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Eine numerische Losung des Knickproblems
A numerical solution of the buckling problem

Solution numérique dw probleme du flambage

Prof. Dr. TELEMACO VAN LANGENDONCK, Escola Politéenica,
Universidade de Sao Paulo, Brasilien

Allgemeine Betrachtungen

Das Verfahren der numerischen Losung des Knickproblems, das hier ent-
wickelt wird, ist anwendbar in den Fillen wo die gesuchte Losung sich aus dem
Produkt einer Konstanten mit einer Zahl, Funktion des kleinsten der positiven
Eigenwerte, ergibt. Es besteht in der Aufsuchung der Gleichung, deren unendlich
viele Wurzeln diese Eigenwerte sind, und sie als eine konvergente Potenz-
reihe der Unbekannten gleich Null aufzustellen.

Ein Beispiel haben wir in dem tiiblichen Fall des prismatischen, an beiden
Enden gelenkig-gelagerten Stabes, mit konstanter Axialkraft belastet, und
deren Linge I und Steifigkeitszahl BJ ist.

Die Knicklast ergibt sich durch:

EJ : .
Pk=“o_lz_ ) . (1)

wo «, der kleinste der positiven Eigenwerte der Differentialgleichung des Pro-
blems ist, die bekanntlich durch die transzendente Gleichung

sen Ya=0 ' ‘ ‘ (2)

gegeben wird. . “
Um die angegebene Aufgabe zu losen (im Falle des Beispiels wire dies
nicht nétig, da man die kleinste positive Losung von (2) kennt), entwickelt man
die Sinus-Reihe:

-l OuF 3
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oder, durch Vo geteilt, um die Null-Losung zu beseitigen, die Gleichung
3
+...=0 (4)

o OC2 o

I=3its 7

ergibt, deren kleinste Wurzel «,, in (1) eingesetzt, den Wert P, liefert.
Nach Bernoullis Satz!) weil man, daf der kleinste Absolutbetrag «, der
Wurzeln der Gleichung m-ten Grades: '

play=1—a,a+a,a?—a,o®+ ... idmam=0 _ (5)

solange nicht zwei verschiedene Wurzeln mit dem gleichen Absolutbetrag vor-
handen sind, sich mittels dem Quotienten von 1 durch den Polynom (5) ergibt:

q(a)=§)%=l—bla+b2a2—b3a3+.‘. (6)
da das Verhiltnis der Koeffizienten zwei aufeinanderfolgender Glieder —b,,_,/b,,
zu o konvergiert?).

Die vorhergehenden Betrachtungen behalten ihre Giiltigkeit, wenn m un-
endlich wichst, mit der Bedingung, daB8 der Polynom (5) sich in eine konver-
gente Reihe des gewiinschten «-Wertes verwandelt.

Der Ausdruck, nach dem das Verhaltnis —b,,_,/b, strebt, kann durch -

' ! !

. —b,_ 1 e e e
oy = lim b”’lm—— L o B (7)
‘ , = n €1 €€ €363 €36
gegeben werden?), wo
Uy Gy O3 ... Gy @y Q3 ... . Gpyq
1 a0 ... a,_5 ay, Gy ... . @,
01 ay ... a,_, ) 1 a; ...
8n= enz
001 .... 01
: Wy . Pl .ie Up U
000 ...1a 00 ...1aa,

Die Berechnung dieser Determinanten ist sehr langwierig. Ein einfacheres
Rechenverfahren wird demnéchst beschrieben.

1) Siehe z. B. H. W. TurNBULL: ,,Teoria de Ecuaciones‘’, aus der 3. englischen Aus-
gabe libersetzt, Edit. Dossat, Madrid, S. 169. (Man beachte, daB# die dort angegebenen
Symbole &, § und y die Kehrwerte der Wurzeln von F () = 0, und nicht die Wurzeln sind,
wie dort irrtiimlicherweise angegeben wird ; folglich muB8 das BeISplel auf 8. 170 demgemi
geandert werden.)

‘ ) Wenn die Quotienten —b,,_,/b, mit n — oo divergieren, so bedeutet das, da ver-
schiedene Wurzeln, deren Absolutbetrdge dem kleinsten gleichen, vorhanden sind. Dieser
Fall kommt nicht in den iiblichen Problemen vor, doch wenn, er auftreten, sollte, kénnte
man die Unbestimmtheit durch. Anwendung des in op. cit. (1) genannten Verfahrens be-
seitigen.

