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Association d'equilibres instables en presence de charges excentrees

Stabilitätsprobleme bei exzentrischer Belastung

Stability problems with axially-eccentric loading

Prof. ing. Elio Giangreco, Napoli

1. Dans un recent travail sur l'instabilite de l'equilibre elastique des voütes
polygonales, paru dans cette Revue [1] il m'est arrive de m'occuper de poutres
cloisons soumises ä l'action de charges concentrees ou reparties le long des

bords; j'ai eu ainsi l'occasion de remarquer qu'en presence de forces axiales,
il existe une charge critique de torsion qui vient ä cöte de la charge classique
d'Euler, qui est independente de la longueur et de la nature des liaisons de la

poutre dans son plan et qui n'est seulement fonction que de la rigidite torsionale
et du rayon maximum d'inertie [2]. Dans le cas d'une poutre reposant sur
appuis si l'on suppose que ses extremites peuvent tourner librement par
rapport aux axes principaux d'inertie de la section, tandis que leur rotation par
rapport ä l'axe geometrique est impossible, on a:

B^ C
NF -J2~ NT -J (1)

oü NF et NT designent la charge critique flexionale et torsionale, B la rigidite ä

flexion dans le plan XZ (v. fig. 1), et C la rigidite ä torsion de la barre, l la

longueur de la poutre et p le rayon d'inertie maximum. La charge critique NT
est en general beaucoup plus grande que la charge d'Euler et n'a pas d'impor-
tance pratique sauf dans le cas de certaines natures de liaisons du Systeme

pour lequel la charge d'Euler NF est eile meme tres grande.
Dans le present travail, je traite le probleme general des forces paralleles

ä l'axe geometrique de la poutre. Pour le cas d'une force se trouvant ä la
distance e de l'axe OZ je suis arrive ä la formule tres simple ci-dessous:

N. ^^f ± -T^ V(NF-NT)2+ ±NFNT^ (2)

2(l-J) 2(1-L) V

valable seulement pour e + p.
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Dans la formule (2) on retrouve, comme cas particuliers, certains resultats
fournis par Timoshenko [3]. Pour e 0 on tire evidemment les formules (1).
J'ai encore remarque que pour la force appliquee avec une excentricite egale
k p on Sb une seule valeur critique:

N" -T^T- (3)

Je me suis ensuite occupe de l'instabilite düe aux charges axiales N et
transversales F combinees. Pour une seule force transversale F concentree au
milieu de la portee dans le meme Systeme dejä considere, je suis arrive ä

l'equation determinatrice de la valeur de F:

^^^fc^-K^-^^'+^+^l1-^))^-0 (4)

oü Fg, designe la valeur critique de F dans le cas oü la poutre n'est pas sou-
mise aux forces axiales. De la formule (4) on peut tirer la valeur critique de F
en connaissant N ou inversement. J'ai pu remarquer que l'existence de NT
tend ä baisser la valeur critique de F pour la meme valeur de 2V. J'ai retrouve
comme cas particulier le resultat fourni par Krall [4]; lorsque N atteint les

valeurs fournies par les formules (1), on doit forcement trouver 2^ 0.

2. Dans la presente etude je me suis servi de considerations energetiques
en conformite du theoreme de Dirichlbt [5,6,7,8] exprime par les equations:

B82E_ 8S2E_ 8S2E_
J8u^-° 1Sv^-° Jo-w^~° (5)

oü 8 U{, 8V{, 8wit representent les coefficients inconnus du developpement en
serie des variations Sw, 8v, Sw attribuees aux deplacements u, v, w ä partir
de la position initiale d'equilibre: 82E designe [9] la Variation seconde de

l'energie potentielle totale (somme de l'energie de deformation <f> correspon-
dant ä la nouvelle position d'equilibre, du travail du deuxieme ordre L2, deve-

loppe par les contraintes internes et du travail du deuxieme ordre L2 developpe

par les charges exterieures et change de signe).

