Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 15 (1955)

Artikel: Essais comparatifs de traction et de pliage sur des éprouvettes

comportant des trous forés, poinçonnés, ou poinçonnés et alésés

Autor: Cassé, M.

DOI: https://doi.org/10.5169/seals-14488

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Essais comparatifs de traction et de pliage sur des éprouvettes comportant des trous forés, poinçonnés, ou poinçonnés et alésés

Vergleichende Zug- und Biegungsversuche an Stahlproben mit gebohrten oder gestanzten Öffnungen, oder Öffnungen, die gestanzt und ausgebohrt wurden

Comparative tension and bending tests on steel specimens with drilled or punched holes, or holes that have been punched and drilled

M. Cassé, Ingénieur principal, à la Division des Ouvrages d'Art de la S.N.C.F., 51, rue de Londres, Paris (8e)

La question de l'influence du mode d'exécution des trous sur la sécurité des constructions métalliques est ancienne: avec l'apparition de l'acier de construction, la crainte de fissures génératrices de ruptures a suscité bon nombre d'essais qui ont généralement conduit à recommander, pour les constructions importantes, d'éviter le poinçonnage non suivi d'alésage.

La pratique a quelquefois délaissé ces prescriptions surtout dans le cas des charpentes soumises à des efforts peu variables: il n'en est pas toujours résulté de gros inconvénients mais on a parfois découvert des fissures partant de trous poinçonnés et ruinant un élément.

Depuis quelques années, la construction métallique cherche à relever les contraintes limites de calcul ou à dimensionner les pièces en faisant état de la plastification éventuelle du métal. Ces deux circonstances amènent à se demander si, pour les éléments comportant des trous et sollicités jusqu'à la plastification, la marge de sécurité reste la même ou non pour les différents modes couramment pratiqués d'exécution des trous.

Aussi, la S.N.C.F. a-t-elle jugé utile de procéder à des essais comparatifs assez étendus en vue de se rendre compte de l'influence du mode de perçage au moins pour des épaisseurs et des diamètres courants. On a réalisé des essais sous charges imposées, d'autres sous déformations imposées et d'autres sous sollicitations ondulées; certaines éprouvettes étaient rainurées ou dissymétriques.

32 M. Cassé

La S.N.C.F. n'ignore pas que l'aspect et la qualité des trous poinçonnés sont sérieusement influencés par les conditions de poinçonnage — des études sont en cours en France pour définir les conditions de poinçonnage les plus favorables. — Elle ne s'est pas proposée de comparer les divers modes de poinçonnage imaginables, mais de recueillir des renseignements sur la qualité des trous confectionnés couramment dans les bons Ateliers soumis à son contrôle régulier.

La présente note précise quels essais ont été effectués et quels résultats ont été obtenus.

Les diverses séries d'essais sont définies ci-après, dans les figures, les photos des éprouvettes se trouvent, pour chaque série, au-dessus du tableau des résultats.

Eprouvettes

Les éprouvettes ont été prélevées dans des tôles (pour une série dans un T) d'acier doux se pliant parfaitement à bloc. Elles ont été usinées dans un grand atelier de constructions métalliques avec les machines et les modes de mise en œuvre couramment pratiqués.

Les caractéristiques des aciers sont les suivantes:

*	tôle de 12	tôle de 10	${f T}$
limite élastique	$27 kg/mm^2$	$30,5 \text{ kg/mm}^2$	$25,1 \text{ kg/mm}^2$
charge de rupture	41 kg/mm^2	$42,2~\mathrm{kg/mm^2}$	$36,9 \mathrm{\ kg/mm^2}$
allongement de rupture	32,5 %	29,5 %	25 %

Essais de traction

Essais de traction centrée

On a imposé à toutes ces éprouvettes une charge régulièrement croissante: $Ire\ s\'erie$: Eprouvettes avec trou central de $\varnothing\ 20$:

- 1 A Eprouvettes de 60×12 comportant une rainure transversale de 1 mm de profondeur faite sur chaque face et ramenant la section à 10 mm d'épaisseur (fig. 1, tableau I).
- 1 B Eprouvettes de 60×10 comportant sur les arêtes des $^{1}/_{2}$ trous en quinconce (fig. 2, tableau II).
- 1 C Eprouvettes de 100×10 comportant sur les arêtes des $^{1}/_{2}$ trous au droit du trou central (fig. 3, tableau III).
- 2e série: Eprouvettes comportant dans l'axe un trou foré et un trou poinçonné espacés de 100 mm.

- 2 A Eprouvette de 40×10 trous forés de \varnothing 20, trous poinçonnés de \varnothing 20 à \varnothing 16 (fig. 4, tableau IV).
- 2 B Eprouvette de 40×10 trous forés de \varnothing 20, trous poinçonnés de \varnothing 20 à \varnothing 16 et alésés à \varnothing 20 (fig. 5, tableau V).
- 2 C Eprouvette de 60×10 trous forés de \varnothing 20, trous poinçonnés de \varnothing 20 à \varnothing 16 alésés ou non (fig. 6, tableau VI).
- 2 D Eprouvette de 80×10 trous forés de \varnothing 20, trous poinçonnés de \varnothing 20 à \varnothing 16 (fig. 7, tableau VII).

