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Die genaue Theorie der prismatischen Faltiwerke
und ihre praktische Anwendung

The exact theory of prismatic structures formed by bending
and 1ts practical application

- La Théorie exacte des voiites polygonales prismatiques et leur emploi pratique

Dipl.-Ing. A. WerrzL, Haifa (Israel)

1. Einleitung

Das in Figur 1 abgebildete réumliche Fiichentragwerk besteht aus drei
Grundelementen: aus einem diinnwandigen, prismatischen Kérper (dem pris-
matischen Faltwerk) und aus zwei Binderscheiben, die mit den gebrochenen
Réandern des Faltwerkes monolithisch verbunden sind, senkrecht zu seinen
Kanten stehen und zu seiner Stiitzung sowie zu seiner Aussteifung dienen.
Die im Bauwesen angewendeten Flichentragwerke dieser Art weisen gewthn-
lich aufler den Grundelementen noch. zusétzliche Glieder auf.

Die Berechnung aller prismatischen Faltwerke lift sich auf die Unter-
suchung der sog. einfach gestiitzten, prismatischen Faltwerke zuriickfiihren,
die ihnen gegeniiber eine &hnliche Rolle spielen wie die Hauptsysteme bei
statisch unbestimmten Stabtragwerken. Wenn ein prismatisches Faltwerk auf
nur zwei Binderscheiben gelagert ist, die in ihren Ebenen vollkommen steif
und quer zu diesen vollkommen biegsam sind, so wird es als einfach gestiitzt
bezeichnet. Dabei ist es gleichgiiltig, ob die gradlinigen Faltwerkrinder frei
wie in Figur 1, oder mit zusétzlichen Elementen (Randgliedern, anderen Falt-

werken oder zylindrischen Schalen von der gleichen Linge, stutzenden Wiin-
den wie im Zahlenbeispiel usw.) verbunden sind.

Solange die zwei Binderscheiben eines einfeldrigen, prismatischen Falt-
werkes voneinander geniigend entfernt sind, kann es als einfach gestiitzt ange-
sehen werden. Sonst miissen die wirklichen, elastischen Eigenschaften der
Binderscheiben (besonders ihre von Null verschiedenen Biegesteifigkeiten)
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berticksichtigt werden. In diesem Fall sowie z. B. bei den mehrfeldrigen (durch
mehr als zwei Binderscheiben gestiitzten) prismatischen Faltwerken wird die
Lésung durch Superposition von zwei Lisungen fiir das einfach gestiitzte Falt-
werk gewonnen, einer fiir die im folgenden definierten gewohnlichen Belastung
und der anderen fiir die lings der gebrochenen Rinder angreifenden, aus
Normalkriften und Biegemomenten bestehenden Randbelastungen.

Fig. 1

In der vorliegenden Abhandlung wird das einfach gestiitzte prismatische
Faltwerk mit plattenweise konstanter Stéirke nur fiir die gewohnliche Belastung
untersucht. Dabei wird, dhnlich wie bei den Theorien der Schalenkonstruk-
tionen, vorausgesetzt, dafl a) die Stirke jeder Platte klein im Verhiltnis zu
ihren iibrigen zwei Abmessungen ist; b) die Durchbiegungen klein gegeniiber
der Stirke sind; ¢) die vor der Form#inderung senkrecht zur Mittelfliche
stehenden Fasern auch nach der Deformation gradlinig sind und senkrecht zur
- verformten Mittelfliche stehen; d) die senkrecht zur Mittelfliche wirkenden
Normalspannungen vernachlass1gbar klein sind; e) der Werkstoff isotrop ist.

2. Die inneren Kriifte des prismatischen Faltwerkes

Die Platten des prismatischen Faltwerkes werden der Reihe nach durch
j=1,2,8,...m, seine Kanten durch J=1,2,3,- .. (m— 1) und seine gradlinigen
Rénder durch J=0 bzw. m bezeichnet (Fig. 1). Die Abmessungen der j-ten
Faltwerkplatte sind durch ihre Linge I, ihre Breite d; und ihre Dicke §; gegeben
(Fig. 2a). Ihr Neigungswinkel zur Vertikalen betrigt «;. Der Winkel 8;, der
zwischen zwei a,ufemanderfolgenden Platten emgeschlossen ist, wird aus ihren -
Neigungswinkeln berechnet. |

Bs = i1 — % (1)
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Fig. 2

Fir jede Platte wird ein raumfestes, rechtwinkliges, rechtsgewundenes
Koordinatensystem xyz gewahlt, dessen 2y-Ebene mit ihrer Mittelebene zusam-
menfillt, dem die niedriger bezifferte Kante als x-Achse dient und dessen
Ursprung in der entsprechenden Binderscheibe liegt (Fig. 1): |

In der vorliegenden Abhandlung wird das einfach gestiitzte prismatische
Faltwerk fiir die aus folgendem bestehende Belastung untersucht:

a) Flichenbelastung p, (Fig. 2b), die auch die Volumskrifte (Eigengewicht)
erfaB3t und durch eine zur j-ten Mittelebene normale Komponente g; (Fig. 2¢),
sowie durch eine zu ihr tangentiale Komponente #; ausgedriickt wird (Fig. 2d).

b) Kantenkrifte P;, die durch ihre Komponenten P;; und Py;,,); ersetzt
werden (Fig. 2e). :

¢) Liangs der gradlinigen Rinder wirkende Randkriifte, die aus Normal-
kriften N3, Querkriften B3 und Schubkriaften 7'; bestehen, sowie Rand-
momente M7 (Fig. 2f).

Die von den Binderscheiben auf das Faltwerk lings der gebrochenen Rén-
der ausgeiibten Kréfte bestehen im folgenden nur aus Schubkriften 7T';, Quer-
kriften R, und in den Ecken der Platten angreifenden Einzelkriften [R]
(Fig. 2g). Die Flichenbelastung und die Kantenkrifte diirfen in diesem Falle
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keine zur z-Achse parallelen Komponenten haben, da das Auftreten von
Normalkriften lings der gebrochenen Rinder, die diese Komponenten auf-
nehmen koénnten, hier nicht in Betracht gezogen wird. Aus demselben Grund
muf} die Resultierende der Randschubkrafte 7' Null sein.

OflTjdx =0 (2)

Im folgenden wird vorausgesetzt, dal das prismatische Faltwerk sowohl
durch die Flichenbelastung wie auch durch die Kanten- und Randkrifte in
seiner Mittelfliche beansprucht wird.

Das prismatische Faltwerk erleidet unter der Belastung eine elastische
Verformung, die durch die Verschiebungskomponenten u;, v; und w; der zur
Mittelfliche angehdrenden Punkte ausgedriickt werden kann (Fig. 2g). Zur
Beschreibung der Deformation lings der Rinder und der Kanten miissen die

Drehwinkel ¢, ;= a ’ und ¢, jzaé—@;? zur Hilfe herangezogen werden,

In den Schmtten x = konst,. ijW. y = konst. des verformten Faltwerkes
wirken Normalspannungen o, bzw. o, sowie Schubspannungen r,, und 7,
bzw. 7, und 7,,. Auf Grund des Satzes von der Gleichheit der zugeordneten
Schubspannungen ist 7., =7,,. Zufolge der in der Einleitung getroffenen Ver-
einbarungen verlaufen die Spannungskomponenten o,,0, und 7,,=7,, linear
iiber die Plattendicke und konnen daher in zwei Teile zerlegt werden. Der eine
ist iiber die Plattendicke gleichmif3ig verteilt (die sog. Membranspannungen),
der andere dagegen ist zur Entfernung von der Mittelfldche (d.i. zur Ordinate z;)
proportionell (die sog. Biegespannungen). Dem linearen Verlauf der Normal-
spannungen entsprechend verlaufen die Schubspannungen r,, und 7,,, die
ebenfalls zu den Biegespannungen gehéren, nach einer Parabel zweiten Grades

(Scheitelpunkt in z; =0 und Nullwerte in z;= + }3§,).

Fig. 3

Statt sich im weiteren der Spannungskomponenten zu bedienen, ist es
zweckmiBig, mit ihren auf die Langeeinheit des Schnittes bezogenen Resul-
tierenden, den sog. inneren Kriften (Schnittkriaften und Schnittmomenten) zu
rechnen. Die Membranspannungen ergeben in den Schnitten z = konst. bzw.
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Tabelle 1

‘rﬂ'
o EF,; . _'L 82F 82F _duy
Bt O =3 D; \ey? VT ) T B
v . _ 2T 1 (F, @®F)\ oy
.3 3a:2 Cu.i - D, 8902- oy2) oy,
2F, 2(14v) 2F, du; 0v;
N N s = - J . = — 2 — J 2
g = v o0 0y; Yevg D; oxdy; 6yj-+ dx
AJ'
. 2 w; 2 w; _ > w; Aw; oM, i
Moy =K (7 +W) B,y = Ky | G o )awayf] = Ceit g,
_ Rw,  Pw; _ Pw; Bw; oM, ;
M, ;= K; (63/,-2 v 63:2) R, ; -k, [3%_3 +(2-v) Ly ] @y, Fp
Moo= M= — (1) K, 0| [R] = —2(1—9) o = 2 M
XY.3 Yy, ) away] b axay] xY,7
N 33wj 33w aw9
Uay =K (ax3 +8x6y3) Pei = G
33 33 4 an'
Qy,? _KJ (3?/ 3%23_7/) Py, i 5??
E-33
K; = 12(1—v)

y = konst. die Normalkrifte N, bzw. N, und die Sehubkrafte N, =N, die
in der Mittelfliche wirken und als Dehnungskrafte (Membrankrafbe) bezeichnet
werden (Fig. 3a). Die den Biegespannungen angehérenden Teile der Normal-
spannungen und der Schubspannungen 7, =7, ergeben die Biegemomente M,
bzw. M, und die Drillungsmomente M ,,= M, . Die Resultierenden ¢, bzw. @,
der Schubspannungen 7, bzw. 7, werden Querkrafte genannt. Die den Biege-
spannungen entsprechenden Schnittmomente und Schnittkrifte (Fig. 3b) wer-
den als Biegekriifte bezeichnet. '

Léngs der Rénder und lings der Kanten des prismatischen Faltwerkes
lassen sich, shnlich wie bei den diinnen Schalen und bei den diinnen Platten,
die Drillungsmomente nur mit Hilfe der ihnen statisch gleichwertigen Ersatz-
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querkrifte beriicksichtigen. Diese werden mit den Randwerten der Querkrifte
zu resultierenden Querkriften R, bzw. R, (siehe Tabelle 1) vereinigt. In den
Schnittpunkten der gebrochenen Rinder mit den gradlinigen Rindern und den
Kanten treten unter dem Einflu der Drillungsmomente Einzelkrifte [R] auf
(s. Tabelle 1 und Fig. 2g), die senkrecht zu den Platten wirken.

Um die Schreibweise fiir die lings der Kanten auftretenden Schnittkrifte
und Schnittmomente zu vereinfachen, werden dort statt der Bezeichnungen
N, N,, M, E, und ¢, die Bezeichnungen N, T', M, E und ¢ angewendet.
Durch die Beigabe eines Indexes jJ bzw. (j+1)J wird gekennzeichnet, ob
diese im Schnitt links bzw. rechts von der J-ten Kante wirken.

3. Die Differentialgleichungen des prismafischen Faltwerkes

In der mathematischen Elastizititstheorie werden die Differentialgleichun-
gen der Flichentragwerke auf der Grundla.ge von drei Bedingungsgruppen
abgeleitet:

a) Sechs Gleichgewichtsbedingungen (drei gegen Verschieben und drei
gegen Drehen) fiir das Flichenelement dx dy.

b) Einer geometrischen Bedingung (Vertriglichkeitsgleichung).

c) Elastostatischer Beziehungen, die die dem Hookschen Gesetz entspre-
chenden, gegenseitigen Abhingigkeiten der Spannungskomponenten und der
Deformationskomponenten ausdriicken. _

Wenn diese drei Bedingungsgruppen auf das Element dx dy; der j-ten Platte
eines prismatischen Faltwerkes angewendet und gemidfl den Rechnungs-
annahmen nur kleine Durchbiegungen betrachtet werden, dann erweist sich,
daB die dadurch gewonnenen Differentialgleichungen zwei voneinander unab-
hingige Systeme bilden. In den Differentialgleichungen eines Systems treten
die tangentialen Komponenten der Flichenbelastung #;, die Dehnungskrifte
sowie die Verschiebungskomponenten u; und v; auf, in denen des anderen
Systems die normale Komponente der Flichenbelastung ¢;, die Biegekrifte
und die Verschiebungskomponente w;. Die Gleichungen des ersten Systems
sind mit den Differentialgleichungen des ebenen Spannungszustandes (des
Scheibenproblems) identisch, die des zweiten Systems mit den Differential-
gleichungen des Biegeproblems der ebenen Flichentragwerke (des Platten-
problems). Wegen Platzmangels werden hier weder diese Differentialgleichun-
gen noch ihre Ableitung gegeben. Der Leser kann sie in einem beliebigen Lehr-
buch der Elastizititslehre, in den Abschnitten, die dem Scheibenproblem und
dem Plattenproblem gewidmet sind, finden.

