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Eine numerische Lösung des Knickproblems

A numerical Solution of the buckling problem

Solution numerique du probleme du flambage

Prof. Dr. Telemaco van Langendonck, Escola Politecnica,
Universidade de Säo Paulo, Brasilien

Allgemeine Betrachtungen

Das Verfahren der numerischen Lösung des Knickproblems, das hier
entwickelt wird, ist anwendbar in den Fällen wo die gesuchte Lösung sich aus dem
Produkt einer Konstanten mit einer Zahl, Funktion des kleinsten der positiven
Eigenwerte, ergibt. Es besteht in der Aufsuchung der Gleichung, deren unendlich
viele Wurzeln diese Eigenwerte sind, und sie als eine konvergente Potenzreihe

der Unbekannten gleich Null aufzustellen.
Ein Beispiel haben wir in dem üblichen Fall des prismatischen, an beiden

Enden gelenkig-gelagerten Stabes, mit konstanter Axialkraft belastet, und
deren Länge l und Steifigkeitszahl EJ ist.

Die Knicklast ergibt sich durch:

-Pfc=<xo-p-

wo a0 der kleinste der positiven Eigenwerte der Differentialgleichung des
Problems ist, die bekanntlich durch die transzendente Gleichung

sen yä 0 (2)
gegeben wird.

Um die angegebene Aufgabe zu lösen (im Falle des Beispiels wäre dies
nicht nötig, da man die kleinste positive Lösung von (2) kennt), entwickelt man
die Sinus-Reihe:

„_<§!+if!... „ (3)
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oder, durch ix geteilt, um die Null-Lösung zu beseitigen, die Gleichung

"3! + 5! 7! + ¦ 0 (4)

ergibt, deren kleinste Wurzel a0, in (1) eingesetzt, den Wert Pk liefert.
Nach Bernoullis Satz1) weiß man, daß der kleinste Absolutbetrag <x0 der

Wurzeln der Gleichung m-ten Grades:

p(oc) l— a1oc + a2a2 — a3xs+ ±amocm 0 (5)

solange nicht zwei verschiedene Wurzeln mit dem gleichen Absolutbetrag
vorhanden sind, sich mittels dem Quotienten von 1 durch den Polynom (5) ergibt:

q(a.) —j-^. 1— bxx + b2a2-b3xs + (6)

da das Verhältnis der Koeffizienten zwei aufeinanderfolgender Glieder — bn_x\bn

zu a0 konvergiert2).
Die vorhergehenden Betrachtungen behalten ihre Gültigkeit, wenn m

unendlich wächst, mit der Bedingung, daß der Polynom (5) sich in eine konvergente

Reihe des gewünschten a-Wertes verwandelt.
Der Ausdruck, nach dem das Verhältnis — bn_Jbn strebt, kann durch

lim
»=00

Jn-1
¦ + -

e-, e
¦ + ¦

1^2 €">. 6a
- + ¦

eae,
•+. (7)

3^4

gegeben werden3), wo

ax a2 a3 an

1 «i a2 ¦¦ «»-i
0 1 ax •• an-%

0 0 1

¦ ¦ «2

0 0 0 1 ax

V-n

a2 as

1 ax a2

Die Berechnung dieser Determinanten ist sehr langwierig. Ein einfacheres
Rechenverfahren wird demnächst beschrieben.

a2 as

ax a2

1 ax

0 1

0 0

*n+l

J) Siehe z. B. H. W. Turnbull: „Teoria de Ecuaciones", aus der 3. englischen
Ausgabe übersetzt, Edit. Dossat, Madrid, S. 169. (Man beachte, daß die dort angegebenen
Symbole a, ß und y die Kehrwerte der Wurzeln von F (x) 0, und nicht die Wurzeln sind,
wie dort irrtümlicherweise angegeben wird; folglich muß das Beispiel auf S. 170 demgemäß
geändert werden.)