Les essais de traction centrée font apparaître, dans l'ensemble pour les trous poinçonnés bruts, une charge de rupture plus faible que pour les trous forés; pour les trous poinçonnés et faiblement alésés, on retrouve la charge de rupture correspondant au trou foré et on la dépasse parfois avec un alésage important.

Essais de traction excentrée

On a imposé à ces éprouvettes une charge régulièrement croissante. $3e\ s\'erie$:

- 3 A T de $80 \times 80 \times 9$ comportant dans une aile un trou de \varnothing 20 (trou poinçonné foré ou alésé) la traction s'exerçait suivant l'axe de l'âme du T (fig. 8, tableau VIII).
- 3 B Eprouvettes de 60×10 comportant 2 trous de \varnothing 20, l'un foré, l'autre poinçonné ou poinçonné et alésé excentrés, le bord à 10 mm de la tranche (fig. 9, tableau IX).
- 3 C Eprouvettes de 80×10 comportant 2 trous de \emptyset 20, l'un foré l'autre poinçonné ou poinçonné et alésé excentrés, le bord à 10 mm de la tranche (fig. 10, tableau X).
- 3 D Eprouvettes de 80×10 comportant 2 trous de \varnothing 20, l'un foré, l'autre poinçonné ou poinçonné et alésé excentrés, le bord à 10 mm de la tranche (fig. 11, tableau XI).

Ces essais font apparaître une charge de rupture plus élevée pour le trou foré que pour le trou poinçonné et une charge sensiblement plus élevée pour le trou alésé de 3 mm.

L'ensemble des essais de traction fait ressortir, pour la charge de rupture rapportée à la section rompue, un chiffre assez voisin de la charge de rupture d'une éprouvette non trouée, généralement un peu plus faible pour le trou poinçonné brut et un peu plus forte dans tous les autres cas. Il y a généralement allongement plastique du trou, mais nettement plus faible dans le cas du trou poinçonné brut.

Avec un faible alésage on se rapproche des qualités des trous forés. Avec un alésage de 3 mm sur le diamètre les trous poinçonnés sont au moins équi-

34 M. Cassé

valents aux trous forés. Ces essais ne condamnent pas l'utilisation de trous poinçonnés. Mais les essais de pliage où la déformation et non la charge est imposée donnent des résultats assez différents.

Essais de pliage

Les essais de pliage ont été effectués sur éprouvettes de 40 mm de largeur avec trou central de \varnothing 20 dans les conditions suivantes:

mandrin r = 10 mm rouleaux \emptyset 30 mm entre axe des rouleaux = 75 mm 4e série:

- 4 A Eprouvettes de 60×12 comportant une rainure transversale de 1 mm de profondeur faite sur chaque face et ramenant la section à 10 mm d'épaisseur (fig. 12, tableau XII).
- 4 B Eprouvettes de 40×10 avec trou central foré de \varnothing 20 ou poinçonné de \varnothing 20 à 16 (fig. 13, tableau XIII).
- 4 C Eprouvettes de 40×10 avec trou central foré de \varnothing 20 ou poinçonné de \varnothing 20 à 16 et trou poinçonné juste \varnothing 20 avec jeu \varnothing 20 (fig. 14, tableau XIV).

Les essais de pliage font apparaître un avantage considérable du point de vue de la capacité de déformation des trous forés par rapport aux trous poinçonnés et aux trous poinçonnés et alésés; il faut un alésage de 3 mm pour retrouver des angles de 1re crique et de rupture analogues à ceux des trous forés.

Essais de torsion

On a cherché si une torsion imposée aux éprouvettes trouées faisait apparaître, comme l'essai de pliage, une différence très variable de comportement entre trous forés et poinçonnés. Il n'en a pas été ainsi. Nous donnons seulement les résultats d'une série:

5 B Eprouvettes de 40×10 avec trou central de \emptyset 20 foré ou poinçonné de \emptyset 20 à 16 (fig. 15, tableau XV).

Essais de sollicitations ondulées

Les différences obtenues aux essais de pliage conduisent à rechercher le comportement des éprouvettes trouées en flexion ondulée; c'est l'objet d'essais qui ont malheureusement été retardés les machines de fatigue nécessaires n'étant pas disponibles. Ces essais commencent, nous en donnerons les résultats ultérieurement¹).

¹) Seules les éprouvettes poinçonnées sans aucun alésage manifestent une résistance à la fatigue (contraintes et flexion: 2—33 kg/mm²) inférieure à celle des éprouvettes à trou foré.

Conclusion

Les trous poinçonnés non alésés, tels qu'on les pratique couramment en construction métallique réduisent la résistance des pièces aux efforts de traction davantage que les trous forés, ils diminuent largement les possibilités de déformations angulaires.

L'alésage de 1 ou 2 mm relève la résistance traction au niveau de celle des pièces avec trou foré, mais ces dernières conservent une supériorité très nette aux déformations de pliage. Il faut un alésage de 3 mm sur le diamètre pour retrouver avec le trou poinçonné des caractéristiques comparables à celles du trou foré, elles paraissent alors un peu supérieures.

Les essais sous sollicitations alternées, en cours, permettront de vérifier si les conclusions ci-dessus peuvent être étendues aux charges variables.