Beim Scheibenproblem erleidet bekanntlich das Element dx dy; der Mittel-
ebene ausschlieflich Verzerrungen (Dehnungen ¢, und ¢, sowie Winkelinde-
rungen y,,}. Beim Plattenproblem kann dieses Element, solange es sich um
kleine Durchbiegungen w; handelt, als unverzerrt angesehen werden.
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Im folgenden wird zur Bezeichnung einer beliebigen GroBe (innere Kraft
oder Deformationskomponente), die im Scheibenproblem bzw. im Plattenpro-
blem auftritt, das Symbol I' bzw. A angewendet. Eine beliebige innere Kraft
oder Deformationskomponente des prismatischen Faltwerkes wird weiter durch
das Symbol @ bezeichnet. Aus dem friiher Dargelegten folgt, dafl die ©;-GréBen
aus I';- und A;-GroBen bestehen. Alle I';- und A;-GréBen und demzufolge auch
die ©; GroBen sind (einstweilen unbekannte) Funktlonen der beiden Ordinaten
x und Y+

Beim Scheibenproblem werden bekanntlich alle I'; durch die Airysche
Spannungsfunktion F;, beim Plattenproblem alle A; durch die Durchbiegung
w; (die Ordinaten der elastischen Fliche) ausgedriickt. Die Operationen, die zu
diesem Zweck durchgefithrt werden miissen, sind aus der Tabelle 1 ersichtlich.
Die Konstanten D; bzw. K, sind die Dehnsteifigkeit (Scheibensteifigkeit) bzw.
die Biegesteifigkeit (Plattensteifigkeit) der j-ten Faltwerkplatte. B ist der
Elastizitatsmodul und v die Querdehnungszahl.

Aus der Scheiben- und der Plattentheorie ist es bekannt, daB die Span-
nungsfunktion F; (, y;) bzw. die elastische Fliche w; (x,y;) durch Integration
der sog. Scheiben- bzw. Plattengleichung gefunden werden. Diese lauten:

AF; _ &F; &F;

b
aat oatdy® oyt ¢ (32)
d 9y, dap, 440 ;
o w; 9 ot w; : tw; g (3b)

P ooy’ dyt K,

7

und sind lineare, partielle Differentialgleichungen vierter Ordnung (sog. bihar-
monische Gleichungen). Die erste von ihnen ist homogen (ihre rechte Seite
betragt Null), die zweite inhomogen.

Die m Scheibengleichungen (3a) und die m Plattengleichungen (3b) fiir
7=1,2,3,...m sind die Grundgleichungen des hier untersuchten Faltwerkes.

4. Die Losung des Problems in klassischer Weise

Die Bedingungen, die durch die Losung lings der gebrochenen Rinder des
einfach gestiitzten prismatischen Faltwerkes, also fiir x=0 und z=1 erfillt
werden miissen, lauten:

N,;=v;=0 a); M, ;=w;=0 b) (4)

In diesem Fall wird die Integration der Differentialgleichungen (3a-+b)
durch Trennung der Verdinderlichen « und y; und durch Anwendung von ein-
fach-unendlicher Reihen durchgefiihrt. Zu diesem Zweck mull die Belastung
und die Lésung in Fourier-Reihen entwickelt werden. Der Nachteil dieser
Integrationsmethode besteht darin, daf fiir jede Harmonische der Belastung



284 | . A, Werfel

die ganze Rechnung wiederholt werden muB und die endgiiltige Losung als
Summe von Teillosungen gewonnen wird. '

0,=>6,, (n=1,2,3,...1) (5)

Die tangentiale Komponente der Flichenbelastung mull wegen der Reihen-
entwicklung der Spannungsfunktion durch Kanten- bzw. Randkrifte

d;
PO = { tbdy, (7=1,2,3,...,m) (6)

ersetzt werden, die zu den Kantenkriften P, ; oder P;; zugeschlagen
werden.

Die allgemeinen Integrale fiir das n-te Glied der Spannungsfunktion und
das n-te Glied der elastischen Fliche konnen folgendermaflen ausgedriickt
werden:

P, =®j’n¢sinzzl—77x . (Ta)
K;-w;, = 'I’j-,n-sin%x (7b)

@ bzw. ¥ sind Funktionen der Ordinate y; und von vier Integrationskonstanten
4 bzw. B.

n nm n " i
@m=AmsmT%+4gmp7%+7y4ggmh;%+4gmpf%)@@

nam n

o
Yt Y (B?(37)'L Sh

nm

l

n

Ti,nz B:f,lgz Sh 1

y;+ B, Ch

nmw
a y+ B Oh T ) +

+ ¥ (¥;,95) (8b)

In der letzten Gleichung bilden die Glieder mit der Integrationskonstanten B
das allgemeine Integral der Plattengleichung, deren rechte Seite gleich Null
gesetzt wird (kurz, der homogenen Plattengleichung), wahrend ¥,(y;,g;) ein
partikuldres Integral der inhomogenen Plattengleichung (3b) darstellt.

Nachdem die in der Tabelle 1 angezeigten Operationen an den allgemeinen
Integralen (7a + b) durchgefiihrt werden, erhilt man die allgemeinen Ausdriicke
fir I'; , und 4, ,

Fj’n=®7(-,-’;3-sin—nl—wm bzw. coslbljx (9a)
fiir " =N,N,,v bzw, I'=N_, N, .u

Aj,n=?’j(,ﬁ)-sin%7x bzw. cosl?'l—fx (9b)
fir A =M, M, Q, R, e, bow. A=M,, M, Q R, ¢,

@I bzw. ¥ sind ebenfalls Funktionen der Ordinate y; und der vier Inte-
grationskonstanten 4 bzw. B.
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Aus den allgemeinen ‘Ausdriicken (9a+b) und aus (7b) ist zu ersehen, daB
~ die Bedingungen (4a+b) wie auch die Bedingung (2) unabhéngig von » und
den Integrationskonstanten, sozusagen automatisch, erfiillt werden. Dies ist
die Begriindung fiir die Anwendung der angezeigten Integrationsmethode bei
einfach gestiitzten, prismatischen Faltwerken.

‘Die allgemeinen Losungen der Grundgleichungen des prismatischen Falt-
werkes, die auf diese Weise erhalten werden, enthalten somit 4 m Integrations-
konstanten 4, und 4m Integrationskonstanten B; , (j=1,2,3,...m). Um
die Integrationskonstanten bestimmen zu kdnnen, miissen 8m Gleichungen

Fig. 4

zur Verfiigung stehen. Diese werden durch je vier Bedingungen langs der beiden
gradlinigen Rénder und durch je acht Bedingungen lings jeder der m -1
Kanten gegeben.

Sowohl die Rand- wie auch die Kantenbedingungen kénnen statische oder
geometrische Bedingungen sein. Wenn ein gradliniger Rand frei ist, so sind
alle vier Randbedingungen statisch: N;=75=M7=R53=0. Wenn er voll-
kommen eingespannt oder z. B. mit einem Randbalken verbunden ist —
geometrisch; bei voller Einspannung miissen die Randwerte der Deformations-
komponenten 3, v, w3 und @7 gleich Null, im zweiten Falle gleich den ent-
sprechenden Verformungen des Randbalkens sein. Ein Teil der Randbedingun-
gen kann durch geometrische, der Rest durch statische Bedingungen gebildet
sein (s. Zahlenbeispiel). Die Kantenbedingungen bestehen immer aus vier geo-
metrischen Bedingungen, die die Kontinuitéit der Deformation beim Ubergang
von Platte zu Platte ausdriicken (Fig. 4a) und aus vier statischen Bedingungen,
die besagen, dafl die auf die Kante wirkenden inneren und &ufleren Kriifte ein
sich im Gleichgewicht befindendes Kriftesystem bilden miissen (Fig. 4b).
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Die acht Bedingungen fiir die J-te Kante lauten:

Ui g =UG10) g =%y | (10a)

V; 7 SN o 4 Wy 5 COS & = Vj47) 7 SiN oty + Wy 1) 7 COS a1 = 107 - (10b)

V; 7 CO8 oty — W; 7 SN oty = Vj1q) 5 COS &ty — Wipg) g Sl oy =07 (10¢)

Pij7=Pe+7 =Ps ‘ (10d)

Tis=T4ws="y (11a)

N, sine;+ R, yeosa; + P; ysine; =N, gy ysine;,, + B, ycos oy, + (11b)
+ Py ssinag

N;jeosa;— R, ysino;+ P; ycoso; =N, gy 50080, — Biypgy ysineg ; + (11¢)
+ Py yc0805 '

Mig=Myppy=HM, | (11d)

uy bzw. v; sind Verschiebungen der Kantenpunkte in der horizontalen Ebene
parallel zur Kante bzw. perpendikuldr zu ibr; o, ist die Durchbiegung der
J-ten Kante, die vertikal gemessen wird. 7'; und M ; werden als Kantenschub-
kraft und Kantenmoment bézeichnet. ¢, ist der Drehwinkel der J-ten Kante.

Nachdem die allgemeinen Ausdriicke (9a+b) fiir ;=0 bzw. y;=d; in die
Rand- und Kantenbedingungen eingesetzt werden, erhdlt man 8m lineare
Gleichungen fiir die 8 m unbekannten Integrationskonstanten. Zwischen diesen
Gleichungen gibt es solche, die nur die Integrationskonstanten 4, , oder nur
die Integrationskonstanten B, , enthalten, und solche, in denen die Integra-
tionskonstanten 4, ,, und B; , zusammen auftreten. Die letzteren entsprechen
Bedingungen, bei denen die I'; , -Grofen mit den 4, ,-GroBen verbunden sind,
wie dies in den Kantenbedingungen (10b+c¢ und 11b - ¢) sowie bei manchen
Randbedingungen (s. Zahlenbeispiel) der Fall ist. Demzufolge, wie auch aus
dem Grund, dafi in allen aus den Kantenbedingungen (104 11) gewonnenen
Gleichungen die Integrationskonstanten von zwei aufeinanderfolgenden Plat-
ten auftreten, bilden die 8 m zur Bestimmung der Integrationskonstanten die-
nenden Gleichungen ein einziges Gleichungssystem. Das gemeinsame Berechnen
aller 8m Integrationskonstanten vereinigt die fir die einzelnen Faltwerl-
platten aufgestellten, allgemeinen Ausdriicke (9a+b) zu einer einzigen Losung
fiir das prismatische Faltwerk. Das Bestimmen der Integrationskonstanten
4, , und B; , aus einem gemeinsamen Gleichungssystem beweist, dal beim
prismatischen Faltwerk die I'; ,-GroBen mit den A; ,-GroBen, also das Schei-
benproblem mit dem Plattenproblem, dhnlich wie bei allen Schalen, miteinan-
der untrennbar verkniipft sind. : »

Zwischen den 8m Gleichungen des zur Berechnung der Integrationskon-
stanten dienenden Gleichungssystems sind 4(m —1), die den Kantenbedingung-
gen (10b-+c und 11b + ¢) entsprechen, sechzehngliedrig, weitere 4 (m —1), die
den iibrigen Kantenbedingungen entspringen, achtgliedrig und die acht, die
sich aus den Randbedingungen ergeben, vier- oder achtgliedrig, abhingig
davon, ob die Randbedingungen nur I'; , bzw. nur 4, ,-Gréen enthalten oder
beide miteinander verbinden. Die Lésung eines so unhandlichen Gleichungs-
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systems ist sehr umstéindlich und zeitraubend. Die Berechnung eines pris-
matischen Faltwerkes auf die soeben beschriebene Weise, die als klassische
bezeichnet werden kann, eignet sich daher nicht fiir die praktische Anwendung,
um so weniger als trotz der schnellen Konvergenz der Reihen (5) zur Erzielung
von geniigend genauen Resultaten die Rechnung fiir einige Harmomsche der
Belastung wiederholt werden muf.

