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Thin Walled Box Beams Under Pure Bending
Les poutres en caisson & parots minces sollicitées a la flexion pure

Diinnwandige Kastentriger bei revner Biegung

DEesi D. VAsaArRBELYI, Asst. Professor, and RopNxey O. KNubpsonN, Instructor
University of Washington, Seattle, Wn.

The study of built-up structures embraces actually an extremely wide
field. Numerous contributions to this field are made by solutions of related
part-problems, which not always further our better understanding of the whole.
The designer’s general approach to the actual problems consequently is still
an oversimplified one in sharp contrast to the actually very complex behavior
of some details.

The term built-up structure is applied to a very great variety of structures
including anything from box girders to airplane fuselages. All such structures
actually could be broken up for stress analysis in a number of details. Even a
box girder can be considered as an assembly of its webs and flanges. Whenever
we attempt to analyse the structure as a whole we are referring to it by the
term built-up member. Thus, correctly, some term like this one should designate
the approach used in the analysis rather than the constructional properties
of the member. However, it would be difficult to be right since type of analysis
and type of construction are so tightly interrelated. If we took a box girder as an
example, the ratio of plate thicknesses to the overall cross sectional dimen-
sions might be such that the stress analysis would not require any special
considerations and the classical flexure formula could be successfully applied.
Another box girder might be built with thin plates, in which case the stress
analysis would require a more complex procedure and might never leave us
with the same assurance of accuracy that the first simple case did. This is
because we had to utilize a number of assumptions in describing the behavior
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of details. The uncertainties in the assumptions will be added to the general
uncertainty of any analysis. |

We singled out as the object of the present study the behavior of a rec-
tangular, thin walled box section under bending with no shearing forces. The
rectangular thin walled box is the basic type of a great variety of structures.
The bending without shearing force, or pure bending, is a fundamental case.
Since this study is the first part of a planned sequence, the reason for this
selection of object is obvious.

The purpose of this study is in the first place the search for an improved
overall approach. The soundness of any such approach should be continuously
compared with experimental facts. The more elaborate theoretical and experi-
mental analyses of the details involved should go on separately. New results
should gradually be incorporated and the general approach may thus be
expanded and revised. The process should always try to supply the designer
with the tools, which are based on simple and generally well-known principles,
which agree reasonably well with the results of basic experience and which
can easily be adapted to practical computations.

IIL.

Since the generally known flexure formule are the most adaptable tools
of the engineer, an attempt is presented in which these formul®e are expanded
in order to approach better the actual behavior of thin walled box sections in
pure bending. The new adaptation is in the turn compared with experimental
results. A further improvement and expansion for bending and shear should
be the next step in this line of investigation.

The compression plating of boxes with thin walls usually buckles in a very
early state of loading, which is far less than the maximum load carrying
capacity of the structure. The importance of this strictly local deformation
should not be minimized, although such deformation is a normal follower of
the functioning of the plating. This local buckling of the compressed plating
might by itself constitute a structural damage and determine the useful range
of loading of the whole structure. However, we should search for a simple
method to predict the overall load carrying capacity of the structure.

Early investigation of a similar problem, that of thin walled tubes under
pure bending by BrazIER [1] and CEWALLA [2, 3] took into consideration the
flattening of the cross section and the resulting reduction in the moment of
inertia. The same line of thought was used by TIMOSHENKO [4] in connection
with box sections. Experiments show that the decrease of the moment of
inertia is not as significant as it was assumed [1, 2] and that the arbitrarily
assumed deformed shape [4] can not be found on models. '

Ecewrrrz [5] and others made a significant contribution in giving prac-
tical ways to determine the buckling stress of the compressed plating of box
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sections. The predicted buckling stresses seem to agree with experimentally
determined values, but the question of the overall maximum load carrying
capacity is left open.

Very important results were published by CrAPMAN, FALCONER [6, 7] and
others, both from the standpoint of the local buckling problem of the com-
pressed plating and the treatment of overall load carrying capacity. Their
approach to the overall load carrying capacity is through the assumption of
an equivalent section and an arbitrary stress distribution.

