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Association d’équilibres instables en présence de charges excentrées
Stabilititsprobleme bei exzentrischer Belastung

Stability problems wnth axially-ecceniric loading.

Prof. ing. Erio GiaANGgrECo, Napoli

1. Dans un récent travail sur 'instabilité de I’équilibre élastique des vofites
polygonales, paru dans cette Revue [1] il m’est arrivé de m’occuper de poutres
cloisons soumises & 1’action de charges concentrées ou réparties le long des
bords; j’ai eu ainsi 'occasion de remarquer qu’en.présence de forces axiales,
il existe une charge critique de torsion qui vient & c6té de la charge classique
d’Euler, qui est indépendente de la longueur et de la nature des liaisons de la
poutre dans son plan et qui n’est seulement fonction que de la rigidité torsionale
et du rayon maximum d’inertie [2]. Dans le cas d’une poutre reposant sur
appuis si I’on suppose que ses extrémités peuvent tourner librement par rap-
port aux axes principaux d’inertie de la section, tandis que leur rotation par
rapport & ’axe géométrique est impossible, on a: |

B2
'NF: lz

ol N et N désignent la charge critique flexionale et torsionale, B la rigidité a
flexion dans le plan X Z (v. fig. 1), et C la rigidité a torsion de la barre, [ la
longueur de la poutre et p le rayon d’inertie maximum. La charge critique &
est en général beaucoup plus grande que la charge d’Euler et n’a pas d’impor-
tance pratique sauf dans le cas de certaines natures de liaisons du systeme
pour lequel la charge d’Euler N est elle méme trés grande.

Dans le présent travail, je traite le probléme général des forces paralléles
4 1’axe géométrique de la poutre. Pour le cas d’une force se trouvant a la
distance e de I’axe O Z je suis arrivé & la formule trés simple ci-dessous:

C
NT=? (1)

N-+N 1 2
e L
2(1-5)  2(1-5) °

p p

valable seulement pour e=+p.
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Dans la formule (2) on retrouve, comme cas particuliers, certains résultats
fournis par TiMOSHENKO [3]. Pour ¢=0 on tire évidemment les formules (1).
J’al encore remarqué que pour la force appliquée avec une excentricité égale
a p on a une seule valeur critique: '

N, =

1 1°
Ny VT Ng

(3)

Je me suis ensuite occupé de l'instabilité dile aux charges axiales N et
transversales F combinées. Pour une seule force transversale ¥ concentrée au
milieu de la portée dans le méme systéme déja considéré, je suis arrivé a
I’équation déterminatrice de la valeur de F':

‘ 2 e N F or e? F 27 _
ot W, (NFNT_N(N“NTHM(I _?)) Ny =0 W
ott F,, désigne la valeur critique de F dans le cas ou la poutre n’est pas sou-
mise aux forces axiales. De la formule (4) on peut tirer la valeur critique de F
en connaissant N ou inversement. J’ai pu remarquer que l’existence de N,
tend & baisser la valeur critique de F pour la méme valeur de N. J’ai retrouvé
comme cas particulier le résultat fourni par KrarL [4]; lorsque N atteint les
valeurs fournies par les formules (1), on doit forcément trouver F =0.

2. Dans la présente étude je me suis servi de considérations énergétiques
en conformité du théoréme de DIRICHLET [5, 6, 7, 8] exprimé par les équations:

03, B _, 98,8 _ 98, B _
33%,; T 380?: N 83@07; B

ou du,, dv;, Sw;, représentent les coefficients inconnus du développement en
série des variations Su, v, dw attribuées aux déplacements u, v, w & partir
de la position initiale d’équilibre: 8, E désigne [9] la variation seconde de
I’énergie potentielle totale (somme de 1’énergie de déformation ¢ correspon-
dant & la nouvelle position d’équilibre, du travail du deuxiéme ordre L, , déve-
loppé par les contraintes internes et du travail du deuxiéme ordre L;, développé
par les charges extérieures et changé de signe).