Résumé

L'article rend compte d'essais effectués par la S.N.C.F. sur des éprouvettes en acier doux avec trous forés, poinçonnés ou alésés après poinçonnage.

L'infériorité du trou poinçonné se manifeste surtout aux essais de pliage, les trous poinçonnés avec alésage de 3 mm se sont montrés au moins équivalents aux trous forés.

Zusammenfassung

In diesem Bericht werden die von der S.N.C.F. an Stahlproben vorgenommenen Versuche beschrieben, wobei Proben mit angebohrten, gestanzten, oder nach der Stanzung ausgebohrten Löchern untersucht wurden.

Der Nachteil der gestanzten Öffnung zeigt sich besonders bei den Biegungsversuchen, während die gestanzten und um 3 mm nachgebohrten Öffnungen den gebohrten Öffnungen nicht nachstehen.

Summary

In this report are described investigations carried out by the S.N.C.F. on steel specimens, in which tests were made with drilled, punched, or subpunched and drilled holes.

The disadvantage of the punched holes is clearly shown, especially in the bending tests, whilst the punched holes which are drilled out by 3 mm (¹/₈ inch) are not inferior to the drilled holes.

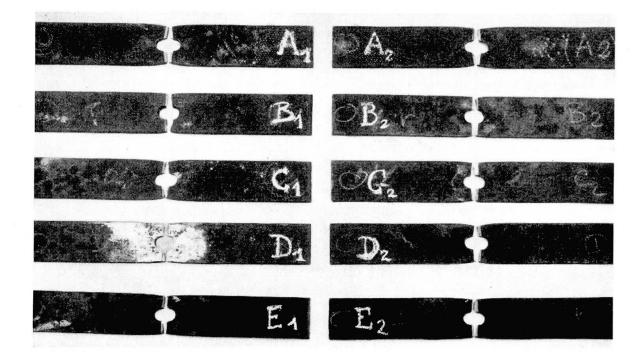


Fig. 1.

 $Tableau\ I$

Re- père	Usinage du trou	Charge de rupture	Longueur du trou après rupture	Observations
$\mathbf{A_1} \\ \mathbf{A_2}$	foré Ø 20	17 150 18 920	31,5 31	
$\mathbf{B_1}\\\mathbf{B_2}$	poinçonné Ø 20	15 000 15 500	24,5 25,5	fissure dans trou à 14T5 fissure dans trou à 15T
${\rm C_1}\atop {\rm C_2}$	poinçonné Ø 19 et alésé Ø 20	19 200 17 800	30 28	
$\mathbf{D_1} \\ \mathbf{D_2}$	poinçonné Ø 18 et alésé Ø 20	17 800 18 400	28 31,5	
$\mathbf{E_1} \\ \mathbf{E_2}$	poinçonné \varnothing 17 et alésé \varnothing 20	18 300 18 200	29 28,5	

Eprouvettes rainurées: épaisseur 12 mm (largeur 60 mm) 1 A

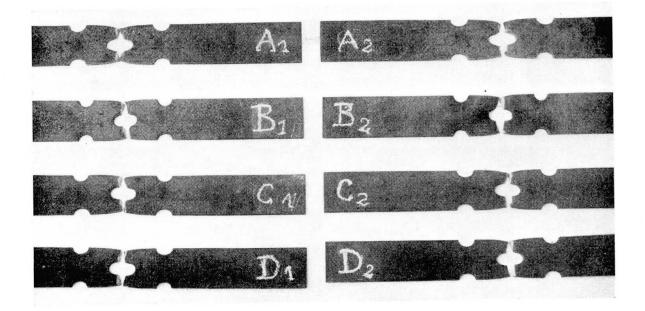


Fig. 2.

 $Tableau\ II$

				Longue aprè	Observations			
Re- père	e- Usinage	Charge de rupture	Cal	a	b	c	d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{matrix} \mathbf{A_1} \\ \mathbf{A_2} \end{matrix}$	forés Ø 20	15 750 16 100	34,5 34,5	$\begin{array}{c} 25 \\ 25 \end{array}$	25 25	25 25	25 25	rupture trou cal.
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	poinçonnés Ø 20	14 200 14 900	28 28,5	22 22	22 22	$\frac{22}{22}$	22 22	do.
${ m C_1} { m C_2}$	poinçonnés \emptyset 19 et alésés \emptyset 20	17 000 16 300	31,5 32	23 25	25 23	23 25	25 23	do.
$\mathbf{D_1} \\ \mathbf{D_2}$	poinçonnés \emptyset 19 et alésés \emptyset 20	17 000 17 000	36,5 36,5	24 24	23,5 23,5	$\begin{array}{c} 25 \\ 24 \end{array}$	25 25	do.