5. Die Grundsiitze des kombinierten Liisuﬁgsverfahrens

Zwischen der genauen Theorie der prismatischen Faltwerke und der genauen
Rahmentheorie besteht eine Analogie, da beim Rahmen ebenfalls zwei Pro-
bleme (der Dehnung und der Biegung des geraden Stabes) voneinander nicht
zu trennen sind. Fir die iibliche vereinfachte Berechnung der Rahmen mit
verschieblichem Netz, bei der die Lingesnderung der Stibe vernachlissigt
wird, sind mehrere Methoden entwickelt worden. Von diesen 148t sich die sog.
mehrstufige Berechnungsmethode, die die Anwendung der Festpunktmethode
und des Cross-Verfahrens bei Rahmen mit verschieblichem Netz erméglicht,
sinngemdB auf das Problem des prismatischen Faltwerks iibertragen.

Tabelle 2
/ i 7 7
N,= = fsin BZ ”" —_— &._ .’K’l
T, = feos 2L 7 7 x 7, 7, o
= ts/n 2X - \’
Mﬂr Isin 7 X Mﬂ Mﬂ(a‘ —
Wy, = Isin —’;—-er o —— e
A= I WY A H I | T T "0
nx ' -

g x| T, = | /==

Die mehrstufige Berechnungsmethode in Verbindung mit fertigen Zahlen-
tafeln bildet die Grundlage des kombinierten Losungsverfahrens. Diese Tafeln
dienen zur Berechnung von vier partikuldren Integralen der Scheibengleichun-
gen (3a) und von elf partikuldren Integralen der Plattengleichungen (3b). Die
ersteren entsprechen vier Belastungsfillen (Tab. 2:¢=N,,, T, und4'=N,, T,)
der lings der Rénder y;=d; oder y;=0 durch Randnorma]krafte N, bzw
Randschubkrifte 7', beanspruchten rechteckigen Scheiben, die in =0 und
x =1 so gestiitzt sind, daBl die Randbedingungen (4a) erfiillt werden. Von den



288 - : : ' - - A, Werfel

letzteren beziehen sich fiinf (s. Tabelle 2) auf die vierseitig starr und frei dreh-
bar gelagerten Platten und sechs auf die dreiseitig starr und frei drehbar
gelagerten Platten, deren Rénder y;=0 (Plattenaufgaben i) bzw. y;=d;
- (Plattenaufgaben #’) frei von Kriften sind. Die Platten werden entweder gleich-
milig belastet (Plattenaufgaben i=gq,, t=g¢,, ?'=g¢,) oder lings des Randes
yi=d; (i=M,,1=M,)bzw.y;=0 ("= M, ¢ =M,)durch ein Randmoment M,
beansprucht. In den vier Plattenaufgaben (¢ =w,, i=w,, ¢'=w, und ' =w,)
wird der Einfluf} der Durchbiegung eines Randes (y; =d; bzw. y; = 0) untersucht.
Mit Hilfe der Zahlentafeln miissen die in Tabelle 2 enthaltenen Scheiben- und
Plattenaufgaben fiir beliebige Seitenverhéltnisse y; =d,/l gelost werden konnen.

Beim kombinierten Losungsverfahren wird ein Gebrauch von der bekann-
ten Eigenschaft der linearen Differentialgleichungen gemacht, gemifl der ihre
Losung ebenfalls als Summe von einer beliebigen Zahl ihrer partikuléren Inte-
gralen erhalten werden kann.
- Bei Anwendung dieses Losungsverfahrens konnen die Kantenmomente
M, (Gl 11d) und Kantenschubkrifte T'; ,, (Gl. 11a) mit Hilfe einer Methode
(im folgenden kurz e-Verfahren benannt), statt mit Hilfe der Dreimomenten-
gleichungen (16, 24) und der Dreischubkriftegleichungen (21), berechnet wer-
den. Das e-Verfahren ist der Festpunktmethode analog.

Das kombinierte Losungsverfahren ist eine Synthese der Methoden der
praktischen Statik und der Verfahren der Elastizitétstheorie.

6. Die mehrstufige Berechnungsmethode

Wenn auf das prismatische Faltwerk keine Randschubkrifte T5 (J =0
bzw. m) wirken, so wird die Losung fir die n-te Harmonische der Belastung in
analoger Weise wie bei Rahmen mit verschieblichem Netz erhalten:

@; , =05+ I8l (12
w=10,11,21,... 4J,G+1)J,..., mn.

O/ ist eine partikulire Losung fiir die Annahme, daB die Platten des Falt-
werkes durch sog. Festhaltekrifte g %) (f=10,11,12,...,7J,{j+1)J,...,mm)
(Fig. 5a) an Verschiebungen in ihren Ebenen verhindert sind:

ofn=0  (j=1,2,3,...,m) 18}

O sind partikulire Losungen fiir entsprechend gewahlte Verschiebungs-
zusténde (v} +0). :
A« sind Koeffizienten, die aus gewissen Bedingungsgleichungen berechnet
werden. _
Berechnung der partikuldren Lésung OF)

Da 7T'5=0 angenommen und die tangentialen Komponenten der Flichen-
belastung gemiB Gl. (6) durch Kantenkréfte ersetzt sind, ist ebenfalls u(") =0
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(°)
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/59
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~Z  Hij-pu-9 T

Fig. 5

und demzufolge I‘(p) 0. Die Kantenbedingungen (10a) und (11a) sind dem-
gemif} erfullt. Aus der Annahme (13) und den Kantenbedingungen (10b +¢)
folgt:
0 = 0} 70 = wgg”n - - (14)
P =10, 11 12,...,3,G+ ), ...,mm

Dies bedeutet, daB A, wie fiir eine iiber starre Stutzen (den Kanten und evtl.
den graden Randern) durchlaufende Platte, die aullerdem in =0 und x=]
starr und frei drehbar gelagert ist, berechnet wird. Zu diesem Zweck kann
man sich der fertigen Losungen fiir die Plattenaufgaben i=q,, M, und'=M,
(Tab. 2) bedienen. o

A(p) Aq i, n+MJ 1Ln" ’M,j,n'l‘M.(}),)n'AM,i,n (15)

Aus den Kantenbedingungen (10d) und (11d) ergeben sich Dreimomenten-
gleichungen, die zur Berechnung der Kantenmomente M%),  und M%), ange-
wendet werden. Die Dreimomentengleichung fir die J-te Kante lautet:

Mf}o)l n’ !‘P(O) n|+M.(7 I‘P(d):/ n|+ I¢(d)3+1,n|)+MS}a-2-1 n |9’§ow),j+1 nl ___(pg’ig % gf;+1,n=0 (16)

Pi,j,n OZW- P 41,0 Sind die Drehwinkel, die fiir die j-te bzw. j+ 1-te Platte mit
Hilfe der Plattenaufgaben 1 =M, bzw. q, berechnet werden. Die oberen Indexe
(0) bzw. (d) bezeichnen die Rénder y =0 bzw. y=d. A

GemiaB der allgemeinen Beziehungen (15) fiir j=1,2,...m werden die
resultierenden Querkrifte R{? , nnd R, , berechnet. Damit sich die J-te
Kante unter den Auflagerkriften der Durchlaufplatte nicht verformt, miissen
auf sie festhaltende Kantenkriifte Si), wirken, die sich aus den Kanten-

bedingungen (11b +c) ergeben:

20 Abhandiung XIV
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S;%)n l_ COSGCBJ (R(y+1)J n R:;J nCOSBJ) (173’)
8E)1y7,n.= cosec By (RFLy) s , 0088, — B ) (17b)

Der Winkel 8; ist aus der Gl. (1) einzusetzen.
Die Festhaltekrifte HY), betragen:

HP), = Py ,+8%), (18)

da sie auch die Komponenten der Kantenbelastung P; , aufnehmen miissen.

Bei Faltwerken, deren gerade Rinder frei sind, ist wg” +0 (=10, mm).
Die AuBenfelder (7=1,m) der Durchlaufplatte sind in diesem Fall dreiseitig
gelagert. Dementsprechend werden bei ihnen die Losungen fiir die Platten-
aufgaben i=gq,, M, bzw.?" =q,, M, (Tab. 2) angewendet.

Wahl und Untersuchung der Verschiebungszustinde

Um den EinfluBl der tatséchlich nicht vorhandenen Festhaltekrifte zu be-
seitigen, miissen 2 m Verschiebungszustéinde des Faltwerkes untersucht werden.
Bei ihrer Wahl mufl auf folgendes Riicksicht genommen werden:

a) Die jedem Verschiebungszustand entsprechenden duBeren Krifte diirfen
nur aus Kantenkriften H$”), (Fig.5b) bestehen. Die dem Verschiebungs-
zustand entsprechenden Dehnungskrafte und Biegekrifte miissen sich geson-
dert berechnen lassen.

b) Die Verschlebungszusta,nde diirfen nicht dhnlich sein, d.h. die aus den
Verschiebungen #{?), geblldete Determinante mufl von Null verschieden sein.

10 10 i0 10
fv(w}“ Bk s 35 Bipghrare Tophs
(11 i1 11 11
Biogie Plaksss 0 Uparor s Bls
_________ T T T T T T £0 (19)
”(lcg)n! vg‘f)nr RS vf/sz:"'? v:‘(f;aufn)m,n
)l L oy N

=
Bei allen Verschiebungszustéinden miissen dabei die fiir die geraden Rénder

gegebenen geometrischen Bedingungen erfiillt werden.

Als Verschiebungszustand w, der diesen Anforderungen geniigt, kann bei-
spielsweise der Verschiebungszustand angenommen werden, der sich aus der
genauen Membrantheorie des prismatischen Faltwerkes ergibt, wenn dieses

nur durch die Kantenkraft V{2, = l-sinﬂx (Fig. 5¢) beansprucht wird.
I'{®) kann dann mit Hilfe der fertigen Losungen fiir die vier Schelbena,ufgaben

@—Nn, T, und ¢'=N,, T, (Tab. 2) berechnet werden.
L =Tyt Dy T80 Trn+ 5% D jom (20)
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In die Gl. (20) sind I'y ; , bzw. I'y ; , nur dann einzusetzen, wenn V2, in der
j-ten Ebene wirkt. Sonst sind diese Glieder zu vernachlissigen.

Die Kantenbedingungen (10a) und (11a) ergeben die Dreischubkrifte-
gleichungen, aus denen die Kantenschubkriifte 7'¢”; . und T4, berechnet
werden. Die Dreischubkriftegleichung fiir die J-te Kante lautet:

(w) a d : \(d) s
T30 n |“(12)5n’ + T.‘r‘”iz s (]uf’l’)ﬂ'nl 45 Ju;gl',).’i-l-l,n )+ T.(Ia-,lzl,n' ]u(:l‘o,)5+'1,n] +u§'%‘“§?1,n= 0 (21)

U, jn DZW. Up ;4q , sind Lingsverschiebungen, die sich aus Losungen fiir die
Scheibenaufgaben i=1T, bei y;=d;/l bzw. y; ,=d; |l ergeben. Die oberen
Indexe bezeichnen die Scheibenrinder =0 bzw. y=d.

: ?:l,;d,,)l = ugg}m ‘oder u{), , wenn w=jJ oder j(J—1)

W, =Py, oder ulQ;,  wenn w = (j+1)J oder (j+1)(J+1) ist.

Sonst ist 4 (% = 4%, ,, = 0 zu setzen.

Uy, j,n OZW. Uy ;11 , Sind Lingsverschiebungen, die sich aus den Losungen
fiir die Scheibenaufgaben ¢=1N, ergeben.

Die Kantenverschiebungen v{”) , die aus den allgemeinen Beziehungen (20)
berechnet werden, bestimmen gemifl den Kantenbedingungen (10b+c¢) die

Kantendurchbiegungen
Wi, = cosecfy (v, — 0§30 cO8By) (22a)
W17, = cOSEC Py (7)((;”—!21)J,n -cos By — i ) (22Db)

Diese Formeln erhdlt man durch Losung der Gl. (10b+c¢) nach w und Ein-
setzen von B; aus Gl. (1).

Das Plattenproblem, das dem gew#hlten Verschiebungszustand entspricht,
ist das Problem der durchlaufenden Platte, deren Mittelstiitzen und evtl. die
Endstiitzen (die Kanten und evtl. die geraden Rénder) sich durchgebogen
haben. Die Losung dieses Plattenproblems wird mit Hilfe der Losungen fiir
die vier Plattenaufgaben ¢=w,, M, und ¢'=w,, M, (Tab. 2) erhalten.