0 0 ()

- 3. Considérons maintenant le probléme en question. Soit fig. 1, une poutre
appuyée aux extrémités, maintenues par un dispositif (fig. 1¢) qui les empéche
de tourner dans son propre plan (autour de 1’axe O Z), mais qui permet libre-
ment la rotation dans les deux autres plans orthogonaux. Cette poutre est
soumige & ’action de deux forces axiales situées & une distance ¢ de son axe
géométrique. Ayant établi le systéme de coordonnées représenté sur la fig. 1b,
choisissons pour les déplacements les expressions suivantes:

u=0 =0 w=(w+hy)cos " =B@+hEyY (6
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, a) b,

Fig. 1

qui correspondent & la déformation indiquée sur la fig. 1b et qui respectent
les conditions aux extrémités, B, représentant 1’angle de torsion et w, le
déplacement transversal du centre de gravitél,

Les déplacements choisis annulent évidemment le travail L,”; on a

U2

y2

_ d? wy)\ 2 dp\2, _ B=* , C=#*,,

4 _Bf(dxz) dm+0f(—dx) dz =2 wp+ ST g,
0 0 -

f o,e2dV

14

I

Lo

N Ne , @ _ 1 [ow\?
=T «"=5(5)

1) En effet la véritable déformation est celle consignée sur la fig. 1a ol le point P a,
4 cause de la rotation autour de 0, une composante du déplacement suivant Z (qui

est une partie du déplacement total), fournie par y sin g, ~y B, et une composante

2 2
suivant y donnée par la différence v=y—vy cosf, ~Y ‘g" qui est une quantité infinitésimale

d’ordre supérieur par ré.pport &w=w,+ B,y et par conséquent négligeable: c’est pour cela
que nous avons considéré la déformation correspondant & la fig. 1b en supposant que la
position finale du point P soit 1’/ est encore sur la ligne P P/,

?) On pourrait dire qu’a cause de la présence de v il y a une déformation ¢, = Z—Z qui est

une quantité infinitésimale du 2e ordre et qui interviendrait dans I’expression de L, pourvu .
que ne soit pas nulle la contrainte correspondante o,,. Le seul effet produit par la v est de
modifier I/, 8’il y a des charges transversales appliquées dans un point de coordonnée y (1).
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et par conséquent:

N 72

2 I %)
L, = ~ 4l ( '*‘Bo "‘2)80“’0) .

On a ainsi, en appelant p le rayon d’inertie maximum:

_ Brt N2 " Cn2 N=? 5 2' N 72
Ol = (zz"Tz“) wo +(‘4‘7‘Tﬂ)ﬁ° ~g7 %P (D

Le déterminant critique correspondant est:

Brr4_'_ N'nz‘ _N?Tz
23 21 21 5
_N’lTZe O’J’TZ_NW
Y 57 o1 P

dont le développement fournit 1’équation du deuxiéme degré:

Ne(p2—et)~ N (B;;sz C’) +B C;” =0 (8)
qui a pour racines: | |
N=M+]/(Bﬂ ) _Bow : (9)
T 2(pP—e?) 4(p?—e2?  B(p?—¢?)
Pour ¢=0 (charge centrée) on a:
NO = BZ;T N® = ;’

la premiére racine correspondant au cas classique d’Euler et la deuxiéme
indépendente de la longueur de la poutre et de la nature de ses liaisons, mais
fonction seulement de la rigidité & torsion et de la hauteur de la section trans-
versale. On conviendra ensuite de désigner ces deux charges critiques & flexion
et & torsion par N et Np: on peut alors écrire respectivement les formules
(8) et (9) de la facon suivante:

2\ ‘ '
e (1—%)—N(NF+NT)+NFNT ~0 (8)

8) Il faut rema,rquer qu’en choisissant pour les déplacements les expressions suivantes:

u=0, v=0, w=w, cos 7, les contraintes dfiles au moment fléchissant ne travaillent pas

2 l
parce qu’il s’agit évidemment d’une distribution anti-symétrique de contralntes et d'une

distribution symétrique de déformations.
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Vo= g=afpt) *