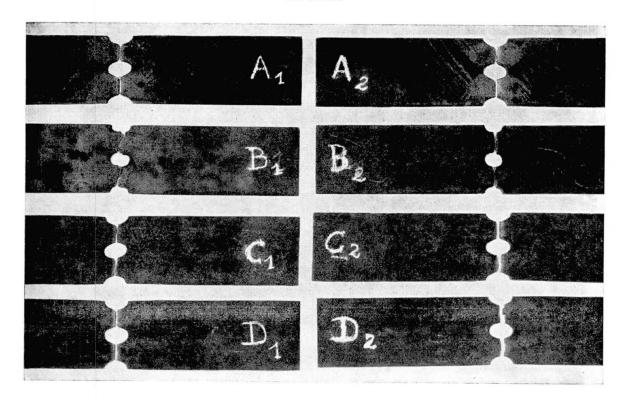


Fig. 3.

$Tableau\ III$

Re- père	Usinage des trous	Charge de rupture	Longueur des trous après rupture	Observations
$\begin{matrix} A_1 \\ A_2 \end{matrix}$	forés ∅ 20	$\begin{array}{c} 25\ 000 \\ 26\ 000 \end{array}$	31 32	striction
$\mathbf{B_1}\\\mathbf{B_2}$	poinçonné Ø 20	23 500 22 500	24 24	fissure dans le trou central
${\rm C_1} \atop {\rm C_2}$	poinçonné Ø 19 et alésé Ø 20	27 850 28 000	31 31	fissure partie du trou central
$\mathbf{D_1} \\ \mathbf{D_2}$	poinçonné \varnothing 17 et alésé \varnothing 20	$25\ 000$ $29\ 000$	29, 30, 31	légère excentricité striction

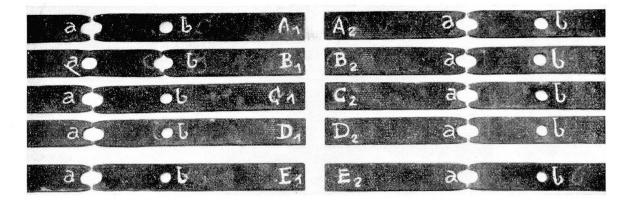


Fig. 4.

 $Table au\ IV$

Re-	Usina	age des trous	Charges (kg)		Longueur des trous ap. rupture		Observations
père	a	b	limite élast.	rupture	a	b	!
${\rm A_1} \\ {\rm A_2}$	foré \varnothing 20	poinçonné \varnothing 20	6 200 7 500	8 500 8 400	28,5 29	21 22	fissure trou b rupture trou a
$_{\mathrm{B_{2}}}^{\mathrm{B_{1}}}$	foré Ø 20	poinçonné Ø 19	6 800 6 200	8 000 8 400	29,5 29	23 20	do.
${f C_1} {f C_2}$	foré Ø 20	poinçonné Ø 18	6 400 6 300	8 400 8 400	29 29	18,5 18,5	do.
$\mathbf{D_1}\\ \mathbf{D_2}$	foré Ø 20	poinçonné Ø 17	7 800 ? ×	8 500 8 600	28,5 29	18 18,5	do.
$\mathbf{E_1} \\ \mathbf{E_2}$	foré \varnothing 20	poinçonné ∅ 16	6 500 6 400	8 800 8 400	29 28,5	17 17	do.

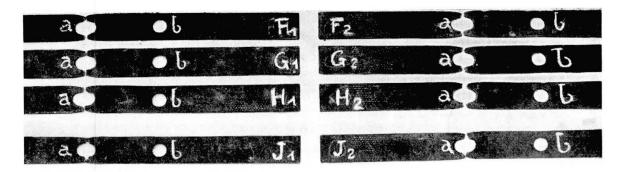


Fig. 5.

 $Tableau\ V$

Re-	Usina	ge des trous	Charges (kg)		Longueur des trous ap. rupture		Observations
père	a	b	limite élast.	rupture	a	b	
$\operatorname*{F}_{2}^{1}$	foré ø 20	poinçonné \emptyset 19 et alésé \emptyset 20	6 000 6 800	7 800 8 700	29 28,5	22 22	rupture trou a
$\begin{matrix} G_1 \\ G_2 \end{matrix}$	foré Ø 20	poinçonné \emptyset 18 et alésé \emptyset 20	7 000 7 200	8 600 8 500	28,5 28,5	21,5 21,5	rupture trou a
$_{\mathrm{H_{2}}}^{\mathrm{H_{1}}}$	foré Ø 20	poinçonné \emptyset 17 et alésé \emptyset 20	6 600 6 800	8 700 8 400	29 29	22 22	rupture trou a
$\begin{matrix} J_1 \\ J_2 \end{matrix}$	poinçonné juste Ø 20	poinçonné avec jeu max. Ø 20	7 300 7 800	8 500 8 300	24,5 25,5	21,5 21,5	fissure et rupture trou a

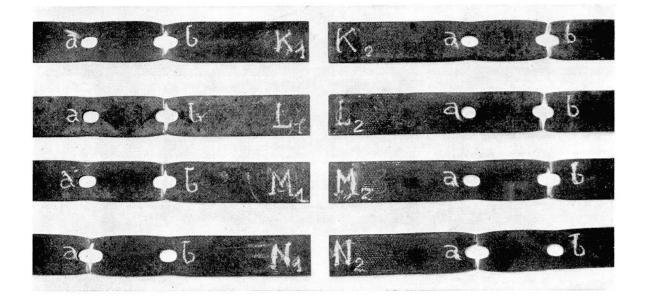


Fig. 6.

