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Die genaue Theorie der prismatischen Faltwerke
und ihre praktische Anwendung

The exact theory of prismatic structures formed by bending
and its practical application

La Theorie exacte des voütes polygonales prismatiques et leur emploi pratique

Dipl.-Ing. A. Wekfel, Haifa (Israel)

1. Einleitung

Das in Figur 1 abgebildete räumliche Flächentragwerk besteht aus drei
Grundelementen: aus einem dünnwandigen, prismatischen Körper (dem
prismatischen Faltwerk) und aus zwei Binderscheiben, die mit den gebrochenen
Rändern des Faltwerkes monolithisch verbunden sind, senkrecht zu seinen
Kanten stehen und zu seiner Stützung sowie zu seiner Aussteifung dienen.
Die im Bauwesen angewendeten Flächentragwerke dieser Art weisen gewöhnlich

außer den Grundelementen noch zusätzliche Glieder auf.
Die Berechnung aller prismatischen Faltwerke läßt sich auf die

Untersuchung der sog. einfach gestützten, prismatischen Faltwerke zurückführen,
die ihnen gegenüber eine ähnliche Rolle spielen wie die Hauptsysteme bei
statisch unbestimmten Stabtragwerken. Wenn ein prismatisches Faltwerk auf
nur zwei Binderscheiben gelagert ist, die in ihren Ebenen vollkommen steif
und quer zu diesen vollkommen biegsam sind, so wird es als einfach gestützt
bezeichnet. Dabei ist es gleichgültig, ob die gradhnigen Faltwerkränder frei
wie in Figur 1, oder mit zusätzhchen Elementen (Randgliedern, anderen
Faltwerken oder zylindrischen Schalen von der gleichen Länge, stützenden Wänden

wie im Zahlenbeispiel usw.) verbunden sind.
Solange die zwei Binderscheiben eines einfeldrigen, prismatischen

Faltwerkes voneinander genügend entfernt sind, kann es als einfach gestützt
angesehen werden. Sonst müssen die wirklichen, elastischen Eigenschaften der
Binderscheiben (besonders ihre von NuU verschiedenen Biegesteifigkeiten)
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berücksichtigt werden. In diesem Fall sowie z. B. bei den mehrfeldrigen (durch
mehr als zwei Binderscheiben gestützten) prismatischen Faltwerken wird die
Lösung durch Superposition von zwei Lösungen für das einfach gestützte Faltwerk

gewonnen, einer für die im folgenden definierten gewöhnlichen Belastung
und der anderen für die längs der gebrochenen Ränder angreifenden, aus
Normalkräften und Biegemomenten bestehenden Randbelastungen.

s' '
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Fig. 1

In der vorhegenden Abhandlung wird das einfach gestützte prismatische
Faltwerk mit plattenweise konstanter Stärke nur für die gewöhnliche Belastung
untersucht. Dabei wird, ähnlich wie bei den Theorien der Schalenkonstruktionen,

vorausgesetzt, daß a) die Stärke jeder Platte klein im Verhältnis zu
ihren übrigen zwei Abmessungen ist; b) die Durchbiegungen klein gegenüber
der Stärke sind; c) die vor der Formänderung senkrecht zur Mittelfläche
stehenden Fasern auch nach der Deformation gradlinig sind und senkrecht zur
verformten Mittelfläche stehen; d) die senkrecht zur Mittelfläche wirkenden
Normalspannungen vernachlässigbar klein sind; e) der Werkstoff isotrop ist.

2. Die inneren Kräfte des prismatischen Faltwerkes

Die Platten des prismatischen Faltwerkes werden der Reihe nach durch
j= 1,2,3,.. .m, seine Kanten durch J= 1, 2, 3,... (m— 1) und seine gradlinigen
Ränder durch J 0 bzw. m bezeichnet (Fig. 1). Die Abmessungen der /-ten
Faltwerkplatte sind durch ihre Länge l, ihre Breite d} und ihre Dicke o^- gegeben
(Fig. 2 a). Ihr Neigungswinkel zur Vertikalen beträgt «.j. Der Winkel ßJt der
zwischen zwei aufeinanderfolgenden Platten eingeschlossen ist, wird aus ihren
Neigungswinkeln berechnet.

ßj <xi+i-°<-i
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Für jede Platte wird ein raumfestes, rechtwinkliges, rechtsgewundenes
Koordinatensystem xyz gewählt, dessen sc ?/-Ebene mit ihrer Mittelebene
zusammenfällt, dem die niedriger bezifferte Kante als x-Achse dient und dessen

Ursprung in der entsprechenden Binderscheibe liegt (Fig. 1):
In der vorhegenden Abhandlung wird das einfach gestützte prismatische

Faltwerk für die aus folgendem bestehende Belastung untersucht:
a) Flächenbelastung p^ (Fig. 2b), die auch die Volumskräfte (Eigengewicht)

erfaßt und durch eine zur /-ten Mittelebene normale Komponente q$ (Fig. 2 c),
sowie durch eine zu ihr tangentiale Komponente tj ausgedrückt wird (Fig. 2d).

b) Kantenkräfte Pj, die durch ihre Komponenten P}J und P(j+dj ersetzt
werden (Fig. 2e).

c) Längs der gradhnigen Ränder wirkende Randkräfte, die aus Normalkräften

Nj, Querkräften Bj und Schubkräften Tj bestehen, sowie
Randmomente Mj (Fig. 2f).

Die von den Binderscheiben auf das Faltwerk längs der gebrochenen Ränder

ausgeübten Kräfte bestehen im folgenden nur aus Schubkräften Ts,
Querkräften Rx und in den Ecken der Platten angreifenden Einzelkräften [B]
(Fig. 2 g). Die Flächenbelastung und die Kantenkräfte dürfen in diesem Falle
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keine zur a-Achse parallelen Komponenten haben, da das Auftreten von
Normalkräften längs der gebrochenen Ränder, die diese Komponenten
aufnehmen könnten, hier nicht in Betracht gezogen wird. Aus demselben Grund
muß die Resultierende der Randschubkräfte Tj Null sein.

jTjdx 0 (2)

Im folgenden wird vorausgesetzt, daß das prismatische Faltwerk sowohl
durch die Flächenbelastung wie auch durch die Kanten- und Randkräfte in
seiner Mittelfläche beansprucht wird.

Das prismatische Faltwerk erleidet unter der Belastung eine elastische

Verformung, die durch die Verschiebungskomponenten Uj, Vj und Wj der zur
Mittelfläche angehörenden Punkte ausgedrückt werden kann (Fig. 2g). Zur
Beschreibung der Deformation längs der Ränder und der Kanten müssen die

Drehwinkel <pxi=-^i und <py,j -jr^: zur Hilfe herangezogen werden.

In den Schnitten x konst. bzw. y konst. des verformten Faltwerkes
wirken Normalspannungen ax bzw. ay sowie Schubspannungen rxy und txz
bzw. tvx und ryz. Auf Grund des Satzes von der Gleichheit der zugeordneten
Schubspannungen ist txv ryx. Zufolge der in der Einleitung getroffenen
Vereinbarungen verlaufen die Spannungskomponenten ax,ay und rxy Tyx hnear
über die Plattendicke und können daher in zwei Teile zerlegt werden. Der eine
ist über die Plattendicke gleichmäßig verteilt (die sog. Membranspannungen),
der andere dagegen ist zur Entfernung von der Mittelfläche (d. i. zur Ordinate Zj)

proportionell (die sog. Biegespannungen). Dem linearen Verlauf der

Normalspannungen entsprechend verlaufen die Schubspannungen txz und ryz, die
ebenfalls zu den Biegespannungen gehören, nach einer Parabel zweiten Grades

(Scheitelpunkt in Zj 0 und Nullwerte in Zj= ±\§.,•).

*,P*xi
V J»*.i

y.i "*y.j "y.J Q'J

b)

Fig. 3

Statt sich im weiteren der Spannungskomponenten zu bedienen, ist es

zweckmäßig, mit ihren auf die Längeeinheit des Schnittes bezogenen
Resultierenden, den sog. inneren Kräften (Schnittkräften und Schnittmomenten) zu
rechnen. Die Membranspannungen ergeben in den Schnitten x konst. bzw.
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Tabelle 1

N ¦x,j
82Fj

N ¦ _
e2 Fj
dx2
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dxdyj
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d2w-
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|
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-kJ^ +3 \dyj3 dx2d
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i] Qx,
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1 ty,
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r\ dMxyj
Vy,i+ 8x
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[B]j -2(l-v)Tr-J± 2MxyJ

dxdyj
dWj

9x-3' ~8x

_ dWj
9y-3' Jy~j

3 12(l-v2)

y konst. die Normalkräfte Nx bzw. Ny und die Schubkräfte Nxy Nyx, die

in der Mittelfläche wirken und als Dehnungskräfte (Membrankräfte) bezeichnet

werden (Fig. 3 a). Die den Biegespannungen angehörenden Teile der

Normalspannungen und der Schubspannungen rxy ryx ergeben die Biegemomente Mx
bzw. My und die Drillungsmomente Mxy Myx. Die Resultierenden Qx bzw. Qy

der Schubspannungen txz bzw. Tyz werden Querkräfte genannt. Die den

Biegespannungen entsprechenden Schnittmomente und Schnittkräfte (Fig. 3 b) werden

als Biegekräfte bezeichnet.

Längs der Ränder und längs der Kanten des prismatischen Faltwerkes
lassen sich, ähnlich wie bei den dünnen Schalen und bei den dünnen Platten,
die Drillungsmomente nur mit Hilfe der ihnen statisch gleichwertigen Ersatz-
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querkräfte berücksichtigen. Diese werden mit den Randwerten der Querkräfte
zu resultierenden Querkräften Rx bzw. Ry (siehe Tabelle 1) vereinigt. In den

Schnittpunkten der gebrochenen Ränder mit den gradhnigen Rändern und den
Kanten treten unter dem Einfluß der Drillungsmomente Einzelkräfte [R] auf
(s. Tabelle 1 und Fig. 2g), die senkrecht zu den Platten wirken.

Um die Schreibweise für die längs der Kanten auftretenden Schnittkräfte
und Schnittmomente zu vereinfachen, werden dort statt der Bezeichnungen
Ny, Nyx, My, Ry und cpy die Bezeichnungen N, T, M, R und <p angewendet.
Durch die Beigabe eines Indexes jJ bzw. (j + l)J wird gekennzeichnet, ob
diese im Schnitt links bzw. rechts von der J-ten Kante wirken.

3. Die Differentialgleichungen des prismatischen Faltwerkes

In der mathematischen Elastizitätstheorie werden die Differentialgleichungen
der Flächentragwerke auf der Grundlage von drei Bedingungsgruppen

abgeleitet:
a) Sechs Gleichgewichtsbedingungen (drei gegen Verschieben und drei

gegen Drehen) für das Flächenelement dx dy.
b) Einer geometrischen Bedingung (Verträglichkeitsgleichung).
c) Elastostatischer Beziehungen, die die dem Hookschen Gesetz

entsprechenden, gegenseitigen Abhängigkeiten der Spannungskomponenten und der

Deformationskomponenten ausdrücken.
Wenn diese drei Bedingungsgruppen auf das Element dx dyj der j-ten Platte

eines prismatischen Faltwerkes angewendet und gemäß den Rechnungsannahmen

nur kleine Durchbiegungen betrachtet werden, dann erweist sich,
daß die dadurch gewonnenen Differentialgleichungen zwei voneinander
unabhängige Systeme bilden. In den Differentialgleichungen eines Systems treten
die tangentialen Komponenten der Flächenbelastung tj, die Dehnungskräfte
sowie die Verschiebungskomponenten Uj und v} auf, in denen des anderen

Systems die normale Komponente der Flächenbelastung qj7 die Biegekräfte
und die Verschiebungskomponente Wj. Die Gleichungen des ersten Systems
sind mit den Differentialgleichungen des ebenen Spannungszustandes (des

Scheibenproblems) identisch, die des zweiten Systems mit den Differentialgleichungen

des Biegeproblems der ebenen Flächentragwerke (des
Plattenproblems). Wegen Platzmangels werden hier weder diese Differentialgleichungen

noch ihre Ableitung gegeben. Der Leser kann sie in einem behebigen Lehrbuch

der Elastizitätslehre, in den Abschnitten, die dem Scheibenproblem und
dem Plattenproblem gewidmet sind, finden.

