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The Load Distribution in Interconnected Bridge Girders with Special
Reference to Continuous Beams

Répartition de la charge dans les poutres de ponts associées enitre elles, avec prise
en considération particuliére de la poutre continue

Die Lastverteilung in zusammenhdingenden Briickentrdgern unter besonderer
Beriicksichtigung des durchlaufenden Balkens

ArnorLp W. HExpry D. Sc., Ph. D.,, M.1.C.E., M. 1. Struct. E., and
LesuiE G. JAEGER M. A. Ph. D., University College of Khartoum

Several methods for the analysis of interconnected bridge girder systems
have been formulated in recent years. Apart from relaxation or moment
distribution [1], which have the disadvantage of not yielding general solutions,
all methods entail the use of simplifying assumptions either as to the mode
of deformation of the structure or as to its construction or both. One of the
most successful solutions has been by the application of the theory of plates
[2, 3] but recently the authors have developed a method in which the cross
girders only are replaced by a continuous medium of total moment of inertia
equal to that of the actual transverse system. The method has been discussed
in detail elsewhere [4,5]; it possesses a number of advantages as compared
with plate theory in that its derivation is comparatively simple, that distri-
bution coefficients of immediate physical significance and application are
obtained, that greater accuracy is obtained in certain cases and that all the
longitudinals need not have the same moment of inertia. Furthermore the
treatment of transverse moments is believed to be more accurate.

The object of this paper is to give a brief résumé of the method as applied
to simply supported spans and to discuss its application to the analysis of
interconnected continuous beams. The analytical procedure depends on whether
or not the longitudinals possess torsional stiffness and will be illustrated by
considering the solution for a three girder bridge. A general solution for any
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degree of torsional stiffness is possible but in practice it is more convenient to
obtain distribution coefficients for zero and for infinite torsional stiffness and
to interpolate intermediate values by use of a suitable function.

The method is based on two simplifying assumptions only:

1. That the transverse members may be replaced by a continuous medium
of the same total moment of inertia.
2. That the torsional stiffness of the transverse members may be neglected.

Assumption (1.) has been found to be valid for as few as three cross girders.
Torsion of the transverse members can be taken into account, but its effect is
usually very small.

Analysis of Three Girder Bridge: Zero Torsional Stiffness

Fig. 1 (a) shows a cross section of the bridge at distance x from mid-span.

Suppose that the inner girder (2) is given a deflection y,=a,cos Lx then the

deflections of girders (1) and (3) will be y, =y;=a,cos">; a, and a, are of

course the mid span deflections of the girders (1) and (2) respectively. The
transverse medium receives only vertical forces from the longitudinals and

0 @ ©)
a C J
]_ 4 4
h h
b 7 \—L/Ya
Fig. 1

these forces are proportional to the deflections of these girders. Thus the forces
per unit length of the transverse medium are K v, , K y, and K y; ; reversed in sign
these forces are the loads per unit length applied to the longitudinals. Thus

d* d*
EldxgilzKyl and EIE%EZK%

so that K is equal to B I z—i on substitution for ¥, and y,. The flexural rigidity

per unit length of the transverse medium is nElr e bending moment

L
diagram is triangular so that by area moments:
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KhnL — W)
m%—yz Y1

Substituting K = E I,

L) "EIr we have —«—-yz Y1

o]
and putting « = 1—2 ( 7)) “ET

L4
. & .
i.e. y; = Y, (m) or a; = ay (4+ ) If we put a, +a,+a;=A we then obtain

(e

U= iiga A4
4+
%2 = 4+3oc‘A —pz_A

A is the amplitude of the first harmonic component of the “free deflection’’
curve which is the deflection curve of one of the longitudinals if it carried the
entire loading on its own. p; and p, are distribution coefficients for the first
harmonic of the free deflection curve. If the deflection of the loaded girder is

eospmaf or smp~37 it is easily seen that the distribution coefficients will be

obtained by substituting «/p* in place of « in the formule for the first har-
monic coefficients.

If, therefore, the free deflection curve is analysed by Fourier’s series into
its harmonics, the deflection curve of each of the longitudinals can be found
by applying the corresponding distribution coefficients to the component
terms of the series i.e.

3 ”n 14 h 2 x
Y, = py A cos — L +p1’”A’”Cos —Lﬂ——-k - +p," A" sin TW--Jr
' 3T "oAN 2mx
Yo = py A cos - A +P2/”A” oS —F—+ - +py A 8111%—4—“-

Exactly the same holds true for the bending moment curves so that the
bending moment diagram for each longitudinal can be found by distributing
the harmonics of the free bending moment diagram. In practice the first
harmonic is always dominant and is frequently the only one which need be
considered.

If the outer longitudinals are of different moment of inertia from the inner
it is evident that we must write

4
Ezl‘jl?/;_nl{yl and E1I, % P Ky,
where 7 = Il and K = E [, L4 On solution we find
= - - and = At o
PL= v a(1+2) P2 = dnva(l+2y)
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These are deflection distribution coefficients; bending moment distribution
coefficients in this case are obtained by multiplying the deflection coefficients
for the outers by 7.

