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A Method for Measuring Damping and Frequencies of High Modes of
Vibration of Beams

Procédé pour la mesure de Uamortissement et de la fréquence des harmoniques
dans les poutres

Verfahren zur Messung von Dimpfung und Frequenzen der Oberschwingungen
von Trigern

Techn. lic. Bo AbpamMsoN, Stockholm

1. Introduction and Summary

A beam, subjected to a concentrated impact loading, will have a vibratory
motion containing modes of vibration, which can be of very high orders. In
computing deflections and stresses in such a beam it must be considered how
the various modes of vibration are damped, in order to get a close agreement
with experiments.

When lateral vibrations of beams are computed a distinction is made,
according to classical theories, between external damping, which is caused by
air resistance and internal friction, which has the character of a material
property. The external damping is generally supposed to be proportional to
the velocity of the vibrating system. If the amplitude is assumed to be cons-
tant the logarithmic decrement in the case of vibrations of beams will then be
inversely proportional to the frequency of the modes of vibration. Detailed
investigations of the external damping have recently been made by VoErLrz
[11]'). These investigations show that the logarithmic decrement of the
external damping is proportional to 1/}/f, where f is the frequency of vibration.
The damping caused by internal friction is most often supposed to be of
viscous character, i. e. dependent on the strain rate of the vibrating element [2].

1) Numbers within [ ] refer to the Bibliography at the end of the paper.
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If the amplitude is constant the logarithmic decrement in the case of a beam
will then be directly proportional to the frequency.

Experimental investigations of the internal damping [3], [4] have given
rise to doubts about the correctness of the supposition of the viscous damping.
These investigations show that the logarithmic decrement of the internal fric-
tion is dependent on the frequency with a power less than 1, and that the
logarithmic decrement is also dependent on the amplitude of vibration. The
first discovery has caused MINDLIN [5] to construct the “constant @ theory’’,
where the logarithmic decrement is supposed to be constant and consequently
independent of the frequency.

In this paper an experimental arrangement is presented for separating the
modes of vibration of a beam, so that the damping of each mode of vibration
can be measured separately. The separation is arranged by using two different
methods at the same time, namely

1. suitable load distribution and
2. suitable placing of two strain gauges connected in series.

The first method is in principle to make the load distribution similar to the
normal function of the mode of vibration that is to be separated. Only this
mode of vibration is generated, whereas the other modes are cancelled, i.e.
their amplitudes become equal to zero. In the case of impact loading, however,
it is a problem to start the different parts of the load at the same time. This
problem has been solved by using small detonating charges, which can easily
be brought to detonate at the same time.

To find out where the two strain gauges connected in series should be
placed, the mathematical condition for the cancellation of various modes of
vibration has been derived, and a diagram (fig. 2) has been designed which
refers to beams with hinged ends. With the aid of the diagram it is easy to
determine appropriate gauge placings.

By comparing the experimental values with the above-mentioned theories
it was found that the test values agreed more closely with the “constant ¢
theory’’ than with the theory of viscous damping. The maximum strains have
been about 0,59, at all the frequencies.

Besides the damping, the frequencies of the separated modes of vibration
have also been determined. When the test values are compared with different
theories we find a close agreement with those frequency values that are cal-
culated, taking rotatory inertia and shearing forces into account.

2. Separation of a Mode of Vibration by an Appropriate Load Arrangement
When a vibrating system with several degrees of freedom is treated mathe-

matically and the differential equation is linear, the load distribution is often
expanded in a Fourier-series in such a way that each degree of freedom can
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be treated separately and then the parts of the solution can be superposed. In
the case of an elastic beam each part of the load should be similar to a normal
function of the beam. '

If the load distribution on the beam is similar to the n-th normal function,
the beam will vibrate only according to the n-th mode. This fact can be made
use of for the separation of a certain mode of vibration of a beam. The load
is then arranged in such a way that it agrees with the normal function of the
desired mode of vibration and so this mode is the only one existing. If you
want to separate for instance the 5-th mode of vibration of a beam with
hinged ends the load distribution should be arranged according to fig. 1.