2) Wenn die Quotienten — bn_x/bn mit n s~ oo divergieren, so bedeutet das, daß
verschiedene Wurzeln, deren Absolutbeträge dem kleinsten gleichen, vorhanden sind. Dieser
Fall kommt nicht in den üblichen Problemen vor, doch wenn er auftreten sollte, könnte
man die Unbestimmtheit durch Anwendung des in op. cit. (1) genannten Verfahrens
beseitigen.

3) Wenn die Reihe konvergiert, wie es Whittakbrs Satz beweist (op. cit., 1, S. 170).
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Die Koeffizienten bx,b2,b3, des Quotienten 1 durch 1 — axa, + a2a2 —

werden durch —bx ax, — b2 a2 + axb1,-b3 a3 + aibl + a1b2,... gegeben und
können durch folgendes Verfahren errechnet werden:

Man schreibt auf einer ersten Zeile die Werte l,ax,a2 ...; auf der zweiten
Zeile schreibt man: unter 1 wiederum 1; unter ax das Produkt axXl, mit
umgekehrtem Zeichen; unter a2 die Summe der Produkte a2x 1 und axxbx, mit
umgekehrtem Zeichen und so weiter; man nimmt immer die Summe der
Produkte der Glieder, denen man begegnet, wenn man zwei Zeilen in entgegengesetzten

Richtungen verfolgt, und schreibt sie in die zweite Zeile mit
umgekehrtem Zeichen:

1 ax a2 a3

um —bx zu finden: /1

/*

1 ax a2

1

1

1

1 ax a2 a.
\/* +

»»

um — b9 zu finden:

um — 6o zu finden: -7^—-

1 bx b2

Gleichzeitig schreibt man aufeiner dritten Zeile die Quotienten —bn_x\b
die die aufeinanderfolgenden Annäherungen des gesuchten a0 sind, und deren
allmähliche Kenntnis die Berechnungen zu unterbrechen, sobald die gewünschte
Annäherung erreicht ist, ermöglicht.

Wendet man in (4) dieses Rechenverfahren an, ergibt sich

1 0,166.67 0,008.333.3 0,000.198.41 0,000.002.755.7
1 -0,166.67 0,019.444 -0,002.050.3 0,000.209.99

6 8,571 9,484 9,764

und es erweist sich, daß die Zahlen der dritten Zeile wirklich nach 7r2 9,870
streben, welcher, wie man weiß, derjenige von a04) ist. Der Rechenfehler bei
dem letzten Wert (9,764) beträgt 1,07%.

*) Die Zahlen sind in folgender Reihenfolge ermittelt worden, nachdem man die erste
Zeile, die die Werte 1, 1/3l, 1/5], 1/71, 1/91 aufweist, geschrieben hat:
1, -1x0,166.67, 1/0,166.67 6

- (1 X 0,008.333.3 - 0,166.67 X 0,166.67) 0,019.444, 0,166.67/0,019.444 8,571
-(1X0,000.198.41-0,166.67x0,008.333.3+ 0,019.444x0,166.67) =-0,002.050.3
0,019.444/0,002.050.3 9,484, usw.,

In einfachen Brüchen:

1 1/6 1/120 1/5040 1/362.880
1 -1/6 7/360 -31/15120 127/604.800

60/7 294/31 1240/127
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Eine systematische Darstellung der verschiedenen Anwendungsmöglichkeiten

vorliegender Methode wird der Verfasser in einer besonderen Broschüre
veröffentlichen. Hier werden nur drei Beispiele von Sonderfällen entwickelt.