Analysis of Three Girder Bridge: Infinite Torsional Stiffness

In this analysis the longitudinals are assumed to be infinitely stiff tor-
tionally and the cross girders are assumed to be rigidly connected to the main
girders. Torques are thus transmitted into the longitudinals from the trans-
verse medium and the longitudinals rotate as rigid bodies into positions of
torsional equilibrium. To illustrate the method the analysis of a bridge having

® @ @

+-
—

Fig. 2

three equal longitudinals, loaded on the centre one, will be worked out. Refer-
ring to fig. 2, suppose that the angle of rotation of each outer longitudinal is 6,,
then it is easily shown that the shear per unit length of the transverse medium
at its connection with girder (1) is

ho,
§=m ?/2“3/1‘“7

and that the bending moment per unit length in the transverse medium at

the same place is
6n k1 2h0
M, = W‘Z [%“3/1‘ 3 1]

This bending moment acts as a torque on longitudinal (1) and since the ends
of this longitudinal are not restrained we must have for equilibrium:
oL
f M,dx =0
~L/2

T T

Taking ¥, =a, cos 7 Y2 =03C08
above, we find that

and using the expression for M, given
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3
ho, = P (ag—a,)

The characteristic equation for the deflection of longitudinal (1) is then

d*y
dx“‘l = m (Y~ Y1) —

E1

m 3
S . (@ —ay)

The expression for A6, is a constant and to obtain a first harmonic solution
we replace A0, by its first harmonic component which is

4 T
; h 01 COS T
m T nx 6m T
Then Elﬁalcosi—=m(a2—a1)cos—f—?(a2—a1) €O8 ——
6
whence a; =a(@—ay) |1— y“
3 6 .
Putting oy =a|l— 3
ay; = o (ay—ay)
and the distribution coefficients are
_ oy _ 14 e
p1_1+3ocl p2_1+3(x1

As in the previous case, distribution coefficients are easily obtained by the
same procedure when the inner and outer girders are of different sections by
the introduction of the ratio .

In connection with calculations on interconnected continuous beams dis-
tribution coefficients are also required for the conditions that the longitudinals
are of infinite torsional stiffness and do not rotate i.e. ;=0 in the above
example. These are very easily obtained and are

o - 14+ o
143« pe= 1+3«x

P11 =

It is interesting to note that the form of p,; is the same in each case, as the
“no torsion’’ coefficients are obtained by putting «/4 instead of « in the ‘“‘no
rotation’’ case just quoted and the ‘““full torsion’’ coefficients by substituting

6
(o4 (1 = ?) .
Distribution coefficients for bridges having two, three, four, five and six

longitudinals are given in appendix I for both full torsion and no torsion cases
and for loads on the various longitudinals.
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The Interpolation Function

In practice the cases of negligible and infinite torsional stiffness of the
longitudinals are of greatest importance as it is found that on the one hand the
torsional stiffness of structural steel girders of I section may be neglected and
on the other that reinforced concrete beams are torsionally so stiff that they
may be considered to be of infinite torsional stiffness. Only occasionally are
structures encountered between those extremes. The criterion is established
by a non-dimensional parameter:

_ (1) (OJ

p= 2n \L ) \E I,
For negligible torsional resistance B — 0. It has been found that if 8 exceeds
about 1.25 the longitudinals can be considered infinitely stiff in torsion. Inter-

mediate values of the distribution coefficients may be found by using the
following interpolation function:

Pg = Po+ (P — Po) 3—1_?_%;

where pg is the required value and p, and p,, are the distribution coefficients
corresponding to =0 and 8=o0 respectively. This function was obtained
from consideration of the results of general analyses taking into account twist
as well as rotation of the longitudinals.

Loads Acting Between the Longitudinals

In the analysis described above it has been assumed that the loads are
applied directly to the longitudinals. If they are applied to the cross girders
or the deck slab between the longitudinals they must be replaced by an equi-
valent system of loads acting on the longitudinals. The equivalent system is
found by considering the cross girder or slab as a continuous beam simply
supported at the longitudinals; the reactions of this beam are then the loads
applied to the longitudinals and the moments and deflections arising from
them are distributed by means of the distribution coefficients discussed above.
The reason for this procedure may be appreciated by considering the longi-
tudinals to be propped when the loads are applied; the simply supported
continuous beam reactions will then be developed on the longitudinals and
will be distributed through the system when the props are removed.

Transverse Moments

Expressions for transverse moments are obtained in the following manner.
As an illustration, consider a three girder bridge with the loading on the
outer girder.
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a) No torsion case: The equation for bending moment in a strip of the
transverse medium of unit width is

M,=nKysz+Ky,[z—h]

There are no bending moments at girders (1) and (3); putting z=#% the trans-
verse moment over the centre longitudinal is

But Y=4 cos%C and at mid span M =E [ LL: Yor Y= ;EI%-IM Therefore

e
MZZ = L—2 hp3-M

Mz, L? 5

b) Infinite torsion case: In the case under consideration
1 1 ‘ 1
ho, = 5 [ba,—6a,+as], hl,= P [2a;,—2a;], hO;= 5o [—a,+6a,—5a,]
The bending moment per unit length in the transverse medium at its connec-
tion to the loaded girder is therefore:
6n k1
le = —zz_j;“T (Y1—Yos—5h6,—3 R 0,]

6nkE I mx 2
whence : le = _hZTZ (011—‘0/2) (COS T— —= —7;)

At midspan i.e. at =0

_6nEI, 2\ 6LPnKIl, (M, 2
M= S e (1= 2) = L (5 ) (1)

ks

since the moments at midspan in the longitudinals M, , and M, are respec-
tively
m BT m B 1

M, =n—5—a, and M, = '

T 12 @y

Substituting M, =p, M and M, =p, M where M is the free bending moment,

and also
6 L2n E I 7 h

2EIRL 2 1%
M, 72 2 h
we have M = ? o (1 — ;) (Pl_p2) —_ZE
M, 12
or J‘; 5 = L79a(pr—py)
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Similar expressions for other loading cases and numbers of longitudinals up to
four are tabulated in appendix II. For five and six longitudinals it is more
convenient to evaluate the A6 terms numerically and to substitute into the
slope deflection equations for transverse moments.

