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A Preliminary Study of Composite Action in Framed Buildings 1)

Investigations provisoires sur les influences combinées dans les constructions
a étages

Untersuchung des Zusammenwirkens in Stockwerkbauten

R. H. Woob, Ph. D,, B. Sc., A M.I.C.E., A.M.I. Mech. E., A.M.I. Struct. E.
Building Research Station, Garston n. Watford

Introduction

In recent years there has been increasing interest shown in the study of
the effects of continuity in structural frameworks, leading quite naturally to
a study of the composite behaviour of the complete structure, that is to say
the combined action of the frame, walls and floors [1]. Tests on completed
buildings are difficult to carry out, but have been made in this country and
abroad, notably the tests in London on the Cumberland Hotel, Geological
Museum, Office and Residential Flats buildings [2], New Government Offices,
Whitehall Gardens [3]; and in South Africa on the Dental Hospital, Johannes-
burg [4]. There is also the additional evidence afforded by wartime damage to
buildings, which have sometimes been left standing even when some of the
stanchions have been blasted away. It is clear from these tests and controlled
laboratory tests that composite action has important effects on the stiffness
and strength of structures, and hence there is a need for a systematic study
of composite action. Such a study has been started at the Building Research
Station.

Essentially the main problem is to determine the real loads which are
transmitted from the floors or walls to the supporting frame. The distribution
of these interactive forces may be quite different from what is now assumed
in design, and in addition changes as plasticity occurs at heavy loads.

1) Crown Copyright Reserved.



248 R. H. Wood

This present paper is largely concerned with the interaction between floor
slabs and beams, but brief reference is made to some other examples of com-
posite action which will be discussed first.

The Combined Action of Walls and the Frame

There are obvious difficulties in producing an acceptable theory for the
structural behaviour of brickwork, and it is hardly surprising that tests on
combined walls and beams and columns have so far been of an ad hoc nature.
Two series of tests made at the Building Research Station have, however,
shown the importance of composite action in such construction and these are
discussed briefly below.

@) Racking tests on brickwork panels (figs. 1, 2)

Several sideways racking tests on encased steel frames with various wall
panel infillings have been carried out by L. G. Simms. Load-displacement
curves are given in fig. 1, where it is seen that the maximum racking load
sustained by an encased steel frame was raised from 20 tons to 53 tons by the
insertion of a 41" brick panel [5], together with a considerable increase in
stiffness i.e., in the initial resistance to sidesway. The stiffening effect of the
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Fig. 1. Effect of infilling panels on concrete-encased steel frame subjected to a racking load.

encasement itself is also a form of composite action, for the first yield of a
bare steel frame, without any encasement, took place at about 5 tons and a
collapse mechanism developed at about 9 tons. It will be noted from fig. 2
that the mode of collapse has been changed by the brickwork, since plastic
hinges can be seen to have formed not far from the centres of the horizontal
beams, two corners of the frame remaining intact. As will be seen later, com-
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Fig. 2. General view of racking tests.

posite action often results in modes of collapse which are modifications of
those associated with bare frames, and may sometimes be quite different.

b) Brick walls on reinforced concrete beams

A series of tests has been carried out [6] on brick walls carried by rein-
forced concrete beams, distributed load being applied to the top of the brick-
work. Fig. 3 shows a brick panel under test with a door opening near to the

Fig. 3. Vertical loading tests on a cavity brick wall carried by a reinforced concrete beam,
with a door opening near the supports.
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supports, whilst fig. 4 shows the measured vertical intensity of load on the
bottom course of bricks where there is a central door opening. The nature of
this reaction shows that considerable arching action has taken place, thus
concentrating the load near the supports. The resulting bending moments in
the beams were very small indeed, and it was found possible to recommend
that (subject to certain conditions) the beams be designed on a basis of W L/100
where W is the total load and L is the span, provided that there were no
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Fig. 4. Brick wall with central door opening supported by a reinforced concrete beam.
Vertical load intensities in bottom course of bricks, as measured by roller-mirror extenso-
meters. Distributed loads applied to top of wall. The peak intensities of stress in the brick-
work near the supports illustrates the arching action in the composite wall-beam structure.

openings near the supports; and W L/50 when door or window openings oc-
curred near the supports. A large number of house walls resting on beams have
by now been constructed on this basis. Considerable use could be made of
this arching effect in multi-storey buildings where walls are carried on beams,
but it would not yet be safe practice to use overhead walls to stiffen beams
that carry floor loads unless some form of tensile connectors could be devised.