= . ! (w) ' () ’
A;f‘;l - w;'tz)f—l),n'Aw,i,n'i'wfa},n"/lw,i,n+‘MJw—l,n'AM,i,n+M~(fc??n'AM,j,n (23)

Die fehlenden Kantenmomente M§”,  und M), werden durch die diesem
Plattenproblem entsprechende Dreimomentengleichungen, die sich ebenfalls
aus den Kantenbedingungen (10d) und (11d) ergeben, bestimmt. Die J-te
Dreimomentengleichung lautet:

" ) (@), (| (D (d)

M.(f-)1,-n' |9D§flr,f,n| +MJ‘fn (|‘PM,f,n| + i‘PM,j+1,n )+
(0) \ (@) “ (0) _
+M‘(Iaflzl,n' lqjloll,:i-i-l,nl "_q)w,f,n+(f’$,:i+l,n_0 (24 a’)
S (d oA _ (0) @ ‘
_‘P'fv,)i,n'}"pég,)ﬂl,n_w;'?}—l),n'%g,f,n_w;'a}),n'@w,f,n
) @) )
~ Wy 7on P 1,0 T OELD 00 Pt 1m (24b)

Die Koeffizienten bei den Kantenmomenten sind hier dieselben wie in Gl. (16).
Die Drehwinkel ¢, ; , bzw. ¢,, ;.; , sind den Losungen der Plattenaufgaben
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t=w, fir die j-te bzw. j+ 1-te Faltwerkplatte zu entnehmen. Die oberen
Indexe (0) bzw. (d) bezeichnen auch hier die Plattenrinder y =0 bzw. y=d.

Damit die Kanten unter den Auflagekriften der Durchlaufplatte keine
weiteren Deformationen erfahren, miissen lings derselben Kantenkrifte S(“’)
angebracht werden, die sich aus den Gl. (17a+b) ergeben, wenn in diesen der
Index (p) durch (w) ersetzt wird.

Die duBeren Krifte, die den gewiihlten Verschlebungszustand verursachen,
betragen somit:

H(‘“) —V(“’) S(“’) fir =w (25 a)
und H(‘”) —S(“’) fur b w. (25D)

Beim Deformationszustand des biegesteifen prismatischen Faltwerkes, der
dem gewihlten Verschiebungszustand entspricht, wird seine Dehnungssteifig-
keit durch die Kantenkraft V{2, , und seine Biegesteifigkeit durch die Kanten-
krifte S{°), bezwungen.

Wenn die geraden Faltwerkrinder frei sind, so wird die Untersuchung der
Verschiebungszustinde w=10 und mm iberflissig. Fir die AuBenplatten
(7=1 und m) miissen dann die Losungen der Plattenaufgaben ¢=w, und M,
bzw. 3’ =w, und M, (Tab. 2) entsprechend angewendet werden.

Bestimmung der Koeffizienten X&)

Bei dem unter der gegebenen Belastung tatsdchlich auftretenden Ver-
schiebungszustand des prismatischen Faltwerkes miissen die Festhaltekrifte
Hf/f’)n verschwinden. Diese Bedingung ergibt 2m (bei Faltwerken mit freien
Riandern 2 (m — 1)) lineare Gleichungen

HP, + 2 X@ - Hf?) =0 (26)

Aus diesen Gleichungen bestimmt man die Koeffizienten A, Die aus den
Kantenkriften Hflj") gebildete Systemdeterminante ist immer von Null ver-
schieden, da nicht &hnlichén Deformationszustinden nicht dhnliche Belastungs-
fille entsprechen.

Wenn das prismatische Faltwerk auch durch Randschubkrifte T (J =0
und m) beansprucht wird, so muB noch die partikulire Losung @{%) gefunden
werden. Sie entspricht dem Verschiebungszustand (7'), der sich aus der genauen
Membrantheorie des prismatischen Faltwerkes ergibt, wenn es allein durch
die Randschubkrifte T'; belastet wird. Die Berechnung von I'{) erfolgt dann
nur mit Hilfe der Losungen fiir die Scheibenaufgaben¢=17", und i'=1T, (Tab. 2)
und it der Berechnung von I'{*) analog. In den Drelschubkrafteglelchungen (21)
fiir die 1-ste bzw. m — 1-ste Kante wird W =Ty, ug, , und 4y, =0 bzw.

WD, ,=0und ¥, =-T, .-uP, ., gesetzt. In gty Drelschubkrafteglewhun-
gen fiir die anderen Kanten (J=2,3,...,m—2) sind die freien Glieder gleich
Null zu setzen. Nachdem die Kantendurchbiegungen w{j’), aus den GL. (222 +b),
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in denen der Index (w) durch (T) ersetzt wird, bestimmt werden, wird die
Losung des Plattenproblems A{") analog wie A erhalten. Die Kantenkrifte,
die dem Verschiebungszustand (7') entsprechen, betragen

HP, = 8P, (27)

X

Im allgemeinen Belastungsfall des prismatischen Faltwerkes gehen daher
die Beziehungen (12} und (26) in

8., = 6, + 67 + T2 o) (28)
«@
und - HP,+ B+ 302 H, = 0 (29)
w

iber. w=10,11,...4J,(G+1}J,...,mm; $=10,11, ... 5J,(G+1)J,...mm.

Manchmal soll das prismatische Faltwerk fiir einige Belastungsfille unter-
sucht werden. Die partikuliren Losungen ©{“) brauchen dann nur einmal
gefunden zu werden, wihrend die partikulire Losung @), sowie die Koeffi-
zienten X fiir jeden Belastungsfall berechnet werden miissen.

Die geraden Faltwerkrinder werden oft mit Randtrigern verbunden, deren
Querschnitte verschiedenartig ausgebildet sind. Bei der mehrstufigen Berech-
nungsmethode ist es zweckmaBig, die Randtriger als zusiitzliche Glieder des
Faltwerkes anzusehen. Lings der Verbindungslinie zwischen Faltwerk und
Randtriager miissen vier geometrische Bedingungen (Gl. 10a+b + ¢+ d) erfiillt
werden. Da der Randtrager viel stirker als das Faltwerk ausgebildet ist, kann
die Verformung seines Querschnittes vernachlissigt werden. Dementsprechend
wird der Randtriager als Stab mit beliebigem Querschnitt berechnet, der durch
Eigengewicht und durch die laings der Verbindungslinie wirkenden: Normal-
karft Ny , , resultierenden Querkraft Ry, , Schubkraft 7'y , und Moment M7 ,
(J=0,m) auf schiefe Biegung mit verinderlicher Langskraft und Torsion

beansprucht wird.
7. Die Zahlentafeln

Durch Einfiithrung von zwei dimensionslosen Verénderlichen:
k=ny und n=y/d (0=Zn=zl) (30}

in die Funktionen @) und ¥ (Gl 8a+b und 9a+b) sowie durch Erfiillung
der jeweiligen Randbedingungen (langs y=d und y=0) bei den fiinf Grund-
aufgaben (Tab.2 ¢=N,, T,, M,, w, und ¢,) werden aus (9a+b) die zur
Aufstellung der Zahlentafeln dienenden Ausdriicke erhalten:

x fir +=N,,T, (Tab. 2) (31a)

nr "
—x bzw, cos ——

l l

nar nar
e bZW. COS ——

l {

Fz',n= C{I;L) -.Qéﬂ (k,7)-sin

A; = 0%3 ITD (1, ) - sin xfiri=M,,w,,q, (Tab.2) (31b)
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Sowohl die Multiplikatoren C{f) bzw. C{4 wie auch die Funktionen 2 bzw.
IT{4V der Verinderlichen « und % sind fiir jede Grundaufgabe ¢ sowie fiir jede
innere Kraft oder Deformationskomponente verschieden. ,

Die Formeln fiir I, ¢=N, und 1) bzw. fiir 4,, (i=M,, w, und g,)
gemal (31) sowie alle fiir die Rechnung notwendigen Randwerte sind in den
am SchluB beigefiigten Tafeln I bzw. II enthalten. Die Funktionen Q" bzw,
I sind dort durch die von KaLmanox!) eingefiihrten vier transzedenten
Hilfsfunktionen Xo(r,m) (p=1,2,3,4), die in der Tafel 1IT zu ersehen sind,
ausgedriickt. In Tafel IV, die abgekiirzt von dem Werk von KaLMANOK wieder-
gegeben ist, sind die Werte der vier Hilfsfunktionen y, fiir 0 <« <10 und fiir
7=0,00; 0,25; 0,50; 0,75 und 1,00 zusammengestellt.

Die iibrigen zwei Scheibenaufgaben (i’=XN,, und 7',) und die acht Platten-
aufgaben (i’ =M, und w,,,?=M,,w,und q,,? =M, , w, und q,) der Tabelle 2
konnen, wie es in Tafel V gezeigt wird, auf die entsprechenden fiinf Grund-
aufgaben zuriickgefithrt werden.

8. Das e-Verfahren

Sowohl die Dreimomentengleichungen (16,24) wie auch die Dreischub-
kriftegleichungen (21) sind den Dreimomentengleichungen des Durchlauf-
trigers-analog. Daher besteht die Moglichkeit, die Festpunktmethode und das
Cross-Verfahren fiir die Berechnung der Kantenmomente und der Kanten-
schubkrifte zu erweitern. '

Da die Dreimomentengleichungen (16,24) bzw. die Dreischubkrifteglei-
chungen (21) fiir die J-te Kante sich voneinander nur durch die freien Glieder
unterscheiden, brauchen die zur Berechnung der Kantenmomente bzw. der
Kantenschubkrifte notwendigen Festwerte nur einmal fiir die n-te Harmo-
nische der Belastung bestimmt werden. )

Hier wird nur das der Festpunktmethode analoge Verfahren beschrieben,
da es in diesem Fall rascher als das erweiterte Cross-Verfahren zu Ergebnissen,
die auf einige Stellen genau sind, fiihrt. '

Die Anwendung von Festpunkten ist bei Berechnung der Kantenmomente
bzw. der Kantenschubkrifte nicht zweckmiBig, da der Verlauf von M, ,, in
der Plattenaufgabe i=M, (Tab. 2) bzw. von N, , in der Scheibenaufgabe
¢=1T, mit der Ordinate y nicht gradlinig ist. Statt der Festpunkte bzw. ihrer
Absténde werden daher die Abklingungszahlen?) e (0 e <3) angewendet, die
das Verhiltnis von zwei aufeinanderfolgenden Kantenmomenten bzw. Kanten-
schubkréiften bei den unbelasteten Faltwerkplatten geben. In Fig. 6a bzw.
Fig. 6b wird der Verlauf der Momente MY, bzw. der Schubkrifte N7}  bei

TY,n

Belastung der j-ten Faltwerkplatte gezeigt. Gemaf3 der Definition ist

1) A. 8, KatMaNOK: ,,Baumechanik der Platten® (russisch), Moskau 1950.
2) Schleichers Taschenbuch fiir Bauingenieure, Berlin 1943, S. 1399.
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) )
e (M) - _%ﬂ. (1) - _T(ff—2>,n
(=D E=2n = T 3rq) ’ G-DT-2,n = T mE
J-=1n (J-1),n 5
M(ﬁ") ) (3 )
eggml)u o = — (J+1),n . (D) T _ WJ+1),n
7+ +1),n T @ ’ LR DA T e w—
My, 79,
USW. usw.

Im folgenden wird vorausgesetzt, dal dem Leser die Festpunktmethode
gut bekannt ist und daher nur die fiir die Anwendung des e-Verfahrens not-
wendigen Formeln angegeben.

Bekanntlich werden die Abklingungszahlen ey, fiir s =21,32,.......
(-1 —2), j(J=1),....,m(m—1) nacheinander aus ey, ausgehend und
die firgy=(m—-1)(m—-1),(m—-2)(m—2),..... ,G+1)(J+1),5J,....,11 nach-
einander aus e,,, , ausgehend berechnet. Die zu diesem Zweck dienenden For-

‘meln sind den Zeilen 1 und 2 (Tab. 3) zu entnehmen.

L 7]
b) 7.-/+2

Fig. 6

Fiir die geraden Réander (J =0 bzw. m) die:

a) frei drehbar gelagert bzw. frei verschieblich in der x-Richtung sind, ist
eflﬁl'ﬁ bzw. es%'f'}%=0 (=10 bzw. mm); ,

b) durch Randglieder elastisch am Verdrehen bzw. am Verschieben in der
z-Richtung verhindert sind, ist ey, der Zeile 4 (Tab. 3) zu entnehmen.
975 bzw. %7,, bedeutet die entsprechende Deformationskomponente der

durch M, =1-sin2% % baw. T, =1-cos 2" & beanspruchten Rand lieder;

c¢) vollkommen am Verdrehen bzw. am Verschieben in der z-Richtung ver-
hindert sind, ist ¢ , in Zeile 5 gegeben.