The load is applied in a transient way and it is of the greatest importance
that all the distributed parts of the load start at the same time and that their
time dependence is the same along the beam. To attain this the following
procedure is used: The beam is loaded with detonating charges which are
applied about one centimeter from the beam, so that the latter should not
get too large plastic deformations. The charges must not be too large. In the
tests which were made on steel-beams of 50X 50x 1060 mm (fig. 3b), the
charges consist of boxes, which are 2,5 cm of length and have a square cross
section area of 2 cm2, The boxes are filled with 4 grams of powder TNT with
a unit weight of 0,8 gm/cm3. Between the charges and the beam there is left
a free space of about 1 cm.

As is already mentioned, it is of great importance that all the charges
detonate at the same time. This requirement is satisfied if an electrical deto-
nating cap initiates equally long pieces of detonating fuse, each of which
initiates one charge. In order to get a reliable initiation of the charges the
farther ends of the detonating fuses are provided with detonating caps, which
are put right through the charges, see fig. 3b.

With this procedure the detonation moments of the charges will differ
from each other by only a few microseconds. Another investigation [1] has
shown that the maximum difference between the detonation moments of two
charges that have been initiated in the above-mentioned way, can be kept
less than 1,5 us. The investigation comprised more than 20 tests.

In fig. 3b the test arrangement for measuring the 5th mode of vibration
is shown.

3. Separation of a Mode of Vibration by Connecting Two Strain Gauges in Series

If two strain gauges are cemented to certain places of a beam and then
connected in series, one or several modes of vibration of the beam can be
completely cancelled, others partly cancelled, whereas one or in some cases
several modes of vibration are near their maximum values. This fact can be
used for the experimental separation of modes of vibration.
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In the case of a beam with hinged ends, i.e. horizontal and rotatory
motions are permitted at the supports whereas vertical motion is prevented,
the symmetrical modes of vibration have the following normal functions (the
origo of the coordinate system is taken in the middle of the beam)

nmTx

l

AN x
W,

4

COS

with symbols according to fig. 1.

f—

Fig. 1. Load distribution when the 5th mode of vibration of a beam with hinged ends
is to be separated.

If two identical gauges, connected in series, are placed at a distance of x;
and z, from the middle of the beam, the mathematical condition for the com-
plete cancellation of the n-th mode of vibration will be

cos n7x1+ cos nql-rxz =0 (1)
This equation has the solution
2 1
i%i%ﬁ: pn+ where p=0,1,2,3,4,5... (2)

The solution is shown graphically in fig. 2 with le and fl—z as coordinate axes

within the area

i.e. the gauge is placed somewhere between the middle of the beam and one
of its ends.

The lines of the diagram in fig. 2 indicate where the different uneven
modes of vibration n=1—17 are completely extinguished. The lines are ortho-
gonal, and those which refer to the same mode of vibration form squares. In
the centre of such a square that particular mode of vibration has its maximum
value, i.e.

nmTITy N T Xy
] + cos ]

cos = max = |2|
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With the aid of the diagram appropriate gauge places for separating the
uneven modes of vibration n=1-11 have been determined, and the ampli-
tudes of the various modes of vibration have been calculated in every case
as a percentage of the maximum value. The results are presented in table 1.
On account of the many possibilities of varying the gauge placings it is possible
that i n certain cases more appropriate placings can be found than those given
in the table. It is often a matter of estimate to determine which of the adjoining
modes of vibration should be made equal to zero.

Table 1. Gauge places and amplitudes of the different modes of vibration when
the n-th mode is separated

Separa- Gauge places Amplitude of the n-th. mode in percent of its
tionofthe | g, @, maximum value A
moden=| T | T |n=1|n=3|n=5|n=7|n=9|n=11|n=13n=15|n=17
|
1 | 0,266 | 0,066 | 83 0 0 51, O L— — — —
3 0,370 | 0,228 | 58 74 0 0 22 - — — —
5 0,380 | 0,047 | — 0 84 0 0 39 — - - —
7 0,413 | 0,142 | —- 25 18 | 97 0 0 | 24 — =
9 0,342 | 0,112 | — 25 22 23 99 0 0 19 —
11 0,369 | 0,169 | — — 0 63 23 95 0 0 13

The percentage values given in table 1 are valid if the mode of vibration
is separated by using only the principle of two gauges connected in series. The -
separation can be made more complete by arranging the load distribution in
an appropriate way at the same time. This combined procedure has been used
in the tests which are described in the next chapter.