Beim Scheibenproblem erleidet bekanntlich das Element dx dy^ der Mittelebene

ausschließlich Verzerrungen (Dehnungen ex und ey sowie Winkeländerungen

yxy). Beim Plattenproblem kann dieses Element, solange es sich um
kleine Durchbiegungen Wj handelt, als unverzerrt angesehen werden.
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Im folgenden wird zur Bezeichnung einer behebigen Größe (innere Kraft
oder Deformationskomponente), die im Scheibenproblem bzw. im Plattenproblem

auftritt, das Symbol J1 bzw. A angewendet. Eine behebige innere Kraft
oder Deformationskomponente des prismatischen Faltwerkes wird weiter durch
das Symbol @ bezeichnet. Aus dem früher Dargelegten folgt, daß die @3-Größen
aus Tj- und ^-Größen bestehen. Alle Ff und ylj-Größen und demzufolge auch
die ©^-Größen sind (einstweilen unbekannte) Funktionen der beiden Ordinaten
x und yj.

Beim Scheibenproblem werden bekannthch alle Tj durch die Airysche
Spannungsfunktion Fj, beim Plattenproblem alle Aj durch die Durchbiegung
Wj (die Ordinaten der elastischen Fläche) ausgedrückt. Die Operationen, die zu
diesem Zweck durchgeführt werden müssen, sind aus der TabeUe 1 ersichthch.
Die Konstanten Dj bzw. Kj sind die Dehnsteifigkeit (Scheibensteifigkeit) bzw.
die Biegesteifigkeit (Plattensteifigkeit) der j-ten. Faltwerkplatte. E ist der
Elastizitätsmodul und v die Querdehnungszahl.

Aus der Scheiben- und der Plattentheorie ist es bekannt, daß die
Spannungsfunktion Fj (x, y}) bzw. die elastische Fläche wt (x, yj) durch Integration
der sog. Scheiben- bzw. Plattengleichung gefunden werden. Diese lauten:

diFj a PF, dlFi
• - + 2 —|dx* dx2dyj2 dy}

2 + 2^nrfrä +^ 0 (3a)

d*Wj d*Wj PWj _ qt
dx*+ dx2dyj2+ dyj* Kj

K '

und sind lineare, partielle Differentialgleichungen vierter Ordnung (sog.
biharmonische Gleichungen). Die erste von ihnen ist homogen (ihre rechte Seite

beträgt NuU), die zweite inhomogen.
Die m Scheibengleichungen (3a) und die m Plattengleichungen (3b) für

j= 1,2,3,... m sind die Grundgleichungen des hier untersuchten Faltwerkes.

4. Die Lösung des Problems in klassischer Weise

Die Bedingungen, die durch die Lösung längs der gebrochenen Ränder des

einfach gestützten prismatischen Faltwerkes, also für x 0 und x l erfüllt
werden müssen, lauten:

NxJ Vj 0 a); MxJ Wj 0 b) (4)

In diesem Fall wird die Integration der Differentialgleichungen (3a + b)
durch Trennung der Veränderlichen x und yd und durch Anwendung von
einfach-unendlicher Reihen durchgeführt. Zu diesem Zweck muß die Belastung
und die Lösung in Fourier-Reihen entwickelt werden. Der Nachteil dieser

Integrationsmethode besteht darin, daß für jede Harmonische der Belastung
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die ganze Rechnung wiederholt werden muß und die endgültige Lösung als
Summe von Teillösungen gewonnen wird.

®! X®J,n (n=l,2,3,...) (5)
n

Die tangentiale Komponente der Flächenbelastung muß wegen der
Reihenentwicklung der Spannungsfunktion durch Kanten- bzw. Randkräfte

d,
P») \tjdyj (j =1,2,3,...,m) (6)

o

ersetzt werden, die zu den Kantenkräften Pj(j_X) oder Pjj zugeschlagen
werden.

Die allgemeinen Integrale für das n-te Ghed der Spannungsfunktion und
das n-te Ghed der elastischen Fläche können folgendermaßen ausgedrückt
werden:

•*V,n äV,n-Hin-T-:r • (7 a)

Krwi,n ^,»-sm -j-x (7b)

0 bzw. W sind Funktionen der Ordinate yj und von vier Integrationskonstanten
A bzw. B.

*,.n 4« Sh^y, + 4» Ch^y,+^y, (jj» Sh^y, + A^nCh^y,) (8a)

+ Yo(yi,ij) (8b)

In der letzten Gleichung bilden die Glieder mit der Integrationskonstanten B
das allgemeine Integral der Plattengleichung, deren rechte Seite gleich Null
gesetzt wird (kurz, der homogenen Plattengleichung), während W0(yj,qj) ein
partikuläres Integral der inhomogenen Plattengleichung (3b) darstellt.

Nachdem die in der Tabelle 1 angezeigten Operationen an den allgemeinen
Integralen (7 a + b) durchgeführt werden, erhält man die allgemeinen Ausdrücke
für Fi>n und Ajn

rjn 0^ • sin-j— x bzw. cos -=— x (9 a)

für r =Nx,Ny,v bzw. r=Nxy,Nyx,u

Aj^n= Yjfü-sin —j— x bzw. cos-y- x (9b)

für A Mx,My,Qy,Ry,<py bzw. A Mxy,Myx,Qx,Rx,<px

&(r) bzw. W~A) sind ebenfalls Funktionen der Ordinate y} und der vier
Integrationskonstanten A bzw. B.
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Aus den allgemeinen Ausdrücken (9a + b) und aus (7b) ist zu ersehen, daß

die Bedingungen (4a+b) wie auch die Bedingung (2) unabhängig von n und
den Integrationskonstanten, sozusagen automatisch, erfüllt werden. Dies ist
die Begründung für die Anwendung der angezeigten Integrationsmethode bei
einfach gestützten, prismatischen Faltwerken.

Die allgemeinen Lösungen der Grundgleichungen des prismatischen
Faltwerkes, die auf diese Weise erhalten werden, enthalten somit 4 m Integrationskonstanten

AjiK und 4m Integrationskonstanten Bin (j l,2,3,... m). Um
die Integrationskonstanten bestimmen zu können, müssen 8 m Gleichungen

S<J

s?

X ^-, t.<r s*s

*\
a)

ft<2¦y
V>J

VJ f.

\ __ />.

^. \«•

b

Fig. 4

zur Verfügung stehen. Diese werden durch je vier Bedingungen längs der beiden

gradlinigen Ränder und durch je acht Bedingungen längs jeder der m-1
Kanten gegeben.

Sowohl die Rand- wie auch die Kantenbedingungen können statische oder

geometrische Bedingungen sein. Wenn ein gradliniger Rand frei ist, so sind

alle vier Randbedingungen statisch: Nj=Tj Mj=Rj 0. Wenn er
vollkommen eingespannt oder z. B. mit einem Randbalken verbunden ist —

geometrisch; bei voller Einspannung müssen die Randwerte der Deformationskomponenten

Uj,vj, Wj und cpj gleich Null, im zweiten Falle gleich den

entsprechenden Verformungen des Randbalkens sein. Ein Teil der Randbedingungen

kann durch geometrische, der Rest durch statische Bedingungen gebildet
sein (s. Zahlenbeispiel). Die Kantenbedingungen bestehen immer aus vier
geometrischen Bedingungen, die die Kontinuität der Deformation beim Übergang

von Platte zu Platte ausdrücken (Fig. 4 a) und aus vier statischen Bedingungen,
die besagen, daß die auf die Kante wirkenden inneren und äußeren Kräfte ein

sich im Gleichgewicht befindendes Kräftesystem bilden müssen (Fig. 4 b).
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Die acht Bedingungen für die J-te Kante lauten:

UiJ=U(3+l)J=UJ (10a)
Vj j sin ocj + Wj j cos Xj v(j+1)j sin «i+1 + w{j+i)j cos ai+1 =tVj (10b)
Vjj cos ocj - Wj j sin Xj %+1,j cos <xj+1 - %+1) j sin «m öj (10c)

9iJ n+i)j <Pj (10d)
TjJ T(j+1)J=TJ (IIa)
^ jr sin ocj + i?,- j cos olj + Pj j sin <Xj Nij+1)j sin <xm + i?0+1)j cos ocj+1 +

+ -PÖ+i)Jsina7+i

^- ^ cos (Xj — Rj j sin ocj + Pj j cos v.j N^+-qj cos otj+1 — -Ry+1)j sin a,,-+1 +
+ -po-+i)^cosam

MiJ M(j+Jij Mj (lld)
Mj bzw. üj sind Verschiebungen der Kantenpunkte in der horizontalen Ebene
parallel zur Kante bzw. perpendikulär zu ihr; rOj ist die Durchbiegung der
J-ten Kante, die vertikal gemessen wird. Tj und Mj werden als Kantenschubkraft

und Kantenmoment bezeichnet. <pj ist der Drehwinkel der J-ten Kante.
Nachdem die allgemeinen Ausdrücke (9a + b) für yt 0 bzw. yj dj in die

Rand- und Kantenbedingungen eingesetzt werden, erhält man 8 m lineare
Gleichungen für die 8 m unbekannten Integrationskonstanten. Zwischen diesen

Gleichungen gibt es solche, die nur die Integrationskonstanten Ai>n oder nur
die Integrationskonstanten Bj n enthalten, und solche, in denen die
Integrationskonstanten Aj>n und Bjn zusammen auftreten. Die letzteren entsprechen
Bedingungen, bei denen die J1 „-Größen mit den Aj „-Größen verbunden sind,
wie dies in den Kantenbedingungen (10b+ c und llb + c) sowie bei manchen
Randbedingungen (s. Zahlenbeispiel) der Fall ist. Demzufolge, wie auch aus
dem Grund, daß in allen aus den Kantenbedingungen (10+11) gewonnenen
Gleichungen die Integrationskonstanten von zwei aufeinanderfolgenden Platten

auftreten, bilden die 8 m zur Bestimmung der Integrationskonstanten
dienenden Gleichungen ein einziges Gleichungssystem. Das gemeinsame Berechnen
aller 8 m Integrationskonstanten vereinigt die für die einzelnen Faltwerkplatten

aufgestellten, allgemeinen Ausdrücke (9a + b) zu einer einzigen Lösung
für das prismatische Faltwerk. Das Bestimmen der Integrationskonstanten
Aj>n und Bj n aus einem gemeinsamen Gleichungssystem beweist, daß beim
prismatischen Faltwerk die J1^ „-Größen mit den A,; „-Größen, also das
Scheibenproblem mit dem Plattenproblem, ähnhch wie bei allen Schalen, miteinander

untrennbar verknüpft sind.
Zwischen den 8 m Gleichungen des zur Berechnung der Integrationskonstanten

dienenden Gleichungssystems sind 4 (m— 1), die den Kantenbedingunggen

(10b+ c und llb + c) entsprechen, sechzehnghedrig, weitere 4(m —1), die
den übrigen Kantenbedingungen entspringen, achtgliedrig und die acht, die
sich aus den Randbedingungen ergeben, vier- oder achtgliedrig, abhängig
davon, ob die Randbedingungen nur ri>n bzw. nur A; „-Größen enthalten oder
beide miteinander verbinden. Die Lösung eines so unhandlichen Gleichungs-
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Systems ist sehr umständlich und zeitraubend. Die Berechnung eines
prismatischen Faltwerkes auf die soeben beschriebene Weise, die als klassische
bezeichnet werden kann, eignet sich daher nicht für die praktische Anwendung,
um so weniger als trotz der schnellen Konvergenz der Reihen (5) zur Erzielung
von genügend genauen Resultaten die Rechnung für einige Harmonische der
Belastung wiederholt werden muß.

5. Die Grundsätze des kombinierten Lösungsverfahrens

Zwischen der genauen Theorie der prismatischen Faltwerke und der genauen
Rahmentheorie besteht eine Analogie, da beim Rahmen ebenfalls zwei
Probleme (der Dehnung und der Biegung des geraden Stabes) voneinander nicht
zu trennen sind. Für die übliche vereinfachte Berechnung der Rahmen mit
verschieblichem Netz, bei der die Längeänderung der Stäbe vernachlässigt
wird, sind mehrere Methoden entwickelt worden. Von diesen läßt sich die sog.
mehrstufige Berechnungsmethode, die die Anwendung der Festpunktmethode
und des Cross-Verfahrens bei Rahmen mit verschieblichem Netz ermöghcht,
sinngemäß auf das Problem des prismatischen Faltwerks übertragen.