There appears however to be so much reserve of strength available in
brick walls that even an approximately method of allowing for it in design
would be of considerable value.

The Composite Action of Reinforced Concrete Floors and Steel (or Reinforced
Concrete) Beams

Apart from the immediate effects of the concrete encasement of a steel
beam, composite action in a beam and slab system may include the following:

1. Combined bending and twisting of the slab and beams. This is probably
the principal type of composite action, present in all systems to a marked
degree, and being practically the only type developed when the beam and
slab centroids coincide as in fig. 5a.
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2. Direct compressive and shear stresses in the slab arising from T-beam
action when the beam and slab centroids do not coincide (fig. 5b).

3. Direct tensile and shear stresses in the slab due to stretching of the slab
at large deflections. Tensile stresses can also take place by inverted T-beam
action when the beams are upstanding [3], but this case is no doubt trivial.

Fig. 5. Boundary conditions for bending alone, and T-beam action.
a) Bending only. b) T-beam action included.

The general boundary conditions between beam and slab have been pre-
viously set out in full by the author [1]. In the present paper the study of
general composite action will be introduced by reference to (1.) above, neglect-
ing the twist in the beams but not in the slab, and giving evidence of (2.)
and (3.) as has so far been observed in laboratory tests. A brief account will
be given of the results of tests which have been obtained at both working
(elastic) conditions and also at ultimate (plastic) collapse.

a) Governing equations of elasticity for a single square panel carried by beams
(fig. 6)
Here we make use of the well-known equation for a slab

*w *tw *w  q
2y . 1
V0w = o Y e T e T D (1)

where z and y are rectangular coordinates, w is the deflection, g is the intensity
of load on the slab, and D is the flexural rigidity. If p represents the intensity
of load per unit length applied directly over the beams, and if we approximate

Fig. 6.

by putting Poisson’s Ratio equal to zero, then there are two boundary con-
ditions to be satisfied along the edge y = L/2, relating to edge bending moments
and reactions, respectively:



252 R. H. Wood

2w
=0 2
- (2)
provided that the torsional rigidity of the beams can be neglected; and
| P w Bw tw
D[ay3+zaxzay]+p_lf]l-ax4 (3)

Solutions for a number of examples of square and rectangular panels with
various loadings have now been obtained using Finite Different Methods, in
terms of the following non-dimensional parameters [1]:

3
A =1 L a slab loading term

D’
p L? :
I @ beam loading term
ET : . .
Y= m, expressing the relative stiffness of the beam

to the stiffness of the adjacent half-width of slab.

b) The reactions on the beams carrying a square floor

The theoretical distribution of load intensity on the beams when the slab
is uniformly loaded and all beams are of the same stiffness, can be seen in
fig. 7 for a variety of beam/slab stiffness ratios y, with the commonly assumed
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Fig. 7. Theoretical distribution of loads on the beams in relation to the beam/slab stiff-
ness ratios (square slab on beams of equal stiffnesses: uniform load on slab of intensity gq).

triangular distribution for comparison. It will be seen that with weak beams
the load is reduced at the centre of the span and increased near the supports.
This is analogous to the state of affairs with wall/beam systems (fig. 4) where
such a reduction in beam loading was the result of arching. In the present
case it is due to twisting of the slab. When twist in the slab vanishes with
respect to the x and y axes, the reactions on the beams are, to a first approxi-
mation, uniform; this is the true case of individual strip action in the slab,
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every cross-wise strip acting independently of every other strip, taking the
same proportion of slab load and repeating the same deflection curve. When
opposite pairs of beams are of equal stiffness, it is easy to show that for this
state of no-twist to occur we must have

Vo' Yy=1.0 (4)

where v, and vy, are the values of y corresponding to the two pairs of beams.