Solution of Continuous Girder Systems by Superposition

The above theory may be applied to the solution of continuous beam
bridges and also to derive influence lines for the structure in the following
manner: in essence, the bridge is treated as a single span between the first and
last support with the intermediate supports removed and the applied loads
are distributed in the usual manner. The support forces are introduced and
their magnitudes are calculated from the requirement that the deflections at
the support points must be zero. The support forces are then considered to be
applied to a single span bridge and are distributed accordingly. Superposition
of the effects of the loads and support forces then gives the solution for the
continuous beam bridge.

Calculations by this method are greatly facilitated by a suitable system of
notation which will be clear from the following example. Consider a two span,
three girder continuous beam with intermediate support distance r, and a concen-
trated load W distance a from the left hand end. Then, with origin at the left
hand end, the Fourier series for the deflection of one of the longitudinals car-
rying the load by itself (i.e. the “free’’ deflection) with its centre support
removed is:

Y, = ——— |sin — sin — 4 — sin —— sin + — sin —— sin
L= mEpr

2 W L3 m7a . wx 1 . 27a . 272 1 . 3w7a . 377'%_*_“'
L L 24 L L 34 L L

where L is the total length of the bridge.

Then considering this load to be distributed amongst the three longi-
tudinals of the bridge treated as a single span L, the deflections of the three
longitudinals are:

_2wp L sin 2L sinTE 45 lsin2ﬂasin277x
Y A Ll Al AN TRy L
s 1 . 3wma . 3wx -
+p1 "ga S T S +] = pra[ Y]
2w Sinﬂ—asinﬂ‘x+ , 1 in27ra . 27732+
Y205 T T | P2 L 7, P2 e S o SIL e
w 1 . 3ma . 37wx -y
+ P2 "gi B = Bl ey e = paa [ Y]
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_2W LB sin ™% in’”x—}— " lsin2ﬂ'asin2ﬂ'x+
Y31 = Jagy PSS TP o L L

s 1 . 3ma . 37mx =y
TPy g S SIN e = P32 [ Y]

where p is used as an operator in the manner indicated. The suffixes are intro-
duced to define the girder to which the coefficients apply and the girder on
which the load acts. Thus p;, is the distribution operator for the first longi-
tudinal for the load acting on the second. In the same way, the series for the
free deflections which would result from application of unit load at the reaction
point on any longitudinal is:
23 [ . 7wr . wmx 1 . 2ar . 272 1 . 3mwr . 3mx

R= TG T [31n~L—sm~f+§ism~~z—SlnT—{—?lsstmT—i— . ]
Thus the deflections of the longitudinals for unit load applied to longitudinal
(1) are:

Yir = Pul¥rl: Yer=pPulYr]l, ¥sr=pulYrl

and similarly for unit loads at the reaction points on the other two girders.
We may then write down the following equations to express the condition
of zero deflection at the intermediate support point of each girder:
For longitudinals (1) and (3)

Rz ‘P12 [YR]xzr + Rl (/511 + 1513) [ YR]x:r = P12 [ YL]xzr (1)
For longitudinal (2)
R2'p22[YR]x:r+2 R1f321[YR]x:r = ﬁ22[YL].7c=r (2)

Solving (1) and (2) we obtain:
R2 __ 2512 [YL] 521 [YR] _522 [YL] (/311 +ﬁl3) [YR]

B 2ps [‘YR] o1 [ Y gl —pas [ Y ] (P11 +P13) [ Y ]

e Bl YA Yl = pial Y s [V ]
! 2512 [YR] ﬁ21[YR] _I522 [YR] (ﬁll +ﬁ13) [YR]

and

assuming that x is put equal to r in each of the deflection series. Knowing R,
and R, in terms of W the deflection curves for girders (1) and (2) with loads
and reactions acting together are obtained immediately.

To obtain the bending moments in the continuous bridge, R, and R, are
calculated as described and the bending moments to which they give rise are
distributed through the single span bridge and superimposed on the bending
moments due to the external loads similarly distributed.

As a simple example suppose that for a certain structure having torsionally
stiff longitudinals and for which «=22.2 (taken over the whole length L) the
load is applied at a = L/4 and the intermediate supports are located at » = /2.
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Then the distribution coefficients are as follows:

Load on Girder (1) P11 OT p33 P21 O pog P31 OT Py
1st. Harmonic 0.435 0.321 0.244
2nd. Harmonic 0.575 0.268 0.156
3rd. Harmonic 0.816 0.150 0.033

Load on Girder (2) P12 Pog P2
1st. Harmonic 0.321 0.358 0.321
2nd. Harmonic 0.269 0.462 0.269
3rd. Harmonic 0.150 0.700 0.150

Substituting a = L/4 in the free deflection series:

2 W L3 . omx 1 . 27x 0.707 . 37wx
YL = ——m [0.707SIH—L—+T6' Sin 7 + 31 sin L ]
L 2W L3 1

For the reactions r = L/2 so that:

B 2 I3 . T _1_ 3mx
R gt [P s L

for unit load and at x=r=L/2

2 L3 1
Yr= at B 1 [1+§TJ

The figures within the square brackets must not, of course be added or sub-
tracted before application of the distribution coefficients.
Substituting, we obtain (for R,):

. 2.0.707 [0.321-%} [0.321+0—éi§]—0.707[0.358—9-'£2] [0.679+%‘4"3

sy
2 [0.321+55%] [0.321+57%] ~ [0.858+ 231 [0.679+ 5]

i.e. Ry=0.560 W.
Similarly B, =0.065 W and the deflection equations for the girders are