1. Beispiel: Gerader Stab, nur an den Enden gestützt und von einer stetigen
Axialkraft beansprucht

Die Differentialgleichung ist in diesem Falle (P ist die Axialkraft und EJ
die Steifigkeitszahl der Stabquerschnitte, mit x veränderlich, Fig. 1) 5):

("SHS-- <8>
jü__lv.Td2y\, vd2y
dx2

oder, nach doppelter Integration:

d2y
EJJ^ + Py C' + D'x

E J PI2
Wenn mani ^, EJ ° ° und a -=—r setzt, wo:X E0J0

l die Länge des Stabes;
X eine Funktion von g, deren Werte umgekehrt proportioneil zu EJ sind,

und die folglich positiv und endlich in dem betrachteten Abschnitt ist;
E0 J0 irgend eine (endliche und positive) Konstante mit den Dimensionen einer

Steifigkeitszahl,

ist, hat man (C und D sind Integrationskonstanten.; y', y" bezeichnen die
aufeinanderfolgenden Ableitungen von y im Verhältnis zu £):

y" + xXy X (G + D$). (9)

Wenn £ y, folgt y (y) A und y' (y) B, und, wenn (9) zweimal integriert
wird:

i S i £

y + xSdZ$Xyd£=A + B($-y) + $d{5X(C + D£)d£ (10)
v y y y

oder, wenn das zweite Glied, das eine Funktion von £ ist, mit t bezeichnet wird:

I
y t-xjdtjjXydg

y y

5) Es wird hier angenommen, daß EJ nur mit X und nicht mit P veränderlich ist, wie
in dem Falle, wo die Proportionalitätsgrenze des Materials überschritten wird; in diesem
Falle erhält man die Lösung mit der angegebenen Methode, wenn der Kehrwert des E in
Funktion der Spannung o in Form eines Polynoms der ganzen a- Potenzen ausgedrückt
werden kann.
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Ersetzt man in der letzten Integrale y durch den Ausdruck des ganzen zweiten
Gliedes, das ihm gleichwertig ist, erhält man:

£ £ £ £ £ £

y t-*Sd£SXtd£ + a*jd€SXdgSd£SXydg
y y y y y y

und, fortfahrend, mit dem aufeinanderfolgenden Ersatz des y der letzten
Integrale:

y t-xI1 + x2I2-asI3+ (11)

wo:
£ £ £ £ £ £

In In{X)=\d£\Xd£\d£\Xd£...\d£]xtd£ (2nIrxtegvB\eu)

Immer wenn X in dem gegebenen Bereich endlich ist, strebt die
Reihe (11) zur Lösung von (9)6). Sie ermöglicht die Auffindung
der gesuchten a-Potenzreihe, und deren kleinste positive Wurzel a0
dem Werte P, der die Knickbelastung ist:

entspricht.
I2

(12)
/

In dem Falle des gelenkig-gelagerten Stabes mit veränderlichem
Querschnitt angewendet, annullieren sich die Konstanten C und D,
und wenn y 0, annulliert sich auch A, indem man den Ursprung
der Koordinaten mit einem der Stabenden zusammentreffen läßt
(Fig. 1); es bleibt t B£ übrig. Wenn z.B. die Steifigkeitszahl V

der Stabquerschnitte sich mit:
Fig. 1

(13)

T

EnJnEJ ^2T» das heißt, X= 2-£

wandelt, sind die Koeffizienten von (11), wenn y 0,

11 fdifB£(2-i)d£ ^ (4£»-£*) und, für £=1, Ix ~
o o 1Z *

12 !d£!(2-Z)IxdZ ^(&4?-42? + 5¥) und, für|=l,/2
47jB

o o 2520 2520

(72!7-54£8+13£9-£10) und, für £=1, I3
B

1512

Da y 0 für £ 1 sein soll, ergibt sich, daß die gesuchte Gleichung (da B #= 0, um
nicht die Lösung i/sOzu bekommen)7):

6) Siehe Beweisführung, z. B. in Ch. Sturm: „Cours d'Analyse", Gauthier-Villars,
Paris 1909, B. 2, S. 146.