Tabelle 2

T? jf'
¦h'nf^-tf..-y

£)*„ "\/X

i 1wn "I

'k

N„-Isin^x

T„-lcos^x

tf„-rsm^x

wn hin ¦££¦ x

-*Tn T„ O-

-£>» *'(?-

IHfc

gn^nSin-f-X £=1*
Die mehrstufige Berechnungsmethode in Verbindung mit fertigen Zahlentafeln

bildet die Grundlage des kombinierten Lösungsverfahrens. Diese Tafeln
dienen zur Berechnung von vier partikulären Integralen der Scheibengleichungen

(3a) und von elf partikulären Integralen der Plattengleichungen (3b). Die
ersteren entsprechen vier Belastungsfällen (Tab. 2: i Nn, Tn und i'=Nn, Tn)
der längs der Ränder yj dj oder y, 0 durch Randnormalkräfte Nn bzw.
Randschubkräfte Tn beanspruchten, rechteckigen Scheiben, die in x 0 und
x l so gestützt sind, daß die Randbedingungen (4 a) erfüllt werden. Von den
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letzteren beziehen sich fünf (s. Tabelle 2) auf die vierseitig starr und frei drehbar

gelagerten Platten und sechs auf die dreiseitig starr und frei drehbar
gelagerten Platten, deren Ränder y3 0 (Plattenaufgaben i) bzw. yj dj
(Plattenaufgaben %') frei von Kräften sind. Die Platten werden entweder gleichmäßig

belastet (Plattenaufgaben i qn, t qn, i' qn) oder längs des Randes

y. dj(i=Mn,i Mn) bzw. yj 0(i' MnJ' Mn) durch ein Randmoment M„
beansprucht. In den vier Plattenaufgaben (i=wn, %=wn, i' wn und i' =wn)
wird der Einfluß der Durchbiegung eines Randes (yj dt bzw. yj 0) untersucht.
Mit Hilfe der Zahlentafeln müssen die in Tabelle 2 enthaltenen Scheiben- und
Plattenaufgaben für beliebige Seitenverhältnisse yj djjl gelöst werden können.

Beim kombinierten Lösungsverfahren wird ein Gebrauch von der bekannten

Eigenschaft der linearen Differentialgleichungen gemacht, gemäß der ihre
Lösung ebenfalls als Summe von einer beliebigen Zahl ihrer partikulären
Integralen erhalten werden kann.

Bei Anwendung dieses Lösungsverfahrens können die Kantenmomente
MJ>n (Gl. lld) und Kantenschubkräfte TJ>n (Gl. IIa) mit Hilfe einer Methode

(im folgenden kurz e-Verfahren benannt), statt mit Hilfe der Dreimomenten-
gleichungen (16, 24) und der Dreischubkräftegleichungen (21), berechnet werden.

Das e-Verfahren ist der Festpunktmethode analog.
Das kombinierte Lösungsverfahren ist eine Synthese der Methoden der

praktischen Statik und der Verfahren der Elastizitätstheorie.

6. Die mehrstufige Berechnungsmethode

Wenn auf das prismatische Faltwerk keine Randschubkräfte Tj (J 0

bzw. m) wirken, so wird die Lösung für die n-te Harmonische der Belastung in
analoger Weise wie bei Rahmen mit verschieblichem Netz erhalten:

a> 10,11,21,...,jJ,(j+l)J,...,mm.
@jPl ist eine partikuläre Lösung für die Annahme, daß die Platten des

Faltwerkes durch sog. Festhaltekräftefl"^(i/'= 10,11,12,.. .,jJ,(j+l)J,.. .,mm)
(Fig. 5a) an Verschiebungen in ihren Ebenen verhindert sind:

»$ 0 1,2,3,...,»») (13)

@£"£ sind partikuläre Lösungen für entsprechend gewählte Verschiebungs-
zustände («H + 0).

A^>) sind Koeffizienten, die aus gewissen Bedingungsgleichungen berechnet
werden.

Berechnung der partikulären Lösung ©^
Da Tj 0 angenommen und die tangentialen Komponenten der

Flächenbelastung gemäß Gl. (6) durch Kantenkräfte ersetzt sind, ist ebenfalls u^n 0
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^ H(j-t)(j-0
*) ¦-/ J-l ^ &">j

S<s

(P)

-** H(J-f)il-0
6)

j-t j-i T<&

C)
J-l J-l

r/w

ai'jj

cu=jj

Fig. 5

und demzufolge 7^ 0. Die Kantenbedingungen (10a) und (Ha) sind
demgemäß erfüllt. Aus der Annahme (13) und den Kantenbedingungen (10b+ c)

folgt:
w.}J,n W(v)

(j + l)J,n ^» 0 (14)
ib 10,11,12,.. .,jJ,(j+l)J,. .,mm

Dies bedeutet, daß A^n wie für eine über starre Stützen (den Kanten und evtl.
den graden Rändern) durchlaufende Platte, die außerdem in x 0 und x l
starr und frei drehbar gelagert ist, berechnet wird. Zu diesem Zweck kann
man sich der fertigen Lösungen für die Plattenaufgaben i qn, Mn und i' Mn
(Tab. 2) bedienen.

A/f» — "¦<!, },n + Mf_ltn-AMt jt „ + Mft n
• AMt it n (15)

Aus den Kantenbedingungen (10d) und (lld) ergeben sich Dreimomenten-
gleichungen, die zur Berechnung der Kantenmomente Mty}_lin und M(f^n
angewendet werden. Die Dreimomentengleichung für die J-te Kante lautet:

Mfl-L., Im(0) I

\9M,j,n\ -Mf,n- \9u,i,n\ + \<PM,j+\,n,\) ^¦"* J+l,n Wm.j + I.i </,»+<m.» ° (16)

cpt j n bzw. <pi j+1 n sind die Drehwinkel, die für die /-te bzw. j+ 1-te Platte mit
Hilfe der Plattenaufgaben i Mn bzw. qn berechnet werden. Die oberen Indexe
(0) bzw. (d) bezeichnen die Ränder y 0 bzw. y d.

Gemäß der allgemeinen Beziehungen (15) für j=l,2, ...m werden die
resultierenden Querkräfte Rjj,n nnd R$+Vjin berechnet. Damit sich die J-te
Kante unter den Auflagerkräften der Durchlaufplatte nicht verformt, müssen
auf sie festhaltende Kantenkräfte Sffin wirken, die sich aus den
Kantenbedingungen (llb+c) ergeben:

20 Abhandlung XIV
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"jj,i cosecßJ-(R<$l1)J>n-R%\ncosßJ)
S$li)j,n= oosecßj- (Rf+1)J,n cosßj - JJ#n)

Der Winkel ßj ist aus der Gl. (1) einzusetzen.
Die Festhaltekräfte H$n betragen:

TJ(P) — p i ,Cf(»)
¦*"* ib. 77, "* 11. 77, > f-'lll. 7ib,n iji,n" Ji[i,n

(17a)
(17b)

(18)

da sie auch die Komponenten der Kantenbelastung PJn aufnehmen müssen.
Bei Faltwerken, deren gerade Ränder frei sind, ist w^n^0 (i/< 10, mm).

Die Außenfelder (j=l,m) der Durchlaufplatte sind in diesem Fall dreiseitig
gelagert. Dementsprechend werden bei ihnen die Lösungen für die
Plattenaufgaben i qn, Mn bzw. i'' =qn, Mn (Tab. 2) angewendet.

Wahl und Untersuchung der Verschiebungszustände

Um den Einfluß der tatsächlich nicht vorhandenen Festhaltekräfte zu
beseitigen, müssen 2 m Verschiebungszustände des Faltwerkes untersucht werden.
Bei ihrer Wahl muß auf folgendes Rücksicht genommen werden:

a) Die jedem Verschiebungszustand entsprechenden äußeren Kräfte dürfen
nur aus Kantenkräften Hffin (Fig. 5 b) bestehen. Die dem Verschiebungs-
zustand entsprechenden Dehnungskräfte und Biegekräfte müssen sich gesondert

berechnen lassen.

b) Die Verschiebungszustände dürfen nicht ähnlich sein, d. h. die aus den
Verschiebungen v^n gebildete Determinante muß von Null verschieden sein.

,,(10) ,,(10)
v10,n'>

,,(H)v10,i

11,«')

dl)

„(10) „(10)

(11) (11)
"xp, n' • • •' vmm, n

VM (co)
10, m' "11, n'

„(a>) v(a>)
umm,n

V',(mm) „.(mm)
10,»' vll,n>

.Amm)
"•fi, n' •

„(mm)

4= 0 (19)

Bei allen Verschiebungszuständen müssen dabei die für die geraden Ränder
gegebenen geometrischen Bedingungen erfüllt werden.

Als Verschiebungszustand w, der diesen Anforderungen genügt, kann
beispielsweise der Verschiebungszustand angenommen werden, der sich aus der

genauen Membrantheorie des prismatischen Faltwerkes ergibt, wenn dieses

nur durch die Kantenkraft V^l^^l-siri-^-x (Fig. 5c) beansprucht wird.

r'fy kann dann mit Hilfe der fertigen Lösungen für die vier Scheibenaufgaben
i=Nn, Tn und i' =Nn, Tn (Tab. 2) berechnet werden.

p(<a)
i,n~ -1 NJ.n^1 N.j.n^ J J-l.» J T,j,n+ •* J,n I '.T,j,n (20)
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In die Gl. (20) sind rNJn bzw. r'Nj>n nur dann einzusetzen, wenn Vffl^ n in der
j-ten Ebene wirkt. Sonst sind diese Glieder zu vernachlässigen.

Die Kantenbedingungen (10a) und (IIa) ergeben die Dreischubkräftegleichungen,

aus denen die Kantenschubkräfte T(flln und T^\ berechnet
werden. Die Dreischubkräftegleichung für die J-te Kante lautet:

T^K -\uiSK 14- 7,<<u) • (\<ii(ä). I-i-!»/<*> h4-T(<«) U,(o) \jt_iM) fM — n toi\-1 J-l,n rr,J,»l + J J,n \\uTJ,n\ + \uT,j+l,n\) + J J+l,n \wT,) + l,n\+uj,n~uj+l,n {) (ZL)

uT,i,n Dzw- uT,j+i,n smd Längsverschiebungen, die sich aus Lösungen für die
Scheibenaufgaben i Tn bei jj djjl bzw. yj+1 di+1jl ergeben. Die oberen
Indexe bezeichnen die Scheibenränder y 0 bzw. y d.

u{j% ttAU.» °der u(ß]iin wenn ai=j7 oder j(J-l)
uf+i,n uNj+i,n oder u$j+1>n wenn w (j+1) J oder (j+l)(J+l) ist.

Sonst ist u^n= u$1>n 0 zu setzen.

uN,i,n Dzw- uN,j+i,n smd Längsverschiebungen, die sich aus den Lösungen
für die Scheibenaufgaben i Nn ergeben.

Die Kantenverschiebungen v^n, die aus den allgemeinen Beziehungen (20)
berechnet werden, bestimmen gemäß den Kantenbedingungen (10b + c) die
Kantendurchbiegungen

m.n =cosecßj-(v$1)J>n-vWncosßj) (22a)

<+W coseojSj.^uj^.oofljSj-^J (22b)

Diese Formeln erhält man durch Lösung der Gl. (10b+ c) nach w und
Einsetzen von ßj aus Gl. (1).

Das Plattenproblem, das dem gewählten Verschiebungszustand entspricht,
ist das Problem der durchlaufenden Platte, deren Mittelstützen und evtl. die
Endstützen (die Kanten und evtl. die geraden Ränder) sich durchgebogen
haben. Die Lösung dieses Plattenproblems wird mit Hilfe der Lösungen für
die vier Plattenaufgaben i wn, Mn und i' =wn, Mn (Tab. 2) erhalten.

A\» WMJ-l),n" Aw,},n + W$,n' Awjyn + Mj°_ln- AMjn + Mfn-AMjn (23)

Die fehlenden Kantenmomente M^f}_r n und M{-f'n werden durch die diesem

Plattenproblem entsprechende Dreimomentengleichungen, die sich ebenfalls
aus den Kantenbedingungen (lOd) und (11 d) ergeben, bestimmt. Die J-te
Dreimomentengleichung lautet:

^l.n- W&.i.nl +Mtn (|A,»I + IA+l,«D +
+ M(j%,n- 19#,*+l,nl -Ä» + #&+l,» ° (24a)

_;w i^<o) —,,,(«) .m(") _,/,(<») .mw _
~W0 + l)J,n'9w,j+ l,n + W(3 + l)<.J+l),n'cPwJ+l,n (24b)

Die Koeffizienten bei den Kantenmomenten sind hier dieselben wie in Gl. (16).
Die Drehwinkel <pwj>n bzw. q>wj+1>n sind den Lösungen der Plattenaufgaben
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i wn für die ;'-te bzw. /+l-te Faltwerkplatte zu entnehmen. Die oberen
Indexe (0) bzw. (d) bezeichnen auch hier die Plattenränder y 0 bzw. y d.