Die Drehwinkel gu ;1 > @ar.jns Par i1 W0d @y, bzw. die Verschiebun-
gen Up ;g 45 Y jns Up i1, UNA Ugs ., die in diesen Formeln (Zeilen 1—5)
auftreten, sind den Plattenaufgaben i=M, bzw. Scheibenaufgaben i=17,
(Tafel IT bzw. I) fiir die Faltwerkplatten j—1, 4, §+ 1 und 7=1 oder m zu ent-
nehmen. 7

Wenn die geraden Rénder frei sind, also die AuBlenfelder (7=1 und m) der
Durchlaufplatte dreiseitig gelagert sind, s0 wird _egll‘{),a bzw. e |\ o gy , aus der
Formel (Zeile 4) berechnet, indem ¢3 , =9 , , bzw. qn;‘}"?mn gesetzt wird. Diese
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Drehwinkel entsprechen den Plattenaufgaben 7=2M, bzw. #' =M, (Tab. 2) fir
die AuBenfelder 7=1 und m. , |

Die Kantenmomente bzw. die Kantenschubkrifte bei der belasteten Platte
werden gemil den Formeln (Zeilen 6 und 7) bei Anwendung der Festwerte s, ,,
(Zeilen 8 und 9) berechnet.

Bei der Berechnung von M$ %) und M P ist

Ny — % S (d d
= HD =@, . (83)

zu setzen; bei der Berechnung von M$ 4, und MY

Y0 @) (o) L (w) () S () d
‘Pj,n—,wy'u.},n (P@g,y‘,n wj'f.]—l),n (Pw,)j,ns <P§-,q)@—w;('a}),n'qoiu,);',n‘wy("f’}q),n"?’ig,)f,n (34)

Die Drehwinkel ¢, ; , bzw. ¢,, ; ,, entsprechen den Plattenaufgaben i =g, bzw.
w, (s. Tafel IT).
Bei Belastung der Auflenplatten (j=1 bzw. m) im Falle wenn die geraden

Rénder frei sind, werden M{) bzw. M,  folgendermaBen bestimmt:
M(ll) — Pi.n (35 a')
’ - d f:
i |50 10|+ | 5L 0, | = 32,07 P52 2,0
P m,
MYy = = | = (35D)

93%2 m’n’ + ; qjgcl}!),m—l,n‘ ~€n—1)tn—1)" l 90_(7;04)’9”_1’”1

Fiie M{O® bzw. MP@ ist in die Gl (35a) ¢y, =0,y , bzw. w® ¢, 1, zu
setzen. In die Gl. (35b) wird entsprechend fir MY ®) baw. M) ¢ =g
bzW. Wil 1) 0" Puom,n gosetzt. Die Drehwinkel ¢, ; , (¢=M, w, g,) und ¢;; ,
(¢ =w,, q,) sind den Lisungen fiir die entsprechenden Plattenaufgaben (Tab. 2)
zu entnehmen. :

Wenn die Kantenschubkrifte 7'4”, | und 7'{) gemaf den Formeln (Zeile 6

und 7) berechnet werden, so ist

. ; () . ald d : :
fiir w=74J ug} = s ;%\, = uggb.’n (36a)
fiir w=7FJ=1) 4% =uP, .; ¥\ =ul, (36b)

zu setzen, Die Verschiebungskomponenten uy ; , entsprechen der Scheiben-
aufgabe ¢ =N

ne

9. Vereinfachung des kombinierten Lésungsverfahrens

Bei Untersuchung der Bauwerke in der Praxis ist es zulissig, sich mit
weniger genauen Rechnungsergebnissen zu begniigen, solange die sie belasten-
den Fehler belanglos sind. Dadurch wird die Méglichkeit fiir die Vereinfachung
der statischen Berechnungen und somit fiir die Verminderung des dazu not-
wendigen Arbeitsaufwandes geschaffen.
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Aus den GI. (5) und (28) folgt:
6; = 36;, = ZOM+TOM+ITN-6 n=1,2345,... (37)

Z@(”) OP ist die partikulire Lésung bei Beanspruchung des Faltwerkes

durch die volle Belastung fiir die Annahme, daB seine Platten durch Festhalte-
krifte an Verschiebungen verhindert werden.

Wenn die Untersuchung auf Faltwerke, die durch in z-Richtung unver-
anderliche Belastungen beansprucht werden, beschrankt wird, kann, wie Ver-
gleichsrechnungen zeigen,

5O+ E AL OO+ TN, 6. (38

7 % fsam—

gesetzt werden, da der dadurch verursachte Fehler 5%, nicht iiberschreitet.

9, = 0P + 0T + TN QW) (39)
w

Dementsprechend brauchen die normalen Komponenten der Flichenbelastung
¢; nicht in Fourier-Reihen entwickelt werden, wenn die A{%-GréBen unmittel-
bar oder mit Hilfe von fertigen Zahlentafeln berechnet werden kénnen. Von
den Kanten- und Randkriften werden nur die ersten Harmonischen beriick-
sichtigt. Statt einige Teillssungen @, ,, zu suchen, wird durch einmaliges Rech-
nen die endgiiltige Losung gefunden.

Eine weitere ernste Abkiirzung der Rechnung kann durch Verminderung
der Zahl der Verschiebungszustinde erzielt werden. Dies wird durch Anwen-
dung der Naherungslosungen ¢=N* und 7=T%* (Tafel VI), die sich aus der
technischen Biegetheorie der schlanken Stiébe ergeben, statt der genauen
Losungen +=N,_; und ¢=7,_, (Tafel I) erzielt. Um den mit wachsendem
Seitenverhéltnis y immer groBeren EinfluBl der Schubkriifte auf die Verschie-
bimgskomponente v{® zu beriicksichtigen, werden in Tafel VI die Faktoren

[1+= ('y m)%] in der Scheibenaufgabe i=N* und [1 Fa5 ('y )?] in der Scheiben-

aufgabe v =T'* eingefiihrt. Bei niedrigen Scheiben (y < 0,2) stimmen die Ergeb-
nisse der genauen und der Naherungslosungen praktisch genommen vollig
tiberein. Je mehr y iiber 0,2 wichst, desto groBer wird die relative Differenz
zwischen den Ergebnissen der beiden Losungen. Trotzdem kénnen auch dann
die Niherungslosungen angewendet werden, da die Werte von N, « und v,
besonders in der Scheibenaufgabe i+ =N*, sich mit wachsendem y sehr schnell
vermindern, so daf} es auf gréBere Genaunigkeit der Ergebnisse nicht ankommt.
Die Werte von N, und N,, werden durch die Naherungslosungen mit fiir die
praktischen Bediirfnisse gentigenden Genauigkeit gegeben. Schon GRUBER?)
ist zu der Krkenntnis gelangt, daB} bei prismatischen Faltwerken die genaue

%) E. GRUBER: ,,Die genaue Membrantheorie der prismatischen Faltwerke‘, Abh. der
I.V.B.H., Bd. XI (1951).
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Membrantheorie durch die vereinfachte Membrantheorie, die sich bekanntlich
auf die Biegetheorie der Stibe stiitzt, ersetzt werden kann.

Bei den Niherungslésungen werden die Dehnungen der Mittelebene €,
sowie der Einflu der Normalkrifte N, auf die Dehnungen e, nicht beriick-
sichtigt. : 1 #F, 1

€ = 0' P — S
) ’ xz, f 2
D; oy, D;

Na:,:i (40)

Zufolge dieser Vereinfachungen verursacht die Beanspruchung der einzelnen
Faltwerkplatten durch gleiche, entgegengesetzt gerichtete Kantenkrifte, z. B.
H®,_ ) (Fig. 7b), keine Formanderung des Faltwerkes, obwohl dadurch in den
Schnitten y; = konst. Normalkrifte N{F) = — H®, ., hervorgerufen werden.
Wenn die nach GI. (18) berechneten Festhaltekrafte Hg) (Fig. 7a) durch ent-
sprechend gew#hlte Kantenkréifte gem# Fig. 7b tiberlagert werden, dann ver-
schwindet eine der Festhaltekrifte (im gegebenen Beispiel H{),_,,), wihrend
die andere sich in die Festhaltekrifte U (in diesem Falle U{%) = H® — HE), |
Fig. 7¢) verwandelt, die dazu geniigt, um die Platte, in deren Ebene sie wirkt,
an Verschiebungen zu verhindern. Auf dieselbe Weise werden die Kantenkriifte
Hj" und H?) durch die Kantenkrafte U§7) und U} ersetazt.

a)
&)
c)

Pig. 7

Bei der Ndherungslosung der Scheibenaufgabe ¢ = N * fir die j-te Faltwerk-
platteist ¥, = —u{); und v{@ ;= v{) .. DemgemB sind die zwei Verschiebungs-
zustinde w=4j(J —1) und w=jJ sich dhnlich. Von diesen beiden wird nur
derjenige Verschiebungszustand untersucht, dessen Index w gleich dem Index i
der Festhaltekraft U f;’) ist. Die durch die gleichen und entgegengesetzt gerich-
teten Festhaltekrifte H§} hervorgerufenen Normalkrifte 4 Ny} miissen mit
jenen, die durch V§?, verursacht worden sind, vereinigt werden.



300 A. Werfel

Die zur Bestimmung der Koeffizienten A« dienenden Gleichungen lauten

Ugf)l + U + Z A T =0 : (41)

U, bezeichnet hier die erste Harmonische der Kantenkraft U -

Duroh Anwendung der Niherungslosungen ¢=N* und 5="T%* (Tafel VI)
wird somit die Zahl der Verschiebungszustinde und dadurch auch die Zahl
der Bedingungsgleichungen (41) auf m reduziert.

Die praktische Berechnung einer in der y-Richtung durch]aufenden Platte,
~die ebenfalls lings der Rinder x =0 und z =/ gestiitzt und durch die Flichen-
belastung ¢; beansprucht ist, wird abhingig von den Seitenverhiltnissen
¥< 0,56 oder y = 0,5 in verschiedener Weise durchgefiihrt.

Im ersten Fall wird die durchlaufende Platte bekanntlich (s. Niherungs-
losungen ¢=g¢* und ¢=M* in Tafel VI) wie ein Durchlauftriger mit dem
Querschnitt 1-8; berechnet. Diese Berechnungsweise beruht auf der Tatsache,
daf} die vierseitig frei aufliegende Platte mit y <0,5, die durch die Flichen-
belastung ¢ = konst. bzw. durch das Randmoment M = konst. beansprucht.
wird, sich in der mittleren Zone nach einer zylindrischen Fliche durchbiegt.. -
Dieser Biegefliche entspricht M, =M, =@ =¢,=0und M, @,=R,, w und
@, wie fiir einen frei aufliegenden Tréger. In den &uBeren mit den Binder-
scheiben angrenzenden Zonen miissen jedoch bei genaueren Rechnungen die:
Losungen fiir den lings x=0, y=0 und y=d freiaufliegenden, unendlichen
Halbstreifen angewendet werden. Der dieser Berechnungsweise entsprechende:
Verlauf von M, Q,=R,, w und @, in der z-Richtung, ist néherungsweise
durch die in Fig. 8a abgebildete Linie dargestellt. Fiir ¢ =¢* ist dabei a =~2d
und fiir {=M*a=~d. Bei praktischen Berechnungen geniigt es, diese Linie

J2(5)"~38(5 +32(%)

o

rﬁa N 1-2a | ) |
|

b) 7 7
X
L% i-d 4,
= |
X
\]fiﬂxlmax \U
d_| 1-2d [ &
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durch die gebrochene Linie (Fig. 8b) zu ersetzen. Der Verlauf von M, lings
y=1d ist niherungsweise durch Fig. 8¢ gegeben, wo x;=~1d bzw, ~}d und
M, e =0,024gd? bzw. 0,06 M fiir ¢ =q* bzw. M *,

Wenn die geraden Faltwerkrinder frei sind, kénnen die AuBenplatten,
solange sie schmal sind und ihre Breite die Hilfte der Breiten der nichstfolgen-
den Faltwerkplatten nicht iiberschreiten, unter Belastungen, die normal zu
ihren Mittelebenen wirken, als Kragarme des Durchlauftrigers angesehen
werden. In diesem Fall kann der Torsionswiderstand der dreiseitig gelagerten
AufBenplatten nur nidherungsweise erfat werden, indem die Mittelwerte der
Drehwinkel ¢z7 bzw. g7 in der mittleren Zone der Durchlaufplatte angewendet
werden. Diese Mittelwerte der Drehwinkel kénnen geniigend genau, wie fiir
einen auf Torsion beanspruchten Stab, mit rechteckigem Querschnitt d-8
berechnet werden.