Our approach to the problem is similar but somewhat more elaborate. We
make the main assumption that the post buckling behavior of the compressed
plating is such that it keeps on supporting the buckling stress while the load
on the structure is increased. This actually creates an analogy between the
effect of local buckling and of local yielding, by which we understand a pro-
cess, under which the deformation of a part of the structure may progress
without any increase of the corresponding stress.

III.

Analysing the pure bending of a member of an arbitrary cross section,
parts of which might locally yield (fig. 1a), we make the following assumptions.
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Fig. 1. a) Sketch of a general cross section 4 with part areas 4,, which yield at a stress o;.
Fig. 1. b) Sketch of a box section.
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1. The area A is homogeneous, with the exception of the A4; areas.
The areas A, are homogeneous within their boundaries, each area has a
specific o; yield stress.

O]

Investigating the case when each A, area reaches its specific o, stress, the
extreme fiber stress o, being greater than o, max., we find that the location
of zero stress, the neutral axis, moves from 0 to 0’. The distance 0 —0’ is b.

In order to establish a relation between the M moment on the section and
the o, stress, we have to find this distance b.

In the place of the stress distribution shown and described above, we
introduce the following system of equivalent stresses:

a) A linearly distributed stress with zero value at 0’, o, at fiber 1 and o, at
fiber 2, and intermediate values of o =§%— Oy -

b) At the centroids of each A4, stresses opposite in sign to the general stress o
and with values varying between o,; —o; and o,; —o; in which expression
gy; and o,; are the values at the fibers of 4; nearest to 1 and to 2, o; being
the specific yield stress of 4,.

By this we apply the following forces at any one 4,

B, =_f(a—ai)dA
A;

The equilibrium of the horizontal forces in the above case and in the above
terms equals the sum of the B, forces:

1;

Introducing o= yi oy, b(y)dy=dA
. Yai Yz
we obtain Z'B,;=Z’ry?(fybi(y)dy——% Ya Jbi(y)dy)
2
Yii Yii

if we further introduce the parameter

and express the first integral, which is the first moment of the 4; area about
the axis through 0’, by y, 4, understanding that y, is the distance of the
centroid of 4; from the 0’ axis, we obtain

K

IB, = 0,5 A, (i;j“—oc) (1)
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the total horizontal force due to the o stresses

F:fadA=2Ab (2)
A

Ys

where we again find the first moment of the total A area about 0’, which
equals b 4.
From the equilibrium condition

from (1) and (2)
Ab=2A4;(y;— ;Y (3)

according the notations on fig. 1.

Yi=Yi+tb, y2=Y+b
which introduced in (3) give

Ab=2A,H;+b—o; [y, +b])
and finally w4 )
Y — Y

b= A= T4, (1) )

Thus b, and so the location of the new 0’ axis can be determined by the
original dimensions and the parameter «;.

In the following derivations we need now the distance ¢ from 0’ of the
resultant of all B; forces.

These can be found from the following elementary consideration:

A;

. il
using o=—y

. : Yz
and rewriting the expression

cZBi=2(2fy2dA—oifydA)

Yo
A; A;

since Jysz =I;
A;
is the second moment of A4, about 0’, and
J ydA = A;y;
A;

is the first moment of A4, about 0’, and :—‘ = a;, we have
2
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o .
CZBi=2f(Ii‘“iAi?/i?/2) (5)
2

using I; = I,+ 7,2 A, where I, means the second moment of A4, about its
-own gravity axis and 2B, from Equ. (1)

_ ZA; (k24 y®—o,y;Y,)
2 A (Ys— oY)

(6)

where k2 =%

The stress-moment relation can now be derived, using the equilibrium of
moments on the section, if M is the bending moment, we write ‘

M:E‘_zfysz—CZBi
Y2
A
since fysz =1,
A

is the second moment of the whole area 4 about 0’ and this can be written as
I+Ab2 =1 4

and using ¢ X' B; as expressed in Aq. (5) the moment equation becomes
f
M=oy (W4 07) - 2 G b2 =l G

which is analogue to the fundamental flexure formula, in which the place of
the section modulus is taken by

A A, I,

T (R R e IR+
in which expression 4, 4,, k,?, k2 refer to the cross section and its original
dimensions, b y, and ¥, can be determined, since

Yi=Y;+b, Y=Y+

and b can be found from eq. (4) in which original coordinates 7, and y, are
used. All important is the parameter

which on the other hand for any o, can be determined, knowing the characteris-
tic o; of any A, part area.