Damit die Kanten unter den Auflagekräften der Durchlaufplatte keine
weiteren Deformationen erfahren, müssen längs derselben Kantenkräfte S^n
angebracht werden, die sich aus den Gl. (17a + b) ergeben, wenn in diesen der
Index (p) durch (cu) ersetzt wird.

Die äußeren Kräfte, die den gewählten Verschiebungszustand verursachen,
betragen somit:

&& V%1 + Sftl für 0 «, (25 a)

und H^n 8^n für + *<o. (25b)

Beim Deformationszustand des biegesteifen prismatischen Faltwerkes, der
dem gewählten Verschiebungszustand entspricht, wird seine Dehnungssteifig-
keit durch die Kantenkraft FjfBi, und seine Biegesteifigkeit durch die Kantenkräfte

S^n bezwungen.
Wenn die geraden Faltwerkränder frei sind, so wird die Untersuchung der

Verschiebungszustände tu 10 und mm überflüssig. Für die Außenplatten
(J 1 und m) müssen dann die Lösungen der Plattenaufgaben i wn und M„
bzw. i'=wn und Mn (Tab. 2) entsprechend angewendet werden.

Bestimmung der Koeffizienten A^"'

Bei dem unter der gegebenen Belastung tatsächlich auftretenden
Verschiebungszustand des prismatischen Faltwerkes müssen die Festhaltekräfte
Hfön verschwinden. Diese Bedingung ergibt 2 m (bei Faltwerken mit freien
Rändern 2 (m — 1)) lineare Gleichungen

Hfn +^-H$n 0 (26)
CO

Aus diesen Gleichungen bestimmt man die Koeffizienten A^u). Die aus den
Kantenkräften H^ gebildete Systemdeterminante ist immer von Null
verschieden, da nicht ähnlichen Deformationszuständen nicht ähnliche Belastungsfälle

entsprechen.
Wenn das prismatische Faltwerk auch durch Randschubkräfte T-j (J 0

und m) beansprucht wird, so muß noch die partikuläre Lösung 0^1 gefunden
werden. Sie entspricht dem Verschiebungszustand (T), der sich aus der genauen
Membrantheorie des prismatischen Faltwerkes ergibt, wenn es allein durch
die Randschubkräfte Tj belastet wird. Die Berechnung von rf^ erfolgt dann

nur mit Hilfe der Lösungen für die Scheibenaufgaben i Tn und i' Tn (Tab. 2)
und ist der Berechnung von F^l analog. In den Dreischubkräftegleichungen (21)
für die 1-ste bzw. m —1-ste Kante wird%(x*„= — T0>n-u(^l>n und 1^,^ 0 bzw.

*m-i,» 0 und ^m,n= ~~ ^m,n-u(T,m,n gesetzt. In den Dreischubkräftegleichungen
für die anderen Kanten (J 2,3, ...,m-2) sind die freien Glieder gleich

Null zu setzen. Nachdem die Kantendurchbiegungen w^n aus den Gl. (22a + b),
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in denen der Index (co) durch (T) ersetzt wird, bestimmt werden, wird die
Lösung des Plattenproblems A^ analog wie Af°l erhalten. Die Kantenkräfte,
die dem Verschiebungszustand (T) entsprechen, betragen

HfX SfX (27)

Im allgemeinen Belastungsfall des prismatischen Faltwerkes gehen daher
die Beziehungen (12) und (26) in

*,,w ®?X + ®fl + 2 A<f > ö£> (28)
CO

"nd Hfn + Hfn + 2 A<<"> • H$>n 0 (29)
CO

über. ü> 10, 11,... jj, (j+1) J,.. .,mm; ifi 10,ll,.. .,jJ,(j+l)J,. mm.
Manchmal soll das prismatische Faltwerk für einige Belastungsfälle untersucht

werden. Die partikulären Lösungen ©^ brauchen dann nur einmal
gefunden zu werden, während die partikuläre Lösung ©^v)n, sowie die
Koeffizienten A^°} für jeden Belastungsfall berechnet werden müssen.

Die geraden Faltwerkränder werden oft mit Randträgern verbunden, deren
Querschnitte verschiedenartig ausgebildet sind. Bei der mehrstufigen
Berechnungsmethode ist es zweckmäßig, die Randträger als zusätzliche Glieder des

Faltwerkes anzusehen. Längs der Verbindungslinie zwischen Faltwerk und
Randträger müssen vier geometrische Bedingungen (Gl. lOa + b + c + d) erfüllt
werden. Da der Randträger viel stärker als das Faltwerk ausgebildet ist, kann
die Verformung seines Querschnittes vernachlässigt werden. Dementsprechend
wird der Randträger als Stab mit beliebigem Querschnitt berechnet, der durch
Eigengewicht und durch die längs der Verbindungslinie wirkenden: Normal-
karft Nj „, resultierenden Querkraft Rj n, Schubkraft Tj „ und Moment Mj n

(J 0, m) auf schiefe Biegung mit veränderlicher Längskraft und Torsion
beansprucht wird.

7. Die Zahlentafeln

Durch Einführung von zwei dimensionslosen Veränderlichen:

K ny und r\ yjd (0^i?gl) (30)

in die Funktionen 0^ und W^ (Gl. 8a + b und 9a+ b) sowie durch Erfüllung
der jeweiligen Randbedingungen (längs y d und y 0) bei den fünf
Grundaufgaben (Tab. 2 i Nn, Tn, Mn, wn und qn) werden aus (9a + b) die zur
Aufstellung der Zahlentafeln dienenden Ausdrücke erhalten:

ri!n=C^-Ü(.r)(K,7])-sm^x bzw. cos^z für i Nn,Tn (Tab. 2) (31a)

A^n=C<Al-n\A)(K,7})-Bin~x bzw. cos^xfüri=Mn,wn,qn (Tab.2) (31b)
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Sowohl die Multiplikatoren C^l bzw. 0^ wie auch die Funktionen Q[r) bzw.

n[^ der Veränderlichen k und n sind für jede Grundaufgabe i sowie für jede
innere Kraft oder Deformationskomponente verschieden.

Die Formeln für Fin (i=Nn und Tn) bzw. für Ain (i Mn, wn und qn)

gemäß (31) sowie alle für die Rechnung notwendigen Randwerte sind in den
am Schluß beigefügten Tafeln I bzw. II enthalten. Die Funktionen Q\r) bzw.
n\A) sind dort durch die von Kalmanok1) eingeführten vier transzedenten
Hilfsfunktionen yp(k, 17) (p= 1,2, 3,4), die in der Tafel III zu ersehen sind,
ausgedrückt. In Tafel IV, die abgekürzt von dem Werk von Kalmanok
wiedergegeben ist, sind die Werte der vier Hilfsfunktionen yp für O^k^ 10 und für
•»7 0,00; 0,25; 0,50; 0,75 und 1,00 zusammengestellt.

Die übrigen zwei Scheibenaufgaben (i' Nn und Tn) und die acht
Plattenaufgaben (i' Mn und wn, i Mn, wn und qn, %' Mn, wn und qn) der Tabelle 2

können, wie es in Tafel V gezeigt wird, auf die entsprechenden fünf
Grundaufgaben zurückgeführt werden.

8. Das e-Verfahren

Sowohl die Dreimomentengleichungen (16,24) wie auch die
Dreischubkräftegleichungen (21) sind den Dreimomentengleichungen des Durchlaufträgers

analog. Daher besteht die Möglichkeit, die Festpunktmethode und das
Cross-Verfahren für die Berechnung der Kantenmomente und der
Kantenschubkräfte zu erweitern.

Da die Dreimomentengleichungen (16,24) bzw. die Dreischubkräftegleichungen

(21) für die J-te Kante sich voneinander nur durch die freien Glieder
unterscheiden, brauchen die zur Berechnung der Kantenmomente bzw. der
Kantenschubkräfte notwendigen Festwerte nur einmal für die n-te Harmonische

der Belastung bestimmt werden.
Hier wird nur das der Festpunktmethode analoge Verfahren beschrieben,

da es in diesem Fall rascher als das erweiterte Cross-Verfahren zu Ergebnissen,
die auf einige Stellen genau sind, führt.

Die Anwendung von Festpunkten ist bei Berechnung der Kantenmomente
bzw. der Kantenschubkräfte nicht zweckmäßig, da der Verlauf von My<n in
der Plattenaufgabe i Mn (Tab. 2) bzw. von Nxy^n in der Scheibenaufgabe
i Tn mit der Ordinate y nicht gradlinig ist. Statt der Festpunkte bzw. ihrer
Abstände werden daher die Abklingungszahlen2) e (0^e^ J) angewendet, die
das Verhältnis von zwei aufeinanderfolgenden Kantenmomenten bzw.
Kantenschubkräften bei den unbelasteten Faltwerkplatten geben. In Fig. 6 a bzw.

Fig. 6 b wird der Verlauf der Momente M^n bzw. der Schubkräfte N^yn bei

Belastung der j-ten Faltwerkplatte gezeigt. Gemäß der Definition ist

*) A. S. Kalmanok: „Baumechanik der Platten" (russisch), Moskau 1950.
2) Schleichers Taschenbuch für Bauingenieure, Berlin 1943, S. 1399.
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0W)
-(j-l) (J-2),n

o(M)
^(i+l)(J+l),n

lu(J-2),n.'
Mm

lu(J+l),n

usw.

(T)
e(?-l)(J-2),n

(T)
e(j+l)(J+l),n

X(J- 2),»
rp(i)l(J- 1),»

1 (J+l),n
rp(J)J J,n

(32)

usw.

Im folgenden wird vorausgesetzt, daß dem Leser die Festpunktmethode
gut bekannt ist und daher nur die für die Anwendung des e-Verfahrens
notwendigen Formeln angegeben.

Bekanntlich werden die Abklingungszahlen e^ „ für ifi 21, 32,

0"-l)(J-2), ?'(J-l), ,m(m-l) nacheinander aus e10„ ausgehend und
diefüri/r (m-l)(m-l),(m-2)(m-2), ,(j + 1) (J + l)',jJ,...., u
nacheinander aus emmn ausgehend berechnet. Die zu diesem Zweck dienenden
Formeln sind den Zeilen 1 und 2 (Tab. 3) zu entnehmen.

J-2 J-1

J-3 J+1

MV> M'fl. J+1
J-l

Mt>
M"3 J+2

J+2

J-2 J-l
TJ>.J-3 J-i-2 Jtl

Ji-I

T?>

J+2

J+2

Fig. 6

Für die geraden Ränder (J 0 bzw. m) die:
a) frei drehbar gelagert bzw. frei verschieblich in der x-Richtung sind, ist

e^f2 bzw. e^l 0 (;/> 10 bzw. mm);
b) durch Randglieder elastisch am Verdrehen bzw. am Verschieben in der

^-Richtung verhindert sind, ist e-xn der Zeile 4 (Tab. 3) zu entnehmen.
<Pjt „ bzw. Uj,n bedeutet die entsprechende Deformationskomponente der

durch Mn 1 • sin-^ x bzw. Tn 1 ¦ cos~ x beanspruchten Randglieder;

c) vollkommen am Verdrehen bzw. am Verschieben in der x-Richtung ver¬
hindert sind, ist egn in Zeile 5 gegeben.

Die Drehwinkel q>M,j-\,n> VMj.m Vaij+i.n un& <PM,i,n bzw. die Verschiebungen

uTJ_ln, uTin, uTj+ln und uT-n, die in diesen Formeln (Zeilen 1—5)
auftreten, sind den Plattenaufgaben i Mn bzw. Scheibenaufgaben i Tn
(Tafel II bzw. I) für die Faltwerkplatten j — 1, j, j+1 und J= 1 oder m zu
entnehmen.