7) Bei der Ermittlung dieser Gleichung kann irgendeines der bekannten Ermittlungsverfahren

angewendet werden, wie beispielsweise das Taylorreihenverfahren (aufeinander-
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1 47 1 133
1-Ta+2^a2-T512a3 + 972972Öa4----=° <">

ist, deren erstes Glied, wie schon erwähnt, eine konvergente Reihe ist.

Wenn man das vorgeschlagene Rechenverfahren anwendet, ergibt sich:

1 0,25 0,018.651 0,000.661.4 0,000.013.67
1 -0,25 0,043.849 -0,006.961 0,001.074

4 5,70 6,29 6,48
woher

EqJq
l2 'a0^6,5 und Pfc^6,5 -^

Zur Vereinfachung der Berechnung von In kann Tabelle I benützt werden,
in der die Koeffizienten angegeben sind, die die doppelte Integration

fd^Ffädt
0 0

folgend vom 1. Glied der Gleichung y" a.Xy abgeleitet) oder das Verfahren der
unbestimmten Koeffizienten (wenn X ein Polynom oder der Quotient zweier Polynome der
ganzen f-Potenzen ist):

CO oo CO

y 2^»f*. y" 2> (~-i) ^»*"-a 2 (w+2) (»»+1) An+^n
0 0 0

daher
CO CO CO

0 0 0
oder

(2 Az + 2 A„a)+ ZKn + 2) (n+1) An+2 + 2 aAn-a An_x]£» 0
l

woraus: A2= —« A0 und, bei n^. 1:

cc(An_x~2An)
n+2 (»+2)(n + l) '

Da A0 0, um y 0 zu haben, wenn £ 0, schreibt man:

* * L 3 s ^ 12 f ^ 30 60 f ^ 504 s 630 f + 840
S

a4 a3 1
£9+—- £9+— £10-s ^22680S ^45360? J

13

45 360

und damit y sich bei £ 0 annulliert:

1 ~" (3 ~ 12/ + a2
\3Ö~ 60 + 504/ ~"* \63Ö ~ 840 + 45360/ + ¦ • • °

womit man die Gleichung (14) erhalten hat.
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für i;m, von 0,1 um 0,1 zwischen 0 und 1 schwankend, in Funktion

von F (£m) ermöglichen, die berechnet wurde indem man
annahm, die Funktion sei durch einen trigonometrischen Polynom,

der F (£) für die elf £m-Werte befriedigt, dargestellt.

?»
EqJq
EJ„

Tabelle I
£m £ 10 h It \
Sdt!f(£)Xdt= 2 fiUü^k1
0 0 re=0 10*

U'n

O ,'

tri
">fm Kq h fc% /?3 h h Kq *, Jc8 Kg »10

1 39 13 -2 l -1 0 0 0 0 0 0
2 90 101 9 -1 0 0 0 0 0 0 0
3 140 203 98 11 -2 1 0 0 0 0 0

4 190 302 200 99 10 -1 0 0 0 0 0
5 240 403 299 201 98 10 -1 1 0 0 0

6 290 502 399 300 200 99 10 -1 0 0 0

7 340 603 499 401 299 201 99 10 -1 1 0
8 390 702 599 500 400 300 200 99 10 -1 0
9 440 803 699 601 500 400 300 201 98 11 -1

10 490 902 799 700 600 500 400 300 201 98 10

So hat man zum Beispiel (Tabellenbezeichnung)8), mit X 1 + sen7r£:

h ho 1» H h 1 + sen ^ 1,309, j2 j8 1,588

73 ^ 1,809, n U 1,951, j5 2
woraus:

10 10 10 10

ix='Z£inh Wl^lOOZhihh. lO^I3=10ZWI2iHh 104/4=102l03J3^'i^
0 0 0 0

0,1 0,0001 0,0000 0,0000
0,2 0,0016 0,0002 0,0000
0,3 0,0063 0,0040 0,0001
0,4 0,0164 0,0191 0,0009
0,5 0,0343 0,0696 0,0068
0,6 0,0621 0,1869 0,0261
0,7 0,1018 0,4312 0,0891
0,8 0,1537 0,8528 0,2218
0,9 0,2186 1,5228 0,4967
1,0 0,2949 2,4736 0,9688 0,2209