1 M-1
P T Ky 20[1-0,6357/d7]-%;
Bei prismatischen Faltwerken, die mit Randtrigern verbunden sind, kann

deren Torsionswiderstand auf dieselbe Weise beriicksichtigt werden

" 1 1 '
(po =E—1.1"'5M'l2 (4:3)

(j=1 bzw. m) (42)

Die Werte von I fiir verschiedene Querschnitte des Randtrigers kénnen z, B,
aus Schleichers Taschenbuch fiir Bauingenieure (Seiten 171-—172) entnommen
werden.

Zur Berechnung von A bei prismatischen Faltwerken mit breiten Platten
20,5 miissen Zahlentafeln angewendet werden, die fertige Lissungen fir die
rechteckige, durch ¢ = konst. belastete Platte bei drei verschiedenen Stiitzungs-
arten und bei beliebigem Sejtenverhaltnis enthalten. Bei allen drei Stiitzungs-
arten ist die Platte lings der Rénder x=0 und z =1 freiaufliegend; lings der
Rénder y=d und y=0 soll sie entweder 1. beiderseits voll eingespannt, oder
2. einseitig voll eingespannt und auf der gegeniiberliegenden Seite frei auflie-
gend, oder 3. einseitig voll eingespannt und gegeniiber frei von Kriften sein.
Solche Losungen kénnen tabellarisch nur durch Angabe von A® fiir eine genii-
gende Zahl von Punkten, die lings der Rander und im Inneren der Platte
liegen, gegeben werden. Solche Zahlentafeln konnen mit Hilfe der Platten-
aufgaben der Tabelle 2, bei Beriicksichtigung von einigen Harmonischen der
Belastung (rn=1,3,5) zusammengestellt werden. Bei der Berechnung der
Durchlaufplatte mit Hilfe dieser Tafeln erweist sich gewohnlich, daB die Kin-
spannungsmomente links und rechts von der J-ten Kante verschieden sind.
Da dies gemill der Kantenbedingung (11d) nicht zulissig ist, miissen die ver-
schiedenen Einspannungsmomente bei jeder Kante ausgeglichen werden. Fiir
praktische Berechnungen geniigt es, nur die ersten Harmonischen ihrer Diffe-

renzen )
AMP, = ME),, 5, —ME) . (44)
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mit Hilfe der Dreimomentengleichungen bzw. des e-Verfahrens zu verteilen.
Die zu diesem Zweck erforderlichen, von der Belastung herriihrenden Dreh-
winkel werden aus

A= AMPy 9D wd =4 UP) D, (43)

berechnet, wo ¢ , ; und ¢} ., aus Tafel II fir i=M,, n=1 zu entnehmen
sind.

Der Verlauf von B, mit der Ordinate x wird bekanntlich auch bei 0,56 <y < 1,0
nach Fig. 8b angenommen.

Die Festhaltekrafte H @) (Fig. 7Ta) werden sodann in derselben Weise wie
beim genauen Verfahren berechnet und, wie vorher beschrieben wurde, durch
TP ersetzt. Die ersten Harmonischen der Festhaltekréifte U betragen

4 — g

szb) =c :bp)~sin—l— X _ (46)

Durch den Verminderungskoeffizienten

sin 3 '
¢ = fm’ (47)
gaY _

wird die Verdnderung von ﬁff) gemdB der gebrochenen Linie (Fig. 8b) beriick-

sichtigt; in (46) bedeutet y ein mittleres Seitenverhéltnis.
Bei Faltwerken mit sehr schmalen Platten (y <1—15) kann der Einflufl der

Schubkrifte auf die Verschiebungskomponenten #* vernachléssigt und M) =
= M® = Q%) =0 gesetzt werden. Demgemds werden Ay, ,_y; Ay ey Ay ney
und Aw -, glelch,Null und die Durchlaufplatte wie ein durchlaufender Tréger,
dessen Stiitzen ihre Hohenlage verdndert haben, berechnet. Zu diesem Zweck

werden die Formeln wie fiir ¢ = M * (Tafel VI) angewendet, nachdem in ihnen

der Verlauf in der z-Richtung nach Fig. 8b durch sin%w ersetzt wird. -

Bei Faltwerken mit entsprechend breiten Platten sind die Verschiebungen
v{) und die Kantendurchbiegungen w{f” so unbedeutend, daf A{ gegeniiber
A® vernachlissigt werden kann. Es wird also 4;=A% gesetzt und die Deh-
nungskriifte aus der vereinfachten Membrantheorie des prismatischen Falt-
werkes, das durch die entgegengesetzt gerichteten Festhaltekrifte beansprucht
wird, berechnet.

10. Zahlenbeispiel

Ein zwanzig Meter langes, einfach gestiitztes, prismatisches Faltwerk aus
Stahlbeton (E=2,1-108t/m2, y=0) mit dem in Fig. 9 abgebildeten Querschnitt
ist lings der gradlinigen Rinder reibungslos durch Winde gestiitzt. Die
Belastung (Bigengewicht, Dachpappe und Schneelast) und ihre Komponenten
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1939

% =409

| 2939

]
]

2457

12792

Fig. 9

10695

1721

2476

sowie die Steifigkeiten der Faltwerkplatten sind aus der Zusammenstellung (4)
ersichtlich. Das Faltwerk soll mit Hilfe des vereinfachten Verfahrens unter-

sucht werden.

A

] p; t/m? q; t{m? t;t/m? K;tm?/m D;tjm

i 0,230 0,1884 F0,1319 60,025 147 000

z 0,300 0,2954 F 0,0521 127,575 189000
P; COS oy p;sine; s. Tabelle 1

Da sowohl das Faltwerk wie auch seine Belastung zur vertikalen Ebene,
die durch die Kante J=2 hindurchgeht, symmetrisch sind, geniigt es, die
Hilfte des Tragwerkes zu berechnen.

Die Bedingungen lings des Randes J =0 lauten:

und lings der Kante J = 2:

T2=O; (p2=0; I)2=02008062—’w228i11a2=0; .RzchSocz—N%Sil’loc2=0.

Aus ihnen ergeben sich die fiir die weitere Rechnung erforderlichen Ausdriicke:

810 =— Rigbgoy; wyg = —vtgay; Spy = Ryyctgey; wyy = vyctg ey

In diesem Zahlenbeispiel lohnt es sich nicht, das e-Verfahren anzuwenden,
da nur zwei Platten untersucht zu werden brauchen. Die Hilfsgrofen, die sich
aus den Grundaufgaben i=g*, M*, N*, T* M,_, und w,_, ergeben und zur
Durchfithrung der Rechnung notwendig sind, sind in (B) zusammengestellt.
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B.
j 1 2
y;=dyfl 0,15 0,20
N y;/d; 0 1 0 1
, | 10%-3,-q| 3531 | -3531 6,175 6,175
q. —
! R, 0,2826 | -0,2826 | 0,5908 | -0,5908 | t/m
e | 190 8,330 | —16,660 5,226 | —10,451 =
Ry 0,3333 0,3333 | 0,2500 0,2500 | t/m |
[
<
N 104wy, | 11,701 | =11,701 5,119 ~5,119 'm | F
104 vy 4 51,867 17,582 m |
- 10%u,, | —1,838 3,676 | —1,072 2,144 | m
10%- v, , -11,817 ~5,209 m
i 103y 4 7,913 | -16,181 4,773 ~9,930 -
n=1 0,3330 0,3337 0,2493 0,2508 | t/m | rx
[
<
1039, 333,03 333,68 249,30 250,81 &
Ui | B, 0,9691 | 1,0239 | 15222 | 16774 |t/m | *

Die Kantenmomente fiir den Zustand, in dem die Platten am Verschieben
in ihren Ebenen verhindert sind, werden aus den Dreimomentengleichungen
(16) bestimmt.

MP (16,6604 10,451)+ MP 5,226 + 3,531 +6,175=0
M 5,226 4 M 10,451 46,175 =0
MP = —0,2702tm/m; M = —0,4557 tr/m

Die Berechnung der Festhaltekrifte Ufjf’) (=11 und 22) und sodann von Ufﬁ’l
ist aus (C) ersichtlich.

Entsprechend der Wahl der Angriffslinien fiir die Festhaltekréifte miissen
nachher die Verschiebungszustinde w=11 und 22 untersucht werden. Mit
Riicksicht auf die Bedingungen 7', = 7', = 0 lauten die Dreischubkréftegleichun-

gen (21) fiur w =11 T{D. (3,676 +2,144) — 11,701 = 0 und fiir

w =22 T¢Y.(3,676+2,144)— 5,119 =0
T¢Y = 2,0104 t/m; TED = 0,87954 t/m

Nachher werden in (D) die Verschiebungen »{*), die Durchbiegungen w§” -
und die sich aus ihnen ergebenden Drehwinkel ¢f” berechnet. Diese werden in
die Dreimomentengleichungen (24) eingesetzt.
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&5
v 10 11 21 72

R, 0,2826 | —0,2826 | 0,5908 | -0,5908 | t/m | Gl (15)
M@) Ry 4 —0,0901 | —0,0901 0,0675 0,0675 | t/m | GL (15)
M(zp)' By, — - ~0,1139 | —0,1139 | t/m | GI. (15)
Ry 0,1925 | —0,3727 0,5444 | —0,6372 | t/m | GL (15)
8 0,1348 2,0874 | 2,0493 3,6136 | t/m | GL(17a-+b)
PO=t.d 0,3957 0,2084 | t/m | GL (6)
AP 0,1348 2,4831 2,0493 3,8220 | t/m | GL (18)
N® ~0,1348 | -0,1348 | —2,0493 | —2,0493 | t/m

o 0 2,3483 | 0 L7727 | t/m

7 é_ 1,260 1,255 Gl. (46)
U,ff,)) 2,959 2,225 t/m | Gl (45)

Mglll) (16,181 + 9,930) _|_Mg1’11) 4,773 43,4940+ 3,7122=0
M(llll) 4,773+ M§'Y-9,930—3,7077=0

MY = _0,3774 tm/m; MY =0,5548 tm/m
Mg?zl).(lg,181+9,930)+M§%§> 4,773 —2,0125 —3,1541 =0
M(1221) 4,773+ Mézj) -9,930+3,1573=0

M =0,2806 tm/m; ME? = —0,4528 tm/m

Die Berechnung der Kantenkrifte Uf),j‘,’%, die den Verschiebungszustinden
entsprechen, ist aus der Fortsetzung von (D) ersichtlich.
Die Bedingungsgleichungen (40) lauten (s. Fig. 10a):

AID.1.99593 —\22).0,76459 4- 2,950 =0
—A1D. 233004 4+ 122). 2 82839 + 2,225 — 0
A = —2.6062; 222 = —2,9336.

Die in der Zusammenstellung (Z) enthaltenen Werte fiir die Verschiebungs-
komponenten % ;; v; und wy,, die Kantenschubkraft 7';, die Normalkrifte Ny
und die Kantenmomente M ; sind mit Hilfe der Gleichung (39) berechnet
Durch einen Strich iiber der Ziffer sind diejenigen Werte gekennzeichnet, die
sich in der z-Richtung gemiB Fig. 8b verindern. Die Verschiebungen b, und

21 Abhandlung XIV
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w/y | 103L9°T | L0GLOO | LEBOO‘0—| LS6OO°0—| GOFLS0—| GOFLSO—| 61S60°T | 6159600 AT

urfy | 688%8°G 0 69FIL 0~ 0 $0088‘3— 0 £6566°T 0 %97,

w/y | 102490 | LOZLOO | L9690°0—| LG690°0—| SOPLS0—| SOPLS0—| 6IC60°0 | 6IZ60°0 AN

(¢2) 19 | Wfe | 3e9ST‘Z | LOZLO'0—| G0S69°0—| LS6900 | 6699F T—| QOFL80 | PLOOG'T | 619600~ Ry
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E.
J 0 1 2
10 ( 11 21 [ 22
uy  {-1,6123 —1,6123‘ 0,1750 | 0,1750 | 0,1750 | 0,6634 | 0,6634 cos-’lix 1073 m
v; ~4,28 -1,08 sinlﬁx 108 m
wy -3,00 | 6,61 7,80 | 6,15 sinlix 1072 m
b -5,2 0,3 0 sinllr-x 1073 m
o, 0 7,9 6,3 sin%x 10~% m
T, 0 17,8196 0 cosT”x t/m
0.y | 5319 —57,7 ~218,9 sin%m t/m2
Ny ~0,0420 | ~2,6502 0,3008 | —2,6272 sin7 @ /m
Ny —0,1348 | ~0,1348 —2,0493 | -2,0493 - t/m
M;, 0 0,1602 ~0;1174 sinT"x tm/m
M, 0 —0,2702 -0,4557| — | tm/m

to; ergeben sich aus den Gleichungen (10¢+b). Die Kantenspannungen O g

erh#lt man aus den Verschiebungen u;, indem diese durch — & %’ multipliziert

d m
werden (aw’J=E"uJ-%cos—x) ;

4

Die inneren Krifte und die Forminderung in den Punkten, die sich zwi-
schen den Kanten befinden, werden zweckmiBig unmittelbar aus den Scheiben-
aufgaben ¢=N* und 7* bzw. aus den Plattenaufgaben ¢ =q*, M*, M, _, und
w,,_; berechnet.