4. Experiments

Both of the described methods for separating modes of vibration of a
beam have been used in combination to determine the damping and the fre-
quencies of the uneven modes of vibration n=1-11 of a steel beam 50 X 50 x
1060 mm with hinged ends. The separation is made by using simultaneously
appropriate load distribution and appropriate placings of two gauges connected
in series. The span of the beam is /=1000 mm.

The beam is fastened at its ends by solid supports (fig. 3a), designed to
tolerate large detonation loads and to imitate the end conditions of a beam
with hinged ends. The beam is steadily fastened between two cylindrical sur-
faces with a radius of 50 mm. The rotatory centres of the supports are 75 mm
below the centre line of the beam and permit rotatory as well as horizontal
motion. Vertical motion, however, is eliminated.
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Fig. 2.

Comparisons between computed frequencies of a beam with hinged ends
and measured frequencies of the modes of vibrations n=1-—11 show good
agreement — see table 3. Unfortunately, it has not been possible to find out
if the vibrations of the beam are damped by the supports.

The test arrangements are in other respects as described above. They are
shown in fig. 3b.

The strain gauge used in the tests was of the type GH (made in Sweden)
with the resistance wires embedded in a plastic layer. The gauges are cemented
to the vertical side of the beam so as not to be spalled from the beam when
the compressional shock wave is reflected at the bottom surface of the beam.
The gauges are connected in series and the voltage change across the gauges is
recorded by a cathode-ray oscilloscope Tektronix, type 512.



Vibration of Beams

Table 2. Results of measurements of damping and frequency

Mod Damping Frequency
ode - —— ——
"= Confidence Confidence
8 Bmean limits?) f fmean limits?)
0,065 116,1
0,071 _ 116,1
1 0,075 0,0705 + 0,0065 115.9 116,0 +0,16
0,071 116,0
0,070 970
) 0,077 1007
3 0,081 0,0765 +0,0075 068 979 + 30
0,078 971
0,250 2740
0,245 2670
0,250 2720
0,270 2760
5 0.285 0,257 +0,0139 9660 2679 +41
0,256 2610
0,280 2640
0,242 2620
0,232 2690
0,285 5010
0,270 4980
0,241 4700
0,205 5040
0,321 f 5100
7 0.204 0,262 +0,0263 5900 4962 + 88
0,294 4990
0,310 4950
0,244 4940
0,269 4850
0,244 4820
0,157 7500
0,171 7550
9 0.155 0,159 +0,0183 7360 7484 + 156
0,174 7650
0,137 7360
} 0,149 10800
0128 10310
11 } 8};2 0,135 +0,0177 iggig 10568 + 352
| 0,163 10180 |
0125 10900 ;

2) 959, probability.
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Fig. 3a. Photo of the support.

Fig. 3b. Photo of test arrangement for separation of the mode n = 5.
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Fig. 4. Examples of oscillograms of modes n=1—11.
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In fig. 4, oscillograms of the modes of vibration n=1—11 are shown. The
amplitudes decrease roughly exponentially, and thus it should be possible to
compute a logarithmic decrement for each mode of vibration. This decrement,
however, will not be quite constant over the whole time of vibration, and
therefore it has been computed as a mean value over the first 7 vibrations. It
is of course the damping during the first periods of the vibratory motion that
is of interest in most practical cases.

The tests, described here, have only aimed at making clear in a special
case the dependence of the logarithmic decrement upon the frequencies of
some modes of vibration. The maximum strains have been about 0,5/, in all
the tests (see fig. 4). If the strains differ considerably from this value, the
decrements will probably change, too.