Thus the condition for this general ‘‘twistless’’ case to occur is that a
critical relationship must hold between the slab and edge beam stiffnesses.
A rigorous proof is given elsewhere [1], together with a discussion on the
essential difference between this case and the well-known Rankine-Grashof
rule as modified by Marcus [7]. Condition (4) holds for rectangular panels
and also for continuous floors resting on beams when uniformly loaded. Its
importance lies in the fact that a simple analytical solution can be written
down for this special case of composite action.

¢) The bending moments in the beams carrying a square floor

The large variations in beam loads give rise of course to considerable
reductions in beam bending moments as the beam stiffness is reduced relative
to the slab as shown in fig. 8. As the beam stiffness is made progressively
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Fig. 8. Bending moments in a beam supporting a square slab carrying a uniform load of
intensity g, and the influence of adjacent beams of different stiffness ratios.

smaller a stage is eventually reached (with geometrically similar beam sec-
tions) where the reduction in bending moment is equal to the reduction in
section modulus, and when that happens there is a tendency for the stress in
all such beam sections to remain constant for the same loading. This means
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that the deflection of the beam, and not the stress in it, may then become the
criterion of design. In fig. 8 the bending moments are given for several varia-
tions in the relative stiffness of the four supporting beams. When these stiff-
nesses are unequal, the computations are very lengthy, and these were made
therefore with the use of the Manchester University Electronic Computer.
Although the relationship between the bending moment in a beam and its
stiffness is affected by the stiffnesses of the other beams, it will be seen that
there is a band of results indicating that an approximate general relationship
might be possible for design purposes.
It now becomes necessary to examine what would happen to the slab.

d) Bending moments in a square slab carried by beams (fig. 9)

When the beams are all infinitely stiff the bending moment across the
centre line of the slab is a maximum at the centre, but when the beam stiff-
nesses are reduced to a value corresponding to y=1 this bending moment is
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Fig. 9. Square slab supported on beams of equal stiffness. Distribution of bending
moments across centre line of slab (Poisson’s ratio zero).

uniform for the whole width of the slab, corresponding to the “twistless’’ case
when each strip acts independently. With further reduction in beam stiffness
the maximum moment occurs at the edge of the slab — and in laboratory tests
- the first cracks have occurred at this point. It will be seen that the total
bending moment carried by the slab increases rapidly and that to design a
slab without reference to the stiffness of the beams and the nature of the
composite action can be very misleading. Furthermore the intensity of the
local corner reaction is decided by the twist at the corners, and it is clear that
the twist in the slab changes sign as the beams are reduced in size, passing
through zero twist when, for all beams, y=1. Thus the corners are held down
when y>1, and are pushed up when y <1, and torsional reinforcement put
into the slab on a basis of non-sinking beams may in some cases be valueless.
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e) Enhanced rotational stiffness of beams

Apart from the changes of bending moment in the beams and slabs there
is also the effect on adjacent stanchions to be considered. There are two
complementary effects of composite action — the increase in rotational stiff-
ness of the beam to applied end couples, and any changes in the Fixed End
Moments. With infinitely stiff beams (relative to the slab) the rotational
stiffness is the usual value for the beam. When y =1 it has been found that the
stiffness is enhanced by a factor of about 1.5 and when y =1 the enhancement
factor is about 2.5. This would have an effect in reducing the moments in an
adjacent stanchion, and also cause an increase of stability. The Fixed End
Moments for loads applied to the beams are reduced slightly by composite
action, leading therefore to a further reduction in the stanchion moments.

f) Continuous square floors on continuous beams

The appropriate beam/slab stiffness ratio in this case would take account
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Fig. 10. Beam and slab moments for continuous square panels: all panels carrying a
uniform load of intensity g.

moments, maximum positive and negative moments on the slab centre lines
are all plotted. The corresponding beam load distribution curves show a similar
tendency to those in fig. 7, but are even more sensitive to changes in beam
stiffness.