Y1=p1a[ Y] — By (py1+p1s) [ Y] — Ry pra[ Y 2] =
_2W LB

i 2 .
= T [0.0065 sin =X +0.0168 sin —— +0.0065 sin 371'.2:}

L L L

Ya =/322[YL]—2R1521[YR]‘R2522[YR] =
2 W L3 [

. mxr
= ——— 10.011 —_— s i in ——
AL 0.0110 sin 4+ 0.0289 sin +0.0110 sin

L L L

27 x 37Tx]
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It will be observed that a check on the result is obtained since y; =7, =0
at x=L/2 i.e. at the intermediate support points. The second harmonic term
is in any case zero at x= L/2 and thus the coefficients of the first and third
harmonics must be equal. Inspection will also show that the calculation of
R, and R, is quite short as many of the terms appear more than once. The
above is a simple example which has been solved in general terms; in more
complicated cases the equations are easily written down and may be solved
numerically. Due regard must of course be paid to numerical accuracy as the
solution depends fundamentally on the differences of comparitively large
numbers.

The method of deriving influence lines is based on Maxwell’s reciprocal
deflection theorem. If in the structure referred to in the previous example, the
centre support of girder (2) is removed and unit vertical load applied at the
reaction point, it is well known that the vertical deflection at any point is to
some scale equal to the ordinate of the influence line for vertical reaction at
the point of application of the unit load. The procedure is therefore as follows:

a) Assuming that all the intermediate supports are withdrawn find the
deflection of each of those points resulting from the application of unit vertical
load at the support for which the reaction influence line is required.

b) Calculate the forces which have to be applied at the other support
points to bring them back to their original positions. Superposition of the
deflection curves given by (a) and (b) will yield influence line curves for the
support, force to a certain scale; the scale may be corrected by adjusting the
ordinate at the support removed to unity.

¢) We may now obtain influence lines for bending moment at any point
on the bridge, as indicated in fig. 3. First, draw the free influence line for
bending moment at the required point for the bridge as a single span. Second,
for several positions of the load on the span calculate the bending moments
in the unloaded girders at this section and subtract their sum from the free
bending moment influence line; this gives the influence line for the loaded
girder treating the bridge as a single span interconnected system. Finally,
superimpose on this influence line, the influence line for bending moment at
the support point of the loaded beam resulting from the application of the
intermediate support forces. The superimposed curves must obviously have
the same ordinate at the support point as the ordinate of the bending moment
influence line is there equal to zero.

Although this may appear to be rather lengthy, it is not in fact unduly so
as may be seen from the following example. Taking the two equal span bridge
of the previous example, to derive influence lines for the mid-point of the first
span we draw first the “free’’ influence line diagram, the maximum ordinate
of which is 0.1875 L (see fig. 3a). The series for the free bending moment
diagram for a unit load applied to a single span beam at distance a from the
left hand end is:
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020+ Free beam I.L.
2xOrdinate of I.L. for B.M on outer
M g 1L /J’/rder 2, Load on (2) Single Span
ot f’ , Ve Bridge (4)
g
a)

1. L. for 6.m. at centre pier
of" Bridge (8)

o)

L/u | Ly L/
o1 !

)

Q05+

(8) ‘

—

C) Influence line For moment in girder (2) &t & =L/% For load on (2)

Fig. 3
M, = 2 L sin & s'1177x+1 in 2ma inzﬂx '—1sin377asin31x‘
R Lo Tt Ty 7 A

Applying the appropriate distribution coefficients and substituting x= L/4
we obtain the influence line for this point on one of the outer girders with the
load acting on the centre girder:

2 L 2 3
my = 77J (O 227 sin —L——r—() .067 sin Tf%—O .0118 sin - Za)

taking the first three harmonics. On substituting several values of -, multi-

plying the resulting values by two and subtracting the ordinates from those
of the free influence line we obtain the influence line for bending moment at
the required section for the bridge simply supported on a smgle span, as shown
in fig. 3a.

We must next obtain the influence line for the intermediate support force
on girder (2) which is given by the deflection curve of that girder for unit load
at its mid-point when the support points on the outers are brought back to
their original levels. The restoring forces are obtained from the equation:
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Rl (1511 +1513) [YR] = P12 [YL]

P12l Y 1)

i. e. R, =— =
! (P11 +P13)[YR]

In this case Y, and Y both refer to loads placed at the mid-point of the
bridge and therefore
[0.321+ 22

81

B [0.679+ O—fli‘g]

R, = 0.468

The upward deflection of girder (2) due to the forces R, on (1) and (3) is
therefore:
0.468

. T . 37mx
k (0.468-0.642 sin AT 0.300 sin T)

where k is some constant. The net deflection of (2) i.e. the influence line for
R, is then

. ) . 1404
k [(0.358 sin 7T _ QJQQ sin m) — (0.3008 sin T _ 0.140 sin 377%)]

7 " 8l 7 7 81 7
i e 2 [0.0472 sin 7% - 0.0069 sin 3%”]

The deflection curve for girder (2) for unit load at the mid-point of girder (1),
the support there being removed, gives the influence line for R, with the load
on girder (2). This curve is found in the same way as R, and is given by:

k [0.0065 sin 7 +0.0065 sin 3;“’]
It will be noted that we are concerned only with the form of the curves and
therefore the constant & need not be evaluated. The forces R, and R, must
now be considered to be applied simultaneously to the structure and their
effect superimposed on the single span interconnected bridge. The upward
bending moment due to R; and R, will therefore be proportional to

Bag Byt 250 By i.e. (0.358 +0.0472 sin ’%‘” — 0.700-0.0069 sin —3—%5”) +

19 (0.321 .0.0065 sin ZL‘E +0.15-0.0065 sin 3Zx)

and the bending moment influence line is:

m, =k’ (0.0209 sin %x —0.0038 sin 329”)
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This curve is plotted to an arbitrary scale in fig. 3b and superimposed on the
curve for the single span bridge in fig. 3¢ to give the bending moment influence
line for the mid-point of the first span of the continuous beam bridge. Other
bending moment influence lines are readily derived in the same manner.

