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Matrix-Analysis of Successive Moment-Distribution
Calcul matriciel de la répartition continue des moments

Matrix- Berechnung der fortlaufenden Momentenverteilung

Sven Oror AsPLUND, Tekn. D., Prof. of Structural Theory, Chalmers University
of Technology, Gothenburg, Sweden

Introductory

In “A Study of Three-Dimensional Pile-Groups’’ (AIPC Mémoires 1947,
p. 13) the author showed how one could by means of an infinite matrix series
describe a sequence of successive approximations, useful in determining the
forces in pile-groups. He added that it seemed possible in general to establish
by simple matrix methods the coincidence in results between standard methods
of successive approximations and the direct solution according to the classical
theory of statically indeterminate structures. '

The author particularly had in mind a proof for the statement that the
method of successive moment distribution could be explained by an infinite
matrix series whose convergent sum (for stable systems) would coincide with
the state of stress of the structure, solved directly as an elastic system. That
this must be the case is self-evident almost to triviality from a physical point
of view. In the feeling that elementary matrix methods may in the future
become more widely used for simply and clearly formulating the propositions
of the theory of structures, a proof of the theorem stated was believed to be
of some value. By-products of practical value may moreover emerge from the
proof of quite abstract general statements.

It is a frequently observed paradox of applied matrix analysis that it is
easier to treat a general case by general methods than special cases by special
methods.

As far as is known by this author only one paper (S. Benscoter, “‘Matrix
Analysis of Continuous Beams’’, Transactions ASCE, p. 1109) has undertaken
to adapt the Cross method, to matrix treatment. This meritorious paper treats
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the practically important special case of continuous beams (with two bars
connected to each joint) in such a manner that it would obviously not be easy
to proceed to the general case along the same lines.

Chen (“Matrix Analysis of Pin-Connected Structures’’, Transactions ASCE
1949, p. 181) has studied trusses with pinned joints, by matrix methods. His
solution is direct, without approximations or matrix series.

R. Oldenburger (Convergence of Hardy Cross’s balancing process, Journ.
of App. Mech. 1940, p. 166) has proved by a comparatively complicated matrix
method the convergence of successive moment-distribution for beams. Ch.
Massonnet, (Sur la convergence de la méthode de Cross . .., Révue universelle
des mines, Liége 1946, no. 6) has treated analytically the convergence for
frames.

The Method of Successive Moment Distribution

The method of successive moment-distribution (K. A. éalisév, Technicki
List, Zagreb 1922, and ATPC Mémoires 1936; Hardy Cross, Trans. ASCE 1932)
is best suited to girders, frames, and trusses having joints that are rigid,
rotatable, and having essentially no displacements in space. Complements to
the method admit the analysis of joint translations and other special conditions.

N 1//‘
2 @)

Fig. 1. Framework

Structures suited for treatment by this method are thus characterized by
a number of almost stationary joints 1, 2, ... ¢, 4, ..., at which straight or
curved members with uniform or varying stiffness are rigidly connected. Hinges
exist at such points where the stiffness £ of the members decreases to zero.
The members connect various pairs of points ¢, j in this structure; no members
run between many pairs of points, fig. 1.

The method of successive moment distribution is performed in the following
manner: In the unloaded structure all joints are locked for rotation. Members
(or joints directly) are then loaded by the external loads for which the com-
putation of the real structure is required. In every case where external loads
act upon a member ij, elementary statical methods are used to compute the
fixed-end moments M,,;, M,;; at the (as yet fixed) ends ¢j and js. All end-
moments will be given positive signs, if they tend to turn the joint in a positive
(clockwise) direction. The sum %‘ My,;=M,; of all fixed-end moments M;; at

a joint ¢ and all moments M, ,, that act directly upon the joint 7, is called the
(primary) ‘“unbalanced’’ moment M, acting upon the joint <.
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The method proceeds by unlocking one joint in the structure, while all the
other joints remain locked for rotation. This joint ¢ is first rotated through
an angle of —1 radians (joint-rotation angles @ in a clockwise direction are
considered as positive) by the action of some external moment, fig. 2. Then
the end 75 (= end ¢ of member 7j) will be bent by a moment S,;, defining the
absolute end-stiffness of the end 7j.