An Introduction to the Study of Collapse of Composite Floor-Beam Structures

This subject will be introduced principally with reference to simple square
slabs supported on beams such that T-beam action is absent. Further results
are known for rectangular panels [1], and one of the most recent attempts at
minimising the total amount of reinforcement without reducing the collapse
load of the structure will be indicated.
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a) ““Limit Analysis’® methods applied to composite structures

Whereas in the case of rigid-frame structures the collapse load can usually
be determined uniquely [8], with composite floor-beam systems we may have
to be satisfied with upper and lower limits or ‘““bounds’’ for the collapse load.
Providing these indications of the collapse load are sufficiently close — as we
shall see in many cases they can be made identical — then the actual collapse
load will usually be specified conservatively, since we have so far neglected
the catenary (tensile) stresses in the slab at large deflections. The “‘Limit
Analysis’’ procedure, as outlined by PRAGER, DRUCKER, GREENBERG and
HobcE [9, 10] identifies the idealised bounds for the collapse load as follows:

A collapse mechanism, which is kinematically admis-
sible for the given mechanical conditions of support,
where the work done by the external loads is equated
to the energy dissipated internally by yielding.

Upper Bound (may be
unsafe for the given
loads)

[ A stress field which is statically admissible, i.e. it
Lower Bound (safe satisfies the equilibrium equation at every point
under the given loads) | together with the boundary conditions of stress, and
which nowhere violates the yield criterion.

We may combine the “Fracture Line’’ methods of JOHANSEN [11] with
the plastic design procedure for beams of BAKER [12], and produce a very
valuable — and in many cases correct — indication of the collapse load. But
this combination only provides an intuitive upper bound for the collapse load.
It should really be supplemented by a general examination of other possible
collapse mechanisms, and in any case it tells us nothing about the distribution
of loads on the supporting beams. It is safer and more illuminating to search
for acceptable and economical lower bounds, which means identifying a com-
plete stress system.

b) Upper-bounds for the collapse loads of square floor-beam panels
by fracture line methods

The collapse load of a simply supported square slab (fig. 11a) is well known
to be q L2=24 M, where M, is the full plastic moment per unit width of slab
in all directions, provided the corners are suitably reinforced to prevent the
“seesaw’’ (“Wippe’’) effect noted by JomanseEn. But under certain conditions

Fig. 11.
a) Diagonal collapse mode (slab only). b) Combined beam and slab collapse.
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an alternative mode of collapse could take place, which involves the supporting
beams (fig. 11b) which can be easily proved to take place when the total

" distributed load on the slab is
qL2=8Ms+16% (5)

where M, is the full plastic moment of each beam.
The criterion for this mode of collapse is that

M,
Y = 3L S ©®)

that is, the beams must be below a certain critical strength.
Other combined collapse modes can be readily identified for rectangular
panels [1].

c) A lower-bound for the collapse load of a simply supported
square reinforced concrete floor

This solution is due to PrAGER [13], and is a suitable starting point for the
study of impending collapse of floor-beam systems, and has been discussed in
full by the author [1]. Referring to fig. 12 the statically admissible moment
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Fig. 12. Illustrating Prager’s radial lower-bound solution for collapse of slab.

(i.e. stress) field refers to impending conical collapse of a clamped circum-
scribing circular plate, where the radial moment M,=M,—qr2%/6 and varies
from + M, at the centre to — M, round the outer circle, if it is tentatively

assumed that M, = gli;—z = q2£2
equal to +M,, and the twist M,4=0. In order to check that the stress field

is indeed statically admissible we note that in rectangular coordinates:
M, = qL*24—qx?[6
M, = qL*24—qy?6 (7)
M,y = +quwyl6

. The circumferential moment M, is everywhere
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This satisfies everywhere the equation of equilibrium

PM, PM, , PM. _
ox2 oy? oxdy

—q (8)

and also the condition that M, =0 all along x = L/2 and the principal moments
do not exceed the yield moment anywhere (namely + M, in any direction).
Consequently this stress field corresponds to a valid lower-bound, and gives
an identical collapse load to the upper-bound deduced from the fracture-line
method.