3) Wenn die Reihe konvergiert, wie es WHITTAKERS Satz beweist (op. cit., 1, S. 170).
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Die Koeffizienten b,,b,,b,, . .. des Quotienten 1 durch 1 —a, o +aya?—
werden durch —b,=a,,—b,=a,+a,b,,—by=a3+ay,b,+a;b,, ... gegeben und
kénnen durch folgendes Verfahren errechnet werden:

Man schreibt auf einer ersten Zeile die Werte 1,a,,a, .. .; auf der zweiten
Zeile schreibt man: unter 1 wiederum 1; unter a, das Produkt «, X 1, mit um-
gekehrtem Zeichen; unter a, die Summe der Produkte a,X1 und @, X b,, mit
umgekehrtem Zeichen und so weiter; man nimmt immer die Summe der Pro-
dukte der Glieder, denen man begegnet, wenn man zwei Zeilen in entgegen-
gesetzten Richtungen verfolgt, und schreibt sie in die zweite Zeile mit um-
gekehrtem Zeichen: |

1 a, a; ag
um —b; zu finden: /7'

1
Loa ay o

um —b&, zu finden: — 7

1 b

1 a; a, ay

: A

um —'b3 zu finden: TN

1 b, b,

Gleichzeitig schreibt man auf einer dritten Zeile die Quotienten ... —b,_4/b,,,
die die aufeinanderfolgenden Annéherungen des gesuchten o, sind, und deren
allmahliche Kenntnis die Berechnungen zu unterbrechen, sobald die gewiinschte
Anndherung erreicht ist, erméglicht.

Wendet man in (4) dieses Rechenverfahren an, ergibt sich

1 0,166.67 0,008.333.3 0,000.198.41 0,000.002.755.7 . .
1 —0,166.67 0,019.444 —0,002.050.8 0,000.209.99
6 8,571 9,484 9,764

und es erweist sich, daB die Zahlen der dritten Zeile wirklich nach #»2=9,870
streben, welcher, wie man weil}, derjenige von «,*) ist. Der Rechenfehler bei
dem letzten Wert (9,764) betrédgt 1,079,.

4) Die Zahlen sind in folgender Reihenfolge ermittelt worden, nachdem man die erste
Zeile, die die Werte 1, Yy, /5., Y2y, Yy, .. . aufweist, geschrieben hat:
1, —1x0,166.67, 1/0,166.67=6 '
—(1x0,008.333.3 —0,166.67 < 0,166.67)=0,019.444, 0,166.67/0,019.444 =8,571
—(1x0,000.198.41 —0,166.67 >< 0,008.333.3 4+ 0,019,444 > 0,166.67) = — 0,002.050.3
0,019.444/0,002.050.3 = 9,484, usw.,

In einfachen Briichen:
1 1/6 1/120 1/5040 1/362.880 ...
1 —1/6 7/360 —31/15120 127/604.800 ...
6 60/7 294/31 1240/127
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Eine systematische Darstellung der verschiedenen Anwendungsméglich-
keiten vorliegender Methode wird der Verfasser in einer besonderen Broschiire
veroffentlichen. Hier werden nur drei Beispiele von Sonderfillen entwickelt.

1. Beispiel: Gerader Stab, nur an den Enden gestiitzt und von einer stetigen
Axialkraft beansprucht

~ Die Differentialgleichung ist in diesem Falle (P ist die Axialkraft und E.J
die Steifigkeitszahl der Stabquerschnitte, mit « verinderlich, Fig. 1) 5):

2 2
¢ (Ede) p%Y_ . (8)

dax? d a2 dx?

oder, nach doppelter Integration:

2 |
BIYY Py 1D

d x?
_ B J, PP )
Wenn man x=¢1, EJ = & und o = m setzt, wo:

l die Lénge des Stabes;
X eine Funktion von ¢, deren Werte umgekehrt propormonell zu EJ sind,
- und die folglich positiv und endlich in dem betrachteten Abschnitt ist;

E, J, irgend eine (endliche und positive) Konstante mit den Dimensionen einer
Steifigkeitszahl,

ist, hat man (C und D sind Integrationskonstanten; y',y” ... bezeichnen die
aufeinanderfolgenden Ableitungen von y im Verhiltnis zu §):

y' +aXy=X (C+D§). (9)

Wenn £ =y, folgt i (y) = A und ¢’ (y) = B, und, wenn (9) zweimal integriert
wird: _ .
& ¢ £ ¢
Yy+afdifXydé=A+B(E—y)+ [dEfX(C+DE)dE (10)
vy ¥ ,

oder, wenn das zweite Glied, das eine Funktion von £ ist, mit ¢ bezeichnet wird:

¢ ¢ |
y=t—afdéfXyd¢
b Y

%) Es wird hier angenommen, daf3 EJ nur mit X und nicht mit P veridnderlich ist, wie
in dem Falle, wo die Proportionalitidtsgrenze des Materials iiberschritten wird; in diesem
Falle erhilt man die Lésung mit der angegebenen Methode, wenn deér Kehrwert des ¥ in
Funktion der Spannung o in Form eihes Polynoms der ganzen o-Potenzen ausgedriickt
werden kann.
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Ersetzt man in der letzten Integrale y durch den Ausdruck des ganzen zweiten
Gliedes, das ihm gleichwertig ist, erhéilt man:

£ ¢ E & £ ¢
y=t—ocJ"d§JXtd§+a2Id§J"Xd§IdSIXyd§
: Y Y

und, fortfahrend, mit dem aufeinanderfolgenden Ersatz des y der letzten
Integrale: ’

y=t—oaltorl,—od s+ ... (11)
wo:
¢ ¢ & ¢ £ ¢
I,=1,(X)=[dé[XdéfdéfXde. . .[déf X tdé (2n Integralen)
A A ¥ ¥
Immer wenn X in dem gegebenen Bereich endlich ist, strebt die g
Reihe (11) zur Losung von (9)%). Sie ermoglicht die Auffindung

]

der gesuchten «-Potenzreihe, und deren kieinste positive Wurzel «,

dem Werte P, der die Knickbelastung ist: ‘

By,
2

PL=a (12)
entspricht.
In dem Falle des gelenkig-gelagerten Stabes mit verdnderlichem
Querschnitt angewendet, annullieren sich die Konstanten ' und D,
und wenn y =0, annulliert sich auch 4, indem man den Ursprung
der Koordinaten mit einem der Stabenden zusammentreffen 1aBt
(Fig. 1); es bleibt ¢ = B¢ tbrig. Wenn z.B. die Steifigkeitszahl T
der Stabquerschnitte sich mit: . P

' . Fig. 1
f"Jf" das heiflt, X =2 ¢ (13)

wandelt, sind die Koeffizienten von (11), wenn y =0,

:‘EJ_

I —Idffo (2-8dé =2 (42 und, fir §=1, =2

¢ B 47 B
- _ 5 6 7
Iz_ojdgoj(Q 1A = o (34£5— 4285+ 58) und, fiir £=1, [, = 5

g ., g B B
Is=é(dfg(2—§)12d§ 5 (7257 54§8+13§9 £9) und, fiir §=1, Iy =205

‘Da y =0 fiir £ =1 sein soll, ergibt sich, daBl die gesuchte Gleichung (da B+0, um
nicht die Losung y =0 zu bekommen)7):

§) Siehe Beweisfithrung, z. B. in CH. STURM »Cours d’Analyse s Gauthier-Villars,
Paris 1909, B. 2, 8. 146. '

) Bei der Ermittlung dieser Gleichung kann irgendeines der bekannten Ermittlungs-
verfahren angewendet werden, wie beispielsweise das Taylorreihenverfahren (aufeinander-



116 . Telemaco van Langendonck

1 47 1 1
1——a+ 2 L il

" 4
4% 9530% " 1512 %

9720720° "

0 (14)

ist, deren erstes Glied, wie schon erwahnt, eine konvergente Reihe ist.

Wenn man das vorgeschlagene Rechenverfahren anwendet, ergibt sich:

1 0,25 0,018.651 0,000.661.4 0,000.013.67
1 —0,25 0,043.849 —0,006.961 0,001.074
4 5,70 6,29 6,48
woher
we6,5 und Pp~6,5 _E_’l)ig.

{2

Zur Vereinfachung der Berechnung von 7, kann Tabelle I beniitzt werden,
in der die Koeffizienten angegeben sind, die die doppelte Integration

ém &
JaEJF(§)d¢
0 0

folgend vom 1, Glied der Gleichung y” =Xy abgeleitet) oder das Verfahren der unbe-
stimmmten Koeffizienten (wenn X ein Polynom oder der Quotient zweier Polynome der
ganzen £-Potenzen ist):

o] oo -
y = ZAn &,y = an (n—1) Anfn—z e Z (n+2) (n+1) 4, &
. 0 0 0
daher 7
«© [z} . o0
Y +a@=y=Y +2)(n+1) A4, 45> 24, "—a> A, =0
. 0 0
oder
oo i
(24,+2 4a)+ Zl [(n4+2)(n41) A, ,+2ad,~ad, 16 =0
worgus: A,=—a 4, und, bein=1:

A _ a(An_1—~2An)
2T (g4 2) (n41)

Da 4,=0, um y=0 zu haben, wenn £=0, schreibt man:

a? a? o? e® . a3

_ A LT S T X sg -
y—Al[f Ot 8558 50 5048 " 530¢ a0t
13 &® 5 ol 4 ol 10 ]
~ 60t tmes0t Tasset

und damit ¥ sich bei é¢=0 annulliert:

I L LY WS WL R WPOS S TS LR W
1 “(5"1—2)“ (30 60+504) “(@“840+45360)+"'"0

womit man die Gleichung (14) erhalten hat.
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. : o
fir ¢, , von 0,1 um 0,1 zwischen 0 und 1 schwankend, in Funk- J" 3
tion von F (¢,,) ermdoglichen, die berechnet wurde indem man BE
annahm, die Funktion sei durch einen trigonometrischen Poly- 5,2
nom, der ¥ (£) fiir die elf ¢, -Werte befriedigt, dargestellt. ay
(1]
- l
Tabelle I .
. _ By, im & e by, (€m) o
= d Xd¢ = )y
Yo T
106, | ko ky k, ks k, ky ke k. kg Iy ko
1| s 13 —2| 1, -1 ol ol o] of ol o
2 90 101 9 | -1 0 0 0 0 0 0 0
3 140 | 203 98 11 | -2 1 0 0 0 0 0
4 190 302 200 99 1 10 -1 0 0 0 .0 0
5 240 403 299 201 98 10 —1 1 0 0 0
6 290 502 399 300 200 99 10 —1 0 0 G
7 340 603 499 401 299 201 99 10 -1 1 0
8 390 702 599 500 400 |° 300 200 99 10 | -1 0
9 440 803 699 601 500 400 300 201 98 11 -1
10 490 902 799 700 600 500 400 300 201 98 10

So hat man zum Beispiel (Tabellenbezeichnung)®), mit X =1+senx ¢:

Jo=Jj10=1, jl=;i9=1+sen%=1,309, Ja=173=1,688
WOTraus: J3=1,=1,809, j;=7¢=1,951, J5=2
10 10 10 10
¢ AL =3¢k | 102, = 1003 I s jyky| 1087, = 102102 T, fofeg | 104 T, = 103 108 Ty ks
0 0 0 0
0,1 0,0001 0,0000 Q,OOOO
0,2 0,0016 0,0002 03,0000
0,3 0,0063 0,0040 0,0001
0.4 0,0164 0,0191 0,0009
0,5 0,0343 0,0696 0,0068
0.6 0,0621 0,1869 0,0261
0,7 0,1018 0,4312 0,0891
0,8 0,1537 0,8528 0,2218
0,9 0,2186 1,5228 0,4967
1,0 0,2949 2,4736 0,9688 0,2209

8} Beispiel von LoTHAR COLLATZ: ,,Eigenwertprobleme und ihre numerische Behand-
lung*‘, Chelsea Fubl. Co., New York 1948, S. 187. Den genauen «y-Wert befindet sich, nach
diesem Verfasser, zwischen 0,5388 #2=15,318 und 0,5409 »2=5,338.
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10,2949 x4 0,024.74 22 — 0,000.968.8 «* + 0,000.022.09%— ... =0
das zu
1 - 0,2949 0,024.74 0,000.968.8 0,000.022.09
1 —0,2949 0,062.23 —0,012.025 0,002.270.2
3,39 4,74 5,18 5,30
By,
2 -

fiihrt, also ay~ 5,30 und P~ 5,30

2. Beispiel: Elastisch gebetteter prismatischer Stab, mit veriinderlicher Bettungs-
ziffer

Die Gleichung, die das Problem lost, ist?):
yV+ay"+eXy=0

wo X eine Funktion von ¢, die die Veridnderlichkeit der Bettungsziffer £ =k, X
(Kraft, die die Stiitzung auf den Stab, pro Lingeneinheit, wenn seine Querver-
schiebung einheitlich ist, ausiibt) bezeichnet; k, ein Standardskoeffizient ist
¢ = ky1*/ EJ und die iibrigen Buchstaben die vorher angenommenen Bedeutungen
haben. '

Wenn X ein Polynom der ganzen £-Potenzen ist, kann die Gleichung fiir «
nach dem in FuBnote 7 beschriebenen Verfahren erhalten werden. So hat
man fir einen an den Enden gelenkigen Stab, mit einer Stiitzung, deren Bet-
tungsziffer parabolisch von k, bis 0 veréinderlich ist (d. h. X =1—£2):
y=Sdp=5Tep
mit (fiir »> 3): ¢ v

B,=—aB, s—¢cB, ;+c(n—4)(n—5)B,_¢

V(2

Um =0 und y” =0 mit £ =0 zu erhalten, folgt B,=B,=0, und alle B mit
geradem Index sind gleich Null; fir £=1, folgt y=0 und y” =0, wenn

oo_Bn 3] B’n _
%W_O llIld. g(n—_-é")—‘—~o.

Im Falle, daB ¢ =501), folgt (mit o’ =0,1x):

B, (0,646.906 +0,090.174.1 5’ —0,012.951.6 22 +0,001.199.56 o — .. .) +
+B, (0,159.532—0,081.359.9¢ +0,019.573.6 '2—0,002.732.98 %+ ,..) =0
B, (-5,641.618 +3,508.628 o' —0,890.655 «2+0,129.415 o®— ...) +

) =0.

+ B, (0,783.753 —1,554.285 «'+0,808.865 «'2—0,105.368 o3+ ...