 $Tableau\ VI$

Re-	Usina	age des trous	Charg	es (kg)	des	gueur trous ipture	Observations
père	a	b	limite élast.	rupture	a	b	
${f K_1} {f K_2}$	foré Ø 20	foré \varnothing 20	11 800 12 700	16 000 17 200	25,5 27	32,5 32,5	rupture trou b double striction
\mathcal{L}_{1} \mathcal{L}_{2}	foré Ø 20	poinçonné \varnothing 20	11 900 12 300	16 400 15 000	25 22	30 26,5	fissures et rup- ture trou b
${ m M_1} { m M_2}$	foré Ø 20	poinçonné \emptyset 19 et alésé \emptyset 20	12 200 12 400	17 500 17 600	26,5 26	30 30	rupture trou b double striction
$rac{ ext{N}_1}{ ext{N}_2}$	foré Ø 20	poinçonné \emptyset 17 et alésé \emptyset 20	12 800 12 600	17 200 17 700	$32,5 \\ 32,5$	26 26	rupture trou a double striction

Traction centrée: épaisseur 10 mm (largeur 60 mm) 2 C

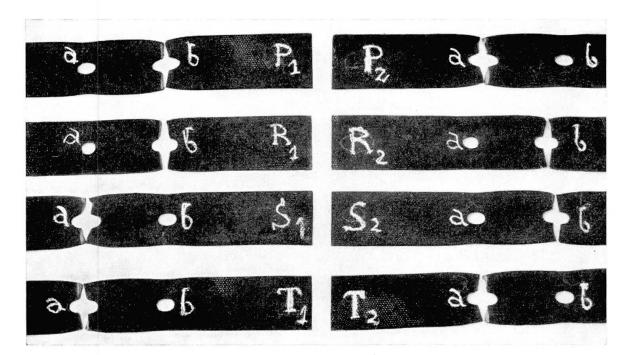


Fig. 7.

 $Tableau\ VII$

Re-	Usina	Usinage des trous		Charges (kg)		gueur trous pture	Observations
père	a	b	limite élast.	rupture	a	b	
$\Pr_2^{\mathbf{P_1}}$	foré Ø 20	foré \varnothing 20	20 000 18 000	26 000 23 000	28 36,5	34,5 28	double striction
$\begin{array}{c} R_1 \\ R_2 \end{array}$	foré Ø 20	poinçonné Ø 20	15 500 15 200	19 200 19 000	23,5 23,5	30,5 30,5	fissure trou b
$S_1 \\ S_2$	foré Ø 20	poinçonné \emptyset 19 et alésé \emptyset 20	18 000 18 000	24 400 24 500	35,5 27	27,5 34	double striction
T_1 T_2	foré Ø 20	poinçonné \emptyset 17 et alésé \emptyset 20	18 000 18 000	24 500 24 600	34 34	27,5 27,5	double striction

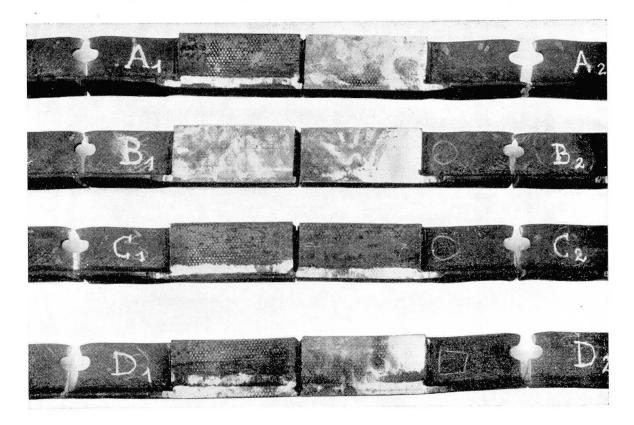


Fig. 8.

$Tableau\ VIII$

			Charges		Ouvertures		
Re-	Usinage		Rupture			rupture	Obser- vations
père	du trou	Fissura- tion	petit côté	grand côté	trou	haut h bas b	vations
$egin{array}{c} A_1 \ A_2 \end{array}$	foré \varnothing 20	41 000 43 000	43 500 46 000	44 200 46 500	$\frac{34}{42,5}$	h 4 h 15	
$\mathbf{B_1} \\ \mathbf{B_2}$	poinçonné \varnothing 20	26 000 25 000	$\overset{\times}{33~000}$	35 750 37 000	28 27,5	b 7 b 5	
${f C_1} {f C_2}$	poinçonné \emptyset 19 et alésé \emptyset 20	42 500 40 000	44 000 42 300	44 200 43 500	34 32	h 4 h 3	
$\mathbf{D_1}$ $\mathbf{D_2}$	poinçonné \emptyset 17 et alésé \emptyset 20	43 000 43 000	45 000 45 000	45 000 46 000	39 43	h 13 h 15	

Traction excentrée sur fer en T de $80\times80\times9-3$ A

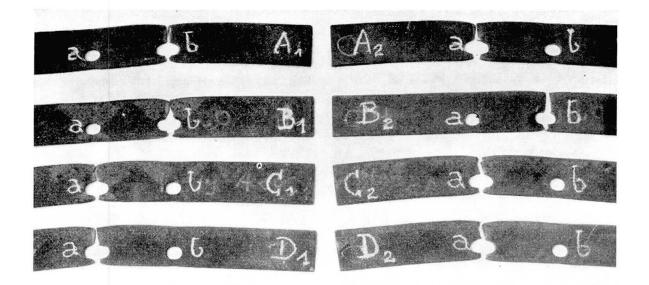


Fig. 9.