Now the beam reaction along x = L/2 is given by

oM oM
v, = (2 2a_ W) 9
( ox 8y xz=L/2 ( )

and applying this to eq. (7) we find that V= —q L/3 which indicates a constant
upward reaction from the beam, in spite of the fact that there is twist present
when referred to rectangular axes. Whereas PRAGER used this radial solution
for infinitely stiff supporting beams it would also clearly be valid provided the

full plastic moment of each beam were at least equal to —V - L?/8= q—gff . £82 =
=gq L3/24, that is,- when y, = M—ﬁi‘,b/—2=2 as before. This solution therefore is
8

particularly appropriate when the modes (a) and (b) of fig. 11 take place
simultaneously, since this combined mode of collapse agrees well with PRAGER’S
assumption that all radial sections are at full plasticity simultaneously.

d) Lower-bounds for combined collapse of slab and beams

For the general case, consider

. M, - x?
M, =M-4=5"
M-y
M, = M—4=5Y (10)
M
Mmy=4’—1;-2$('yp_l)xy

It is found that this moment field
1. Satisfies M, =0 when x=L/2.
2. Satisfies the equilibrium eq. (8) provided ¢ L2=8 M+ 16 M,/ L.

3. Gives a constant beam reaction of 4 %-yp always leading to the required

full plastic moment of M, .
4. Does not anywhere violate the yield (+ M) criterion.

It follows that eqs. (10) define moment conditions which lead to a valid
lower-bound solution. From (2.) above it follows that the collapse load is the
same as that deduced from the fracture-line method, eq. (5), which gave an
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upper bound. Hence, by limit analysis procedure, we have identified the
collapse load.
Three cases are of particular interest as set out below:

Yy = Mf%/z 2 1 0
Twist at corners + M, 0 —-M,
Collapse load 24 M, 16 M, 8 M,
Beam reaction (constant) ¢ L/3 qL/4 0
Remarks: Largest beam before slab Twistless Free edge
collapses independently case case

We note that the beam reactions are (according to these acceptable stress
fields) all of constant intensity. When y, = 1.0 we obtain a “twistless case’’,
i.e. independent strips as in the elastic system when also y=1.0: in fact the
two stress distributions are then identical; however, in collapse methods of
design the full plastic moment would be allowed for the slab section and this
is usually about 6 per cent greater than the moment at which yield first com-
mences in the section. :

The general case of rectangular floor panels has been reported elsewhere [1].

e) Reduction of the total reinforcement to a minimum

Whilst the above lower-bound solutions indicate how to reinforce the slab
both on the fracture lines and elsewhere, the total amount of reinforcement
may be excessive. Paradoxically the system of maximum principal moments

<043 - 043 <043 <043

Lo

Fig. 13. Contours of maximum principal moments: simply-supported slab uniformly loaded.
All moments per unit width: zq L2.
a) Elastic solution for y = oo with Poisson’s ratio = zero.
b)_Lower-bound for collapse: equatiéns 16, 17, 18.
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indicated for y = co by elastic analysis (fig. 13a), which it must be remembered
is a valid lower bound if the reinforcement is arranged to suit the moments,
obviously requires less total reinforcement than the radial pattern of PRAGER’S
solution, so that the question arises — how much reinforcement can we remove.
without altering the collapse load? Some authorities [14, 15] recommend a
“stepped’’ reinforcement having one constant value in a middle band, and
a much smaller value in an edge band. But if there is a sudden reduction in
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Fig. 14. Collapse of square slabs on stiff beams; required reinforcement according to an
upper-bound for the collapse load (equations 11 and 12).

a) Collapse mode which drops out the middle band.
b) Minimum amounts for middle and edge bands of reinforcement.

the full plastic moment per unit width from M, to M, it is necessary to provide

reinforcement not only to resist the usual collapse mode about the diagonals

but also to prevent other modes of collapse taking place, of which the most

important is likely to be the dropping out of the whole middle band (fig. 14a).
Combining both these requirements it is easy to show that

e
and M, = %?{ - (E%)a} (12)