%) Siehe z. B. Jurius RATZERSDORFER: ,,Die Knickfestigkeit von Stédben und Stab-
werken*, Julius Springer, 1936, S. 141. '

10) Was, wenn k konstant und k, gleich wire, einer 1,52mal gréBeren Knicklast als
die des Stabes, aulerhalb der elastischen Stutzung, entsprechen wiirde. In dem angege-
benen Beispiel, als mittlere Losung, sollte man oy zwischen #»2=9,87 und 1,62 22=15 er-
reichen, wie es auch wirklich der Fall ist.
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Es sind zwei homogene Gleichungen, die nur zu einer nicht identisch ver-
schwindenden Losung fithren, wenn ihr Diskriminant Null ist:

1,407.031 — 1,953.541 o’ + 0,910.929 &2 — 0,209.580 '3 4 0,028.518.1 «'¢ —
—0,002.555.80 «'5 + 0,000.209.825 26 — ... =0,

Wenn man die Koeffizienten durch 1,407.031 teilt, erhilt man die Liosung:

1 1,388.414 0,647.412 0,148.952 0,020.268.3 0,001.816.45 0,000.149.125
1 -1,388.414 1,280.281 -1,027.636 0,784.454 0,588,219 0,438.319

0,72 1,08 1,25 1,31 1,334 1,342
mit oy’ ~1,35 und «y=10«, =13,5 oder
BJ
PkN 13,5 ZT.

3. Beispiel: Mit zwei verschiedenen Querschnitten prismatische Stibe, mit
Belastungen an den beiden Enden und am Ubergangsquerschnitt (Fig. 2)

In diesem Falle, wie in allen bei welchen man die transzendente Gleichung,
die die Werte von «!!) angibt, kennt, 16st man die Aufgabe, indem man die

11) Diese Betrachtungen kénnen nicht nur bei den. Knickproblemen, sondern auch bei
anderen Problemen angewendet werden, wie z. B. bei der Aufsuchung der Achsenvibra-
tionsperiode. Als erleuchtendes Beispiel sei der Sonderfall von . 37, op. cit.?) angegeben,
wo die Torsionsvibration einer Achse mit zwei konzentrierten Massen behandelt wird,
wobei man die Lésung '

3—4s8in?x—3asin 2a+2a2sin? a=90,

erreicht, die folgendermafien geschrieben werden kann:
4+8cos 20— 12a8in 20+ 4a®—4a% cos 2a=0
oder setzt man: 2« :}/[5'—

4+8cos g —6)psin g +B—Bcos Yg=0

und zieht man in Betracht, daf3:

[«9] {2 o ﬁn
0 — — 1\r 1 — — n
cos 8 _.%( 1) @n) und  sin /g = Vﬁ%( 1) TPy
ist die Endgleichung
® 4+ 5n+2n
1248+ 22(_1)n—uﬁn=0
T (2n)!
oder
5 nm, 37 . 1 _
1= At P gm0 P T30 # =9
und die Losung L
1 5/6 11/72 37/4320 1/4320
1 —5/6 39/72 —479/1440 5219/25920
1,2 1,638 1,649 1,652

mit dem Ergebnis §2:1,6562 oder aav0,5 /g = 0,643, mit einem Fehler von 0,2%,.
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p
170, Falll ~ Falll — Fallll
T L g 5

AN ! __ '

\\ x T T
Z, Jf \ ‘02 p; l, PZ
A ] )
\

P, g1 1

i o

[} HELITPErT Jil7:

J =1 =2l 1=l
K . _a MEEJ
Ll-p=/°;+'°z RGN —F
K
Fig. 2 _  Fig. 3

transzendenten Funktionen durch die entsprechenden Reihenentwicklungen
ersetzt. Die Losung des obigen Problems erreicht man durch folgende Glei-

chungen der elastischen Linie in den Abschnitten 1 und 2 (k;,=VP,/EJ, und

fey=VP[EJ,): M, 0,
yl = Asenklw—[- ﬁ (COSklx—l) -7)-;%

Yy = A'senk,x+ B coskyx — P, P,
wo A, 4’ und B’ Integrationskonstanten sind und die iibrigen Buchstaben die
in Figur 2 angegebenen Bedeutungen haben. Die Groen M, ¢, ,d und die drei
Konstanten werden durch die drei Randbedingungen und die Gleichungen

Y1=Y;=0 und y," =y, (15)

fir =1, in Beziehung gebracht.

Man betrachte die drei Fille der Figur 3.