Conclusion

Space does not permit the comparison of the theoretical results obtained
by the method described in this paper with those obtained by experiment.
A large number of comparisons have, however, been made both for single
span and continuous beams and very satisfactory agreement has been obtained
for zero and infinite torsional stiffness and also for intermediate cases. These
results are being described elsewhere [4, 5].

The method is extremely convenient for single span bridges, particularly
with design loadings when sufficient accuracy will be obtained by distributing
only one or two harmonics of the bending moment diagram. Continuous
beams with a limited number of supports and longitudinals can also be solved
without difficulty for particular loading cases but for design purposes it may
be found more convenient to derive influence lines for the various longitudinals.

Acknowledgements

The work on which this paper is based was carried out in the Faculty of
Engineering, University College of Khartoum. The authors express their
thanks to the College for a research grant to cover the cost of apparatus used
in confirming the theoretical results.

References

1. Ewern, W. W., OkuBo 8., and ABrams J. I.: “Deflections in Gridworks and Slabs.”
Transactions, American Society of Civil Engineers, 1952.

2. GuyoN Y.: “Calcul des ponts larges & poutres multiples solidarisés par des entretoises.’’
Annales des ponts et chaussées, Paris, 1946.

3. MassoNNET C.: ‘“Méthode de calcul des ponts & poutres multiples tenant compte de
leur résistance & la torsion.” Publications of the International Association for Bridge
and Structural Engineering, Vol. 10, 1950.

4. HENDRY A. W., JAEGER L. G.: “A General Method for the Analysis of Grid Frame-
works.” Journ. Inst. C. E., Part 111, Dec. 1955. -

5. JArGER L. G., HENDRY A. W.: “The Analysis of Interconnected Bridge Girders by
the Distribution of Harmonics.” “Structural Engineer”’, Forthcoming publication.



Load Distribution in Interconnected Bridge Girders 109

Notation

L  Span of bridge.

h Transverse spacing of longitudinals.

n Number of cross girders.

E I Flexural rigidity of longitudinals when all are of same dimensions.

E I, Flexural rigidity of outer longitudinals.

E I, Flexural rigidity of inner longitudinals.

E I, Flexural rigidity of one cross girder. In a beam and slab bridge: flexural
rigidity per unit length of slab.

CJ Torsional rigidity of longitudinal (referred to inner when sections are

different).
m = }-Z%EE—I—T for a bridge with cross girders.
(—_— 12 5 Iy for a beam and slab bridge)
h3
_oml* 12 (L\3nEI,[ 12 (L\3LEI, "3
@ = Jpr=—3 (7»—) 5T [.. — (-h—) =T for a beam and slab brldge]

oy, 29 -+ reduced « parameters as defined in Appendix I.
2 2
B = il (i) ( OJ) [ il (]i) (0 J) for a beam and slab bridge]

2n \L')\EI,) |~ 2L\L)\EI,
_EI, '
T B,
P Distribution coefficient.
p Distribution coefficient operator.
s Distance measured in the longitudinal direction (from mid-span unless

otherwise stated).

z Distance measured in the transverse direction (from left hand edge
unless otherwise stated).

y Vertical deflection of the structure. :

81,85 ... Load per unit length transferred to longitudinals by the transverse
medium.

My, M, ... Moments per unit length in the transverse medium at the ends
of the intercepts between longitudinals 1, 2 ete.

Y  Free deflection of single beam carrying total load on bridge (referred to
inner girder if outers are of different section).

M  Bending moment corresponding to Y i.e. total bending moment on the
span.

A  Amplitude of 1st. harmonic component of Y.
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Appendix I

Table “A4”°
First harmonic bending moment distribution coefficients for interconnected

bridge girders

12 (L\s nEIp 8 3 6
OC:T(%—) EI OLOZQ(I—?) 051—05(1"";?)

ku

36 20 4
oz2=oc(1—~5—;r§) a3:a(l—§ﬁ) oc4=oc(1—?)

For deflection coefficients divide bending moment coefficients for outers by 7.