3. Considerons maintenant le probleme en question. Soit fig. 1, une poutre
appuyee aux extremites, maintenues par un dispositif (fig. 1 c) qui les empeche
de tourner dans son propre plan (autour de l'axe OZ), mais qui permet libre-
ment la rotation dans les deux autres plans orthogonaux. Cette poutre est
soumise ä l'action de deux forces axiales situees ä une distance e de son axe
geometrique. Ayant etabli le Systeme de coordonnees represente sur la fig. 1 b,
choisissons pour les deplacements les expressions suivantes:

u 0 v 0 w (w0+ß0y) cos ^j-= w0(x)+ß0(x)y (6)
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qui correspondent ä la deformation indiquee sur la fig. lb et qui respectent
les conditions aux extremites, ß0 representant l'angle de torsion et w0 le
deplacement transversal du centre de gravite1.

Les deplacements choisis annulent evidemment le travail L2: on a

z/2

0 0

^2=1 ^x«

WJ+-
4Z« M° • U ßo*

J*>dV

ou
N Ne

y2) (2) _
1 (dwV

~2\dx)
J) En effet la veritable deformation est celle consignee sur la fig. 1 a oü le point P a,

a cause de la rotation autour de 0, une composante du deplacement suivant Z (qui
est une partie du deplacement total), fournie par y sin ß0r^iy ß0 et une composante

yß<?suivant y donnöe par la difference v — y — y cos ß0 • ¦ qui est une quantitö infinitesimale

d'ordre superieur par rapport ä w w0 + ß0 y et par consäquent negligeable: c'est pour cela
que nous avons considerä la deformation correspondant ä la fig. 1 b en supposant que la
position finale du point P soit 1" est encore sur la ligne PP'.

8 v
2) On pourrait dire qu'a cause de la presence de v il y a une deformation e =-^- qui est

v öy
une quantite infinitesimale du 2e ordre et qui interviendrait dans l'expression de L2 pourvu
que ne soit pas nulle la contrainte correspondante a Le seul effet produit par la v est de
modifier L'2 s'il y a des charges transversales appliqu^es dans un point de coordonn^e y (1).
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et par consequent:

L*= ~"4T (w02+ß02-^ + 2ß0w0ey).

On a ainsi, en appelant p le rayon d'inertie maximum:

82E (B^ Ntt2\ IC-rr2 Ntt2 „\ „ „ Ntt2

Le determinant critique correspondant est:

Ni
2ls 21

Ntt2

21

Ott2 Ntt2
0

21 21 21 r

dont le developpement fournit l'equation du deuxieme degre:

N2(p2_e2)_N^.p2 + CyB^ 0

qm a pour racmes:

N„
B"2 n2,n \lB* „2 p\2

l*

2(p2-e-p2\ ±y
4(p2-e2)2 l2(P2-e2)

(8)

(9)

Pour e 0 (charge centree) on a:

N£>
B-t

l2
M er 2 :

la premiere racine correspondant au cas classique d'Euler et la deuxieme

independente de la longueur de la poutre et de la nature de ses liaisons, mais
fonetion seulement de la rigidite ä torsion et de la hauteur de la section
transversale. On conviendra ensuite de designer ees deux charges critiques ä flexion
et ä torsion par NF et NT: on peut alors ecrire respectivement les formules
(8) et (9) de la facon suivante:

N2 (l-4) ~N(NF + NT) + NPNT 0 (8')

3) II faut remarquer qu'en choisissant pour les deplacements les expressions suivantes:

u 0, v — 0, w w0 cos -jry, les contraintes dües au moment flechissant ne travaillent pas

parce qu'il s'agit evidemment d'une distribution anti-symetrique de contraintes et d'une
distribution symetrique de deformations.
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NF + NT /(NF
w 2(l-e2/p2) - M(l-