(V]

Fig. 2. End-stiffness S;; and carry-over factor ;.

The opposite, fixed, end j7 of the same member ¢j will simultaneously be
bent by a moment Cy; S,;. C; is termed the “‘carry-over factor’’ for the member
tJ (in the direction ¢ to ).

End-stiffnesses S and carry-over factors C can be conveniently computed
by simple statical methods. Tables are worked out of 8 and C for a great
number of stiffness variations ¥ I. It is possible, according to James (Princi-
pal Effects of Axial Load etc., NACA Techn. Note 534, 1935), to account for
the influence upon S and C of an axial force in the members. For members of
uniform stiffness this influence is expressible by Berry’s functions. Diagrams
by Hoff ete. (Buckling of Rigid-Jointed Plane Trusses, Transactions ASCE
1951, p. 958) reformed as in fig. 3, furnish values of § and C, taking into account
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Fig. 3. Hoff’s stiffness chart for gusseted member under axial load, rearranged.
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extra joint rigidities caused by concurrent members or by gusset plates. Charts
by J. E. Goldberg (Stiffness Charts for Gusseted Members under Axial Load,
Transactions ASCE 1954, p. 43) can also be used for this purpose.

However, under the action of the ‘“unbalanced’’ moment M, the joint s
will rotate an angle @, , instead of —1. This rotation @,; induces in end 74 a
moment —8;;0,,;, fig. 2. All end-moments of members connected at ¢ will
together balance the acting moment My;: M,,—2'8;;®,,=0, or, denoting
2'8; by 8;, Mo;=8;0,;. ’ :

7

If §; is written in a diagonal matrix S and M,; and @, in column matri-
ces M, and O,

Mn= Mnl , 8= Sl o -1, @n= @nl

this may be written

The end-moments will thus be — M, S;;/S; = —s;; M,,;, where the distri-
bution number s;;=8;;/8;. '

The far end of member ij will be bent by —C;s;; My; = —c;; My;, where
;=04 845

Consequently, an external moment = —1 acting on a single unlocked
joint + will cause at end 75 a moment s;; and at end j¢ a moment ¢;;, fig. 4.
Unbalanced moments M; in the ‘“neighbor joints’’ j of ¢ will thus increase
by —c;; My;.

Now joint 4 is locked in its new equilibrium position @, . Some other joint,
generally the one, j, having the largest total unbalanced moment (= the
original M,; plus all additional —c;; M,; caused by the rotation of neighbor
joints ¢) is unlocked, balanced, and relocked according to the same method.

This procedure is continued if it is convergent, until the largest remaining
unbalanced moment is of no significance for the purpose of the analysis (check
on strength, etc.). |

Fig. 4. Distribution of moment My, = — 1 at joint ¢
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It might be possible to describe this procedure by a series of matrix opera-
tions. However, from a matrix point of view the rule ‘“largest remaining
moment’’ for the choice of the ‘“‘next joint’’ is extremely awkward. It will be
advantageous to devise some other rule by which the moment-distribution
proceeds to the same final result, but with simple matrix analysis.

Moment-Distribution in Stages

A short consideration will make clear that such a goal can hardly be
attained by any means other than by performing the moment-distribution in
stages in such a way that all joints are balanced in each stage disregarding in
each stage all moments —c;; M,; carried-over during that stage. Instead all
these moments —c;; M,, left behind will be applied as (only) unbalanced
moments in the next stage.

Because of its more systematic character such a stage-sequence of opera-
tions is recommended in the practical application of the Cross method. Moment-
distribution in stages, carried on until the largest remaining undistributed
moment falls below a specified magnitude or percentage may imply a some-
what greater total number of balanced joints. Work can nevertheless be saved
since the additions of carried-over moments before the balancing of each joint
will be concentrated to the changes between the stages.