No. of girders | voffi.
and load . =0 B = o
position cient é
2 P11 1.0 (L4 a0) /(1 + 2 o)
Load on (1) P12 0.0 oo/ (142 ag)
3 P11 [8 7+« (144 79)]/D; 7/2{(1+2 ay)/Dy+ 1/(n+ )}
Load on P21 2 «/D, : a1/Dy
(1) pa1 | —a/Dy /2 {(1+2 o1)/ Dy — 1/(n+ o9)}
D=8n+a(2+41) Dy=n+ay (1+27)
3
Uniformload| P10 (3+4 o) n/Ds 7 (16 a; +3)/16 &y (1 +2 )+ 169
covering | Po | (107+42)D; (16 +10 7)/16a (1 +2 7) + 167
bridge Dy=4[4n+a(1+2n)]
P11 (6072 +a?n(9+57)+8an(1+129)]/Dy| 7/2 {(1+as)/Ds+(1+3 a;)/Dg}
" P21 2a(99+a+3ay]/D, 3 {as/ Dy + ay/Dg}
Load on P31 a[—129p—a+3 aq]/D, As py; but with — sign between terms
0?‘1) ° par | 2an(1-2a)/D, As p,; but with — sign between terms
Dy=[10n+oa(1+9)][69+a(1+979)] | Ds=[n+a (1+7)]
Dg=[(n+os) (143 org) — (4)?]
3 e | 2anl97+a(1+37))/D, 0/2 {as/ D5 + 4/ Do}
Lot pas | (6072 +02 (1450)+16an (1+39)1/Dy | 4 {(n+w)/Ds+ (n-+a5)/Dg}
032 O s | 2an(269+24)/D, As p,, but with — sign between terms
(2) pee | —an[12n+a(1—317)/D, As p,, but with — sign between terms
. :
Uniformload P1o0="Pa0| M (3 a+8)/D1 n (10 oc2+ l)/Da
covering | P20 P30 (3 a+229)/D, ‘ (10 oy + 4 1)/ Dy
pridge D;=6a(14+9)+609 Dg=100a, (2+29)+ 109
P11 (224 4+ 654 «+ 324 22+ 15 o3)/D, (0.54+1.305 o+ 0.171 «2)/Dyp +
+(0.54+0.392 «)/ Dy,
5 P21 o (684101 a+ 10 «2)/D, (0.239 ¢+ 0.171 &2)/D;4+ 0.196 &/Dy,
Load on P31 o (c—6) (5 «+8)/D, (—0.174 «+ 0.171 «?)/ Dy,
(1) Pa1 a (12 —35 a)/D, As p,; but with — sign between terms
n= P51 o« (—50%2+12 a—2)/D, As p,; but with — sign between terms
11

Dy=(5 o+ 8) (5 «2+ 68 «+ 28) Dyy=(1+2.914 «+ 0.855 «?)
D;;=(14+1.07 x+0.076 «2?)




Load Distribution in Interconnected

Bridge Girders 111

No. of girders Coeffi-
waiomt | oy =0 b=
P12 o (68 + 101 x+ 10 «?)/Dy (0.239 «+0.171 «2)/D,o+ 0.196 /Dy,
5 Pas (2244 500 ¢+ 152 o2+ 7.5 o3)/ D, (0.5+40.805 «+0.171 «?)/ Do+
Load on +(0.5+0.145 &)/ Dy,
(2) P32 o (22 +a) (5 «+8)/D, (0.826 o+ 0.171 «2)/ Dy,
=1 Paz a(—724+44 o+ 2.5 a?)/D, As p,, but with ~ sign between terms
P52 o (12—35 a)/D, As p;, but with — sign between terms
5 P13 =ps3| & (@—6) (B a+8)/D, (—0.174 2+ 0.171 &2}/ Dy,
Load on (3) | pag=pus| @ (22+a) (5 a+8)/D, (0.826 « +0.171 «?)/Dy,
n= P33 (28 +36 a+a2) (5 x+8)/D, (141.61 «++0.171 «?)/ Dy,
P11 (76+78 ata?)/Dyy+(44+130 a+25 o2)/Dy; | 4 {(1+1.4 x4+ 0.109 «*)/ D4 +
+ (14 3.34 «+ 1.25 «2)/D,5}
P21 o (a4 22)/Dyp+a (15 a+ 14)/ Dy, 1 {(0.424 2+ 0.109 «2)/ Dy, +
8 +(0.448 ¢+ 0.75 «?)/D,5}
LO&d on P31 (24 (05_12)/D12+01 (5 OL—12)/D13 %{(—0.128 oc+0.109 oc2)/D14+
(1) +(—0.221 a +0.25 «2)/D,5}
p=1 Pa1 As pg; but with — sign between terms | As p;, but with — sign between terms
P51 As p,, but with — sign between terms | As p,, but with — sign between terms
Pe1 As py; but with — sign between terms | As p,, but with -- sign between terms
D, = (1524176 a+6 «?), D3 = (88+272 a+ D,y =(1+1.696 2+0.327 «?)
+7042), D5 = (1+3.64 2+2 2%+0.094 o?)
P12 a (2+22)/Dyy+o (15 2+ 14)/Dyy 3 {(0.424 2 +0.109 &*)/ Dy, +
+(0.448 x4+ 0.75 «?)/ D5}
" Pas (76432 ota?)/Dyp+(44+96 o+9 a?)/Dy4 ${(14+0.720+0.109a2) /D4 +
Load on (1+2.53 4+ 0.62a%)/D,5}
@) Pas o (c+34)/Dys+a (3 a4+ 50)/D,y4 3 {(0.552 « +0.109 «?)/D,, +
+(1.115 2+ 0.235 «2)/ D5}
p=1 Pas As py, but with — sign between terms | As p,, but with — sign between terms
P52 As pyy but with — sign between terms | As p,, but with — sign between terms
Pe2 As p;, but with — sign between terms | Asp,, but with — sign between terms
P13 o (e—12)/Dyp+ o (5 a—12)/Dy,4 ${(—0.128 x+0.109 «?)/D,, +
+ (—0.221 «+ 0.25 «?)/D;;5}
Pas a (x+34)/Dyp+a (3 a+50)/Dyy 3 {(0.552 2+ 0.109 «2)/D,, +
Loag . +(1.115 &+ 0.235 «2)/ Dy}
Pas (76+66 ota?)/ D,y +(44+46 ota?)/Dy4 3{(1+1.272 4+ 0.109 &?)/D,, +
3) + (1+1.415 o +0.14 o%)/Dy;}
= Pas As py; but with — sign between terms | As p,;; but with — sign between terms
P53 As p,; but with — sign between terms | As p,; but with — sign between terms
Pes As py3 but with — sign between terms | As p,; but with — sign between terms
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Table “B’’
Bending moment distribution coefficients for higher harmonics
9 g

For B=0: Use coefficients of table ‘“A’ but replace « by «/p?