 $Tableau\ IX$

Re-	Usin	age des trous		de rupture		gueur trous ipture	Observations
pére	a	b	petit côté	grand côté	a	b	
${\rm A}_1 \\ {\rm A}_2$	foré \varnothing 20	foré \varnothing 20	13 000 12 200	16 300 15 300	25 32	32 24,5	rupture trou b rupture trou a
$\mathbf{B_1} \\ \mathbf{B_2}$	foré Ø 20	poinçonné Ø 20	13 200 13 000	14 300 14 200	$23,5 \\ 21,5$	28 26	fissures trou b
${\rm C_1} \atop {\rm C_2}$	foré Ø 20	poinçonné \varnothing 19 et alésé \varnothing 20	12 000 11 900	14 000 14 700	31,5 31,5	23,5 23	rupture trou a
$\mathcal{D}_1 \\ \mathcal{D}_2$	foré Ø 20	poinçonné \varnothing 17 et alésé \varnothing 20	12 000 12 300	18 000 15 800	31,5 32	23 23,5	rupture trou a

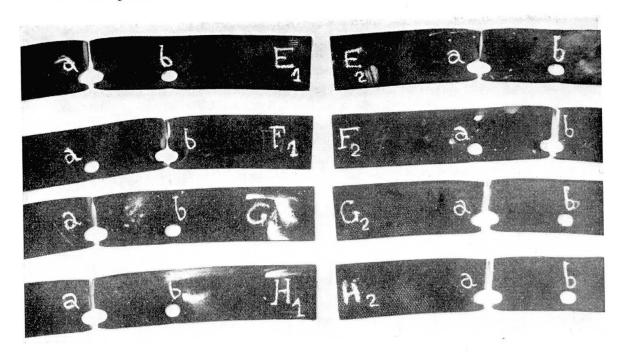


Fig. 10.

 $Tableau\ X$

Re-	Usinage des trous		Charges de rupture		Longueur des trous ap. rupture		Observations
père	a	b	petit côté	grand côté	a	b	
$\mathbf{E_1} \\ \mathbf{E_2}$	foré Ø 20	foré $ \varnothing $ 20	17 000 18 000	$21\ 000 \\ 22\ 500$	31,5 31,5	24 24	rupture trou a
${\rm F_1\atop F_2}$	foré Ø 20	poinçonné Ø 20	17 500 17 000	20 000 20 200	22 22	27 26,5	rupture trou b
$\begin{matrix} G_{1} \\ G_{2} \end{matrix}$	foré Ø 20	poinçonné \varnothing 19 et alésé \varnothing 20	18 000 18 000	22 000 22 600	32 32	$23,5 \\ 23,5$	rupture trou a
${ m H_1} { m H_2}$	foré \varnothing 20	poinçonné \emptyset 17 et alésé \emptyset 20	17 000 17 500	21 000 22 000	32,5 32,5	$23,5 \\ 23,5$	rupture trou a

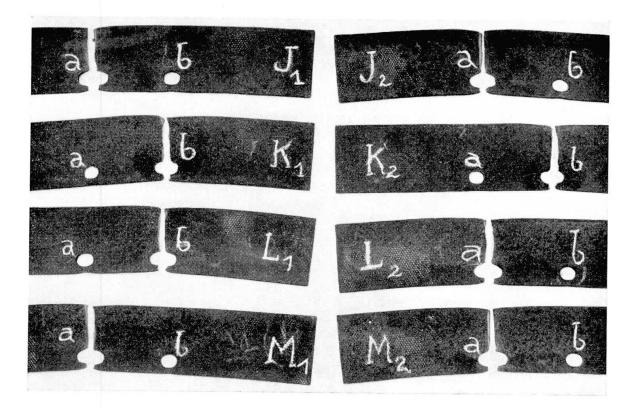


Fig. 11.

 $Tableau\ XI$

Re- père	Usinage des trous			Charges de rupture		gueur trous ipture	Observations
pere	a	b	petit côté	grand côté	a	b	
$\operatorname*{J_{1}}_{J_{2}}$	foré \varnothing 20	foré \varnothing 20	23 000 22 000	28 000 26 000	34 34	25 25	rupture trou a
$egin{array}{c} ext{K}_1 \ ext{K}_2 \end{array}$	foré Ø 20	poinçonné Ø 20	24 000 24 000	25 200 25 000	21,5 25	26,5 29	rupture trou b
$egin{array}{c} ext{L}_1 \ ext{L}_2 \end{array}$	foré \varnothing 20	poinçonné \emptyset 19 et alésé \emptyset 20	23 000 23 000	29 000 27 500	$\frac{24}{33,5}$	32 23	rupture trou b
${ m M}_1 \ { m M}_2$	foré \varnothing 20	poinçonné \varnothing 17 et alésé \varnothing 20	23 500 23 000	28 000 28 000	32,5 32,5	24,5 24,5	rupture trou a