Very few papers on the moment-distribution method, or text-books on
structural theory mention moment-distribution in stages. Instances are
S. Hultin, Lecture Notes on the Calculation of Frames, Gothenburg 1949,
and Wang C.-K., Statically Indeterminate Structures, New York 1953, p. 218.
Distribution in stages is, however, currently used by a great number of Euro-
pean and American structural computers.

Matrix Analysis of Distribution in Stages

With- this rule of balancing in stages it is easy to write down the unbalanced
moments which were disregarded in the first stage in order to be balanced in
the second. They are for the joint j '

—Cj1M01_Cj2M02—Cj3M03— e

In this sum the j-th term, —c;; M,;, vanishes, ¢;; being null. The sum just
written down equals the element in the j-th row of the matrix product

My=—-cMy=—-[0 ¢, -] [ My
cx 0 - Mo,
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The second stage of balancing starts with the unbalanced moments M, =
—cM,. In the same manner as new unbalanced moments —c M, were formed
during the balancing of the moments M, of the first stage, the unbalanced
moments M, = —c(—cM,)=c?M, will appear after the moments —c M, have
been balanced in the second stage, —c® M, after the third stage, etc.

In case this manipulation converges, the final balanced moments in every
joint will be given by

M, ;ngoMn = My—cMy+2My—c* My+ ...
M;=(I+c) M, (2)
causing the final joint rotations @, =n§1@n, cf. (1),
O;=811M;=81(I+c) ' M, (3)
Premultiplication by (I +¢) 8 yields
(I+¢)8S6O,=M, (4)

“Statically Indeterminate” Matrix Solution

The direct ‘‘statically indeterminate’’ solution without successive approxi-
mation is obtained by first locking the structure in its undeformed (fixed-end)
condition. All members are now loaded, resulting in fixed-end moments M,

Byt
Fig. 5. Final rotations.

and unbalanced moments M,, over the whole structure. All joints ¢ of the
structure are then unlocked and finally rotated through @, to equilibrium.

- In member 12, fig. 5, the end 12 and end 21
was bent before the rotation by My, M0,
0;, adds the moment — 8,0, —015381,0,
and O, — 02185160 | =820y, |
Finally, end 12 will be bent by the moment
Mf12=M012_S12@f1‘“021 821@f2 (5)

M ;, denoting the sum Zo [(—c)™ M,], of all the consecutive unbalanced moments
n=
at joint 1.
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All moments at the ends 1 connected to joint 1 must balance the direct
moment M, at joint 1: '

Mo+ Moo+ Moz + -+ — 81304 — 8130, —- - -
_021 S21@f2_031 ‘831@13" c-=0
OI', Since Z Sl,’} = Sl a'nd. O’L] S?.j - Cj‘iS’i7
j

;Mou =My, =810, +¢128:0,54+¢138;,0,3+ ...
M,= S, ¢85 €138 - On =1 ¢y - S;,0 - O,
Ca1 Sy Sy c9383 - @f2 Cy 1 : 0 S, -
My=(I+c)S0, (6)

The agreement of (4) and (6) proves the statement that the Cross moment-
distribution, if it converges, does so towards the classical direct solution of
the statically indeterminate structure.

Asymptotic Geometric Matrix Series

After the n-th stage there remains at joint ¢ an unbalanced moment
M,.,=[(—c)*M,];. Tt will be demonstrated that these terms are asymptotic
to the terms of a geometric series. Denote by ¢, an element with definite
position in the matrix ¢ and by A the largest latent root of ¢ (one such root is
assumed; the following conclusions can easily be extended to apply also in
the more improbable cases in which there are several equally large latent
roots, cf. Frazer, Duncan, Collar, Elementary Matrices, Cambridge 1938, p. 135).

Sylvester’s theorem easily proves that the ratio c,/c,_, between corres-
ponding elements in the matrices ¢® and ¢*~! for increasing n all approach the
largest latent root A of c. As a consequence, if ¢™ and ¢! are postmultiplied by
the same column matrix M,, the ratio of all corresponding elements in the
two resulting column matrices obviously tend to A with increasing = :

Api=(c" My); [ (" My); — A (6)
for all 4.