8) Beispiel von Lothar Collatz : „Eigenwertprobleme und ihre numerische Behandlung",

Chelsea Publ. Co., New York 1948, S. 187. Den genauen a0-Wert befindet sich, nach
diesem Verfasser, zwischen 0,5388 w2 5,318 und 0,5409 w2 5,338.
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1 - 0,2949 x + 0,024.74 a2 - 0,000.968.8 a3 + 0,000.022.09 a4- =0
das zu

1 0,2949 0,024.74 0,000.968.8 0,000.022.09
1 -0,2949 0,062.23 -0,012.025 0,002.270.2

3,39 4,74 5,18 5,30

-^o^o
führt, also a0 f=w 5,30 und P;^ 5,30 —^

2. Beispiel: Elastisch gebetteter prismatischer Stab, mit veränderlicher Bettungs¬
ziffer

Die Gleichung, die das Problem löst, ist9):

yIV + xy" + cXy 0

wo X eine Funktion von £, die die Veränderlichkeit der Bettungsziffer k k0 X
(Kraft, die die Stützung auf den Stab, pro Längeneinheit, wenn seine

Querverschiebung einheitlich ist, ausübt) bezeichnet; k0 ein Standardskoeffizient ist
c k01*1EJ und die übrigen Buchstaben die vorher angenommenen Bedeutungen
haben.

Wenn X ein Polynom der ganzen ^-Potenzen ist, kann die Gleichung für x
nach dem in Fußnote 7 beschriebenen Verfahren erhalten werden. So hat
man für einen an den Enden gelenkigen Stab, mit einer Stützung, deren
Bettungsziffer parabolisch von k0 bis 0 veränderlich ist (d. h. X 1 — £2):

co co T?

y ZÄnt z-ftmit (für %> 3): ° °

Bn= -xBn_2-cBn_i + c(n-4)(n-5)Bn_6
Um y 0 und y" 0 mit £ 0 zu erhalten, folgt B0 B2 0, und alle B mit

geradem Index sind gleich Null; für £ 1, folgt y 0 und y" 0, wenn
CO ß CO ß
2 ^f 0 und 2 T^Vü °-

Im Falle, daß c 5010), folgt (mit x 0,1 a):

Bx (0,646.906 + 0,090.174.1a'-0,012.951.6a'2 + 0,001.199.56a'3- +
+ B3 (0,159.532-0,081.359.9a' + 0,019.573.6a'2-0,002.732.98a'3+ =0

^(-5,641.618 + 3,508.628 a'-0,890.655 a'2 + 0,129.415 a'3-...) +
+ .ß3 (0,783.753-1,554.285 a'+ 0,808.865 a'2-0,105.368 a'3+...)=0.

9) Siehe z. B. Julius Ratzebsdorfer: „Die Knickfestigkeit von Stäben und
Stabwerken", Julius Springer, 1936, S. 141.

10) Was, wenn k konstant und k0 gleich wäre, einer l,52mal größeren Knicklast als
die des Stabes, außerhalb der elastischen Stützung, entsprechen würde. In dem angegebenen

Beispiel, als mittlere Lösung, sollte man «0 zwischen w2 9,87 und l,52 7r2=15
erreichen, wie es auch wirklich der Fall ist.
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Es sind zwei homogene Gleichungen, die nur zu einer nicht identisch
verschwindenden Lösung führen, wenn ihr Diskriminant Null ist:

1,407.031 - 1,953.541 a + 0,910.929 a'2 - 0,209.580 a'3 + 0,028.518.1 a'4 -
-0,002.555.80a'5 +0,000.209.825a'6- =0.