For B= c0: Use coefficients of table ““B”’ but replace « by o«/p*
ers ana | Coeffi- —o Ners ana | Coeffi- w

load cient p= load cient p=
position position
2 5 P12 3 {x (1 +2 «)/Ds+«/Dg}

Load| p;; | (14+a)/(1+2a) Load | ps; |3 {(14+a) (142 «)/D;+(1+«)/De}
on por | a/(1+20a) on P32 o (14a)/Dj
(1) (2) Pas As py, but with —sign between terms

n=1 Pso As py, but with —sign between terms
3 P11 ${1/D,+ (1 +2 a)/Dy}

Load | py | /Dy 5
on ps1 | Aspy; but with—sign between terms| ; q | P13~ Pss «?/Dy
(1) D,=(n+a) Dy=n+a(l+2m7) on |P =P a (14+a)/Dy

3) P33 (1+3a+a?)/Ds
3

Load |p1s=p3gs| 7 /D ,
on ”pzz 5 (n +a§ /D, prn | 3 {(1+3 a+a?)/Dy+(1+5atha?)/Dg)
(2) 6 P21 3 {a(1+a)/Dy+a (14 3a)/Dg}

Load P31 3 {o®/Dy + o®/Dg}
° Pa1 As pgy but with—sign between terms
on P51 As py, but with —sign between terms
pin | /2 {14 a)/Dy+ (143 o)/ Dy} (1) Pe1 As p;; but with —sign between terms
4 | py | 3{e/D3+a/D,) 7=1 Dy=(1+a) (1+3)

Load pa1 | Aspyy but with—sign between terms Dy=(1+60+9a%+2 o)
on pa1 | Aspy; but with—sign between terms ®
(1) Dy=n+a(l49)

Dy=n+a(1+39)+2 &2
6 P12 ${x (1+a)/Dy+a (1+3 «)/Dg}
Load | 2 3 {(1+a)?)/D;+ (1 +a) (143 «)/Dg}
4 P12 1/2 {/ D3+ «/Dy} on P32 F{x (1 +°‘)/p7 +°‘.(1 +a)/Dg}

Load | py | % {(n+a)/Ds+(n+a)/Dy 2) Pas As py, but W}th—s%gn between terms
on psa | ASpy but with—signbetween terms| .| Pse As py, but Wfth—sfgn between terms
(2) Paa | ASpy, but with—sign between terms K Pe2 As Plz.bu‘D with—sign between terms

pin | 3{(1+4a+20?)/Ds+(1+2a)/Dg} P13 3 {a?/ D, + a?/Dg}

L5 par | % {x (142 «)/Ds+a/Dg} . 6 | ps | 3{a(14a)/Dy+a(l+a)/Ds
oad | py  |'a?/Ds o oad | s | B {(1+3a+a?)/DyH(1+3 wha?)/ Dy}
on Pa1 | Aspy but Wfth —sign between terms| % Pas As py, but with —sign between terms
(1) ps1 | Aspy but with—sign betweenterms| (3) Pss As pys but with —sign between terms

= Ds=(1+5 a+5o?) Dg=(1+3 a+a?) | 1=1 pes | Asp,zbut with—sign between terms
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Appendix II

Transverse moments

Transverse moments are per unit length of transverse medium at mid-span.
M is the ““free” longitudinal bending moment.
Distribution coefficients in formula are for bending moment.

No. of girders

load a‘p](l)‘:'ition BZO ﬁ: o
h
201{4?4131;1 M,,=M,, =179 Tz (pr—pa) M
h
M,,=M;,=0 M12=1.79z—2—o¢(p1~—p2)-M
2 h
3 | My=My=55hopg M My =4.94 75 al(ps=—p) +0.16 (3 py—2 py—py)]- M
Load on 3
(1) M3 =494 75 al(p2—p3) +0.16 (3 p3—2 py—py)]- M-
h
M;,=1.79 7z~ (ps— pg) - M
o 3
3 Myy=Mz=0 M12=M32:1-79E‘“(P1—P2)'M
Load on 2 hz
(2) M21:M23=F'h'P1'M My =My=3 3717“(P2—P1)'M
3 h
Uniform | M12= Mz =0 Myy=M;=1 79fgoc(p1—p2)-M
load over 2 wh? h wh?
bridge M21:M23=%'h'P1'M_ ) M21=M23—337f2“°‘(/’2 p1)- M — 8
h
Mig=My;3=0 Myp=1.79 fz‘“(Pl—Pz)‘.M
2 h
My =My = j-;{'h (2pgtps) M | M,y =4.94 2 a[(pa=p1)—0.044 (~11 p;+6 py+6 p3—p,)]- M
# h
4 | My=My=f5-hopyM My =4.94 75 al(pyp1)-0.044 (~4 py — 6 pst9 pytoy)1- M
Load on 3 :
(1) Myy=4.94 = al(pyps)-0.044 (-4 py=6 pyt9 pytoy) 1+ M
h
M;,=4.94 7z~ [(p3=ps)—0.044 (11 py+6 p3+6 py—p,)1- M
h
M,;3=1.79 7z * (pa—ps) - M
Myy=My=0
p Myy=Mypy= T hopy- M
Load on 1= M= Py lrpe As for load on (1)
2 2
(2) M32:M34=£?'h’P4'M
‘ R
4 My =My=0 Myp=Mys=1.19 5 e (py—ps)- M
Uniform m? w h? h wh?
load over M21=M23=E7'h'P1‘M_“2‘* M21=M34:2-43Z‘2‘“(P2"P1)'M"_1(‘)“
. h w h?
bridge Mg, = M3, = do M= Mz, =0.628 7 (pa—p1) - M — 10

Transverse moments in bridges having more than four torsionally stiff longitudinals
(i. e. B= c0) are most conveniently obtained by substitution in the general equations:

M23=

[Yo—y1—%3h 0,—F R 6,)
6nEIp
“Lw W

6n K1y

My =" 1y

2= Y1—3h 0, —%h0,]

—Yy,—%h0,—1h0;] etc.
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Values of the A 8 terms are tabulated below. For this case the solutions are in two

Ve

parts a) a symmetrical system:

Ry

Arnold W. Hendry and Leslie G. Jaeger

and b) a skew symmetrical system:

. The distribution coefficients resulting from these two parts are respectively
the first and second terms in the expressions for distribution coefficients in Appendix I.

