+h)2] +
(97.9-92.8.10-5 h)? (334)2 (570—-92.8-10-6 )2
400108
Lk 10[ (16.50- 105+h)E | 16(34.56- 106+ 4)2 81 (64.66- 10°+%)®
) (668)? (570-92.8-102 |
256 (106.80- 105+ /)2 | 625 (160.98- 106 + /)2
244 h 1 1 + ! +
- 30.18-1051/ T 81(268.78-10°+ &) | 625 (727.98- 106+ h)

97.9-92.8-10¢h 570-92.8-10"%A 570-92.8-107%4A ] _

92108
99210 [ 16.50.105+h ' 81(64.66-105+k) ' 625 (160.98- 105+A)

= 4.549-107%h +12.95

When there is no change in temperature the second term on the right side of
the equation is zero, and for this case there is found by trial

h = 0.901-10¢ Ib,
If the effect of temperature change is included,
h = 0.703-10¢ 1b.

If there is no live load acting on the bridge, the p, terms vanish; a change of
temperature + 55° F. will reduce the stress in the cable in the amount of

h =—0.191-108 1b.

From eq. (20) it may be observed that the law of superposition does not apply
in finding the value of % separately from live load and temperature change.

The following table presents a comparison of the calculated values of % as
found above and those found by Messrs. JOHNSON, BRYAN, TURNEAURE?) and
TIMOSHENKO?®).

Table I. Comparative results for h, with or without temperature change

Live Load Temp. +55°F. L. L. 4+ Temp.

Author’s results 901000 1b. — 191000 1b. 703000 Ib.
JoHNSON, BRYAN, TURNEAURE . 663400 lb.
TIMOSHENKO 897000 Ib. — 250000 1b. 647000 1b.

4) “Modern Framed Structures”, J. B. Jounson, C. W. BrRyYaAN, and F. E. TURNEAURE.
New York: John Wiley & Sons, 10th ed., 1929, part 11, pp. 2711f.

5) “The Stiffness of Suspension Bridges’, S. TiMosEENKO, Transactions Am. Soc.
C. E. Vol. 94 (1930), p. 391.



Analysis of Suspension Bridges by the Minimum Energy Principle 67
Moments, Shears, and Deflections

Once A is evaluated the coefficients a,,, b, and ¢, are obtained by substi-
tuting the value of A in eq. (18). The deflection of the mid-span truss is

obtained from
nmTL

L,

w=>b,sin

The shear and moment in the truss are given by
V=EFKlw,,
and M=EIlw,,

If one substitutes the coefficient b, in

2 nmTIL

v = 2 () bt

the expression for moment becomes

8 .
v 2 K1, pz(l——cosnwﬁ)—sz: h(1—cosn) o PTE
o n (E12 ;22 n2+H+k) Ly
2

It may be observed that the series representing M does not converge as
rapidly as the basic series from which % has been determined. For this reason
more terms are necessary to find a good approximation for M.
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Summary

The complete solution of the suspension bridge necessitates the deter-
mination of two differential equations. In this paper it is shown that these
equations can be obtained directly by the Principle of Minimum Energy.
However, in order to solve these equations, the assumption is made that the
slope of the cable does not change during deformation. On the basis of this
assumption the solution is given in terms of a trigonometric series. The equa-
tions derived can be applied to a bridge with different lengths of side and
main spans and for live loads covering any region of the bridge.
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Résumé

Le calcul complet des ponts suspendus exige 1’établissement de deux
équations différentielles. L’auteur montre que ces équations peuvent étre
obtenues directement & 1’aide de la méthode de 1’énergie minimum. Toutefois,
pour les résoudre, il admet que I’inclinaison du cable porteur reste la méme
au cours des déformations. En tablant sur cette hypothése, il obtient la solu-
tion sous la forme d’une série trigonométrique. Les équations obtenues peuvent
étre appliquées au calcul de ponts de différentes portées, tant en ce qui con-
cerne les travées principales que les travées d’acces et pour toutes les charges
utiles qui peuvent étre appliquées en un point quelconque de ces ponts.

Zusammenfassung

Die vollstindige Durchrechnung von Hangebriicken macht die Aufstellung
von zwei Differentialgleichungen notwendig. Es wird gezeigt, wie diese Glei-
chungen mit Hilfe der Methode der kleinsten Energie direkt gefunden werden
konnen. Fiir die Auflosung dieser Gleichungen wird vorausgesetzt, daBl die
Neigungswinkel der Tragkabel bei den Forméinderungen unveriindert bleiben.
Auf Grund dieser Voraussetzung erhilt man die Losung in Form einer trigono-
metrischen Reihe. Die entwickelten Gleichungen dienen zur Berechnung von
Briicken verschiedener Spannweiten und fiir Nutzlasten, die an jedem belie-
bigen Briickenpunkt angreifen kénnen.
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