The logarithmic decrements 8, which have been obtained experimentally
for the modes of vibration n=1—11 are shown in table 2, which also contains
frequencies for the respective modes of vibration.

In fig. 5 the average values of 8 have been drawn as a function of the fre-
quencies. The confidence limits of the means corresponding to 959, pro-
bability have also been calculated.

5. Comparison Between Experiments and Theories

A. Damping

When damping problems are treated mathematically, the external damp-
ing — which is greatly due to air resistance — is often supposed to be pro-
portional to the velocity of the beam, whereas the internal damping is sup-
posed to be ‘‘viscous’’, i.e. proportional to the strain rate of the beam [2].
With these assumptions (and neglecting the influence of rotatory inertia and
shear forces) the differential equation for a vibrating beam will be [10]

P’y oty Py oy _

where transverse displacement (see fig. 1)
coordinate parallel to the axis of the beam
time ' .
Young’s modulus

‘moment of inertia

cross section area

density

constant referring to external damping

= constant referring to internal friction.

I I

[

NER® AN T 8K
I

[
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If the equation (3) is solved, it will be found that the vibrations of a hinged
beam are damped exponentially, and the logarithmic decrement will be equal
to the sum of the decrements of the external and internal damping

3= Semternal+8internal (4)

The logarithmic decrement of the external damping will be inversely pro-
portional to the frequency (curve 1 in fig. 6)

ky

8eacternal = —]c_ (5)

whereas the decrement of the internal viscous damping will be directly pro-
portional to the frequency (curve 2 in fig. 6).

Sinternal = sz (6)
VorwLz [11] has made a thorough investigation of the external damping
(the friction against the surrounding medium). He then found that the loga-
rithmic decrement is
k 4
b = -1
external V
This is a decreasing function, too, and hence the logarithmic decrement
depends on the frequency in principally the same way as has been shown by
curve 1 in fig. 6. It is merely the rate of decrease of the curve that is changed.
Experimental investigations of internal damping [3] and [4] have shown
that the internal damping is not directly proportional to the frequency. Rather
it approximates a constant value [3] or according to [4] a curve with a maxi-
mum (curve 3 in fig. 6). MinDLIN [5] has stated that in practical cases the
logarithmic decrement of the internal damping §;,;,ma Should be regarded as
independent of the frequency in such a way as is shown by curve 4 in fig. 6.
This theory is called the “constant ¢ theory’’.

e
/ N
/

f: 2000 4000 6000 8000 woo0  F
I 1 1 L ! 8 I

| I !

i

Fig. 5. Experimental mean values of the logarithmic decrements versus the frequency f
for the modes n=1—11. The confidence limits corresponding to 959, probability are
shown.
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To the experimental values in fig. 5 a curve can easily be adapted, that is
a sum of the curves 1 and 3 in fig. 6. It should be noticed that the influence of
the damping of the supports is then neglected.

A curve composed of external damping, internal “viscous’’ friction and a
damping from the supports can hardly be adapted to the test values without
making special assumptions about the frequency dependence on the last
mentioned damping. ' |

A )

14

0

Fig. 6. The logarithmic decrement versus the frequency in the case of 1. external (air)
damping, 2. internal (viscous) damping according to Sezawa [2], 3. internal damping
according to [4], 4. internal damping according to the ‘‘constant @ theory’ [5].

Thus the tests seem to indicate that the internal damping is of the type
that is shown by curve 3 in fig. 6. A more definite statement is hardly to be
made from this small and special test material.

Choosing between the two theories that are mathematically the most con-
venient — the theory of the viscous damping and the “constant @ theory’’ —
it is found that the former theory can only be used for vibrations with few
high modes whereas the ‘“‘constant @ theory’’ seems to constitute a fair
approximation for vibrations including modes of high orders.