_ Nz+N,
T 2(1—e?p?) — 2

Neg+Nyp (N g+ N qp)? NFNT_
Sl (TP g/

2
(1_162/’02) V(NF_NT)2+4NF NTE‘{- %)

Si e=p la formule (9') perd sa validité et il faut alors tirer la valeur de N
de la (8") qui se réduit en ce cas & une équation du premier degré. On a:

NpNp 1

“ Np+N, L U
Ny ' Nrp

N,

Il est intéressant de remarquer que si 1’on néglige dans le développement du
déterminant de la page 4 le second terme de la deuxiéme ligne, et si ’on
prend M =N e on parvient a I’équation:
M 1 NC\  n?
Bo\"TIE) T

laquelle est parfaitement coincidente avec celle quiest fournie par TIMOSHENKO
[3]. |

4. Examinons et discutons la formule (8"); il s’agit de 1’équation d’une
quartique qu’il nous convient de mettre dans la forme suivante plus simple

et expressive:
ya?-1)+ay+b=0 (8")

dans laquelle, en se référant au probléme que 1’on envisage, on fait les hypo-

théses suivantes:
a>0 b>0 a*—4b>0 (10)

La quartique est symétrique par rapport a ’axe 0y et posséde & l'infini dans
la direction de I’axe 0y un point double & tangentes distinctes (lesquelles ont
respectivement les équations z+ 1=0 et x — 1 =0); la quartique posséde encore
a D'infini dans la direction de [’axe 02 un point double avec deux branches
de cbtés opposés par rapport & la tangente. De la formule (8’) écrite dans la

forme:
y2—ay+b (11)
yZ
on remarque que les coordonnées des points qui appartiennent a la courbe
doivent satisfaire la relation:

A =

y2—ay+bz0 (119

laquelle, pour la troisiéme des hypothéses (10), étant donné que les racines du
trinome du deuxiéme degré (au numérateur de la (11)) sont réelles, est vérifiée

ar:
E Y <Y<y,

4 Abhandlung XIV
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et étant 5> 0 on a aussi a> Ya2—4b, par couséquent:
#:>0  y,>0

De la (8”) on tire les équations représentatives des deux branches de la quar-
tique:

—a+ Va2 +4b(x2—1) —a—Yai+4b(x2—1)

0= 2 (@ —1) = 2 (@ —1)

On remarque que:

limy,(x)=00" limy,(x)=—oc0  limy,(a)=0
z—1 z—1 £—> 0
-0 +0
: : : < 2 bt
limy, (x) =0 et encore limy,(x) = lim o - = — )
&= -1 a+Va,2+4b(x—1) a
et la fonction y, (z) est définie par continuité pour x =1 enfposa,nt:
. b
y1 (1) = limy, (x) = —
x—1 a
A
|r=Ner
y2=NT
. \“—\
T BN YN
a NF*NT -
-'7 0 +7 x:-‘%-
Fig. 2

4} On retrouve ainsi la valeur tirée de 1’équation linéaire o y—b=0 qui fournit:

= Nrr
cr“NF+NT'
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Sur la fig. 2 on a représenté D'allure de la quartique précitée. Les valeurs
physiquement acceptables pour la charge critique sont celles qui appartiennent
au premier quadrant et en particulier, en pratique, celles de la branches ¥, (z).

Si a?—4b=0s0it Ny=Ny (c’est & dire pour une valeur spéeiale du rapport
p/t la courbe a un point double (0,a/2) et se réduit & deux hyperboles dont les
équations sont:

2zy+2y—a=0 2zy—2y+a=0 (12)
/
y=Ner
2 2
-1 0 +1 ,,:%'
Fig. 3

et dont l’allure est consignée sur la fig. 3. Les valeurs physiquement possibles
sont celles positives de la branche y, (z).