+ NT)2 NFNT
-e2/p2)2 l-e2/p2

#*¦+#*¦ _,
1

2(l-e2/p2) -2(l-e2/p2) (tf,-/yr)* +4#,.#". (9')

Si e=p la formule (9') perd sa validite et il faut alors tirer la valeur de N
de la (8') qui se reduit en ce cas a une equation du premier degre. On a:

N„N„ 1

N„
' F^T _NF + NT J_,J_'

Np "*" NT

II est interessant de remarquer que si l'on neglige dans le developpement du
determinant de la page 4 le second terme de la deuxieme ligne, et si l'on
prend M Ne on parvient ä l'equation:

/ NC\M2
B~C V ' M2) ~ l2

laquelle est parfaitement coincidente avec celle qui est fournie par Timoshbnko
[3].

4. Examinons et discutons la formule (8'); il s'agit de l'equation d'une
quartique qu'il nous convient de mettre dans la forme suivante plus simple
et expressive:

y2(x2-l)+ay + b 0 (8")

dans laquelle, en se referant au probleme que l'on envisage, on fait les hypo-
theses suivantes:

a>0 6>0 a2-46>0 (10)

La quartique est symetrique par rapport ä l'axe Qy et possede ä l'infini dans
la direction de l'axe Qy un point double ä tangentes distinctes (lesquelles ont
respectivement les equations £+1 0 et x —1 0); la quartique possede encore
ä l'infini dans la direction de l'axe Ox un point double avec deux branches
de cötes opposes par rapport ä la tangente. De la formule (8') ecrite dans la
forme: 9

x2 y2-gy + b

y2

on remarque que les coordonnees des points qui appartiennent ä la courbe
doivent satisfaire la relation:

y2-ay + b^0 (11')

laquelle, pour la troisieme des hypotheses (10), etant donne que les racines du
trinome du deuxieme degre (au numerateur de la (11)) sont reelles, est verifiee

par: y^y^y2
4 Abhandlung XIV
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et etant b> 0 on a aussi a> ia2 — ib, par cousequent:

2/i >0 y2>0

De la (8") on tire les equations repräsentatives des deux branches de la
quartique:

-a+ia2 + 4:b(x2-\) -a-ia2 + 4:b(x2-l)
Vx

On remarque que:

2(x2-\) 2/2 2(z2-l)

lim y2 (x) oo lim y2 (x) — oo lim y2 (x) 0
X->1 X—>1 X->CO

-0 +0

lim yx (x) 0 et encore lim yx (x) lim
X —>0O X—>1

26
_ _6 *)

a+ ia2+4:b(x-l) «

et la fonetion yx(x) est definie par continuite pour x l en posant:

2/i(l) lim yx(a;) —
a;-*l «

y=w

v-"r
6 _j5JfA±
a ~NF+NT

y,-A,-F

Fig. 2

4) On retrouve ainsi la valeur tiree de l'equation lineaire a y — b 0 qui fournit:

NFNTN„ NF + NT
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Sur la fig. 2 on a represente 1'allure de la quartique precitee. Les valeurs
physiquement acceptables pour la charge critique sont Celles qui appartiennent
au premier quadrant et en particulier, en pratique, Celles de la branches yx (x).

Si a2 — 4 b 0 soit NF NT (c 'est ä dire pour une valeur speciale du rapport
pß la courbe a un point double (0,a/2) et se reduit ä deux hyperboles dont les
equations sont:

2xy+2y-a=0 2xy-2y+a=0 (12)

y-H

a_N/r*NT
2' 2

x=

Fig. 3

et dont 1'allure est consignee sur la fig. 3. Les valeurs physiquement possibles
sont Celles positives de la branche yx (x).