B. Frequency measurement

The differential equation that is generally used for solution of the problem
of vibrating beams and which does not consider the influence of rotatory
inertia, shear forces or damping is [6]

oty 2y

The symbols are the same as in equation (3). In the case of a beam with
hinged ends the frequency of the n-th mode of vibration will be (I = the

span of the beam)
n? ETl
A-ih) 1 ®)
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If, in addition, the rotatory inertia of the beam elements is taken into account,
the differential equation is [7]

*ty oty Py
Blos—Ir gaptde gm =0 )
and the frequency of the n-th mode will be
11 EI 1
- - 10)
-V <
L+ i

If the beam is subjected to damping forces, so that the vibrations are damped
exponentially, the frequency will be (considering the influence of rotatory
inertia as well as external and internal damping)

(11)

111 "’b"l/EI Vi_(%)z

noT e Ap |/1+* et

where §,, is the total logarithmic decrement of the n-th mode of vibration in
the case of both external and internal damping.

If consideration is taken to both rotatory inertia and shear forces but not
to damping the differential equation is [8]

oty 2(1+v)\ oy 1 oy P’y
Efa*.f;r“’(“ i )axzatz“LAP’PTAaW”PW“O(12)

where v = Poisson’s ratio

A = a constant relating the shearing forces with the angle of shear
(for a rectangular section ~0,9)

G = modulus of rigidity = (1E )

In the case of a beam with hinged ends the frequency of the n-th mode of

vibration will be [9]
IV‘ 1 Sn Sp 2 ,t,n
T 2g —l/(u) o 13)

where
1 I n2n2 2(1+v)
s w e
L o BI wit
" Ap A
W = 1p 2049
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In table 3 the four frequencies theoretically calculated in the above-men-
tioned way are compared to the average values of the frequencies measured
experimentally according to table 2. In the computations ¥ is taken equal to
2,1-10¢ kg/ecm? and y = 7,85 gm/cm?, which are the actual values for the test
beams. £ has been measured both statically and dynamically. The frequen-
cies fIII have been computed from eq. (11) with values of the logarithmic
decrement taken from table 2.

A comparison between the frequencies fII and fHI, where in the former
case no consideration is taken to internal and external damping, shows that
the damping has very little influence upon the frequencies. Hence it is probably
of no importance for the computation of frequencies, that in the theory
according to TIMOSHENKO [8] (the frequencies fIV) the damping is neglected.

From the table it is apparent that the agreement between fIV and the
experimental values is very close, especially when considering that the sweep-
~time circuit of the oscilloscope does not guarantee a greater accuracy than
+5%,. Yet the calibrations that have been made indicate that the accuracy
of the determination of the times has been about + 29, in these cases.

Table 3. Comparison between theoretical and experimental values of frequencies

Theoretical values Experimen- v

m tal values A
e

fr i fu v ezp

1 116,2 116,1 116,1 115,7 116,0 1,00
3 1046 1036 1036 1010 979 0,97
5 2905 2833 2831 2653 2679 1,01
7 5694 5423 5418 4861 4962 1,02
9 9412 8692 8689 7442 7484 1,01
11 14060 12509 12506 10268 10568 1,03
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Summary

This paper presents a method by which the magnitude of damping of
vibrating constructions (e.g. beams) can be determined. The method can also
be used for experimental determination of frequencies of high modes of
vibration.

The experimental method used for this purpose consists in segregating the
various component frequencies of vibration of the construction (e.g. a beam)
in such a way that the damping corresponding to each component frequency
can be measured separately. This segregation was achieved, first, by an appro-
priate adjustment of the load, i.e. by ensuring that the load shall be as closely
affine as possible to the characteristic function of that component frequency
which is required to be amplified, and second, by a suitable location of two
wire resistance strain gauges, coupled in series. The points at which these
gauges should be placed were determined by means of a mathematicographical
procedure. Owing to the simultaneous use of the two methods outlined in the
above, it was possible to determine the damping and the frequencies of the
odd harmonics (m =1, 3, 5, 7, 9 and 11) of a steel beam with hinged ends.
A comparison of the theoretically calculated and the observed frequencies is
made in table 3, where fI is the frequency computed from the Bernoulli-Euler
theory, fII is the frequency calculated from Lord Rayleigh’s theory without
regard to damping, fIT is the frequency calculated from the same theory so as
to take damping into account, and fIV is the frequency computed from the
Timoshenko theory, taken into account both rotatary inertia and shearing
forces. The latter theory is found to be in very close agreement with the
experimental results.