Im Fall T ist M;=0, @;1=P,6 und fiir x=1, ,=0. Aus diesen drei Bedin-
gungen und aus (15) beseitigt man leicht M, @, und §, und um 4, 4" und B’
zu bestimmen, bleiben drei homogene Gleichungen, die nur zu einer nicht iden-
tisch verschwindenden Losung fithren, wenn ihr Diskriminant sich annulliert,
das heif3t, wenn ‘

oy Iy cObg oy ly +— Ty I, cObg Iy By = Pl _ s il
2 R lg M 1—p; 1—pyp3 g
wo ’
_ Py _ N _ 1
Pl—Pl_l_PZJ '02—',]2’ Pa"'ls
—Ps 1

1
g=(=p)—=, © T A—ps) T —prps)
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Tabelle 11. Werte von N (Fig. 3)
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FALL T FALL II FALL III
L | 7
A PP — PP = PP =
0 | 02| 04 ‘ 0,6 | 0,8 | 1,0 o {o2]|o04]o06los]10!l o |0,2 | 0,4 | 06 |08/ 1,0
0,3 | 0,05 | 0,057 0,065| 0,076/ 0,091] 0,113| 0,145| 0,098| 0,122 0,163 0,244/ 0,49 11,11 | 0,098] 0,122] 0,163| 0,244] 0,49 | 2,83
0,1 |0,113]0,130]0,151|0,181| 0,222| 0,283] 0,187 0,234 0,312/ 0,468| 0,93 11,11 | 0,187| 0,234| 0,811| 0.465| 0.92 | 2.87
0.2 |0,22 |0,26 [0,30 |0,35 |0,43 | 0,54 |0,35 0,43 | 0,57 |0,86 |1,60111,11|0,34 |0.43 | 0.56 |0.83 |1.53| 2.97
0,4 |0,44 050 [0,57 |0,67 |0,81 | 1,00 |0,59 0,74 | 0,97 |1,4¢ |2,78 111,11 ] 0,58 |0.71 |0.92 |1.30 | 2,06 3.15
0.6 [0,64 |0,72 [0,88 0,96 | 1,14 |1,38 | 0,77 |0,95 |1,26 | 1.85 |3.44 (11,11 |0,75 | 0,91 |1,16 | 1,59 |2.33 | 3.33
0.8 0,82 0,93 [1,06 |1,22 |1,4¢ | 1,71 |0,90 | 1,11 |1,47 | 2,13 |3,87 [11,11|0,88 |1,07 | 1,35 1,80 | 2.53 | 3.50
1 |1,00 [1,12 | 1,27 {1,46 | 1,69 |1,98 [1.00 1,24 | 1,62 |2,34 | 4,15 (11,11 [1,00 |1.20 |1.50 | 1,97 |2.70 | 3.66
0,4 | 0,05 | 0,066/ 0,075 0,088| 0,106 0,131 0,170 0,130| 0,162| 0,216| 0,324| 0,65 | 6,25 | 0,130| 0,162 0,216/ 0,323 0,65 | 1,60
0,1 |0,130| 0,148|0,173|0,207| 0,255/ 0.329] 0,24 | 0,30 | 0,40 |0.60 |1,19| 6,25 | 0,24 0,30 | 0,40 | 0,58 |1.04] 1.65
0.2 0,25 | 0,29 |0,33 |0,40 |0.49 |0,62 0,43 |0,53 |0,71 | 1,04 |1,99| 6,25 0,41 |0.51 | 0,65 0,90 |1.31] 1,73
0.4 0,48 0,54 |0,62 [0,73 |0,88 | 1,08 |0,68 |0,84 | 1,10 | 1,58 |2.79| 6.25|0.63 |0.75 [0.95 |1.18 |1.52] 1.88
0.6 |0.,68 0,76 |0,87 [1,01 |1,19 {1.43 0,83 |1,02 [1,32 |1.87 |3,12] 6.25|0.78 |0.91 |1.10 |1.35 |1.68] 2.03
0.8 10,85 |0,95 | 1,08 [1,23 |1,43 11,69 |0,93 | 1,14 | 1,47 | 2,04 |3,29| 6,25|0.80 |1.04 |1.24 |1.50 | 1.82| 2.17
1 |1,00 |1,11 |1,25 |1.42 |1.63 [1,90 [1,00 |1,22 | 1,56 |2.16 | 3,39 | 6,25|1,00 | 1,16 | 1,36 | 1,63 | 1,95 | 2.30
0,5 10,05 | 0,082| 0,004] 0,111|0,135| 0,171 0,231 0,181 0,226 0,301} 0,45 | 0,39 | 4,000,179 0,223 0,296] 0,44 | 0,76 | 1,04
0.1 |0,159]0,183|0,215| 0,261 0,328/ 0,439] 0,33 | 0,41 | 0,54 | 0,80 |1,52| 4,00 |0,31 |0,38 | 0,49 |0.67 |0.90 | 1,08
0.2 [0,30 |0,35 |0,41 0,49 | 0,61 10,79 |0,54 | 0,67 | 0,87 |1,25 |2,15| 4,00 |0,48 | 0,57 |0.68 | 0,83 |1,00| 1,16