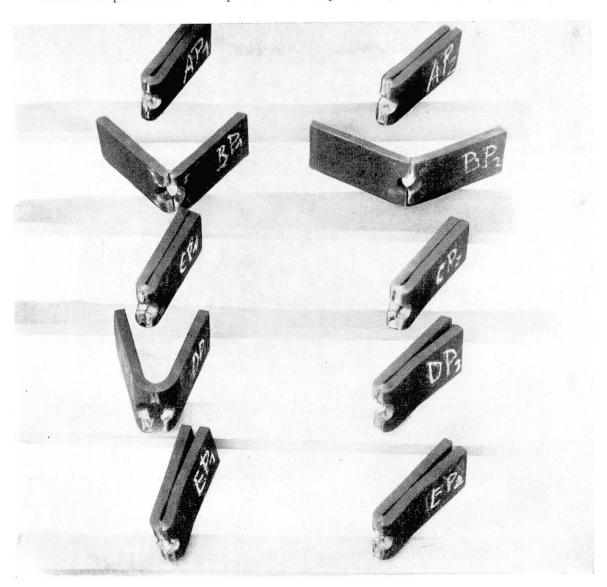


Fig. 12.

$Tableau\ XII$

Re- père	Usinage du trou	Angle de pliage Ire crique rupture		Observations	
$AP_1 \\ AP_2$	forés \varnothing 20	167° 170°		à bloc crique sur la moitié de l'épaisseur	
$\frac{\mathrm{BP_1}}{\mathrm{BP_2}}$	poinçonné Ø 20	55° 18°	99° 66°	rupture un côté du trou rupture 2 côtés du trou	
$\frac{\mathrm{CP_1}}{\mathrm{CP_2}}$	poinçonné \varnothing 19 et alésé \varnothing 20	47° 30′ 68°	172° 1) 166° 1)	1) rupture un côté du trou	
$\frac{\mathrm{DP_1}}{\mathrm{DP_2}}$	poinçonné \emptyset 18 et alésé \emptyset 20	78° 89°	156° ¹) à bloc non rompu	$^1)$ pour l côté; pour le 2e, 161° crique sur les $^3\!/_4$ de l'épaisseur	
$\frac{\mathrm{EP_1}}{\mathrm{EP_2}}$	poinçonné \varnothing 17 et alésé \varnothing 20	172° 163°		à bloc crique sur la moitié de l'épaisseur	
1	Eprouv	rettes rainu	rées épaisse	eur 12 mm 4 A	

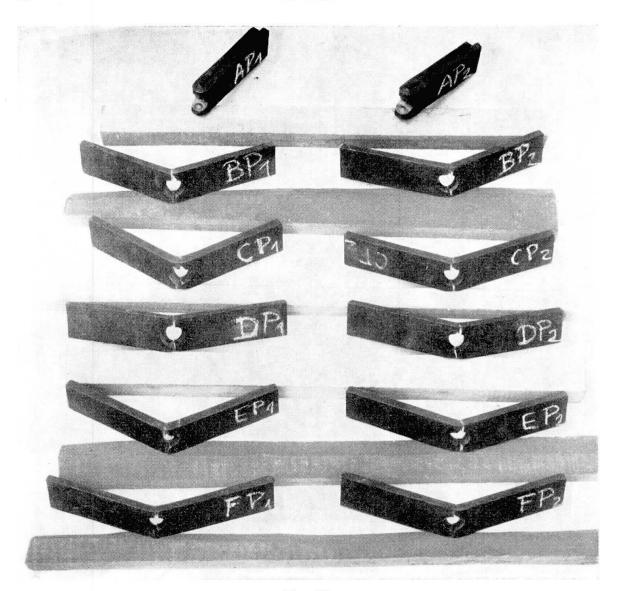


Fig. 13.

$Tableau\ XIII$

Re-	Usinage du trou	Angle de pliage		Observations	
père		1re crique	rupture	Observations	
$ AP_1 AP_2 $	forés \emptyset 20	_	_	à bloc sans crique $(e=0)$	
BP_1 BP_2	poinçonné Ø 20	$ imes$ 31 $^{\circ}$	50° 47°	débouchure à l'extérieur de l'ang du pliage criques et rupt. des 2 côtés du tro	
$\frac{\mathrm{CP_1}}{\mathrm{CP_2}}$	poinçonné Ø 19	$20^{\circ} \ 22^{\circ}$	51° 44°	do.	
$\frac{\mathrm{DP_1}}{\mathrm{DP_2}}$	poinçonné Ø 18	20° 22°	41° 46°	do.	
$\frac{\mathrm{EP_1}}{\mathrm{EP_2}}$	poinçonné Ø 17	$\frac{21^{\circ}}{18^{\circ} \ 30'}$	47° 30′ 51°	do.	
$\frac{\mathrm{FP_1}}{\mathrm{FP_2}}$	poinçonné Ø 16	$25^{\circ} 20^{\circ}$	47° 48°	do.	
		Epaisse	eur 10 mm	4 B	