For but one yielding area A, instead of s number of A, areas, the basic
formule become the following:
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Ay (Yo—ay
b= AO—(ZOO(l -?-/i)) )

M = o, A ([k2+bz]__4£ [k02+3/02“°‘?/0?/2]) (9)
Y2 4

In a practical problem if we accepted a certain solution furnishing the
buckling (or yielding, as we called it in the previous text) stress o; in some
detail, for arbitrarily chosen values of o, the parameters «; can be calculated
and eq. (7) will supply us with points of a moment-stress relation.

Using the above derived generalization of the flexure formula, we want
now to compare the results furnished by it with experimental results. Since
the experiments were carried out on a simple box section, we had to adapt
eq. (9) to that case.

In doing this, we assumed that the cross section of the box, being thin
walled, can be represented by the one shown on fig. 1b.

a) tis so small compared to the other dimensions, that it can be neglected in
several cases, thus

__ a
Yo=Y2=73, C=1Yy Iy=0

b) We assume, that the entire lower flange yields (buckles)

Ay=at
Thus we have the eqgs. (8) and (9) yielding the following:
_ Ayd(1—a)
b= sa—4,0=a) (10)
From M = o, 54 (k,?a + b? —iio [Ko® + Yo — 2 Yo ?/2])
) v

the latter allows further simplifications, if we consider eq. (5) from which
c Ay (yo—ays) = Ao (k> + yo® — Yo ¥2)
and eq. (3) from which (for =1, subscript 0)
Ao (yo—oys)=Ab
the expression on right hand side equals
Abc

and for the box section, fig. 2 ¢=y, we obtain

2 2
M=o, (AkA+Ab _Abyz)

Y Y2 Y2
and introducing 7, +b=y,
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Fig. 2. The basic stress-moment relation for a thin walled box section.

Meo (fA+Ab2—Ab(g72+b))
i Ya+b
since in the numerator Ab2—-Aby,—Ab®
cancel the 4 b? terms: M = o, IA_—A b¥,
Ya+b
' e d _
Substituting now 5 = Y2
27 _
and calling . —EI—“—‘— =27,

the section modulus of the box, referring to its gravity center and extreme fiber

Z,—Ab
M=o =5y
1+

substituting eq. (10) for b and rearranging

— [A4,d Z, A A,d Z, A
M=02(ZA+[—;———1—‘4—"]—0¢[ g — :‘4 "]) (11)
which further transformed becomes:
' — (Z,A, A,d Z, A, A,d
M=0'2ZA—( jl 0+~5 )0’2;-!—( z 0 _ ; )00 (12)

.ZA, A, 4, and o, being constants, the new stress-moment relation is a
linear one. It should also be remarked, that for all values o, <o,

M = a 9 Z A
the convention flexure formula.
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Consequently, the stress-moment relation will be described for a thin
walled rectangular box under pure bending by two straight lines, as shown
on fig. 2.

This is the stress-moment relation, which we compared with experimentally
established values.

IV.

Following some exploratory tests on plastic models, two aluminium boxes
were made with cemented connections and two with riveted connections, the
dimensions and details of which are shown on fig. 3. The boxes were tested in
pure bending, applied through cantilever loads as shown in fig. 4 and the
photographs on fig. 5. The deflections were measured by dial gages and the
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Fig. 3. Top: Experimental box beam section, cemented connection. Bottom

mental box section in riveted construction.

: Experi-
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Fig. 4. Experimental setup used in testing the box beams.

Fig. 5. Photograph of the experimental setup.

strains on the center cross section by SR-4 gages, as indicated on the figures.
The boxes with the cemented connections could not be loaded to fracture due
to the earlier breakdown of the joints. However, they could be loaded well
past the load at which the compressed flange buckled. The riveted boxes could
and were loaded, until secondary localized buckling of the compressed plate
within rivets occurred almost simultaneously with the buckling of the corner
angles and final breakdown of the whole structure. At this point the buckling
of the compressed plate was far advanced.
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Fig. 9. Actual and theoretical stress values.  Fig. 10. Actual and theoretical stress values.
Riveted box beam, 0.02 in. plate thickness. Riveted box beam, 0.04 in. plate thickness.
Compression gages: 7, 8, 9. Compression gages: 7, 8, 9.