Wenn man die Koeffizienten durch 1,407.031 teilt, erhält man die Lösung:
1 1,388.414 0,647.412 0,148.952 0,020.268.3 0,001.816.45 0,000.149.125
1 -1,388.414 1,280.281 -1,027.636 0,784.454 -0,588.219 0,438.319
0,72 1,08 1,25 1,31 1,334 1,342

mit a0'^l,35 und a0 10a0' 13,5 oder

3. Beispiel: Mit zwei verschiedenen Querschnitten prismatische Stäbe, mit
Belastungen an den beiden Enden und am Übergangsquerschnitt (Fig. 2)

In diesem Falle, wie in allen bei welchen man die transzendente Gleichung,
die die Werte von a11) angibt, kennt, löst man die Aufgabe, indem man die

n) Diese Betrachtungen können nicht nur bei den Knickproblemen, sondern auch bei
anderen Problemen angewendet werden, wie z. B. bei der Aufsuchung der Achsenvibrationsperiode.

Als erleuchtendes Beispiel sei der Sonderfall von S. 37, op. cit.8) angegeben,
wo die Torsionsvibration einer Achse mit zwei konzentrierten Massen behandelt wird,
wobei man die Lösung

3-4 sin2«-3« sin 2 « + 2a2 sin2 <x 0,

erreicht, die folgendermaßen geschrieben werden kann:

4 + 8 cos 2a- 12a sin 2« + 4a2- 4a2 cos 2a=0

oder setzt man: 2a \ß:

4 + 8 cos fß -6j/J3 sin ]fß+ß-ß cos fß 0

und zieht man in Betracht, daß:

co on co on
cos i/ß ^(-l)n—— und sin i/ß l/ß 2 (-!)",P

o (2k)! VP VP
o (2w-l)!

ist die Endgleichung
00 4+5n+2rc2

12 + 0+ 2V(-1)» __ ßn 0

l (2n)!
oder

6P+72P 4320 p ^4320 P

und die Lösung
1 5/6 11/72 37/4320 1/4320
1 -5/6 39/72 -479/1440 5219/25920

1,2 1,538 1,649 1,652

mit dem Ergebnis ß& 1,652 oder as*0,5j//r= 0,643, mit einem Fehler von 0,2%.
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1

\ \
4 \

'*\

X

TP=P,+PM

Fig. 2

Falll

1

Fall IT FaTlM
iP.

h-1
-inmiii ¦

1,-21
nun),

n2EJ,Ph=(p,+P3l^" l

Fig. 3

transzendenten Funktionen durch die entsprechenden Reihenentwicklungen
ersetzt. Die Lösung des obigen Problems erreicht man durch folgende
Gleichungen der elastischen Linie in den Abschnitten 1 und 2 (kx \PxjEJx und

k2=iPjEJ2):
yx A&enkxx + ¦=+ (cos^a; — 1) --=^x

P\ "i
y2 A' senk2x + B' cosk2x -

Mx-P2S + Qxx
P1 + P2

wo A, A' und B' Integrationskonstanten sind und die übrigen Buchstaben die
in Figur 2 angegebenen Bedeutungen haben. Die Größen Mx, Qx, 8 und die drei
Konstanten werden durch die drei Bandbedingungen und die Gleichungen

Vi y% ^ ™\o\yx=y2' (15)

für x lx in Beziehung gebracht.
Man betrachte die drei Fälle der Figur 3.