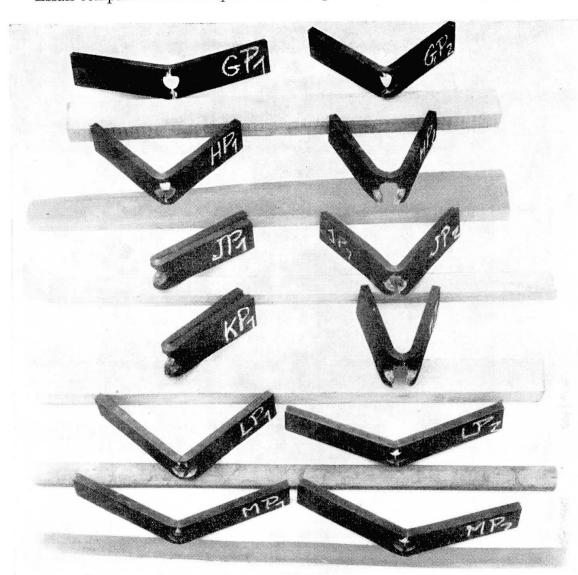


Fig. 14.

$Tableau\ XIV$

Re-	Usinage du trou	Angle de pliage		Observations		
père		1re crique	rupture			
$\begin{array}{ c c c }\hline GP_1 & \\ GP_2 & \\ \end{array}$	poinçonné \varnothing 20	$20^{\circ} \ 24^{\circ}$	82°	débouchure à l'éxterieur de l'angl du pliage. Criques et rupt. d. 2 côté		
$\frac{\mathrm{HP_1}}{\mathrm{HP_2}}$	poinçonné \varnothing 19 et alésé \varnothing 20	77° 45°	103° 105°			
$\overline{\mathrm{JP_1}}$ $\overline{\mathrm{JP_2}}$	poinçonné \emptyset 18 et alésé \emptyset 20	$\frac{-}{1/, e=12}$	à bloc	pliage à bloc sans crique i) // = branches parallèles		
$KP_1 KP_2$	poinçonné \varnothing 17 et alésé \varnothing 20	$1/2, e=8$ $103^{\circ 1}$	157° 30′²)	à bloc 1 côté rompu 1) crique 1er côté; crique 2e côté 2) rupture totale [143]		
$ Arr LP_1 \ LP_2$	poinçonné juste $ \varnothing 20$	$25^{\circ} 20^{\circ}$	$95^{\circ} \\ 47^{\circ}$	crique et rupture des 2 côtés		
$\frac{\mathrm{MP_1}}{\mathrm{MP_2}}$	poinçonné avec jeu max. Ø 20	$\begin{array}{c} 17^{\circ} \\ 25^{\circ} \end{array}$	$44^{\circ} \\ 43^{\circ}$	crique et rupture des 2 côtés		
		Epaiss	eur 10 mm	4 C		

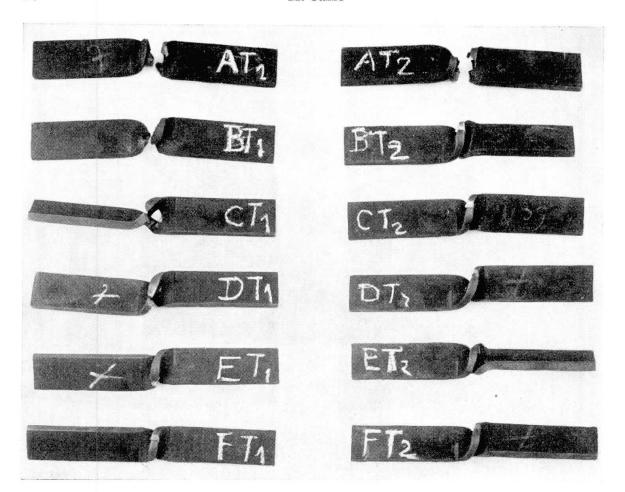


Fig. 15.

 $Tableau\ XV$

Repère	Usinage du trou	Largeur de torsion	Rupt. à la torsion		Rupture	82531
			Moment (mk)	Angle	sur 1 ou 2 côtés	Observations
${ m AT_1} \ { m AT_2}$	foré \varnothing 20	40	94 85	$\frac{190^{\circ}}{210^{\circ}}$	$\frac{2}{2}$	$\left. \begin{array}{c} \\ \end{array} \right\}$ essayés le 9/9/54
${\operatorname{BT_1}top \operatorname{BT_2}}$	poinçonné Ø 20	40	89 88	$190^{\circ}\ 185^{\circ}$	2	
$\begin{array}{c} \operatorname{CT_1} \\ \operatorname{CT_2} \end{array}$	poinçonné Ø 19	39	90 80	$165^{\circ} \ 165^{\circ}$	1 1	
${\operatorname{DT_1}top \operatorname{DT_2}}$	poinçonné Ø 18	38	80,5 80	$150^{\circ}\ 135^{\circ}$	1 1	
$ ext{ET}_1 \\ ext{ET}_2 ext{}$	poinçonné \varnothing 17	37	80 84	$\frac{186^\circ}{216^\circ}$	1 1	
$FT_1 \ FT_2$	poinçonné Ø 16	36	76 78,5	$192^{\circ}\ 175^{\circ}$	1 1	
		Epaisse	eur 10 mm	5 B		