5. Les deux equilibres instables correspondant ä la force axiale, coi'ncident
lorsque:

NF NT soit 2^-
C

Btt2' (13)

En generalisant les resultats obtenus on a pour tous les cas d'Euler:
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Les rapports p/l indiques sur la figure 4 pour chaque cas correspondent ä la
coexistence possible des deux equilibres instable ä flexion et ä torsion. En
particulier pour une section rectangulaire de beton beaucoup plus haute que

large (p2 tö' u ~ 0; 0 ~ 2 B) on a en correspondance ä la fig. 4:

T" M03 2,205 0,551 0,780

6. Examinons maintenant le cas d'une distribution quelconque de forces
axiales qui engendrent dans une section quelconque un moment flechissant M
(considere comme positif s'il produit une traction dans les fibres inferieures)
et un effort normal N (considere comme positif s'il est une traction): on a

et:

N My
°* -A—-r

L2 ^~ (Nw02 + Nß02P2 + 2Mß0w0).

L'expression de la Variation seconde de l'energie potentielle totale devient
alors:

-2Mß0w0„ (Btt* Ntt2\ ICtt2 Ntt2 9B9E | — —\wn2 + l 2

4P 41 -W
4:1 4:1 )Ä,'-- 21 (14)
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et le determinant critique est:

Btt* Ntt2 >M
2ls 21

TT2M

21

Ci
21 21 21

Prenons maintenant en consideration deux cas particuliers:

1) M 0 N=-2N1 (fig. 5)

Fig. 5

45

AT B^N' 2l2
G

2) M 2N1e1 N 0 (fig. 6)

(15)

Fig. 6

_nlBC" 2 el (16)

7. Dans l'etude que nous venons de developper nous aurions pu choisir

pour les deplacements les expressions suivantes:

u /(£<"»)'<¦ TTX

On a alors:

2 J \dx
o

u(l) -jjWo2

v 0 w (w0 + ß0y) cos-^j. (17)

du ttX
j^ -Ww°sin2T
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et outre le travail du deuxieme ordre des contraintes internes:

NiL2= 4^(ßo2^+2™oßo)

on a encore un travail du deuxieme ordre des forces exterieures:

r • Ntt2
2L2 -^- w2

La difference L2 — L2 est egale au travail L2 precedemment trouve et l'expres-
sion [7] de 82 E demeure la meme. II est important de remarquer que le choix
que l'on a fait pour u est tel que la contrainte crx travaille aussi pour la

composante ^— de la deformation. Cette composante, qui est en apparence du

premier ordre, est en effet une quantite infinitesimale du deuxieme ordre ä

cause du choix fait pour u.

8. Envisageons maintenant les equilibres instables qui proviennent de la
coexistence de charges axiales excentrees et de charges transversales. Con-
siderons la poutre deja etudiee et chargee par une force F concentree au milieu.
En tenant compte dans l'expression de 82E du travail du deuxieme ordre de-

veloppe par les contraintes internes5),

£2= J<rxeVdV+ jTxyy%dV=F^±fß0w0 (18)

on a:

_ „ (Btt* Ntt2\ (Ctt2 Ntt2 ,\ „ [Ntt2 4+tt«\0h2E \i^-^)<+W--wn^-{-2re+F^^ (19)

5) En effet:

F l-x
cv 4J \4 y ]

I l—\
2 \dx)

On a ainsi:

2
m _dw dw

y*v~ Jx~~dy~'

Fß0wa
|

Fß0w0 =F± + ir2

16 v ' ' 2 16

ä laquelle on pouvait parvenir plus directement en considerant dans une section quel-
1 d? w

conque la courbure - et la rotation relative -r-^ dx qui fait dövelopper a la composante

Mß du moment flechissant autour de f, un travail fourni par:
112 112

16
0 0
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Le determinant critique correspondant est:

Btt* Ntt2
2P

\r^2
21 e-F

4: + -

21 ¦e-F 4 + 7T2

16

21 ~ ' 16

Ott2 Ntt2
21 21

0

lequel developpö fournit l'equation

BÖTTe Ntt2 /Btt*
4:1* 21

[Btt* Ctt2\ (Ntt2\2 (Ntt2 „4 + 772\2 n

En posant comme precedemment:

NF

et encore

on peut ecrire:

Btt2
l2 NT

G

P2

8 TT3 ][BC
l2r 4 + 1T2

Fl+2J^^TF<*-{N^-N{N*+N^
Si l'on veut determiner la valeur critique de F en connaissant N, ou inverse-
ment:

Nl{l-^yNcr(NP+NT+2^ iNjN^yNFNT(l-^ =0.(22)

Examinons maintenant les formules (18) et (19) et discutons-les separemment.
La formule (21) fournit, si l'on ne tient pas compte de la racine negative:

F.. -j4== (lN2-N(NF + NT) + NFNT-N ±)
VN„N™ \ PI

(23)

relation de laquelle on peut remarquer que l'excentricite e de la force N baisse

la valeur de F^ ;ona,F F^ pour N 0 et F 0 pour cette valeur de N egale
ä la valeur critique que l'on a en l'absence de F.

Si e=p on a l'instabihte pour:

F F
iN^Wj [NFNT-N(NF + NTy\ (23')

et F s'annule pour N ¦S[F,-^ valeur correspondant ä l'instabihte flexio-

torsionale en l'absence de charges transversales. Si e 0:

FF
iNFNT

i(NF-N)(NT-N) (23")
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Dans ce cas on a l'instabihte pour ces valeurs de la charge axiale N qui
sont fournis par les formules (1), correspondant separement ä l'instabilite ä

flexion ou ä torsion.
Envisageons maintenant dans le cas de e#p la formule (19) dont la Solution

est:
e_ NF+NT e F ,„ AT -./(NF+NT\2 A7 \F2 t e*\

(24)

laquelle fournit pour F 0

et pour F Fcr

NT zv.

#£> o N™ NF + NT + 2- iNFNT.
P

Si e p la formule (22) se reduit ä une equation de premier degre et donne:

N„ NFNT

NF+NT+2
e FF* ('-£) (24')

P ]/NFFT

laquelle s'annule forcement pour cette valeur de la charge transversale qui
correspond ä l'instabihte du Systeme en l'absence de forces axiales. Si e 0 on a:

Ner
X*>+NT

±
J(NF + NT\2Y-NFNT(l-j^) (24")

avec laquelle

pour F Fa

pour 2^ 0 N%=NF

N™=NF + NT

N(l> Nr.

II est interessant de remarquer les effets düs ä la presence de NT soit sur
Na. soit sur JPg,; en effet en negligeant NT on a le determinant (4):

Btt* Ntt2
2P 21

F± + *2
16

et en consequence l'equation:

BCtt« Ntt*
41* 4l2

-F 4+77

Ott2
21

0

C-F2 m- (25)

qui par exemple, pour une valeur etablie de N fournit:

F(0) ic
4+- 1NF-N.
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On a ainsi, avec la formule (24")

7.(0)
Fcr Fn 1

N
<- F<0'1-nZ<f-

Pour une charge uniformement repartie, nous avons6)

82E 4P 41 rv ' \ 4:1 41

et le determinant critique correspondant est:

2Ve772 7T2 + 3

2P 21

Ne-rr2 772+3
21 24 pl

21 24

7tt2 Ntt2

pl

21 21

0.

49

IBtT* NtT2\ 2/CTT2 NTT2 A (NTT2e 7T2+3 7\ 0

9. Voici une application concrete pour le cas d'une poutre cantilever
(v. fig. 7).

Fig. 7

Choisissons pour les composantes du deplacement les expressions suivantes

w w0(x)+ß0(x)y

w0(x)=w0il-sen~\ ß0 (x) ß0 cos ^j-.
(27)

On a alors pour les contraintes, en appelant M le moment flechissant du ä

l'excentricite de la force N:
N My Fxy

°* -A—^-+I
F lh2 A
2T\i;-y)