The general distribution of the stresses is shown schematically on fig. 6.
The distribution of the web stresses was assumed to be linear, which was also
proved to be justifiable by other tests [6, 7].

The actual stresses as they increased with the moment are compared on
figs. 7—10 to the theoretical relationship.

In order to establish the theoretical lines for the particular case the fol-
lowing assumptions were used:

a) The buckling stress of the compressed plate is given by EGGWERTZ’S
results [5].

b) No inelastic action occurred.

c) The buckling cross sectional area A4, in the case of the cemented boxes
was the area of the compressed plate between the webs. In the case of the
riveted boxes the buckling area is the area of the compressed plating
between the center lines of the rivets.
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Fig. 11. Deflections at the midspan of the riveted box beam, 0.02 in. plate thickness.
Compression on 4, B, C.

It is fully recognized that these assumptions are arbitrary and they were
chosen before even all the experiments were run. A slight modification of the
assumptions could actually result in a much better agreement between com-
* puted and measured values. This, however, was not attempted. We think a
very general agreement of the main trends of stress moment relations is enough
to show, that the way to improvement and expansion of the process is open.

The experimental results show indeed, that the relation is really very
closely linear, if there is a deviation, it indeed can be broken into two straight
lines, the intersection of which actually falls in the vicinity of a probable
buckling stress in the compressed plate. The actual buckling of the compressed
plate was always observed in that vicinity. Thus computations based on eq. (9)
approach more closely the actual situation than either the plain flexure for-
mula taking no account of the local buckling or the plain flexure formula by
dropping the whole compressed plate area from the useful cross section.

In thin walled boxes probably the maximum load carrying capacity of the
structure can not be utilized anyhow, since considerations of local deformations
might be the determining factor.

Plots on fig. 11 and 12 show the measured moment-deflection relations of
the riveted models. The same basic fact can be pointed out, that the relation
follows the general pattern of a two straight line relation. The only exception
is, of course, the local deflection of the gage point located on the locally
buckling compressed plate.
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Fig. 12. Deflections at the midspan of the riveted box beam, 0.04 in. plate thickness.
Compression on 4, B, C.

V.

The adapted flexure formula seems to agree satisfactorily with experimen-
tal results and could actually be used to describe the stress-moment relation
in thin walled boxes under pure bending. The analysis of this type of structure
must always be based on a set of well-chosen assumptions. The formula appears
to be a good frame in which the results of an improved knowledge of the
buckling and postbuckling behavior of the compressed plates can fit later,
thus leading to a more accurate and simple approximative description of the
general behavior of a box girder.
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Summary

A general formula is presented for the stress-bending moment relation in
pure bending of sections, parts of which yield or buckle.

The formula is applied in the case of a thin walled box beam. The values
so obtained are compared with experimental results and a satisfactory agree-
ment of theory and experience is shown.

Résumé

Les auteurs indiquent une formule générale pour le rapport entre la ten-
sion et le moment fléchissant, dans le cas du travail en flexion pure, pour des
sections dont certaines parties se trouvent soumises au voile ou & 1’écoulement.

Cette formule est appliquée au cas d’une poutre en caisson & parois minces.
La comparaison entre les valeurs calculées et les valeurs déterminées par des
essais met en évidence une concordance satisfaisante entre la théorie et
I’expérimentation.

Zusammenfassung

Eine allgemeine Formel fiir das Verhiltnis von Spannung zu Biegungs-
moment, bei reiner Biegung wird fiir Querschnitte gezeigt, von welchen sich
Teile im FlieB3- oder Beulzustand befinden.

Diese Formel wird auf den Fall eines diinnwandigen Kastentrigers ange-
wendet. Im Vergleich der rechnerisch erhaltenen Werte mit den durch Ver-
suche ermittelten, ergibt sich eine befriedigende Ubereinstimmung zwischen
Theorie und Versuch.
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