Z.B. betriagt die Normalkraft N, im Punkt x=é=5,00 m; y:%: 1,50 m
N, (5,00; 1,50) = —0,1348 — (0,0420-} +2,6502-  — 7,8196. 247 12) .0,70711 = —

—0,7609 t/m. Das Biegemoment M, im Punkt o= % =10,00m; y= dﬁ% =5,00m

M, (10,00; 5,00) = 0,2954

4,002
8

-0,4535 —0,00780- 3,148-0,0224 — 0,00615-3,148-0,0224 = 0,2462 tm/m.

—0,2702-1—-0,4557 - £ +0,1602-0,4535 - 0,1174-
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Biegemomenle My -05731

\ Mormakpannungen G,
e 1 f/mz
2 =2189

Im [ar die Léngen
Jem  fir die Verschiebungen 5319

5)

Fig. 10

Der Auflagedruck des Faltwerkes auf die Wand betrigt:

A =N, 1 coseca; = 0,2364+0,0767-sin 2.

In Fig. 10b ist fir « =% der Verlauf der Biegemomente M, uﬁd der Normal-

spannungen o, sowie die Forménderung in 100facher Vergréferung dar-
gestellt.



Tafel I

I n O'i,n ’ 'Qi(P)
’ ] . 'n?T
N, — N, X1+ N X2 — BN Xz SI—— 2
P .1
N, Ny (Zx1+X2) — v X1+ 1N X2 Sln—“lirx‘
_ o "
N, N, Xa— By X3~ HN X3 COSZ—Ww
| L b xatunxe—paxe +v[(2x+xe) - na
“ D | S+ oS
Ll CHo) (a—puxa— kX)) —Xs— nw
N - 4 N X3 ,MN),Cs X;, . R
v "D nw | —pen{Xa—2xs) —pnlxs —2xs5") S
1 ! '
u@® anﬂ Py v cos%x y=d
1
u® Nﬂ*p“;{l; B cos%x y=0
1 1| 2xaQ) =X (D] = pyxa (1) -  wE
oD Nop o | —Bxa(0)+v[xa (1) —pyxs (1) - sin——a« |y=d
— v X3 (0)]
’ 1 1 [2Xr,1(0)_X3(0)]"#NX4(0)— . nw '
W Nag o | (D40 [ (0) — iy xs (0)~ | sin—=a |y=0
e X3 (1)]
fhyy = Xs (1) xa (1) — x5 (0) x4 (0) .
s (VPP —[xs (O] 7
,u' =X3(1)X4(0)_X3(0)X4(1)
[xs (1)1 — [xs (0)12
., . n
N, T, M X2+ KT X2 Sin -
4 7 = nar
N, Ty Bp X1t T X1 Biy== &
’ ! nwT
Ny T, For X3 — T X3 CO8 —— &
1 l i 7 7 , n
w Toly wm | PoXeturke —vippxtprx) | cos—— =
1 1 ., _ .
v Tol pm | Prxa—prXd +v(prxs—prys) | sin—o—=
1 1
> Tnﬁﬂ p cos%w y=d
1
u(O) T’nﬁ ,n_l .Uﬂé’ cos%ﬁ T y:O
ks
11 1) xa (0) +v[ppxs (D= | . mm
@ LU prxa (D) —prxs por X (1)- nw _
¢ ToD wow | —hixs (0)] sin -2 y=d
11 (0)—pis (D) +v[pgxs (O)— | . nm
(0) el I o . € M Xa HrXs nm =
Y T"D " — w7 Xs (1)] Slnl @ |y=0
g = xs (1) .
- Ixs (D= [xs (0)]2°
i = X3 (0)
[xs (1)1 — [x35 (0)1?
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Tafel 11

i |4, G T4
w Mn:% %—lq_‘_)2 X1 sin%rx
M, | M, X1+VvXs sin%m
M, | M, Xa+ VX1 sin%’x
M, -M, (1—v)xs cos%irx
Q. ]lfnﬁl7I X1+ Xz ‘ cos?w .
Q, M”%E Xa— X3 sin%x

| B |£MT (2= 52+ -
R®| M,Z" xe (1) =¥ xs (1) sin "% | y=d
RO| M, %" x4(0)—vx3.(0) sin "2 | =0
(R |+ M, 2(1—v) x5 (1) s
(RO |+ M, 2(1 =) x5 (0) A
Pu iMnKi ;Z—é; X1 ot
7, % MnKi%l? X3 (1) sinn—lwx y=d'
20| MLl 0 | sintTe y=
w W, (2—v)x1+x2 sinio'lix
M, | Ew, (?)2 (1 =) [2x, + (1 +2) ys] sin%’ @
M, |—-Kw, (—’n’l—w)2 (1 —;V)le _ sin% x

Wn nw\2 nmw
M, |—Kw, (~l—) (1 —=v)(xa—VXa) COS—— &
0. | Ku (7)) | a-ntutx cos 7 2
Q, | Kuw, (25)3 (1 =) (xa—Xs) sin%ﬂ ®
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Tafel 11 (Fortsetzung)

Ain Cin I

R, | eKu () aopx vl
I T e
R®| Kuw, (—%’E)3 . E_IGQI[}?;C:((S))]_ sin%x y=0
B0 | 2K, (B7) 210 ) =raa (1] -
(R0 | £ Kooy (57) | 2010 0)-vx6 0] o
P iwn% (2=v)x1+xe ii?
o |y xa(1)=vxs (1) sin "z |y=d
0,0 wnn—l1I Xa(0) ~v x5 (0) sin%q—-rx y=0

w n I% (771;)4 1-200+x1") — (xatx2’) | sin % x

w | w0 g
I R e P

Myl @l(ns) | 0D 0mn) c0s 7

@ Gn % 1= +x) = (e +x2) COS%E x

Qy %n ;L-l; (Xs —Xa') = (xa—xa') sin % @

R, | tq,-L 1 () = Gt -

B, | tan o &((21)—:??)((3()1_)—9(4(0)] sin 7 |y

n
B |t (o) | 20-0ba—x0)

i

LR 88 ¥R W B8R
I
N VO OO0 O®R ™NO

I+
£
SR

; l 3
?. (ae) | 12 0hn)— e
I \3 T
(E) Xa (1) — x4 (0) sinnT—x
_ 2[4+ (=1
na

I+
8

Py

q

n
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Tafel I11
_ _ k7 Cthkn-Shemn—kmnChenry
X1=x1(x,m) = 9Shra
_ _ (2—knCthem)Shknyn+rmnChrmy
Xz = Xz (v, ) = 9Sh reor
i) = — (1—x7Cthen)Chknwy+xkmyShena
Xs = Xslfe 1) = 28hkn
_ _ (1+x7Cthkn)Chknmy—kmySheny
X1 = Xa (ks 7)) = 9Shram
K=ny=n%l; 0< W=Ey§1; m=3,14159
0 n o> nr\2 o3 n\3
3—);1 ‘l—7TX3§ WX;:_(T) X2> 3y)gl=—(T) (Xa—2xs)
0 nw, 02 n\? & nr\2 -
3—; T(X4“2X3)§ WX:=(_Z—) (x1+2X2); 5"5<§g= (l—) (2X2—3Xs)
dx3 nw |
i
00Xy nw
Py 1M
’ .t ' d_
Xe =Xplm)  p=1234 9 =1-%= —(;—q
Xp (0) = x, (k, 7 = 0) x, (0) = x,(1)
Xp (1) = x, (1, = 1) X, (1} = x,(0)
p=1,234




Die genaue Theorie der prismatischen Faltwerke und ihre praktische Anwendung 313

Tafel IV
X1 X2
N 0,00 0,25 0,50 0,75 1,00 0,00 0,25 0,50 0,75 1,00
0,0 0,0000 0,0000 90,0000 0,0000 0,0000 0,0000 0,2500 0,5000 0,7500 1,0000
0,1 0,0000 0,0038 0,0060 0,0055 0,0000 0,0000 0,2424 0,4878 0,7393 1,0000
0,2 0,0000 0,0141 0,0224 0,0205 0,0000 0,0000 0,2212 0,4535 0,7089 1,0000
0,3 0,0000 0,0285 0,0467 0,0431 0,0000 0,0000 0,1900 0,4027 0,6619 1,0000
0,4 { 0,0000 0,0441 0,0727 0,0665 0,0000 0,0000 0,1537 0,3426 0,6073 1,0000
0,5 | 0,0000 0,0578 0,0972 0,0911 0,0000 0,0000 0,1173 0,2803 0,5477 1,0000
0,6 0,0000 0,0685 0,1172 0,1150 0,0000 0,0000 0,0835 0,2209 0,4862 11,0000
0,7 0,0000 0,0751 0,1318 0,1358 0,0000 0,0000 0,0550 0,1673 0,4281 1,0000
0,8 0,0000 " 0,0776 0,1406 0,1504 0,0000 0,0000 0,0317 90,1226 0,3742 1,0000
0,9 0,0000 0,0774 0,1442 0,1611 0,0000 0,0000 0,0143 00,0854 0,3270 1,0000
1,0 0,0000 0,0736 0,1435 0,1695 0,0000 0,0000 0,0018 00,0557 0,2832 1,0000
1,1 0,0000 0,0685 0,1397 0,1757 0,0000 0,0000 -0,0069 0,0326 0,2434 1,0000
1,2 0,0000 0,0626 0,1336 0,1799 0,0000 0,0000 -0,0124 0,0148 0,2086 1,0000
1,3 0,0000 0,0564 0,1260 0,1814 0,0000 0,0000 -0,0155 0,0016 0,1780 1,0000
14 0,0000 0,0497 0,1175 0,1815 0,0000 0,0000 —0,0169 —~0,0080 0,1511 1,0000
1,5 0,0000 0,0434 0,1087 0,1802 .0,0000 0,0000 -0,0171 -0,0148 0,1273 1,0000
1,6 0,0000 0,0376 0,1000 0,1782 0,0000 0,0000 -0,0164 —0,0195 0,1063 1,0000
1,7 0,0000 0,0323 0,0911 0,1753 0,0000 0,0000 —0,0153 —0,0221 0,0878 1,0000
1,8 0,0000 0,0275 0,0828 0,1717 0,0000 0,0000 —0,0140 -0,0238 0,0715 1,0000
1,9 0,0000 - 0,0233 0,0749 0,1676 0,0000 0,0000 -0,0126 -0,0244 0,0572 1,0000
2,0 0,0000 0,0196 0,0675 0,1631 0,0000 0,0000 -0,0110 —0,0243 0,0448 1,0000
2,2 90,0000 0,0138 0,0538 0,1534 0,0000 0,0000 -0,0084 —-0,0229 0,0246 1,0000
2,4 | 0,0000 0,0095 0,0434 0,1431 0,0000 0,0000 -0,0061 —-0,0203 0,0104 1,0000
2,6 0,0000 0,0067 0,0344 0,1321 0,0000 0,0000 -0,0044 —0,0175 —0,0019 1,0000
2,8 0,0000 0,0044 0,0270 0,1219 0,0000 0,0000 -0,0031 —-0,0147 —0,0110 11,0000
3,0 0,0000 0,0030 0,0214 0,1142 0,0000 0,0000 -0,0022 —0,0124 -0,0183 1,0000
3,5 0,0000 0,0014 0,0112 0,0892 0,0000 0,0000 —-0,0011 —0,0071 —0,0242 1,0000
4,0 0,0000 0,0004 0,0059 0,0679 0,0000 0,0000 —0,0003 -0,0040 —0,0246 1,0000
4,5 0,0000 0,0002 0,0030 0,0515 0,0000 0,0000 -0,0001 —-0,0022 —0,0236 1,0000
5,0 0,0000 0,0001 0,0015 0,0387 0,0000 0,0000 0,0000 —0,0011 —0,0190 1,0000
5,5 0,0000 0,0000 0,0007 0,0288 0,0000 0,0000 0,0000 —-0,0006 —0,0153 1,0000
6,0 0,0000 0,0000 0,0004 0,0211 0,0000 0,0000 0,0000 --0,0003 —0,0123 1,0000
7,0 0,6000 0,0000 0,0001 0,0113 09,0000 0,0000 0,0000 -0,0001 —0,0071 1,0000
8,0 0,0000 0,0000 0,0000 0,0059 0,0000 0,0000 0,0000 0,0000-0,0040 1,0000
9,0 0,0000 0,0000 0,0000 0,0030 0,0000 0,0000 0,0000 0,0000-0,0022 1,0000
10,0 0,0000 0,0000 0,0000 0,0015 0,0000 0,0000 0,0000 0,0000-0,0011 1,0000