This important theorem can be utilized in ordinary moment-distribution
according to Cross, if it is performed in stages as clearly indicated by the
matrix treatment itself. Each completed stage n concludes with numerical
values of M, ,=((—c") M,);. The calculator writes down a column with the
before-mentioned ratios A,;. When he has found that this column of figures
can be replaced without harmful inaccuracy by a column of equal numbers
A mea (< 1), he will employ A, ,..q as an approximate value of the largest latent
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root A, terminate the moment distribution, and calculate the sums of all
remaining unbalanced moments in the geometric series M,,; (—A,, peq + A2 pea—- - )

by the formula
Mresti = ~"]l[m')\nmed/ (1 +Anmed)'

It may sometimes be possible to do this at an early stage » of the moment
distribution. In such a case a number of joint distributions can be saved which
otherwise would have been necessary in a standard computation according
to Cross. This saving of labor alone could in some cases motivate the procedure
nf moment-distribution in stages.

Arrangement of Numerical Computations

Matrix moment-distribution in stages can be carried through in the follow-
ing form for the framework of fig. 6 to 12:

3.2 3.2 062 043 043 0 0.5 0.5
52 |[N\74 7 0.38 0.14 E, é
2.0 1.0 . 0.25 0.10 0.5 0.5
4.0 4.0 ? 0.50 0.40) 0.40 og 0.5 0.5
8 10 ¥ 0.25 0.10 7. 5
20 1.0 . 0.5 0.5
0
.oy e w7 wr w w
e e] o0

Fig. 6. Stiffnesses S;; and Fig. 7. Distribution num- Fig. 8. Carry-over factors
S?::Z_:Sij' bel‘s sij=Sij/Si' C’ij'
j

End-stiffnesses S,; and joint stiffnesses S;, distribution numbers s;;, carry-
over factors C;;, matrix elements c,;, and fixed-end moments M;; and pri-
mary unbalanced moments M,; are noted upon framework sketches fig. 6 to
10 near the joints to which the magnitudes pertain. Stiffnesses, moments etc.
that are the same at both ends of a member are noted near the middle of the
member.

022 031 0 022y 208 -208 Y 1 4 8
0.13 0.05 % 2.08 208 7 %
|00 0" 447 417 2 37

020 0.5 |0 0.20 A7 -4,
0 0 v 417 <77 % %
0.13 0.05 5 3

Fig. 9. Matrix elements Fig.10.Fixed-end moments  Fig. 11. Joint numbers <.
¢;;=Cj;8;- M,,;; and primary unbalan-

ced moments Mo,i:ZM‘,i,-.
i

After numbering the joints, fig. 11, the elements c;; are entered into a
square matrix ¢, table 1. Blank elements are zero.
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Table 1. Matrix moment-distribution

Row 7 Columns j

(opposite end) M, cM, c2 M, 3 M, M,
(Joint) 1 2 3 4
1, ¢c= 13 .22 2.08 .08 .04 .04 2.00
2 .19 .20 4.17 —.44 .19 -.01 4.81
3 .25 .07 —4.17 .88 —-.08 .05 -5.18
4 .31 .05 —2.08. .44 .07 .01 ~2.46

The primary unbalanced moments M, are entered into a column matrix
M, at the right hand side of ¢. Cumulative multiplication and addition on an
ordinary desk calculating machine expedites the consecutive evaluation of

the matrix products ¢ M, ¢2M,, .... The final sum of all the distributed
moments in each joint is M, =M,—cMy+c>My+ ... . The final end-moments
M ;; of the members 75 ean be computed according to

cf. (5), (1), or by balancing only the moments M,; in the fixed-end condition
of fig. 10, which is carried through in fig. 12.

2,08 -2.08
-1.24 1.06
0.54 -0.62
-1.38 Z1.64-, 1.0 0.53. N
-0.76 i\ /T 034
-0.63 /| 2.00 ~246 |} 026
S gy 447 | 00
-1.20 |-2.41 207 | 052
-0.38 | 1.04 -1.20 | o.15
-138-.| 2.80 2330 [“oeé7 1.04 N
AN "2.07
-1.20" | ‘481 -518 | -0.52
-0.60 0.26
w7 V-4

Fig. 12. Distribution of final end-moments.