Wenn die geraden Ränder frei sind, also die Außenfelder 0 1 und m) der
Durchlaufplatte dreiseitig gelagert sind, so wird e^„ bzw. e{m-i)(m-D,n aus der

bzw.q^M^n gesetzt wird.DieseFormel (Zeile 4) berechnet,indem <pj„ <Pm 1;
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Drehwinkel entsprechen den Plattenaufgaben * Mn bzw. i' Mn (Tab. 2) für
die Außenfelder ] 1 und m.

Die Kantenmomente bzw. die Kantenschubkräfte bei der belasteten Platte
werden gemäß den Formeln (Zeilen 6 und 7) bei Anwendung der Festwerte «^ „
(Zeilen 8 und 9) berechnet.

Bei der Berechnung von Mfjf>n und Mf^> ist

1,(0) (0) \(.d) (d) (CO)rj,n Tq,j,n> Yj,n Tq,],n \ööl

zu setzen; bei der Berechnung von M^J^ und M'p^

T],n w}J,n fw,j,n wj(J-l),n Yw,),n> 9j,n,— wjJ,n ¥w,i,n wj(J-l),n 9w,i,n \ö*>

Die Drehwinkel q>qj>n bzw. <pWijiK entsprechen den Plattenaufgaben i qn bzw.
wn (s. Tafel II).

Bei Belastung der Außenplatten (7=1 bzw. m) im Falle wenn die geraden
Ränder frei sind, werden M^n bzw. M(™lhn folgendermaßen bestimmt:

lf<D h^ük i^Kf.s1,n \mW UUW |_„ .|m(0) I ^oa'
A /

M{mK <Pm'n (^Hh\-'"m-l,» \~(d) 1,1 (d) \—o I (0) I \ooiJ)
\f M,m,n\ "+" | fM,m-l,n\ e(m-l>(m-l)' \ <PM,m-l,n\

Für M^ bzw. Jf£H»> ist in die Gl. (35a) ft,n ^, bzw. <>^w>1,n zu
setzen. In die Gl. (35b) wird entsprechend für M^lf^ bzw. M^fn $m>n Y'q,m,n

bzw. w^lm_1)!n-q>'w^n gesetzt. Die Drehwinkel <^„ (« JfB,u>Btgn) und $£,->n

(i' wn, qn) sind den Lösungen für die entsprechenden Plattenaufgaben (Tab. 2)

zu entnehmen.
Wenn die Kantenschubkräfte T{flln und T{j^n gemäß den Formeln (Zeile 6

und 7) berechnet werden, so ist

(36 a)

(36b)

zu setzen. Die Verschiebungskomponenten uN i<n entsprechen der Scheibenaufgabe

i Nn.

9. Vereinfachung des kombinierten Lösungsverfahrens

Bei Untersuchung der Bauwerke in der Praxis ist es zulässig, sich mit
weniger genauen Rechnungsergebnissen zu begnügen, solange die sie belastenden

Fehler belanglos sind. Dadurch wird die Möghchkeit für die Vereinfachung
der statischen Berechnungen und somit für die Verminderung des dazu
notwendigen Arbeitsaufwandes geschaffen.

ür <° jJ <» «#,.*; ,\W) _ ,,W)ui,N ~ "'N.j.n
™ « ?'(Jr-i)^f« <^.n; ,\(o) _ ,,W)aj,N ~ ""NJ.n
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Aus den Gl. (5) und (28) folgt:

®i 2 <S>;(» 2®(tn + 2®Tn +22^'«$ » 1,2,3,4,5,... (37)
n n n n co

2 ®|f» ®f> is* die partikuläre Lösung bei Beanspruchung des Faltwerkes
71

durch die volle Belastung für die Annahme, daß seine Platten durch Festhalte-
kräfte an Verschiebungen verhindert werden.

Wenn die Untersuchung auf Faltwerke, die durch in x-Richtung
unveränderliche Belastungen beansprucht werden, beschränkt wird, kann, wie
Vergleichsrechnungen zeigen,

2®ri+22Ar-0^=0ri=i+2A^1-0^=i (3§)
n n co co

gesetzt werden, da der dadurch verursachte Fehler 5% nicht überschreitet.

0. ©f + ©m + 2 A(a,) @^l (39)
CO

Dementsprechend brauchen die normalen Komponenten der Flächenbelastung
qj nicht in Fourier-Reihen entwickelt werden, wenn die yl^'-Größen unmittelbar

oder mit Hilfe von fertigen Zahlentafeln berechnet werden können. Von
den Kanten- und Randkräften werden nur die ersten Harmonischen
berücksichtigt. Statt einige Teillösungen ©j<n zu suchen, wird durch einmaliges Rechnen

die endgültige Lösung gefunden.
Eine weitere ernste Abkürzung der Rechnung kann durch Verminderung

der Zahl der Verschiebungszustände erzielt werden. Dies wird durch Anwendung

der Näherungslösungen i N* und i T* (Tafel VI), die sich aus der
technischen Biegetheorie der schlanken Stäbe ergeben, statt der genauen
Lösungen i Nn=1 und i Tn=1 (Tafel I) erzielt. Um den mit wachsendem
Seitenverhältnis y immer größeren Einfluß der Schubkräfte auf die
Verschiebungskomponente vj^ zu berücksichtigen, werden in Tafel VI die Faktoren

1 2
[l+-~(yn-)2] in der Scheibenaufgabe i N* und [1 + -^=(ytt)2] in der Scheibenaufgabe

i T* eingeführt. Bei niedrigen Scheiben (y < 0,2) stimmen die Ergebnisse

der genauen und der Näherungslösungen praktisch genommen völlig
überein. Je mehr y über 0,2 wächst, desto größer wird die relative Differenz
zwischen den Ergebnissen der beiden Lösungen. Trotzdem können auch dann
die Näherungslösungen angewendet werden, da die Werte von Nx, u und v,
besonders in der Scheibenaufgabe i N*, sich mit wachsendem y sehr schnell
vermindern, so daß es auf größere Genauigkeit der Ergebnisse nicht ankommt.
Die Werte von Ny und Nxy werden durch die Näherungslösungen mit für die
praktischen Bedürfnisse genügenden Genauigkeit gegeben. Schon Gruber3)
ist zu der Erkenntnis gelangt, daß bei prismatischen Faltwerken die genaue

3) E. Gbubeb: „Die genaue Membrantheorie der prismatischen Faltwerke", Abh. der
I.V.B.H., Bd. XI (1951).
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Membrantheorie durch die vereinfachte Membrantheorie, die sich bekanntlich
auf die Biegetheorie der Stäbe stützt, ersetzt werden kann.

Bei den Näherungslösungen werden die Dehnungen der Mittelebene ey
sowie der Einfluß der Normalkräfte Ny auf die Dehnungen ex nicht
berücksichtigt.

*y,J 0;
1 d2Fj

Dj dy?
-—N ¦

^3
(40)

Zufolge dieser Vereinfachungen verursacht die Beanspruchung der einzelnen
Faltwerkplatten durch gleiche, entgegengesetzt gerichtete Kantenkräfte, z.B.
Hjfj-D (Kg- 7b), keine Formänderung des Faltwerkes, obwohl dadurch in den
Schnitten y} konst. Normalkräfte Nffl - Hf^J_l) hervorgerufen werden.
Wenn die nach Gl. (18) berechneten Festhaltekräfte Hff (Fig. 7 a) durch
entsprechend gewählte Kantenkräfte gemäß Fig. 7 b überlagert werden, dann
verschwindet eine der Festhaltekräfte (im gegebenen Beispiel Hffa^), während
die andere sich in die Festhaltekräfte üf (in diesem Falle Uf} Hf) - Hfj>J_1),
Fig. 7 c) verwandelt, die dazu genügt, um die Platte, in deren Ebene sie wirkt,
an Verschiebungen zu verhindern. Auf dieselbe Weise werden die Kantenkräfte
Hf\ und Hf\ durch die Kantenkräfte Uf\ und üf\ ersetzt.

a)

b)

c)

Vo~

VJ

'JV

J-l
Vo-

ys*
/v^y-vvvo

Fig. 7

Bei der Näherungslösung der Scheibenaufgabe i N* für die ;'-te Faltwerkplatte

ist u^l j — v$ j und v$ ?- v$ 3-. Demgemäß sind die zwei Verschiebungszustände

co j(J — 1) und oj=jJ sich ähnlich. Von diesen beiden wird nur
derjenige Verschiebungszustand untersucht, dessen Index co gleich dem Index \fi

der Festhaltekraft U$' ist. Die durch die gleichen und entgegengesetzt gerichteten

Festhaltekräfte Hff\ hervorgerufenen Normalkräfte AN^ müssen mit
jenen, die durch Ffe2m verursacht worden sind, vereinigt werden.
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Die zur Bestimmung der Koeffizienten A(w) dienenden Gleichungen lauten.

ufft + üßl+Z^-u^^o (41>

U$,\ bezeichnet hier die erste Harmonische der Kantenkraft U$\
Durch Anwendung der Näherungslösungen i N* und i T* (Tafel VI)

wird somit die Zahl der Verschiebungszustände und dadurch auch die Zahl
der Bedingungsgleichungen (41) aufm reduziert.

Die praktische Berechnung einer in der «/-Richtung durchlaufenden Platte,
die ebenfaUs längs der Ränder x 0 und x l gestützt und durch die
Flächenbelastung qj beansprucht ist, wird abhängig von den Seitenverhältnissen

y < 0,5 oder yS: 0,5 in verschiedener Weise durchgeführt.
Im ersten Fall wird die durchlaufende Platte bekanntlich (s. Näherungslösungen

i q* und i M* in Tafel VI) wie ein Durchlaufträger mit dem
Querschnitt 1-Sj berechnet. Diese Berechnungsweise beruht auf der Tatsache,
daß die vierseitig frei aufliegende Platte mit y<0,5, die durch die
Flächenbelastung q konst. bzw. durch das Randmoment M konst. beansprucht
wird, sich in der mittleren Zone nach einer zylindrischen Fläche durchbiegt.
Dieser Biegefläche entspricht Mx Mxy Qx q>x 0 und My, Qy Ry, w und
<py wie für einen frei aufliegenden Träger. In den äußeren mit den
Binderscheiben angrenzenden Zonen müssen jedoch bei genaueren Rechnungen die
Lösungen für den längs x 0, y 0 und y d freiaufliegenden, unendlichen.
Halbstreifen angewendet werden. Der dieser Berechnungsweise entsprechende
Verlauf von My, Qy Ry, w und (py in der x-Richtung, ist näherungsweise
durch die in Fig. 8a abgebildete Linie dargestellt. Für i q* ist dabei a r~~>2d

und für i M*a r^d. Bei praktischen Berechnungen genügt es, diese Linie

paMtär+um

a) / •''' ; / ^,r- ¦ 2-2a a 1

i L "

»/r \.
i d
|.TI l-d .f.
ä

\ -r -i

X

c H;
d l

3X

l-2d
w

1 d

l
' '

Fig. 8
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durch die gebrochene Linie (Fig. 8b) zu ersetzen. Der Verlauf von Mx längs

y \d ist näherungsweise durch Fig. 8c gegeben, wo x{ ~|d bzw. ~^(ü und
^x,mc« 0>024^2 bzw. 0,06M tiiri=q* bzw. M*.

Wenn die geraden Faltwerkränder frei sind, können die Außenplatten,
solange sie schmal sind und ihre Breite die Hälfte der Breiten der nächstfolgenden

Faltwerkplatten nicht überschreiten, unter Belastungen, die normal zu
ihren Mittelebenen wirken, als Kragarme des Durchlaufträgers angesehen
werden. In diesem Fall kann der Torsionswiderstand der dreiseitig gelagerten
Außenplatten nur näherungsweise erfaßt werden, indem die Mittelwerte der
Drehwinkel <ps bzw. ipjj in der mittleren Zone der Durchlaufplatte angewendet
werden. Diese Mittelwerte der Drehwinkel können genügend genau, wie für
einen auf Torsion beanspruchten Stab, mit rechteckigem Querschnitt d-S
berechnet werden.

$MJ Wj 20[l-0M%3%idjVYi {J= 1 bZW- m) m
Bei prismatischen Faltwerken, die mit Randträgern verbunden sind, kann

deren Torsionswiderstand auf dieselbe Weise berücksichtigt werden

Die Werte von IT für verschiedene Querschnitte des Randträgers können z. B.
aus Schleichers Taschenbuch für Bauingenieure (Seiten 171—172) entnommen
werden.