The minimum amounts of reinforcement are shown in fig. 14b, where it is seen
that some of the present recommendations are not always even valid upper
bounds for collapse?). There is no guarantee, without an extensive search,
that other modes of failure might not occur, and furthermore an upper-bound
analysis gives no statement whatever of the distribution of load on the sup-
porting beams. '

%) 1. e. according to Limit Analysis. The anchorage length of the middle-band rein-
forcement would partly alleviate this state of affairs. Tests have also shown that catenary
stresses may be, in some cases, of considerable importance.
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Accordingly this whole question of minimisation of the reinforcement in
composite slab/beam structures is being investigated by lower-bound limit
analysis and by laboratory tests at the Building Research Station. One inter-
esting result is now given which considerably reduces the reinforcement when
stiff beams are present and provides us with a statement regarding the cor-
responding minimum size of beam required, and which is still a ““safe’’ solution.

The requirements for an expression for M in a square slab on stiff beams
would be (see fig. 6):

1. M, =0 along x= L/2 neglecting twist in the beam.

2. M, may be expected to equal M *, a maximum yield moment at the centre,
when z=y=0.

3. M, must be symmetrical about the centre line.

4. Although not an absolute requirement we may aim at M,=0 all along
y=L/2, since the beams are very stiff, for this is one way to eliminate
much circumferential reinforcement.

All these features are satisfied by putting

16 M*
Mo =—Ta

Evidently M,=M, (14)

(22— L2/4) (42 — 12/4) (13)

To satisfy the equilibrium eq. (8) we find that the twist must be

% /3 3 2
u _qu+16M (xy_{_yw_L ) (15)

= 2 L+ \ '3 3 2 7Y

We have not yet chosen M*. If we choose to make the twist in the corner,
x=y=L|/2, equal to + M* then we find M* =g L?/18.67. This value is greater
than q L?/24 but halfway along the diagonals the principal moment falls to
q L2/27.1. This solution can be further improved by employing the next
(higher order) solution of the same type i.e. we consider

M, =« = (2 — L2/4) (y? — L3/4) + (1 — o) VE 16 T@) (16)

M,=M, (17)

16 M * 256M*( \ L4)( . I
. x _—— -—

so that, to satisfy equilibrium at all points, we require by eq. (8) that the
twist should be

M

_qxy  16M* (afy ydx L2
w= Tyt T3ty Yt
256M*{£

+(1—o) —7% )15

(w3y5+y3w5)—%-L4(x3y+xy3)} (18)



262 R. H. Wood

We choose « and M * such that the maximum principal moment is M * at the
corner and also half-way along the diagonals. Thus we find «=0.6858,

12
(1—a)=.3142, M* =10
moment is shown in fig. 13b which is a sufficiently economical distribution of
the reinforcement to introduce this approach to the general subject of mini-
mization of reinforcement. It is seen that the elastic solution (Poisson’s ratio
zero; y =00, fig. 13a) is an exceptionally good lower-bound for collapse design
where the reinforcement is varied to suit the bending moment diagram. This
is an intriguing point, well brought out by the study of composite structures,
for we have already seen that the elastic and plastic “‘twistless’’ stress fields
are identical. In fig. 15 the beam load intensities are compared, where it appears
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Fig. 15. Comparison of load intensity on beams.

that the distribution of the beam reaction at the point of impending collapse
is very much linked up with the placing of the reinforcement. Thus the cor-
responding bending moment in the beam for this lower-bound solution is

qL3 qL ip . :
511 [ . L2° (PraGER: Radial) and - 50 (Elastlc)], and it is sufficient if the

beam is ]ust strong enough to withstand this bending moment without col-
lapse. Since the total yield moment of half the slab along the centre line is

found to be 61€;53’ a composite beam-slab mode of collapse will take place
(fig. 11b) when y , = 2?61 =3.13, or less.