The corresponding b 6 values are quoted separately in the following table.

B=o0

No. of girders
and —
load position '3 0
‘2‘412=]‘454=02
5 M21=M23=ngh(3p5+2p4+P3)M
Load on 2
(1) | Ma=Ms=75h(2ps+p) M
2
M43=M45—1—7;2—hp5M
Myy=M;5=0
2
5 M21=M23—-Eﬂ§hp1M
Load on 2
@) | Ma=Mau=15h(2pstp) M
2
M43=M45—‘”—2hp5M
L
M, =Mz =0
5 2
Load on M212M23:fihP1M=M43=M45
3 2
(3) M32:M34=%;h(2p1+p2)M
M12=M65202
M21=M23=%h(4p6+3p5+2p4+p3)M
6 2
Load on | Ms2=Msu= 75 h (3ps+2 ps+p) M
1 2
( ) M43=M45=£"2_k(2pe+p5)M
2
M54:M53:%hp6M
M12=M65=02
‘le:Mzaz%ghle
6 w2
Load on M32:M34zﬁh(3ps+2P5+P4)M
@ | M=M= T2 (2 M
=M= 75 pe + ps)
2
M54=M562L12-hp6M
M12=M65=O2
M21:M23=%hp1M
Load on | Ma2e=Msu= 35 7 (2p1+p) M
3 2
( ) M43=M45:_%h(2pﬁ+p5)M
2
M54=M56=1%hp6M

6
a) h01=7—;(—3a1+4a2—a3)
6
hazzﬂ (—ay—ay,+2a,)
ho,=0
1
b) h01=2—ﬂ_(—5a1+6a2)
1
h02=—2—;(—2a1)
1
h93=E(a1—6a2)
6
a) h 61 = m (—8 a1+10 a2—2 a3)
6
h02:m(—3a1—~a2+4a3)
6
h03=—197(a1—6a2+5a3)
2
b) h 6, = s (-14a,+18 a,-6 a,)
m
hé,= 1—12— (-5 a,-3a,+12a,)
™
2
heazm (a1—6a2—9a3)
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Summary

The method outlined is for the analysis of interconnected bridge girders
having any degree of torsional rigidity and is based on two assumptions viz.
that the transverse members can be replaced by a continuous medium and
that torsion of these members can be neglected. The solution is reached by
harmonic analysis and distribution coefficients are tabulated for single span
bridges having from two to six main girders for all harmonics of the bending
moment and deflection curves for the span. The application of the method to
continuous beam systems by superposition is demonstrated; this is greatly
facilitated by the use of an operational system of notation. A method for the
derivation of influence lines for bending moments in the longitudinals of con-
tinuous bridges is also developed. '

Résumé

La méthode ici indiquée est destinée au calcul des poutres de ponts associés
entre elles et présentant une rigidité de torsion arbitraire. Cette méthode
repose sur deux hypotheses, a savoir que les éléments transversaux sont rem-
placés par une liaison continue et que la torsion de ces éléments peut étre
négligée. L’étude de la solution conduit & une analyse harmonique, c’est-a-
dire au développement de la flexion sous la forme d’une somme trigono-
métrique; les coefficients de répartition relatifs aux ponts & poutres simples
comportant deux & six poutres principales sont indiqués dans des tableaux
pour tous les termes de la série du moment fléchissant et de la courbe de flexion.
En outre, les auteurs exposent les conditions de 1’application de la méthode
aux poutres continues avec superposition; ’emploi du systéme de travail rela-
tif aux désignations facilite notablement I’étude. Les auteurs indiquent enfin
une méthode pour I'obtention des lignes d’influence pour les moments fléchis-
sants, dans les poutres longitudinales continues des ponts.

Zusammenfassung

Die angefiihrte Methode ist fiir die Berechnung von miteinander verbun-
denen Briickentriagern mit beliebiger Torsionssteifigkeit bestimmt. Sie beruht
auf den zwei Annahmen, dal die Querglieder durch eine kontinuierliche Ver-
bindung ersetzt und die Torsion dieser Glieder vernachlissigt werden kann.
Der Lésungsweg fiihrt iiber eine harmonische Analyse, d. h. eine Entwicklung
der Durchbiegung in eine trigonometrische Summe, und die Verteilungskoeffi-
zienten fiir einfache Balkenbriicken mit zwei bis sechs Haupttriagern sind fiir.
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alle Reihenglieder des Biegungsmoments und der Durchbiegungskurve tabel-
liert. Ferner wird die Anwendung der Methode auf Durchlauftriger mit Super-
position gezeigt; die Verwendung eines Arbeitssystems fiir die Bezeichnungen
erleichtert dabei dieses Vorgehen wesentlich. Dann folgt noch eine Methode
fiir die Herleitung von EinfluBlinien fiir die Biegungsmomente in durchlaufen-

den Briickenldngstrigern.
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