Only insignificant unbalanced moments should remain after one balancing
stage. This furnishes a check upon the numerical computations. In that stage
the correct final end-moments M ,; of all members ¢j have also been evaluated.

Framework Buckling Criterion

Hoff’s buckling criterion (Stable and Unstable Equilibrium of Plane
Frameworks, J. Aeron. Sci. 1941, p. 115) is based upon the convergence or
divergence of the moment-distribution, using James’s (l.c.) stiffnesses and
carry-over factors. In investigating stability, it also appears preferable to
perform the moment-distribution in stages. Instead of a more or less vague
idea of convergence or divergence developed during an irregular wandering
about among the joints of the structure, a distribution in stages furnishes
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after each stage, through the column A ;, a better-defined indication of whether
the critical root tends to a value below or above 1. This determines the con-
vergence or divergence of the remaining series, M, ;=Y ((—c)* M), which is
asymptotic to a geometric series with ratio — |A|.

Successive stages of the Cross moment-distribution correspond to successive
powers of c. A large number of moment-distribution stages can be saved by
repeatedly squaring the matrix ¢, to ¢, ¢4, ¢8, c!® ete., by means of simple
matrix multiplication: ¢8c®=c'%. Approximate values of the largest latent root
then are, for instance, |A|,,,, = (c1;;/c®;)Y8.

High powers of the matrix ¢ will contain only proportional rows. This
implies that any originally applied virtual moments will after a number of
distribution stages approach proportionality to the related elements in any
column of ¢.

Numerical Example on Framework Bixckling
As another example of matrix treatment of successive moment distribution

the buckling load of the framework shown in fig. 13 will be computed. This
framework 1234 has members of equal lengths 1 and equal stiffnesses X I.

/ 054 Q aso Q
/ 3 922
v 022

Fig. 13. Buckling of frame- Fig. 14. S;;. 4 E1y/1,. Fig. 15. s;;.
work.

P 4

The rigidity caused by the triangular framework makes the displacements of
the joints 1 and 3 negligible. A trial axial load of P =20 E I/I?> induces in the
members 12 and 23 forces P, = —11.5 EI[l*> and P3; = +11.5 E1[l>. End-
stiffnesses and carry-over factors from fig. 3 for s/I[=0 (no gussets) are noted
in fig. 14 and 16; s;; and c;; are computed in fig. 15 and 17. Symmetric magni-
tudes are not noted.

\V \/

Fig. 16. Cy;. Fig. 17. ¢;;.

For antisymmetric virtual applied moments Mg, = Mgy, Moy=Mys.
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¢ M, = 61 .18 .61 M,
27 27 M,
18 .61 61 My,
27 27 M,,

18 eqﬁivalent to

cM,= [ 18 1.22 ] [ My ]

Hence the stability of the system characterized by ¢ is the same as of that
characterized by c*. Simple matrix multiplication yields

c2=[.69 .22], c4=[.50 .30], 68:[.29 .29], clﬁz[.u .16]
.10 .66 14 .46 13 .25 .07 .10

1N appr. = [.88 .93]
93 .90

the elements of the matrix of |A|,,,. being computed as (c'6,;/c®;)"8.

For a matrix ¢ of order two, as in this instance, the largest latent root
would have been more easily computed by a direct solution of the charac-
teristic equation of ¢:

[ A—.18 —1.22 ] =0, A2—.18X—.66=0
— 54 A
with the roots A=.91 and .73. ‘

After a large number of distribution stages, all “later’’ unbalanced virtual
moments and all “later’” deflections of the structure are multiplied by —A for
each new distribution-stage. When |A| < 1 the structure will reach stable equi-
librium under the action of any initial virtual disturbances M, ,. If the actual
forces upon the structure are increased by a factor K, it seems plausible from
a physical point-of-view that the multiplier A of the “later’’ virtual moments
should increase at least approximately by the same factor K. To make A equal
to the buckling value 1 the loads upon the frame should thus be increased
approximately by the factor 1/A.