. Résumé

L’auteur expose un procédé pour la détermination de la grandeur de
I’amortissement sur les ouvrages soumis & des vibrations. Ce procédé permet
d’ailleurs de déterminer aussi expérimentalement les fréquences des harmo-
niques supérieurs.



16 . Bo Adamson

Y

Il consiste & séparer les différentes fréquences partielles de la vibration
(d’une poutre, par exemple), de telle sorte qu’il soit possible de déterminer
individuellement 1’amortissement qui correspond & chaque vibration partielle.
Cette séparation est réalisée tout d’abord par une disposition appropriée de
la charge, c’est-a-dire par la mise en jeu d’une charge aussi affine que possible
vis-a-vis de la fonction caractéristique des composantes de fréquence & ampli-
fier, puis par la disposition appropriée de deux jauges & fil résistant montées
en série. La position de ces points de mesure peut étre déterminée par des
moyens mathématiques et graphiques. L’emploi conjoint de ces deux méthodes
de séparation permet de déterminer 1’amortissement et les fréquences des
vibrations d’ordre impair (m =1, 3, 5, 7, 9 et 11) d’une poutre en.acier avec
supports articulés aux extrémités. Le tableau 3 fournit une comparaison entre
les fréquences déterminées théoriquement et les fréquences mesurées. Les cal-
culs ont été faits dans les conditions suivantes: fréquence fI d’aprés Bernoulli-
Euler, fréquence fI d’aprés Lord Raleigh sans tenir compte de I’amortisse-
ment, fréquence fII d’aprés Lord Raleigh en tenant compte de 1’amortisse-
ment et fréquence fIV d’aprés Timoshenko en tenant compte de la résistance
a la distorsion et des efforts tranchants. Cette derniere théorie donne une tres
bonne concordance avec les résultats des mesures.

Zusammenfassung

Die Arbeit zeigt ein Verfahren zur Bestimmung der Gréfe der Dampfung
an schwingenden Konstruktionen. Sie erlaubt zugleich die versuchsméiBige
Bestimmung der Oberschwingungsfrequenzen.

Diese Versuchsmethode besteht in der Trennung der verschiedenen Teil-
frequenzen der Schwingung (z. B. eines Tréigers) derart, dafl die zu jeder Teil-
schwingung gehérende Dimpfung einzeln gemessen werden kann. Diese Auf-
trennung wurde erstens durch eine passende Lastanordnung, d.h. durch eine
moglichst affine Belastung zur charakteristischen Funktion derjenigen Fre-
quenzkomponente, die verstirkt werden soll, und zweitens durch eine geeig-
nete Anordnung zweier in Serie geschalteter Widerstandsmefstreifen erreicht.
Die Lage dieser Mefpunkte 148t sich auf mathematisch-graphischem Weg
ermitteln. Mit der gemeinsamen Anwendung dieser beiden Trennungsmethoden
war es moglich, Dimpfung und Frequenzen der ungeraden Schwingungen
(m=1, 3, 5, 7, 9 und 11) eines Stahlbalkens mit gelenkigen Endlagen zu
bestimmen. Ein Vergleich der theoretisch ermittelten und der gemessenen
Frequenzen ist in Tafel 3 dargestellt, wobei die Frequenz fI nach Bernoulli-
Euler, fIf nach Lord Raleigh ohne Beriicksichtigung der Dimpfung, f'X nach
Lord Raleigh unter Zuziehung der Dimpfung und fIV nach Timoshenko mit
Beriicksichtigung von Verdrehungssteifigkeit und Schubkriften berechnet
wurde. Diese letztere Theorie zeigt eine sehr gute Ubereinstimmung mit den
MeBergebnissen.
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