0.4 |0,55 0,62 |0,72 |0,85 |1,02 {1,28 |0,77 | 0,94 |1,20 |1,64 |2,50| 4,00|0,66 |0,75 | 0.87 | 1.00 |1.15| 1,30
0.6 10,74 |0,83 0,95 [1,10 |1,30 | 1,58 [0,89 1,07 |1,35 |1.80 |2.61| 4,00]0,79 |0,88 1,00 1,13 |1,28 | 1,43
0.8 10,89 0,99 1,12 |1,28 |1,40 | 1,77 0,96 [1,15 | 1,43 |1,88 |2,66| 4,00]0,90 | 1,00 |1,12 |1.26 | 1,40 1,55
1 1100 |1,11 |1,25 [1,41 1,62 [1.89 |1,00 1,19 |1,48 |1,03 2,69 | 4.00[1,00 |1,11 |1.28 |1,37 |1,52| 1,67
0,6 10,050,111 0,129 0,154| 0,192| 0,253| 0,366 0,27 | 0,33 | 0,44 |0,65 |1,25] 2,78|0,26 |0,31 | 0,40 |0,52 |0,65| 0,74
0.1 |0,21 |0,25 |0,29 |0,36 | 0,47 |0,67 10,46 | 0,56 | 0,74 | 1,05 |1,75| 2,78 | 0,39 | 0,46 | 0,53 | 0,62 | 0,70 | 0,78
0.2 |0,39 l0.45 |0,53 10,65 0,82 |1,11 10,68 0,82 |1,04 1,40 | 1,99 2,78 0,52 | 0,58 | 0,64 | 0,71 |0,78| 0,85
0.4 |065 |0.74 |0,86 |1,02 1,231,583 [0,86 [1,02 [1,25 [ 1,58 | 2,00 2,78 0,67 |0,72 | 0,79 |0.85 | 0,92 0,99
0.6 0,82 |0,02 |1,05 [1,22 |1,43 |1,70 0,94 [1,10 1,32 | 1,65 |2,12] 2,78 0,79 | 0,85 | 0,91 |0.98 |1,05| 1,12
0,8 [0,08 [1,08 |1,17 |1.33 | 1,53 |1,79 |0,08 1,14 |1.36 | 1,67 |2,13| 2,78|0,90 | 0,96 |1,08 |1,09 |1,16] 1,23
1 |1.00 [1,11 [1,24 | 1,40 | 1,60 |1.83 |1,00 |1,16 |1.38 1,69 |2,14| 2,78 1,00 |1,06 |1,13 [1,20 1,26 | 1,33
0,7 0,05 | 0,171| 0,202 0,246 0,315| 0,436| 0,696 0,43 | 0,53 10,69 0,97 | 1,51 2,04]0,35 | 0,39 | 0,44 |0,48 |0,52] 0,56
0.1 |0.32 |0,87 |0,45 10,57 |0,77 | 1,14 | 0,65 0,78 |0,97 | 1,25 | 1,64 2,04 0,43 | 0,47 | 0,50 | 0,54 |0,57 | 0,60
0.2 |0.54 |0.63 |0,74 {0,901 |1,15 |1,47 0,88 [0,97 |1,15 | 1,39 | 1.69| 2,04 |0,52 | 0,55 | 0,59 |0,62 | 0,65 | 0.69
0.4 |0,79 0,80 [1,02 [1,18 1,38 |1,60 |0,94 | 1,07 | 1,23 | 1,44 | 1,71| 2,04 0,67 0,70 0,73 |0,77 |0,80 | 0,83
0.6 |0.90 [1.00 |1,13 |1,28 |1,45 |1,64 |0,97 (1,10 |1.26 | 1,46 |1,72| 2,04 0,79 | 0,83 | 0,86 |0,89 | 0,92 0,95
0.8 |096 |1.08 |1,18 [1,32 |1,48 |1,65 | 0,99 [1,11 |1,27 | 1,47 | 1.72] 2,04 0,90 | 0,93 |0.97 |1,00 |1,08| 1,06
1 100 [1,10 [1,21 |1,3¢ | 1,50 |1.66 [1,00 1,12 |1,28 | 1,48 | 1,78 2,04 1,00 |1,08 | 1,06 | 1,00 |1,12] 1,14
0.8 0,050,352 |0,39 0,48 10,63 |0,90 |1,33 |0,72 | 0,84 | 1,00 |1,19 [1,39| 1.56 | 0,37 | 0,39 |0,41 | 0,42 | 0,44 | 0,45
0.1 |0.55 |0.65 0,78 [0,96 |1,19 |1,40 0,87 0,98 {1,10 | 1,25 | 1,40 | 1,56 | 0,43 | 0,45 | 0,46 |0.48 |0,49| 0,51
0.2 |0.78 0,88 [1,00 |1,14 [1,29 |1,42 |0,95 | 1,04 11,15 1,27 |1,41| 1,56|0,53 | 0,55 | 0,56 0,58 |0,59 | 0,61
0.4 092 {1,01 |1,11 |1,21 | 1,32 |1,43 [0,98 | 1,07 [1.17 | 1,28 |1,61| 1,56 0,70 | 0,71 |0,72 10,74 | 0,75 ] 0,77
0.6 1097 |1.05 |14 |1.23 [1,33 | 1,44 |0.99 1,08 |1.17 |1,29 | 1,42| 1,56 0,82 | 0,84 | 0,85 0,86 | 0,87 ] 0,88
0.8 10,09 1,06 |1,15 |1,24 |1,3¢ |1,44 | 1,00 [1,08 |1,18 [1,29 | 1.42| 1,56 [ 0,92 0,93 | 0,94 10,95 |0,97] 0,98
L 11,00 {107 |1,16 !1,24 |1.34 |1.44 [1.00 | 1,08 1,18 | 1,29 |1,42| 1,56 [1,00 | 1,01 |1.02 [1.03 |1,04] 1,05