Choosing an axial load of P=22.5 E I[I? for a possibly diverging moment-
distribution, fig. 14 to 17 will be modified as shown in fig. 18 to 21.

2

N/ VARV \/

/2
Fig. 18. S;; 4 EL,[1,. Fig. 19. s;;. Fig. 20. C;. Fig. 21. c;;.
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c = 73 .19 .73 ,c=[.19 1.46], 02=[.88 .28]
.29 .29 .58 .11 .85
.19 .73 .73
.29 .29
A= .80 .48], c8=[.73 .74-‘], 016=[.75 1.02]
[.19 .15 .29 .65 40 .64

N appr. = [ 1.00 1.04]
1.04 1.00

Loads of P=20 and 22.5 £ I/I? have thus yielded largest latent roots of
about .91 and 1.02. By interpolation, a latent root of 1 can be expected for
P=22.1E1[I2. This load can be accepted as the buckling load, or as initial
force in a second iteration.

Conclusions

The trivial theorem that the Hardy Cross successive moment-distribution
approaches the direct classical solution of the elastic structure has been proved
by matrix analysis. The simple proof was in fact made possible by studying a
~ gemeral case and by considering a moment-distribution ¢n stages. The advan-
tages of the matrix treatment of a moment-distribution in stages suggests
that the same procedure could also be advantageous in practical numerical
applications.

The matrix treatment of moment-distribution in stages also discloses that
the stage-series of unbalanced moments is asymptotic to a geometric series,
the ratio and sum of which can be approximated; this property may sometimes
be useful in practical numerical work and in the numerical application of
Hoff’s buckling criterion for frameworks.

Whenever the matrix technique can be employed, the rationalization of
the computation procedure thereby achieved leads to advantages of a time-
saving systematizing of numerical work, a more definite appraisal of conver-
gence, or the possibility of an approximate estimation of the sums of all the
remaining corrections.

Summary

The procedure of successive moment-distribution is interpreted by an
infinite matrix series whose definite sum is also given. It is shown that this
sum coincides with the corresponding finite expression deduced without
approximations by the classical theory of elastic structures. It is finally
demonstrated that the matrix series for moment-distribution in stages (as
defined) is asymptotic to geometric series whose common ratio and various
sums can be approximated. The matrix method given is exemplified on an
ordinary frame problem and on a frame-buckling problem. '
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Résumé

L’auteur traite la méthode de la répartition continue des moments a 1’aide
d’une série matricielle infinie, dont il indique également la somme. I1 montre
que cette somme concorde avec l’expression finie correspondante, qui peut
étre déduite sans approximations de la théorie classique des corps élastiques.
Il montre enfin que la série matricielle correspondant & la répartition pro-
gressive des moments (suivant définition) présente une allure asymptotique
par rapport & une série géométrique, dont la solution générale et les diffé-
rentes sommes peuvent étre déterminées approximativement. La méthode
matricielle exposée fait ’objet d’exemples portant sur un probléme de cadre
ordinaire et sur un probléme de flambage de cadre.

Zusammenfassung

Die Methode der fortlaufenden Momenten-Verteilung wird mit einer un-
endlichen Matrix-Reihe samt deren Summe dargestellt. Der Verfasser zeigt,
daf} diese Summe mit dem entsprechenden endlichen Ausdruck iibereinstimmt,
der ohne Annéherung von der klassischen Theorie elastischer Korper abgeleitet
wird. Dann weist er nach, wie die Matrix-Reihe fiir die stufenweise Momen-
tenverteilung asymptotisch zu einer geometrischen Reihe verliuft, deren
allgemeine Losung und verschiedene Summen naherungsweise bestimmt wer-
den kénnen. Die praktische Anwendung ist an einer gewohnlichen Rahmen-
berechnung und an einem Rahmen-Knickproblem ersichtlich.



Leere Seite
Blank page
Page vide



	Matrix-analysis of successive moment-distribution