5. Les deux équilibres instables correspondant & la force axiale, coincident
lorsque:

: S
Np =N, soit §—2=B—ﬁz. (13)

En généralisant les résultats obtenus on a pour tous les cas d’Euler:
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/l VA TVE 2r v 8
Fig. 4

Les rapports p/! indiqués sur la figure 4 pour chaque cas correspondent & la
coexistence possible des deux équilibres instable & flexion et & torsion. En
particulier pour une section rectangulaire de béton beaucoup plus haute que

large 3=E;u~0;0~2B on a en correspondance & la fig. 4:
ge (p” =13 P g
2= 1,103 2,205 0,551 0,780

6. Examinons maintenant le cas d’une distribution quelconque de forces
axiales qui engendrent dans une section quelconque un moment fléchissant M
(considéré comme positif s’il produit une traction dans les fibres inférieures)
et un effort normal N (considéré comme positif s’il est une traction): on a

N My
et:
.2
Ly = 47; (N wg?+ N By2p%+2 M Byw,).

L’expression de la variation seconde de 1’énergie potentielle totale devient

alors:
4 2 2 2 2
Br Nw) 2 (OTr N )1802 w2 M By w, (14)

- _ _ 2
S?E"(w 2 ) T\ T P 21
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et le déterminant critique est:

Bn*t Naz* w2 M
2B 2] 2]
@M st Na , |T"
21 SR YAl
Prenons maintenant en considération deux cas parﬁcu]iers:
1) M=0 N=-2N, (fig. 5)
N P
N
Fig. 5
Bnx? C
Np=—n NT=ﬁ (15)
2) M=2N,e, N=0 (fig. 6)
N P
A
Fig. 6
= VBC
Ner = 2 el (16)

7. Dans I’étude que nous venons de développer nous aurions pu choisir
pour les déplacements les expressions suivantes:

= %J(—(xO)) dz v=20 w=(w0+,80y)cos;—:;. (17)
d

On a alors:
2 ou 2 T
= —_-— 2 _— = —— 2gin% —
u (1) Wy T 577 Yo' sin? oo
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et outre le travail du deuxiéme ordre des contraintes internes:

N I
L, = — ™ (Bo i +23woﬁo)

on a encore un travail du deuxiéme ordre des forces extérieures:

N 72
41

Lz, =

La différence L, — L, est égale au travail L, précédemment trouvé et I’expres-
sion [7] de 8, & demeure la méme. Il est important de remarquer que le choix
que I'on a fait pour u est tel que la contrainte o, travaille aussi pour la

composante Z—Z de la déformation. Cette composante, qui est en apparence du

premier ordre, est en effet une quantité infinitésimale du deuxiéme ordre a
cause du choix fait pour .

8. Envisageons maintenant les équilibres instables qui proviennent de la
coéxistence de charges axiales excentrées et de charges transversales. Con-
sidérons la poutre déja étudiée et chargée par une force F concentrée au milieu.
En tenant compte dans I’expression de 8, # du travail du deuxiéme ordre dé-
veloppé par les contraintes internes®),

g = fa‘wew(z)dV—l— f’rw'yg,) AV = F ——— 4+7T Bowy (18)

v v
on a:

Bﬁ4 Nwz Crm% N2 N 2 4 4 72
[ 2 o 2 2__ - T
82E‘(413 4z)"’ (41 a1 P)B" (21 e+ Fg )B"w" (19)

5) En effet: .
_Fi-= - ___If_(f_ )
=g 1 Y Tey T 4T \'4
o1 (3_w) - dap oW
= =3 \3 == Pz oy
On a ainsi:
- B B, w FByw 4472
Ly = 0 G 4)'[" ﬂo 0 ZFTBOWO

4 laguelle on pouvait parvenir plus directement en considérant dans une section quel-

congue la courbure % et Ia rotation relative = d qui fait développer & la composante

d 2
M 8 du moment fléchissant autour de £, un travail fourni par:

12 112
dzw d2w 4 4 2 ‘
2IMBW dx = 2Ffﬁ% (I-a)do=F T By w,.
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Le déterminant critique correspondant est:

Bw4__Nw2 _Nw2 F4+w2 '

5B 3] . 27 7" 18
—NW26—F4+W2 Cn2 Nt 0 =0

21 16 21 21 P

lequel développé fournit 1’équation:

BO#% Na* (Bn* , COxn® Nm3\2 , N 72 4 4 7%\ 2
i 2l (213 pr 21)*( 21 ) P ‘( YRR ) =0.  (20)
En posant comme précédemment:
Bz | C

et encore

F . 8773 VBC

o 44+mr 12
on peut écrire:

NF, e? ¥

F2+2£—LFM—(N Np—N(Ng+N +N2(1—-—)) T =0, (21

Si Pon veut déterminer la valeur critique de F en connaissant N, ou inverse-
ment: '

2 2 '
NS,.(1—@_2.) ~ N, (NF+NT+2 e ]/NFNT)+NFNT(1—£2) = 0. (22)
P P I, F

Examinons maintenant les formules (18) et (19) et discutons-les séparemment.
La formule (21) fournit, si I’on ne tient pas compte de la racine négative:
Fc,=i— (]/Nz-N(NF+NT)+NFNT—.-.N i) : (23)

relation de laquelle on peut remarquer que I’excentricité ¢ de la force N baisse
la valeur de F,.; on a F=F, pour N =0 et F'=0 pour cette valeur de NV égale
& la valeur critique que 1’on a en ’absence de F.

Si e=p on a l'instabilité pour:

F
F,=—2—[NgNpy—N{Nz+N 23’
Vm‘ [ Y ( ra T)] ( )
et F' s’annule pour N =l\%-NTTT valeur correspondant & I’instabilité flexio-
torsionale en I’absence de charges transversales. Si e=0:
Fc,r v
F,=——2= V(Np~N)(Np—DN) (237)

INp Ny
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Dans ce cas on a ’instabilité pour ces valeurs de la charge axiale N qui
sont fournis par les formules (1), correspondant séparément & D’instabilité a
flexion ou & torsion.

Envisageons maintenant dans le cas de e ==p la formule (19) dont la solution
est:

S— 2 2 2
N - NetNe e F e, ]/(&;_Nr) +Np Ny [F_Z (1+%)_1] (24)
[ ) Fe, P

cr

laquelle fournit pour =0

~ Ng' =Ny Ng =DNg
et pour F'=F,
NG =0 Né?')=NF+NT+2%]’NFNT'

Si e=p la formule (22) se réduit & une équation de premier degré et donne:

2
N, = Nl = (1—17{;) (24)
N 2£__M_ cr
Np+Np+ ) TNoTe

laquelle s’annule forcément pour cette valeur de la charge transversale qui
correspond & I'instabilité du systéme en 1’absence de forces axiales. 8ie=0on a:

Nz+N Nyp+Nyp\2 2 7
cr

avec laquelle
pour F=F, NP =0 NP =N,+N,

pour F=0 NP=N, NZ=Np

I1 est interessant de remarquer les effets dds & la présence de N, soit sur
N, soit sur F,; en effet en négligeant N, on a le déterminant (4):

Bn*  Na? _F 4+a°
2103 21 16
7 447t C n? 0
16 ' 21
et en conséquence 1’équation:
' BC#7% Nt 4+ 7%\ 2
s B =
i T ap O ( 16 ) ¢ (25)

qui par exemple, pour une valeur établie de N fournit:

2
FO - 87 Tm YN, -N.

44 72
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On a ainsi, avec la formule (24")

]/ N
FOT=F((32) ].—FT—<F£2)-

Pour une charge uniformément répartie, nous avons®)

_(Bn* Na%\ | Cn® Nn* , Nzn?e =%+ 3
52E‘(4l3_4l)w°+(4l_41"’)"( 27 24 pl)ﬁ"w" (26)
et le déterminant critique correspondant est:

' B7T4_N7r2 _Ne'n'z w43 ]
2 21 21 2 P
_Neﬂz_ﬂ'z-{-?i ! Cn?2 N2 0 = Ue
21 24 P 21 21 °

9. Voici une application concréte pour le cas d’une poutre cantilever
(v. fig. 7).

Z ol
E yh N

Fig. 7

Choisissons pour les composantes du déplacement les expressions suivantes:
w = Wy () + B, () y

T 5 T (27)
Wy (x) = W, (l-senz—l) Bolx) = Bocos-2—l.