314 - A. Werfel
Aus: A. 8. KALMANOK, ,,Baumechanik der Platten‘‘, Moskau 1950.
X3 X1

0,00 0,25 0,50 0,75 1,00 0,00 0,25 0,50 0,75 1,00 %
0,0000 0,0000 0,0000 0,0000 0,0000 o0 o) o) o) 0 0,0
0,0512 (,0484 0,0130—0,0352 -0,1034 3,1831 3,1832 3,1833 3,1834 3,1836 0,1
0,0956 0,0784 0,0257 -0,0653 -0,1991 1,5871 1,5891 1,5914 1,5939 1,5965 0,2
0,1286 0,1064 0,0374 —0,0872 -0,2812 1,0474 1,0530 1,0615 1,0708 1,0768 0,3
0,1481 0,1243 0,0478 —0,0980 —0,3471 0,7671 0,7745 0,7931 0,8164 0,8292 0,4
0,1549 0,1323 0,0567 —0,1010 -0,3969 0,5894 0,6032 0,6369 0,6728 0,6935 0,5
0,1514 0,1329 0,0644 —0,0954 —0,4325 0,4622 0,4796 0,5233 0,5814 0,6150 0,6
0,1408 0,1276 0,0700-0,0841 -0,4570 0,3678 0,3895 0,4448 0,5192 0,5680 0,7
0,1262 0,1175 0,0739 —0,0696 —0,4731 0,2891 0,3139 0,3833 0,4797 0,5402 0,8
6,1098 0,1058 0,0762 —0,0537 —0,4836 0,2291 0,25562 0,3376 0,4489 0,5235 0,9
0,0932 0,0939 0,0772 -0,0372 —0,4901 0,1803 0,2078 0,2945 0,4238 0,5137 1,0
0,0714 0,0822 0,0771 -0,0212 -0,4941 0,1400 0,1695 0,2605 0,4030 0,5079 1,1
0,0639 0,0713 0,0758 —0,0066 —0,4966 0,1102 0,1394 0,2313 0,3846 0,5045 1,2
0,0520 0,0610 0,0735 0,0069 -0,4980 0,0856 0,1139 0,2054 0,3679 0,5025 1,3
0,0418 0,0517 00,0705 0,0182 -0,4988 0,0653 0,0927 0,1829 0,3517 0,5012 1.4
0,0333 0,0437 0,0669 0,0282 —0,4993 0,0513 0,0742 0,1629 0,3362 0,5007 1,5
0,0265 00,0368 0,0630 0,0372 -0,4995 0,0395 0,0608 0,1454 00,3216 0,5005 1,6
0,0208 0,0310 0,0589 0,0448 -0,4997 0,0303 0,0501 0,1289 0,3075 0,5004 1,7
0,0163 0,0260 0,0546 0,0506 —0,4998 0,0232 0,0412 0,1141 0,2939 0,5003 1.8
0,0127 0,0217 0,0505 0,0555 —0,4999 0,0178 0,0338 0,1010 0,2805 0,5002 1,9
0,0099 0,0180 0,0466 0,0594 —0,4999 0,0136 0,0274 0,0900 0,2673 0,5001 2,0
0,0059 0,0117 0,0388 0,0641 —0,5000 0,0079 0,0175 0,0714 0,2418 0,5000 2,2
0,0035 0,0081 0,0320 0,0672 —0,5000 0,0045 0,0117 0,0550 0,2191 0,5000 2,4
0,0020 0,0056 0,0260 0,0669 —0,5000 0,0026 0,0078 0,0429 0,1964 0,5000 2,6
0,0012 0,0038 0,0209 0,0664 —0,5000 0,0014 0,0052 0,0332 0,1775 0,5000 2,8
0,0007 0,0026 0,0167 0,0642 —0,5000 0,0008 0,0035 0,0257 0,1589 0,5000 3,0
0,0002 0,0013 0,0072 0,0562 —0,5000 0,0003 0,0015 0,0129 0,1197 0,5000 3,5
0,0001 0,0004 0,0049 0,0465 —0,5000 0,0001 0,0004 0,0067 0,0895 0,5000 4,0
0,0000 0,0001 0,0026 0,0368 —0,5000 0,0000 0,0001 0,0034 0,0659 0,5000 4.5
0,0000 0,0000 0,0013 0,0290 ~0,5000 0,0000 0,0000 0,0017 0,0486 0,5000 5,0
0,0000 0,0000 0,0006 0,0226 —0,5000 0,0000 0,0000 0,0008 00,0359 0,5000 5,5
0,0000 0,06000 0,0003 0,0167 -0,5000 0,0000 0,0000 0,0004 0,0256 0,5000 6,0
0,06000 0,0000 0,0001 00,0073 -0,5000 0,0000 0,0000 0,0001 0,0130 0,5000 7,0
0,0000 0,0000 0,6000 0,0049 —-0,5000 0,0000 0,0000 0,0000 0,0067 0,5000 8,0
0,0000 0,0000 0,0000 0,0026 —0,5000 0,0000 0,0000 0,0000 0,0034 0,5000 9,0
0,0000 0,0000 0,0000 0,0013 -0,5000 0,0000 0,0000 0,0000 0,00I7 0,5000 10,0
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Tafel V

Fig,n(x?K.?n):I"i,n(x’K)n,) flj*r F’-‘:’,n=Na::Ny;u

I n(@,6,m) = =TI, (x,k,n") fiir I7 , = -

. i n(@ie,m) =T, (2, w,q’) fir i, =v
" F’é,n(xJKJ'T)) = _Fi,n(x:K’nl), fur F’:,n =Na:9Ny7ny:u

Mﬂ, A'g,n(x;K’ 7))=Ai,n(x9’canl) fur A'l{,’rL:waMx:My: Qx;Rm:(Pm
Ain (X, 0,m) = —A; (2, 6,q") fir A =M, ,Q,, R, ,[R],e,

Az’,n (m’ K, 77) = Ai,n (ﬂ}, K, 7]) +ﬁ)7;,n'-/11,’v,n(x; K, "7)

Y _ M, I \2 X (0) —v x3(0)
Mo | Barn =g (nﬂ) (I=v)[2xs (1) = (1 +¥) x5 (1)]
i a0 2x(0)—(14+7) x3(0) |
O B PA O B TPy
o |8 = @( 1)4 Xz (1) — x5 (0) — (2 —9) [x4 (1) — x4 (0)]
n 7% K \n=zn (1=v)[2xs (1) — (1 +v) x5 ()]

A @ieym) = Ay @y, ') fiir Af = w, M, M,,Q,, Ry, 0,
Y A @kn) = Ay, @, y) fie A, = M,,,Q,, R, [Rl.e,
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Tafel VI
| Verlauf in der
= N* T* ~ #-Richtung
6 ' _ 2 T
N ~N.—_(1-2 e {1 == in
- N (yw)z(l ) T yw(l 37) | sin o &
N, N-3n2(1—%9) | =T -ym-n2(1—2) sin%x
N, N-2a,0-n — 729 (1—3n) - oos ™
wy Frn 7 ) 37 S~ &
I u vyl 6 (1—27) —T-—l—iﬁ(l—?,) cos —
17 6 117 4 T
(@) Neeaoo — e — = & -
v ND m (yw)? TD';T'y'n", coslx
17 6 17 2 T
() —_— S 2o
v lvl)ar(y'n')2 T.D?T‘)/'?T cosT *
1 1 12 - " 17 6 2 5 . T
© Nyl | Tl ante
M, | $qd*n(l—y) M
— 1
@,  3gd(1-24) M-
_ 1 1 L o &P
w fﬂgd”=(fr,r—2773-1-"74) ]TM'G—("?“W?’)
o
. 1 &
I, R@|~1qd M'E P
o
Hav
ol 1 1 g
: 11 1 d
T} - = 3 - —
¥ K 24 qd K = 3
1 1 1 d
=(0) - 3 _ -
-z % 5419 %
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Zusammenfassung

In der Arbeit wird die genaue (Biege-) Theorie der prismatischen Faltwerke
entwickelt und sodann das Problem auf zwei Weisen gelost. Die erste derselben,
die den iiblichen Methoden der mathematischen Elastizititslehre entspricht,
eignet sich nicht fiir die praktische Anwendung, da sie zu umstindlich und
zeitraubend ist. ‘

Die zweite ist eine Kombination der Methoden der praktischen Statik mit
denen der mathematischen Elastizitdtslehre. Sie beruht auf der Anwendung
eines mehrstufigen Verfahrens, das der mehrstufigen Berechnung von Rahmen
mit verschieblichem Netz analog ist, in Verbindung mit fertigen Zahlentafeln,
die partikuldre Integrale der Grundgleichungen des prismatischen Faltwerkes
‘enthalten. Die Kantenmomente und die Kantenschubkrifte kénnen dabei mit
Hilfe eines Verfahrens berechnet werden, das der Festpunktmethode analog ist.

Durch gewisse zusdtzliche Annahmen wird nachher das kombinierte
Losungsverfahren weitgehend vereinfacht, ohne dadurch beachtenswerte
Fehler bei den Rechenergebnissen zu verursachen. Die Anwendung des verein-
fachten Verfahrens wird an Hand eines Zahlenbeispiels erldutert.

Die Arbeit enthélt Formeln und Tafeln; die dem Leser die Losung von
vielen praktischen Aufgaben ermoglichen.

Summary

In this paper the exact bending-theory of formed prismatic sections is
developed and applied to solve the problem in two ways. The first of these,
which corresponds to the usual methods of the mathematical theory of elasti-
city, is not suitable for practical application, since it is tedious and time con-
suming.

The second is a combination of the methods of practical statics with those
of elasticity theory. It rests on the application of a step-by-step procedure,
analogous to the iterative computation of a frame with a deformable network,
together with available numerical tables which contain particular integrals of
the basic equations of formed prismatic sections. The edge moments and edge
stresses can then be computed by a method which is analogous to the fixed
point method.

With certain additional assumptions the combined method of solution can
then be further simplified, without introducing significant errors in the calcu-
lated results. The application of the simplified method is expounded by means
of a numerical example.

The paper contains formulee and tables which enable the reader to solve
many practical problems.
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Résumé

- L’auteur expose la théorie exacte (flexion) des vottes polygonales prisma-
tiques, puis il résout le probléme de deux maniéres différentes. La premiére
solution correspond aux méthodes habituelles de la théorie mathématique de
Iélasticité; elle ne convient pas pour ’application pratique, car elle est trop
“compliquée et trop longue. ‘

La deuxiéme méthode constitue une combinaison et des procédés de la.
statique pratique et de la théorie mathématique de I’élasticité. Elle repose sur
Pemploi d’un procédé échelonné, analogue au calcul progressif des cadres avec
réseau mobile, conjointement avec des tableaux numériques qui donnent
I'intégrale particuliére des équations fondamentales des votites polygonales.

Les moments et les efforts tranchants aux arétes peuvent étre calculés &
I'aide d’un procédé analogue a la méthode du point fixe.

Certaines hypothéses supplémentaires permettent ensuite de simplifier
largement le procédé combiné de résolution, sans toutefois donner lieu & de
notables erreurs dans les résultats du calcul. L’application du procédé simplifié
fait I’objet d’'un exemple numérique. :

I’étude contient des formules et tableaux qui permettent de résoudre de
nombreux problémes pratiques.
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