Zur Berechnung von Af bei prismatischen Faltwerken mit breiten Platten
y ^ 0,5 müssen Zahlentafeln angewendet werden, die fertige Lösungen für die
rechteckige, durch q konst. belastete Platte bei drei verschiedenen Stützungsarten

und bei beliebigem Seitenverhältnis enthalten. Bei allen drei Stützungsarten

ist die Platte längs der Ränder x 0 und x l freiaufliegend; längs der
Ränder y d und y 0 soll sie entweder 1. beiderseits voU eingespannt, oder
2. einseitig voll eingespannt und auf der gegenüberliegenden Seite frei aufliegend,

oder 3. einseitig voll eingespannt und gegenüber frei von Kräften sein.
Solche Lösungen können tabellarisch nur durch Angabe von Af* für eine
genügende Zahl von Punkten, die längs der Ränder und im Inneren der Platte
liegen, gegeben werden. Solche Zahlentafeln können mit Hilfe der
Plattenaufgaben der Tabelle 2, bei Berücksichtigung von einigen Harmonischen der
Belastung (w=l,3,5) zusammengestellt werden. Bei der Berechnung der
Durchlaufplatte mit Hilfe dieser Tafeln erweist sich gewöhnhch, daß die Ein-
spannungsmomente links und rechts von der J-ten Kante verschieden sind.
Da dies gemäß der Kantenbedingung (11 d) nicht zulässig ist, müssen die
verschiedenen Einspannungsmomente bei jeder Kante ausgeglichen werden. Für
praktische Berechnungen genügt es, nur die ersten Harmonischen ihrer Diffe-
renZ6n ^ ltj\ Mf+1)JA-MrJA (44)
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mit Hilfe der Dreimomentengleichungen bzw. des e-Verfahrens zu verteilen.
Die zu diesem Zweck erforderlichen, von der Belastung herrührenden
Drehwinkel werden aus

$?>=Jilfö:VA(i ™d vfi^^i-Ai <45>

berechnet, wo <p^M j,i un<^ 9m ?,i aus Tafel II für i Mn, »=1 zu entnehmen
sind.

Der Verlaufvon Ry mit der Ordinate x wird bekanntlich auch bei 0,5 ^ y < 1,0
nach Fig. 8 b angenommen.

Die Festhaltekräfte H^P (Fig. 7 a) werden sodann in derselben Weise wie
beim genauen Verfahren berechnet und, wie vorher beschrieben wurde, durch
U$> ersetzt. Die ersten Harmonischen der Festhaltekräfte U$' betragen

U$\ =c---Üif-sirijX (46)

Durch den Verminderungskoeffizienten

sini7ry ,._.c
2 Y (47)

\-ny

wird die Veränderung von U$' gemäß der gebrochenen Linie (Fig. 8 b)
berücksichtigt; in (46) bedeutet y ein mittleres Seitenverhältnis.

Bei Faltwerken mit sehr schmalen Platten (y < y=) kann der Einfluß der

Schubkräfte auf die Verschiebungskomponenten vf^ vernachlässigt und Mx"^

Mxf,? Qla!)j ° gesetzt werden. Demgemäß werden Aw>n=1; A'w>n=1; Äw>n=1

und Ä'w>n=1 gleich Null und die Durchlaufplatte wie ein durchlaufender Träger,
dessen Stützen ihre Höhenlage verändert haben, berechnet. Zu diesem Zweck
werden die Formeln wie für i M* (Tafel VI) angewendet, nachdem in ihnen

der Verlauf in der x-Richtung nach Fig. 8 b durch siny x ersetzt wird.

Bei Faltwerken mit entsprechend breiten Platten sind die Verschiebungen
vj^ und die Kantendurchbiegungen w^ so unbedeutend, daß Aj0' gegenüber
Af> vernachlässigt werden kann. Es wird also Aj=A^ gesetzt und die
Dehnungskräfte aus der vereinfachten Membrantheorie des prismatischen
Faltwerkes, das durch die entgegengesetzt gerichteten Festhaltekräfte beansprucht
wird, berechnet.

10. Zahlenbeispiel

Ein zwanzig Meter langes, einfach gestütztes, prismatisches Faltwerk aus
Stahlbeton (E 2,1 • 106 t/m2, v 0) mit dem in Fig. 9 abgebildeten Querschnitt
ist längs der gradlinigen Ränder reibungslos durch Wände gestützt. Die
Belastung (Eigengewicht, Dachpappe und Schneelast) und ihre Komponenten
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d,-*flL ü&eo
0,09 Ai

0,09

X

<2>

35
2A57 3.939 3.939 2A57

12.792

Fig. 9

sowie die Steifigkeiten der Faltwerkplatten sind aus der Zusammenstellung (A)
ersichthch. Das Faltwerk soll mit Hilfe des vereinfachten Verfahrens untersucht

werden.
A.

i Pj t/m2 qj t/m2 tjtjm2 Kj tm2/m Djtjra
i
4

0,230 0,1884 + 0,1319 60,025 147 000

2

3
0,300 0,2954 + 0,0521 127,575 189 000

Pj COS (Xj Pj sin ^ s. Tabelle 1

Da sowohl das Faltwerk wie auch seine Belastung zur vertikalen Ebene,
die durch die Kante J 2 hindurchgeht, symmetrisch sind, genügt es, die
Hälfte des Tragwerkes zu berechnen.

Die Bedingungen längs des Randes J 0 lauten:

T0 0; M0 0; ro0 % sin x1 + w10 cos 0^ 0; iü10 sin o^ + iV0 cos o^ 0

und längs der Kante J 2:

y2 0; <p2 0; ö2 i;2cos<x2 — w>22sina2 0; R22cos<x2— N22sinoc2 0.

Aus ihnen ergeben sich die für die weitere Rechnung erforderlichen Ausdrücke:

S10 -Rwtgoc-L; w10 -^tgo^; S22 R22ctg<x2; w22 v2ctgtx2

In diesem Zahlenbeispiel lohnt es sich nicht, das e-Verfahren anzuwenden,
da nur zwei Platten untersucht zu werden brauchen. Die Hilfsgrößen, die sich

aus den Grundaufgaben i q*, M*, N*, T*, Mn=1 und wn=1 ergeben und zur
Durchführung der Rechnung notwendig sind, sind in (B) zusammengestellt.
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B.

j 1 2

yj djjl 0,15 0,20

Vißj 0 1 0 1

Si*
103.M
Ra-Ij

3,531

0,2826
-3,531
-0,2826

6,175
0,5908

-6,175
-0,5908 t/m

l-H

>
l-H
T®

CS

H
cö

m*
10». fc,
RM

8,330
0,3333

-16,660
0,3333

5,226
0,2500

-10,451
0,2500 t/m

N* 104-«v,i
104-%'i

11,701 -11,701
51,867

5,119 -5,119
17,582

m
m

y* io*-%,;1
104 -vT1

-1,838 | 3,676
-11,817

-1,072 | 2,144
-5,209

m
m

Mn=1
1039m,i
™m,i

7,913
0,3330

-16,181
0,3337

4,773
0,2493

-9,930
0,2508 t/m

1—1
1—1

MH
CS

EH

cöWn=l
1039Vi
•^70,1

333,03
0,9691

333,68
1,0239

249,30
1,5222

250,81
1,6774 t/m

Die Kantenmomente für den Zustand, in dem die Platten am Verschieben
in ihren Ebenen verhindert sind, werden aus den Dreimomentengleichungen
(16) bestimmt.

M^ (16,660+10,451) +^ 5,226 + 3,531 + 6,175 0

Hv)MT 5,226 + Mf' 10,451 + 6,175

M[p) - 0,2702 tm/m; Mf' - 0,4557 tm/m

0

Die Berechnung der Festhaltekräfte U^ (>p=ll und 22) und sodann von üif\
ist aus (G) ersichtlich.

Entsprechend der Wahl der Angriffshnien für die Festhaltekräfte müssen
nachher die Verschiebungszustände w 11 und 22 untersucht werden. Mit
Rücksicht auf die Bedingungen T0 T2 0 lauten die Dreischubkräftegleichungen

(21) für
ö>= n yai). (3,676 + 2,144) -11,701 =0 und für
co 22 T^2).(3;676 + 2)i44)_ 5;1i9 0

T{\v 2,0104 t/m; T^ 0,87954 t/m

Nachher werden in (D) die Verschiebungen vjw\ die Durchbiegungen w^
und die sich aus ihnen ergebenden Drehwinkel 9^ berechnet. Diese werden in
die Dreimomentengleichungen (24) eingesetzt.
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G.

j 1 2

Y 10 11 21 22

M^-Rm^
0,2826

-0,0901
-0,2826
-0,0901

0,5908
0,0675

-0,1139

-0,5908
0,0675

-0,1139

t/m
t/m
t/m

Gl. (15)
Gl. (15)
Gl. (15)

Gl. (15)

Gl.(17a + b)
Gl. (6)

Gl. (18)

Gl. (46)

Gl. (45)

pfcp) 0,1925 -0,3727 0,5444 -0,6372 t/m

ä(p)
«0
PP tj.dj

0,1348 2,0874
0,3957

2,0493 3,6136
0,2084

t/m
t/m

Nf
0,1348

-0,1348
2,4831

-0,1348
2,0493

-2,0493
3,8220

-2,0493
t/m
t/m

U<l> 0 2,3483 0 1,7727 t/m
4

c- —
TT

U<jl,l

1,260

2,959

1,255

2,225 t/m

M£« • (16,181 + 9,930) + Mg» • 4,773 + 3,4940 + 3,7122 0
M£« • 4,773 + Mg» ¦ 9,930 -3,7077 0
M^v -0,3774 tm/m; M<£» 0,5548 tm/m
if§• (16,181 +9,930)+Jf«'». 4,773-2,0125-3,1541 0
Üf^2). 4 773 + M(W. 9930 +'3)1573 0
M<*» 0,2806 tm/m; M<,22) - 0,4528 tm/m

Die Berechnung der Kantenkräfte Uff>v die den Verschiebungszuständen
entsprechen, ist aus der Fortsetzung von (D) ersichtlich.

Die Bedingungsgleichungen (40) lauten (s. Fig. 10a):

X1» ¦ 1,99593 -A<22>- 0,76459 + 2,959 0

- A<u>- 2,33004 + A<22>- 2,82839 + 2,225 0
AdD -2,6062; A<22> -2,9336.

Die in der Zusammenstellung (E) enthaltenen Werte für die Verschiebungskomponenten

Uj; Vj und w$, die Kantenschubkraft Tt, die Normalkräfte Ny j,
und die Kantenmomente Mj sind mit Hilfe der Gleichung (39) berechnet.
Durch einen Strich über der Ziffer sind diejenigen Werte gekennzeichnet, die
sich in der ^-Richtung gemäß Fig. 8 b verändern. Die Verschiebungen bj und

21 Abhandlung XIV
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E.

J 0 1 2

4> 10 11 21 22

v3

Wj

*J

toj

Tj

ax,J

-1,6123

-5,2

0

0

531,9

-1,6123

-3,00

0,1750

28

6,61

0,1750

0,3

7,9

-7,8196

-57,7

0,1750

-1,

7,80

0,6634

08

6,15

0,6634

0

6,3

0

-218,9

TT

COS-y *
TT

sm-y- x
V

TT

sm-y- x
t
TT

SUl-y- X

TT

Sffly X

TT

cos-y- X
t
TT

Sffly X

IO"3 m

10"3m

10~3m

IO"3 m

IO"3 m

t/m

t/m2

-0,0420 -2,6502 0,3008 -2,6272
TT

sm-y- x
t t/m

t/m-0,1348 -0,1348 -2,0493 -2,0493

Mj,x

Mj

0

0

0,1602 -0,1174
TT

sm-y- x
V

tm/m

tm/m-0,2702 -0,4557

Wj ergeben sich aus den Gleichungen (lOc + b). Die Kantenspannungen axJ
erhält man aus den Verschiebungen Uj, indem diese durch — Ej multipliziert
werden (aXij E-Uj--j-cosjx).

Die inneren Kräfte und die Formänderung in den Punkten, die sich
zwischen den Kanten befinden, werden zweckmäßig unmittelbar aus den Scheibenaufgaben

i N* und T* bzw. aus den Plattenaufgaben i q*,M*, Mn=1 und
i0n=i berechnet.