On a alors pour les contraintes, en appelant M le moment fléchissant di &
I’excentricité de la force N :

2
") En conformité & ce qu’on a dit dans lerenvoi (5)ona: L/y,=0: L,=p [ %3 B, w, (1)
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et pour la variation seconde de I’énergie potentielle totale:
Bn* Na? Cn* Nax? M ™
o= (B ) s (5= ) = (5 -

6472 161
Le déterminant critique vaut:

Bn* Na* _ Ma Fan
3203 81 41 8 g
_Mx_ Fmn  COn?® Nz? e .
4 8 81 sl P S
En I’absence de M il fournit:
22
e —N(Np+Np)+NgNyg (29)
au lieu de (4)
Bzt Nt _Fx
323 8l 8 0
Fﬂ' Cn? -
8 81
qui fournit:
SR CRY P
dont: _
N
F, =FQY1-=L < FY

N

10. Pour une poutre cantilever qui a les caractéristiques élastiques et géomé-
triques suivantes: :
[=60m h=15m b=3m

B=67,5-106t m? ('=107,26-106tm? p=4,33m
et qui est soumise & une force axiale de 600t on trouve:
N, = 46,26-10%t . Np= b5720-103¢
FO = 115,74 103 F, =113,60-10°t,.
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Résumé

L’auteur étudie I’association des équilibres instables dfis & 1’action contem-
poraine de forces axiales et de forces transversales. En utilisant la méthode
énergétique il trouve pour une force excentrée agissant parallélement & 1’axe
de la poutre deux valeurs critiques de la charge, fonctions de la longueur de la
barre, de la rigidité flexionale et torsionale, de 1’excentricité de la force et du
rayon maximum d’inertie.

Apres avoir étudié certains cas particuliers qui se déduisent des formules
trouvées, I’auteur envisage le probléme de l'instabilité de la méme barre
soumise aussi & ’action de forces transversales. Il parvient & des expressions
qui fournissent la valeur critique de la charge axiale, la charge transversale
ayant été établie, ou inversement.

11 expose enfin une application numérique et détermine les valeurs critiques
de la charge correspondant & linstabilité par flexion et & l'instabilité par
torsion.

Zusammenfassung

Der Verfasser behandelt das Stabilititsproblem bei gleichzeitiger Bean-
spruchung in Richtung der Achse und senkrecht dazu. Unter Verwendung der
Energie-Methode findet er fiir eine parallel zur Triigerachse wirkende exzen-
trische Kraft zwei kritische Lastwerte, welche von der Balkenlinge, der
Biegungs- und Torsionssteifigkeit, der Exzentrizitét der angreifenden Kraft
und dem maximalen Trigheitsradius abhéingig sind.
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Nach der Beschreibung einiger Sonderfille, welche aus den gefundenen
Formeln abgeleitet werden, behandelt der Verfasser das Stabilitdtsproblem des
gleichen Balkens, welcher auBerdem noch von einer Kraft senkrecht zur Achse
beansprucht wird. Die erhaltenen Formeln erlauben die Bestimmung der kri-
tischen Axiallast bei gegebener Belastung senkrecht zur Achse und umgekehrt.

SchlieBlich wird ein numerisches Beispiel behandelt und gezeigt, wie die
kritischen Lasten von den Grenzwerten der Biegungs- und Torsionsstabilitit
abhéngen.

Summary

The author treats the stability problem of simultaneous loading in the
direction of the axis and normal to it. By application of the energy method,
“he finds two critical load-values, for an eccentric load acting parallel to the
girder axis, which depend on the column-length, the bending- and torsion-
stiffness, the eccentricity of the applied load and the limiting radius of gyration.
After detailing a few particular cases, which are derived from the formulas
already found, the author discusses the stability problem of the same column
which is now also loaded by a force normal to the axis. Formulas are derived
which enable the critical axial load to be estimated for any given loading
normal or skew to the axis. ‘
In conclusion a numerical example is worked out and it is shown how the
critical loads depend on the limiting values of the bending and torsional
stability. ‘
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