9 Abhandlung XIV




122 Telemaco van Langendonck

Schreibt man

; - 2
kyly = Ve und Kkl =Vaf mit f=—9 folgt:
? ¥ 1 af ' f pa(l— Pl) &

( ;)+1/_cotg]/a+ Vo f cotg Vaf =0

oder, indem man die Kotangenten in einer Reihe die konvergent ist, insofern
das Quadrat ihres Arguments nicht #? (das heifit, « <#® und «f <#?) erreicht,
entwickelt:

=5 (1) 5 o ) -ais 10Dt )

die die Gleichung ist, die nach dem vorgeschlagenen Rechenverfahren geldst,
und wenn sie nicht zu « und « f fithrt, die gréBer als #? sind, o, ergibt (es muf}
nachgewiesen werden, daB es sich nicht um eine negative Wurzel handelt), daher

EJ
Pe=oo s

(16) -

Auf diese Art wurden die in Tabelle IT 12y ahgegebenen Werte berechnet.

Handelt man gleichermafBen in den Féllen IT und ITT der Figur 3, ermittelt
man, beziehungsweise mit derselben Bezeichnung, folgende Gleichungen:

Yo cotg }/;—i Vaf tg Vaf =0

Vo cotg ]/_+ Vaf cotg Vaf =0

oder, in Reihe entwickelnd (in der ersten Glelchung soll, auBer a <%, auch
af<0,25n2 sein, denn der Konvergenzradius der Tangentenreihe ist kleiner
als derjenige des Kotangenten)'

1—§(l+39)——(1+15gf) 4725(1+639f2)—ﬁz—5(1+255gf3) =0
(1+9) ~ 5 (o) - 55 40 - grag (+0P) =gz (+aF) = = 0.

Als numerisches Beispiel nehme man, im Falle I, p;=0,4,p,=0,05 und
p3=0,5; man hat g=0,6, f=12, c=2,5 und :

1-28x—2,142220%—2,43894 2 — 2,92579 o — 3.,54633 b —4,30858 o —

woher

1 2,8 —-2,14222 2,43894 ~2,92579 3,64633 —4,30858
1 -2,8 9,98222 -36,3874 133,024 -486,500 1779,36
0,3571 0,2805 0,2743 . 0,2735 0,2734 0,2734

also ist oy =0,2734.

12) T, van LANGENDONCK: ,,Cdlculo de Concreto Armado‘, Associagao Brasileira de
Cimento Portland, 1. Band, 2. Ausgabe, Sao Paulo 1954.
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Zusammenfassung

Der Verfasser beschreibt ein numerisches Verfahren zur Auffindung des
kleinsten Eigenwertes der Differentialgleichungen, die das Knickproblem
stellen.

Dieses Verfahren kann auch bei der Losung anderer Aufgaben der mathe-
matischen Physik, die auf diese Art von Eigenwerten fiihren, angewendet
werden.

Die Anwendung des Verfahrens wird zum SchluB an drei Belsplelen fir die
Berechnung der Knicklast gerader Stibe gezeigt.

Summary

The author develops a numerical method for finding the lowest eigenvalue
of the differential equations which represent the buckling problem.

This method can also be applied to the solution of other problems in mathe-
matical physics which depend on this eigenvalue. '

The application of the method is finally demonstrated in three examples
for the calculation of the buckling load of straight struts.

Résumé

L’auteur expose un procédé numérique pour la détermination de la plus
petite valeur particulidre des équations différentielles que pose le probléme
du flambage.

Ce procédé peut étre également employé pour la résolution d’autres pro-
blémes de la physique mathématique, qui font intervenir cette valeur parti-
culidre.

L’auteur montre enfin, sur trois exemples, comment on peut appliquer ce
procédé au calcul de la charge de flambage des barres droites.
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