At the beginning of this paper it was pointed out that the main problem
in a study of composite action was to determine the distribution of forces
acting on the beams supporting the slabs. We have seen that in many instances
the reaction on the beams may be uniform at the point of collapse but that
if the most economical arrangement of reinforcement is desired then non-
uniform beam loads are once more encountered. There is evidence that the
additional interactive forces which would arise because of membrane stresses
in the slab may not necessarily be of the same distribution at working condi-
tions and at collapse. Fig. 16 shows the corresponding deflections of square
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Fig. 16. Measured deflection of two square slabs on beams tested up to collapse, with
and without Tee-beam action.

beam/slab systems, determined by laboratory tests, with and without T-beam
action, the only difference being the raising of the centroid of the slab. Whereas
there was some 309, reduction of beam deflections at working loads because
of T-beam action the collapse load showed only a slight increase. Further
evidence of membrane stresses has been noticed, since the crushing of the
concrete along “fracture lines’’ often disappears near the centre of a slab and
tensile cracks occur instead going right through the slab [3, 1]. It is clear that
further developments in limit analysis are required to account for these effects.
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Summary

The stiffening effects of walls and floors in framed structures is reviewed
in the light of recent developments in the theory of composite structures. The
main problem appears to be the determination of the actual load distribution
on the beams of a supporting frame, which distribution can vary considerably.
In this connection there is an analogy between the stiffening effects of walls
and floors. The combined behaviour of floors supported on beams is examined
at working (elastic) conditions and at impending (plastic) collapse. It is shown
that the loads on the beams at collapse may be decided by the placing of the
reinforcement. In an effort to minimise the reinforcement by limit-analysis
methods it is shown that with reinforced concrete floors an elastic design
forms a surprisingly good starting point for the most economical collapse
design.
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Résumé

L’auteur étudie 1’effet de renforcement combiné des parois murales et des
plafonds et planchers dans les constructions a étages, en tenant compte de
I’évolution récente dans la théorie des ouvrages composés. Le probléme princi-
pal parait résider dans la détermination de la répartition effective des charges
sur les poutres des cadres, répartition qui peut varier dans des proportions
considérables. Dans cet ordre d’idées, il existe une similitude entre 1’effet de
renforcement exercé par les parois murales et par les plafonds et planchers.
L’auteur vérifie le comportement réciproque des poutres et des planchers et
plafonds qu’elles supportent, dans les conditions de travail qui correspondent
d’une part au domaine élastique et d’autre part au domaine plastique, au
voisinage de la rupture; il constate que la charge de la poutre au moment de la
rupture est conditionnée par la répartition des armatures. En procédant & des
investigations aux limites en vue de réduire I’importance des armatures,
I’auteur constate qu’avec des plafonds en béton armé, 1’établissement du pro-
jet faisant intervenir le comportement élastique fournit un point de départ
remarquablement bon pour la résolution du probléme du point de vue de la
rupture, dans les conditions les plus économiques.

Zusammenfassung

Die versteifende Wirkung von Wénden und Decken in Stockwerkbauten
wird unter Beriicksichtigung der letzten Entwicklungen in der Theorie zusam-
mengesetzter Bauwerke untersucht. Das Hauptproblem scheint in der Bestim-
mung der tatsichlichen Lastverteilung auf die Triger der Stiitzrahmen zu
liegen, die ganz betréichtlich wechseln kann. In diesem Zusammenhang liegt
eine Ahnlichkeit zwischen der versteifenden Wirkung von Winden und
Decken vor. Das gegenseitige Verhalten von Trigern und darauf abgestiitzten
Decken wird bei Arbeitsbedingungen im elastischen Bereich und bei bevor-
stehendem Bruch im plastischen Bereich gepriift. Es zeigt sich, dal die Bela-
stung des Balkens beim Bruch durch die Verteilung der Bewehrung bestimmt
ist. Bei bewehrten Betondecken ergab sich durch Grenzuntersuchungen, daf
ein Entwurf nach elastischem Verhalten einen iiberraschend guten Ausgangs-
punkt fiir die wirtschaftlichste Losung beziiglich Bruch bildet.
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