7T2+3
7) En conformite a ce qu'on a dit dans le renvoi (5)ona,:L'2 0 : L2 pl —si— ßowoW24
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et pour la Variation seconde de l'energie potentielle totale:

82E _(^_N^\ (G^_Nt^ \ (Mrr FrÄ
[64ls 161

Le determinant critique vaut:

Btt* Ntt2

(28)

Mit Ftt
32P 81

_
MtT

_
FTT

~~n 8~~

En l'absence de M il fournit:

FH2

41 8

Ott2 Ntt2
81 81 f

au Heu de (4)

2^2 =N2-N(NF + NT) + NFNT

Ftt
~8~

Ott2

32P 81

Ftt
81

qui fournit:

dont:

p(0) _¦Ber —
ic

F~ F(0)

1/NF-N

1 _ ^T_ p(0)
N ""

(29)

10. Pour une poutre cantilever qui a les caracteristiques elastiques et geome-
triques suivantes:

Z 60m h=l5m & 3m

2? 67,5-106tm2 G 107,26-10« tm2 p 4,33 m

et qui est soumise ä une force axiale de 6001 on trouve:

NF= 46,26-10H NT= 5720- 103t

F®) 115,74- 103t Fcr 113,60- 103t.
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Resume

L'auteur etudie l'association des equilibres instables düs a l'action contem-

poraine de forces axiales et de forces transversales. En utilisant la methode

energetique il trouve pour une force excentree agissant parallelement ä l'axe
de la poutre deux valeurs critiques de la charge, fonctions de la longueur de la

barre, de la rigidite flexionale et torsionale, de l'excentricite de la force et du

rayon maximum d'inertie.
Apres avoir etudie certains cas particuliers qui se deduisent des formules

trouvees, l'auteur envisage le probleme de l'instabilite de la meme barre
soumise aussi a l'action de forces transversales. II parvient a des expressions

qui fournissent la valeur critique de la charge axiale, la charge transversale

ayant ete etablie, ou inversement.
II expose enfin une application numerique et determine les valeurs critiques

de la charge correspondant a l'instabihte par flexion et a l'instabihte par
torsion.

Zusammenfassung

Der Verfasser behandelt das Stabilitätsproblem bei gleichzeitiger
Beanspruchung in Richtung der Achse und senkrecht dazu. Unter Verwendung der

Energie-Methode findet er für eine parallel zur Trägerachse wirkende
exzentrische Kraft zwei kritische Lastwerte, welche von der Balkenlänge, der

Biegungs- und Torsionssteifigkeit, der Exzentrizität der angreifenden Kraft
und dem maximalen Trägheitsradius abhängig sind.
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Nach der Beschreibung einiger Sonderfälle, welche aus den gefundenen
Formeln abgeleitet werden, behandelt der Verfasser das Stabihtätsproblem des

gleichen Balkens, welcher außerdem noch von einer Kraft senkrecht zur Achse
beansprucht wird. Die erhaltenen Formeln erlauben die Bestimmung der
kritischen Axiallast bei gegebener Belastung senkrecht zur Achse und umgekehrt.

Schließhch wird ein numerisches Beispiel behandelt und gezeigt, wie die
kritischen Lasten von den Grenzwerten der Biegungs- und Torsionsstabilität
abhängen.

Summary

The author treats the stability problem of simultaneous loading in the
direction of the axis and normal to it. By application of the energy method,
he finds two critical load-values, for an eccentric load acting parallel to the
girder axis, which depend on the column-length, the bending- and torsion-
stiffness, the eccentricity of the applied load and the limiting radius of gyration.

After detailing a few particular cases, which are derived from the formulas
already found, the author discusses the stabihty problem of the same column
which is now also loaded by a force normal to the axis. Formulas are derived
which enable the critical axial load to be estimated for any given loading
normal or skew to the axis.

In conclusion a numerical example is worked out and it is shown how the
critical loads depend on the limiting values of the bending and torsional
stability.
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