Z.B. beträgt die Normalkraft Ny im Punkt x=^ 5,00 m; y=| I;50m
#„(5,00; 1,50)= -0,1348- (o,0420-i + 2,6502-l-7,8196-^^) -0,70711= -
-0,7609 t/m. Das Biegemoment üfj, im Punkt *=|= 10,00m; y dx+^ 5,00 m

Jf„ (10,00; 5,00) 0,2954^5?!-0,2702-J-0,4557-i + 0,1602.0,4535-0,1174-
• 0,4535 - 0,00780• 3,148 • 0,0224 - 0,00615 • 3,148 • 0,0224 0,2462 tm/m.
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2.3300«

2,225

(P)

M^w-1

<]&

%
w=2Z

*)

Biegemomente My
in tm/m

0,5731

0.1100

azm

0' °
777?

Normalspannungen &x

in t/m*
2 -213,9

1+1,82839 0f527

Im Für die Längen j

lern für die Verschiebungen

b)

-57.7

531,9

Fig. 10

Der Auflagedruck des Faltwerkes auf die Wand beträgt:

A =Nyl0-cosec<x1 0,2364+ 0,0767-sin ya;.

In Fig. 10b ist für x -= der Verlauf der Biegemomente My und der

Normalspannungen orx sowie die Formänderung in lOOfacher Vergrößerung
dargestellt.



Tafel I
i r. @i,n Qf)

Nx -Nn Xi + PnXz-PnXz
%TT

sm-y- x
V

Ny Nn (2 Xi + X2) -Mjv Xi + Pn Xi
mr

sin -j-x
Nx* xy Nn Xi-H-NXa-PNXa

mr
COS—j—X

U N -1J- Xi + H-n X2 - Miv X2' + " [(2 Xi + X2) ~
-PnXi + PnXi']

utt
COS—y- X

V

V # -1JL
"D UTT

(2+»')(X4-/"jvX3-^X3')-X3-
- /% (Xi ~ 2 Xs) - t*N(Xi ~ 2xs')

mr
WCl—j—X

««> N ±±%D UTT
/Xjv + V

mr
cos—y-a;

mr
COS—y- X

V

y d

Nn
M<°) -N ±-L

"D UTT
/"W y 0

tf.d>
nD mr

[2 X4(l)-X3(l)]-1^X4(1) ~
-/*WX4 (°) + "[X4 (!)i-^jvXs - mr

sm-y-a;
V

y d
-^Xs(O)]

0

V(0) N ±±nD mr
[2X4(0)-X3(0)]-^X4(0)-
-M-^X4 +"[X4 (°) -P-nXz (°) - mr

sm-y- x
V

y 0

^Xsi1)]
u Xs(l)X4(l)-Xs(0)x4(0).^ [Xs(l)]2-[Xs(0)? '

Xs(l)X4(0)-Xs(0)X4(l)^ [Xs(l)]2-[Xs(0)]2

Nx T MtX2+i"TX2' mr
sm-y—x

V

Ny MtXi + MtXi' mr
sin -j-xV

Nxy ^ MtXs-MtXs' mr
cos—y-X

V

U r 1 l
nD mr MtX2 + V-'tXz ~v(MtXi + P-'tXi)

nir
COS—y- X

V

V T -L-L Pt Xi ~ H-'t Xi + v (h-t Xs -Mt Xs')
mr

sm-y- x

Tn «w r 1 «

MZ> TO77
/Xy

mr
COS-y-£

V
y d

««» -J-il"D »TT Mt
mr

COS-y- X y 0

tfä) m
1 *

ÄZ> 7*77
f-TXi -PTXi (°) +" [MtXs (1)-
-MtXs(O)]

mr
sm—y- x

V
y d

10 ™
1 z

"D 7177

MtX4 (°) -MtX4 + " [MtXs (°)-
"MtXsU)]

mr
sin—=— x y 0

Mr [X3(i)]2-[X3(0)]2'
Xs(0)^ [Xs(l)]2-[Xs(0)]2
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Tafel II
i ^*-%i% Ci,n

w nK \nn) Xi
72,77

sm-y- x

Mx Mn Xi + vXz
mr

sin-y-a?

My Mn Xz + vXi
«77

sin-y- x
V

M -Mn (l-v)xs
mr

COS-y- X
V

Qx M ™
n l X1 + X2

mr
cos-y-a;

Qy M ~n l X4-X3
7177

sm-y- x

Mn
Rx + M ™ (2-»')X2 + Xi

x 0

x l

ß(d) M ™
n l X*(l)-"Xs(l)

mr
sin-y-a; y d

R <°>
J-l-y M —- X4(0)-vXs(0)

7177

sm-y-a; y 0

[R]W ±Mn 2(l-^)xs(l) x 0 y
x l y-

d
d

[R]M ±Mn 2(l-v)x3(0) x l y-
x 0 y

0
0

9x nK mr Xi
x 0

x l

<PyW ¦*, 1 l
Mnir —nK mr

Xs(l) mr
sin-y- x

V
y d

W0) M±-±nK mr
Xs(0)

mr
sm-y- x y 0

w Wn (2-j/)xi + X2
mr

sm-y-a;

Mx Kwn{j^ (l-")[2xi + (l+")xJ
Ti-77

sm—=— x
V

My -Kwn{^fJ (i-^Xi nn
sin-y- x

wn
Mxv -Kwn{^ ^-^(Xi-vxs) nn

COS-y- X

Qx Kwn (ffl (1-'/)(Xi + X2)
nn

cos-=— X
V

Qy Kwn{^j (1-")(X4-Xs) nn
sm-y— x

V



Die genaue Theorie der prismatischen Faltwerke und

Tafel II (Fortsetzung

ihre praktische Anwendung 311

i ¦^*-i,n @i,n nj*

Wn

Rx

R <¦*>

R <°>
J.Vy

[R]W

<Px

<PyW

W0)

Kwn ffi
Kwn (^)3
„ /7l77\2

±Kwn\-j-\
Tr /nn\2

±KwA~r)
nn

±wn~j-
nn

wnT-
nn

(1-V)2X2

(1 -") [2X4(1) -
-(l+^)Xs(l)]
(l-„)[2x4(0)-
-(l+")Xs(0)]

2(l-v)[x4(l)-vx3(l)]

2(l-v)[x4(0)-rx3(0)]

(2-^Xi + Xa

X4(l)-vxs(l)

X4(0)-vX3(0)

7177

sin-y-a;
7177

sm-y- x

nn
sin-y- x

V

nn
sm -j—x

a; 0

x l

y d

y 0

x l y d
x 0 y d

x=l y=0
x 0 y 0

x 0

x l

y d

y 0

Qn

w

Mx

My

M¦"¦^xy

QX

Qy

Rx

Ry

[R]

<Px

<Py

i / i yqn K \nn)

*• (i)2
?» {mj}2

l
^ml

l
q«m7

l
*n nn

l

±q«{mr)2
1 / l \3

±q-K[m7)
1 l \3

l-2(xi+Xi')-(X2+X2')

l-(2-v)(Xl + Xi')-
-(X2 + X2')

v + (l-2v)(Xl +Xl')-
-"(X2 + X2')

(l-v)(X4-X4')

1-(Xi + Xi')-(X2 + X2')

(Xs-Xs')-(X4-X4')

1-(X2+X2,)-"(Xi+Xi')

Xs(l)-Xs(0)-
-(2-v)[x4(l)-X4(0)]

2(l-v)[x4(l)-X4(0)]

l-2(xi+Xi')-(X2+X2')

X4(l)-X4(0)
2[l + (-l)«+i]

*n nn *

nn
sin—=— x

nn
sm-y-a;

V

nn
sm-y— x

t

nn
COS-y— X

nn
COS-y- X

V

nn
sin—j—x

nn
sin-y- x

V

nn
sin-y-a;

x 0

x l

y d
y 0

x=0y=d; x=ly=0
x=Oy=0; x=ly=d
x 0
x l
y 0

y l
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Tafel III

Xi
K 77 Cth AT 77 • Sh K 77 71 — /C 77 77 Ch AT 77 77*^) 2Sh*77

X2
(2 — AT 77 Cth AT 77) Sh AT 77 77 + AT 77 77 Ch AT 77 77

X2(«^ 2Sh«77

X3
(1 — AT 77 Cth AT 77) Ch AT 77 77 + K 77 77 ShK7777^M" 2ShK77

X4
(1 + AT 77 Cth K 77) Ch K 77 77 — K 77 77 Sh AT 77 77

X«M 2Sh*77

K ny n^-; 0^i7 -f-gl; 77 3,14159
fc et

gXi
dy

nn d2Xx (nn\2 d3 Xl (n7rY, 9 \
l X*> dy2== { l *«: dy>~ [ l {Xi 2Xs)

8X2

dy
Un „ d2Y„ tnn\2 „ 53y2 /7l77\2 „
l (Xi 2x3); ,*2=( (Xi + 2X2); ,^= j (2X4 3x3)

gXs

dy
7177

—j-x,
sXi
dy

nn
T-Xi

XP'= Xp («> V) P= 1=2,3,4 v' l-rj —j-

xPm-xP(x>v o) XP'(0) Xp(l)

XP(l)=XpK'? l) XP'(l)=Xp(0)

p= 1,2,3,4
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Tafel IV

Xi X2

0,00 0,25 0,50 0,75 1,00 0,00 0,25 0,50 0,75 1,00

0,0 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,2500 0,5000 0,7500 1,0000
0,1 0,0000 0,0038 0,0060 0,0055 0,0000 0,0000 0,2424 0,4878 0,7393 1,0000
0,2 0,0000 0,0141 0,0224 0,0205 0,0000 0,0000 0,2212 0,4535 0,7089 1,0000
0,3 0,0000 0,0285 0,0467 0,0431 0,0000 0,0000 0,1900 0,4027 0,6619 1,0000
0,4 0,0000 0,0441 0,0727 0,0665 0,0000 0,0000 0,1537 0,3426 0,6073 1,0000
0,5 0,0000 0,0578 0,0972 0,0911 0,0000 0,0000 0,1173 0,2803 0,5477 1,0000
0,6 0,0000 0,0685 0,1172 0,1150 0,0000 0,0000 0,0835 0,2209 0,4862 1,0000
0,7 0,0000 0,0751 0,1318 0,1358 0,0000 0,0000 0,0550 0,1673 0,4281 1,0000
0,8 0,0000 0,0776 0,1406 0,1504 0,0000 0,0000 0,0317 0,1226 0,3742 1,0000
0,9 0,0000 0,0774 0,1442 0,1611 0,0000 0,0000 0,0143 0,0854 0,3270 1,0000
1,0 0,0000 0,0736 0,1435 0,1695 0,0000 0,0000 0,0018 0,0557 0,2832 1,0000
1,1 0,0000 0,0685 0,1397 0,1757 0,0000 0,0000 -0,0069 0,0326 0,2434 1,0000
1,2 0,0000 0,0626 0,1336 0,1799 0,0000 0,0000 -0,0124 0,0148 0,2086 1,0000
1,3 0,0000 0,0564 0,1260 0,1814 0,0000 0,0000 -0,0155 0,0016 0,1780 1,0000
1,4 0,0000 0,0497 0,1175 0,1815 0,0000 0,0000 -0,0169 -0,0080 0,1511 1,0000
1,5 0,0000 0,0434 0,1087 0,1802 0,0000 0,0000-0,0171 -0,0148 0,1273 1,0000
1,6 0,0000 0,0376 0,1000 0,1782 0,0000 0,0000-0,0164 -0,0195 0,1063 1,0000
1,7 0,0000 0,0323 0,0911 0,1753 0,0000 0,0000 -0,0153 -0,0221 0,0878 1,0000
1,8 0,0000 0,0275 0,0828 0,1717 0,0000 0,0000 -0,0140 -0,0238 0,0715 1,0000
1,9 0,0000 0,0233 0,0749 0,1676 0,0000 0,0000 -0,0126 -0,0244 0,0572 1,0000
2,0 0,0000 0,0196 0,0675 0,1631 0,0000 0,0000-0,0110 -0,0243 0,0448 1,0000
2,2 0,0000 0,0138 0,0538 0,1534 0,0000 0,0000 -0,0084 -0,0229 0,0246 1,0000
2,4 0,0000 0,0095 0,0434 0,1431 0,0000 0,0000 -0,0061 -0,0203 0,0104 1,0000
2,6 0,0000 0,0067 0,0344 0,1321 0,0000 0,0000 -0,0044 -0,0175 -0,0019 1,0000
2,8 0,0000 0,0044 0,0270 0,1219 0,0000 0,0000 -0,0031 --0,0147 --0,0110 1,0000
3,0 0,0000 0,0030 0,0214 0,1142 0,0000 0,0000 -0,0022 --0,0124 --0,0183 1,0000
3,5 0,0000 0,0014 0,0112 0,0892 0,0000 0,0000-0,0011--0,0071 --0,0242 1,0000
4,0 0,0000 0,0004 0,0059 0,0679 0,0000 0,0000 -0,0003 --0,0040 --0,0246 1,0000
4,5 0,0000 0,0002 0,0030 0,0515 0,0000 0,0000 -0,0001 --0,0022 --0,0236 1,0000
5,0 0,0000 0,0001 0,0015 0,0387 0,0000 0,0000 0,0000--0,0011--0,0i90 1,0000
5,5 0,0000 0,0000 0,0007 0,0288 0,0000 0,0000 0,0000--0,0006 --0,0153 1,0000
6,0 0,0000 0,0000 0,0004 0,0211 0,0000 0,0000 0,0000--0,0003 --0,0123 1,0000
7,0 0,0000 0,0000 0,0001 0,0113 0,0000 0,0000 0,0000--0,0001 --0,0071 1,0000
8,0 0,0000 0,0000 0,0000 0,0059 0,0000 0,0000 0,0000 0,0000 --0,0040 1,0000
9,0 0,0000 0,0000 0,0000 0,0030 0,0000 0,0000 0,0000 0,0000 --0,0022 1,0000

10,0 0,0000 0,0000 0,0000 0,0015 0,0000 0,0000 0,0000 0,0000 --0,0011 1,0000



314 A.Werfel

Aus: A. S. Kalmanok, „Baumechanik der Platten", Moskau 1950.