Im Fall I ist Mx 0, Qxl P2h und für x l, y2 0. Aus diesen drei
Bedingungen und aus (15) beseitigt man leicht Mx, Qx und 8, und um A, A' und B'
zu bestimmen, bleiben drei homogene Gleichungen, die nur zu einer nicht identisch

verschwindenden Lösung führen, wenn ihr Diskriminant sich annulliert,
das heißt, wenn

1 2

k212 cotg k2l2 + — kx lx cotg kx lx -^- —^
g L-Pl l-pxp3

- 1 + c
g

wo

Pl P1+P2' P3
_1?

l '

9 {\-fh)
Pz

c
(1~Ps)(1-PiPa)
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Schreibt man

\2l2 — fx und kxlx ixf mit /= —-p r, folgt:
P2(1~Pl)

C - ll+—j + /äcotg /a+— /öc/cotg l/a/ 0

oder, indem man die Kotangenten in einer Reihe die konvergent ist, insofern
das Quadrat ihres Arguments nicht tt2 (das heißt, x<tt2 und xf <tt2) erreicht,
entwickelt:

KHK)-^K)-iÄBK)--
die die Gleichung ist, die nach dem vorgeschlagenen Rechenverfahren gelöst,
und wenn sie nicht zu x und x f führt, die größer als tt2 sind, a0 ergibt (es muß

nachgewiesen werden, daß es sich nicht um eine negative Wurzel handelt), daher

Pk «o # <lß)

Auf diese Art wurden die in Tabelle II12) angegebenen Werte berechnet.

Handelt man gleichermaßen in den Fällen II und III der Figur 3, ermittelt
man, beziehungsweise mit derselben Bezeichnung, folgende Gleichungen:

ix cotg i~x- -j fäj tg fxf o

l/x cotg ix~+-^-ix~j cotg ix~f 0

oder, in Reihe entwickelnd (in der ersten Gleichung soll, außer x<tt2, auch

a/<0,2Ö7r2 sein, denn der Konvergenzradius der Tangentenreihe ist kleiner
als derjenige des Kotangenten):

l-|(l + 3sr)-^(l + 15Sr/)-i^(l + 63örf)-^(l + 255Sr/3)-... 0

KB (i+,)-£ u+jfl- ~ <i+9«-j4 (i+»«- • • • - »•

Als numerisches Beispiel nehme man, im Falle I, px 0,4, p2 0,05 und

p3 0,5; man hat (7 0,6, /=12, c 2,5 und

1 - 2,8 x - 2,14222 x2 - 2,43894 a3 - 2,92579 a4 - 3,54633 a5 - 4,30858 a6 -
woher
1 2,8 -2,14222 2,43894 -2,92579 3,54633 -4,30858
1 -2,8 9,98222 -36,3874 133,024 -486,500 1779,36

0,3571 0,2805 0,2743 0,2735 0,2734 0,2734

also ist x0 0,2734.

12) T. van Langendonck: „Cäleulo de Concreto Armado", Associacäo Brasileira de

Cimento Portland, 1. Band, 2. Ausgabe, Sao Paulo 1954.
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Zusammenfassung

Der Verfasser beschreibt ein numerisches Verfahren zur Auffindung des
kleinsten Eigenwertes der Differentialgleichungen, die das Knickproblem
stellen.

Dieses Verfahren kann auch bei der Lösung anderer Aufgaben der
mathematischen Physik, die auf diese Art von Eigenwerten führen, angewendet
werden.

Die Anwendung des Verfahrens wird zum Schluß an drei Beispielen für die
Berechnung der Knicklast gerader Stäbe gezeigt.

Summary

The author develops a numerical method for finding the lowest eigenvalue
of the differential equations which represent the buckling problem.

This method can also be applied to the Solution of other problems in mathe-
matical physics which depend on this eigenvalue.

The application of the method is fmaiiy demonstrated in three examples
for the calculation of the buckling load of straight struts.

Resuine

L'auteur expose un procede numerique pour la determination de la plus
petite valeur particuhere des equations differentielles que pose le probleme
du flambage.

Ce procede peut etre egalement employe pour la resolution d'autres pro-
blemes de la physique mathematique, qui fönt intervenir cette valeur
particuhere.

L'auteur montre enfin, sur trois exemples, comment on peut appliquer ce

procede au calcul de la charge de flambage des barres droites.
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