X3 Xi

0,00 0,25 0,50 0,75 1,00 0,00 0,25 0,50 0,75 1,00
yr K

0,0000 0,0000 0,0000 0,0000 0,0000 00 00 00 00 oo 0,0
0,0512 0,0484 0,0130-0,0352-0,1034 3,1831 3,1832 3,1833 3,1834 3,1836 0,1
0,0956 0,0784 0,0257-0,0653-0,1991 1,5871 1,5891 1,5914 1,5939 1,5965 0,2
0,1286 0,1064 0,0374-0,0872-0,2812 1,0474 1,0530 1,0615 1,0708 1,0768 0,3
0,1481 0,1243 0,0478-0,0980-0,3471 0,7671 0,7745 0,7931 0,8164 0,8292 0,4
0,1549 0,1323 0,0567 -0,1010 -0,3969 0,5894 0,6032 0,6369 0,6728 0,6935 0,5
0,1514 0,1329 0,0644 -0,0954 -0,4325 0,4622 0,4796 0,5233 0,5814 0,6150 0,6
0,1408 0,1276 0,0700 -0,0841 -0,4570 0,3678 0,3895 0,4448 0,5192 0,5680 0,7
0,1262 0,1175 0,0739 -0,0696 -0,4731 0,2891 0,3139 0,3833 0,4797 0,5402 0,8
0,1098 0,1058 0,0762 -0,0537 -0,4836 0,2291 0,2552 0,3376 0,4489 0,5235 0,9
0,0932 0,0939 0,0772 -0,0372 -0,4901 0,1803 0,2078 0,2945 0,4238 0,5137 1,0
0,0714 0,0822 0,0771-0,0212-0,4941 0,1400 0,1695 0,2605 0,4030 0,5079 1,1
0,0639 0,0713 0,0758 -0,0066 -0,4966 0,1102 0,1394 0,2313 0,3846 0,5045 1,2
0,0520 0,0610 0,0735 0,0069-0,4980 0,0856 0,1139 0,2054 0,3679 0,5025 1,3
0,0418 0,0517 0,0705 0,0182-0,4988 0,0653 0,0927 0,1829 0,3517 0,5012 1,4
0,0333 0,0437 0,0669 0,0282-0,4993 0,0513 0,0742 0,1629 0,3362 0,5007 1,5
0,0265 0,0368 0,0630 0,0372-0,4995 0,0395 0,0608 0,1454 0,3216 0,5005 1,6
0,0208 0,0310 0,0589 0,0448-0,4997 0,0303 0,0501 0,1289 0,3075 0,5004 1,7
0,0163 0,0260 0,0546 0,0506-0,4998 0,0232 0,0412 0,1141 0,2939 0,5003 1,8
0,0127 0,0217 0,0505 0,0555-0,4999 0,0178 0,0338 0,1010 0,2805 0,5002 1,9
0,0099 0,0180 0,0466 0,0594-0,4999 0,0136 0,0274 0,0900 0,2673 0,5001 2,0
0,0059 0,0117 0,0388 0,0641-0,5000 0,0079 0,0175 0,0714 0,2418 0,5000 2,2
0,0035 0,0081 0,0320 0,0672-0,5000 0,0045 0,0117 0,0550 0,2191 0,5000 2,4
0,0020 0,0056 0,0260 0,0669-0,5000 0,0026 0,0078 0,0429 0,1964 0,5000 2,6
0,0012 0,0038 0,0209 0,0664-0,5000 0,0014 0,0052 0,0332 0,1775 0,5000 2,8
0,0007 0,0026 0,0167 0,0642-0,5000 0,0008 0,0035 0,0257 0,1589 0,5000 3,0
0,0002 0,0013 0,0072 0,0562-0,5000 0,0003 0,0015 0,0129 0,1197 0,5000 3,5
0,0001 0,0004 0,0049 0,0465-0,5000 0,0001 0,0004 0,0067 0,0895 0,5000 4,0
0,0000 0,0001 0,0026 0,0368-0,5000 0,0000 0,0001 0,0034 0,0659 0,5000 4,5
0,0000 0,0000 0,0013 0,0290-0,5000 0,0000 0,0000 0,0017 0,0486 0,5000 5,0
0,0000 0,0000 0,0006 0,0226-0,5000 0,0000 0,0000 0,0008 0,0359 0,5000 5,5
0,0000 0,0000 0,0003 0,0167-0,5000 0,0000 0,0000 0,0004 0,0256 0,5000 6,0
0,0000 0,0000 0,0001 0,0073-0,5000 0,0000 0,0000 0,0001 0,0130 0,5000 7,0
0,0000 0,0000 0,0000 0,0049-0,5000 0,0000 0,0000 0,0000 0,0067 0,5000 8,0
0,0000 0,0000 0,0000 0,0026-0,5000 0,0000 0,0000 0,0000 0,0034 0,5000 9,0
0,0000 0,0000 0,0000 0,0013-0,5000 0,0000 0,0000 0,0000 0,0017 0,5000 10,0
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Tafel V

N„
r'itn(x,K,rj) rin(x,K,r)') für rin Nx,Ny,u
F'i>n(x,K,ij) -rin(x,K,rj') für rin Nxy,v

T
für r->n vrin(x,K,rj) rin (x, k, 77')

rin(»,k,7]) -rin(x,K,7)') für rin nx,nv,nxv,u

Mm

w„

Ai,n(x,K,T)) Ai>n(x,k, 77') für AIn w,Mx,My,Qx,Rx,<px
A'i>n(x,K,yf) -Ain(x,K,rj') für Aln=Mxy,Qy,Ry,[R],<py

M„

w„

A^niZ'X'y) Aitn(x,K,r)) + Wiin-Aütn(x,K,ri)

A En { l Y X4(0)-^Xs(0)
WM'n K \nn) (l-v)[2x4(l)-(l+v)x3(l)]

w =w 2X4(0)-(i+y)x.(Q)
ww>n ^2x4(l)-(l+v)x3(l)

w =Sk
(1,11 77"

n4xs(i)-;
\7l77/ (1-

X3(0)-(2-v)[x4(l)-X4(0)]
")[2x4(l)-(l+")Xs(l)]

Mn
wn
Qn

AI,n(x,K,7])= Aitn(x,k,77') für AIn w,Mx,My,Qx,Rx,<px

AI, n (x, at, 77) -Äin (x, k, 77') für Äl n Mxy ,Qy,Ry, [R], <py
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Tafel VI

i N* rp* Verlauf in der
»-Richtung

r¦* i,n=l

Nx

N¦*¦' xy

-^,(1-2,)
^¦3 7?2(1-|7?)

^•—7,(1-7,)
y 77

ytt

-27-y77-772(l-7?)

-T-2^(1-^)

77
sm -y x

77

sm -y a;
t

77

cos-y a;

U ^MyV-2^ -T..1 -AA(i_8,)
-L* 77 y77

77

COS-y X

V

i^-1 6

-D 77 (y77)2

N-1 l 6

D 77 (y77)2

17 12

N-Dn(yn)^ +^^

D 77 y77

jD 77 y77

-'¦llbA1*«*"*]

77

cos-y a;
t

77

cos-y a;

77

sin -y a;

i q* M*

Ä

My

Qy

w

iqd2r1(l-7])

\qd(l-2r,)

Jf-77

¦nr 1

r^>
oo

03
:cg

a
&0

R w

R (°>

0®

-%qd

Iqd

1 1
^3~KY4qd

YT4qd3

-4

-i-i
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Zusammenfassung

In der Arbeit wird die genaue (Biege-) Theorie der prismatischen Faltwerke
entwickelt und sodann das Problem auf zwei Weisen gelöst. Die erste derselben,
die den üblichen Methoden der mathematischen Elastizitätslehre entspricht,
eignet sich nicht für die praktische Anwendung, da sie zu umständlich und
zeitraubend ist.

Die zweite ist eine Kombination der Methoden der praktischen Statik mit
denen der mathematischen Elastizitätslehre. Sie beruht auf der Anwendung
eines mehrstufigen Verfahrens, das der mehrstufigen Berechnung von Rahmen
mit verschieblichem Netz analog ist, in Verbindung mit fertigen Zahlentafeln,
die partikuläre Integrale der Grundgleichungen des prismatischen Faltwerkes
enthalten. Die Kantenmomente und die Kantenschubkräfte können dabei mit
Hilfe eines Verfahrens berechnet werden, das der Festpunktmethode analog ist.

Durch gewisse zusätzliche Annahmen wird nachher das kombinierte
Lösungsverfahren weitgehend vereinfacht, ohne dadurch beachtenswerte
Fehler bei den Rechenergebnissen zu verursachen. Die Anwendung des
vereinfachten Verfahrens wird an Hand eines Zahlenbeispiels erläutert.

Die Arbeit enthält Formeln und Tafeln, die dem Leser die Lösung von
vielen praktischen Aufgaben ermöglichen.

Summary

In this paper the exact bending-theory of formed prismatic sections is

developed and apphed to solve the problem in two ways. The first of these,
which corresponds to the usual methods of the mathematical theory of elasti-
city, is not suitable for practical application, since it is tedious and time con-
suming.

The second is a combination of the methods of practical statics with those
of elasticity theory. It rests on the application of a step-by-step procedure,
analogous to the iterative computation of a frame with a deformable network,
together with available numerical tables which contain particular integrals of
the basic equations of formed prismatic sections. The edge moments and edge
stresses can then be computed by a method which is analogous to the fixed
point method.

With certain additional assumptions the combined method of Solution can
then be further simplified, without introducing significant errors in the calculated

results. The application of the simplified method is expounded by means
of a numerical example.

The paper contains formulse and tables which enable the reader to solve

many practical problems.
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Resume

L'auteur expose la theorie exacte (flexion) des voütes polygonales prisma-
tiques, puis il resout le probleme de deux manieres differentes. La premiere
Solution correspond aux methodes habituelles de la theorie mathematique de
l'elasticite; ehe ne convient pas pour l'application pratique, car eile est trop
compliquee et trop longue.

La deuxieme methode constitue une combinaison et des procedes de la
statique pratique et de la theorie mathematique de l'elasticite. Ehe repose sur
l'emploi d'un procede echelonne, analogue au calcul progressif des cadres avec
reseau mobile, conjointement avec des tableaux numeriques qui donnenfc

l'integrale particuliere des equations fundamentales des voütes polygonales.
Les moments et les efforts tranchants aux aretes peuvent etre calcules ä.

l'aide d'un procede analogue a la methode du point fixe.
Certaines hypotheses supplementaires permettent ensuite de simplifier

largement le procede combine de resolution, sans toutefois donner lieu ä de
notables erreurs dans les resultats du calcul. L'application du procede simplifie
fait l'objet d'un exemple numerique.

L'etude contient des formules et tableaux qui permettent de resoudre de
nombreux problemes pratiques.
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